University of Maryland Libraries Logo

Systematic Review

  • Library Help
  • What is a Systematic Review (SR)?
  • Steps of a Systematic Review
  • Framing a Research Question
  • Developing a Search Strategy
  • Searching the Literature
  • Managing the Process
  • Meta-analysis
  • Publishing your Systematic Review

Introduction to Systematic Review

  • Introduction
  • Types of literature reviews
  • Other Libguides
  • Systematic review as part of a dissertation
  • Tutorials & Guidelines & Examples from non-Medical Disciplines

Depending on your learning style, please explore the resources in various formats on the tabs above.

For additional tutorials, visit the SR Workshop Videos  from UNC at Chapel Hill outlining each stage of the systematic review process.

Know the difference! Systematic review vs. literature review

systematic review research meaning

Types of literature reviews along with associated methodologies

JBI Manual for Evidence Synthesis .  Find definitions and methodological guidance.

- Systematic Reviews - Chapters 1-7

- Mixed Methods Systematic Reviews -  Chapter 8

- Diagnostic Test Accuracy Systematic Reviews -  Chapter 9

- Umbrella Reviews -  Chapter 10

- Scoping Reviews -  Chapter 11

- Systematic Reviews of Measurement Properties -  Chapter 12

Systematic reviews vs scoping reviews - 

Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information and Libraries Journal , 26 (2), 91–108.

Gough, D., Thomas, J., & Oliver, S. (2012). Clarifying differences between review designs and methods. Systematic Reviews, 1 (28). htt p s:// 10.1186/2046-4053-1-28

Munn, Z., Peters, M., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018).  Systematic review or  scoping review ?  Guidance for authors when choosing between a systematic or scoping review approach.  BMC medical research methodology, 18 (1), 143. Also, check out the  Libguide from Weill Cornell Medicine  for the  differences between a systematic review and a scoping review  and when to embark on either one of them.

Sutton, A., Clowes, M., Preston, L., & Booth, A. (2019). Meeting the review family: Exploring review types and associated information retrieval requirements . Health Information & Libraries Journal , 36 (3), 202–222.

Temple University. Review Types . - This guide provides useful descriptions of some of the types of reviews listed in the above article.

UMD Health Sciences and Human Services Library.  Review Types . - Guide describing Literature Reviews, Scoping Reviews, and Rapid Reviews.

Whittemore, R., Chao, A., Jang, M., Minges, K. E., & Park, C. (2014). Methods for knowledge synthesis: An overview. Heart & Lung: The Journal of Acute and Critical Care, 43 (5), 453–461.

Differences between a systematic review and other types of reviews

Armstrong, R., Hall, B. J., Doyle, J., & Waters, E. (2011). ‘ Scoping the scope ’ of a cochrane review. Journal of Public Health , 33 (1), 147–150.

Kowalczyk, N., & Truluck, C. (2013). Literature reviews and systematic reviews: What is the difference? Radiologic Technology , 85 (2), 219–222.

White, H., Albers, B., Gaarder, M., Kornør, H., Littell, J., Marshall, Z., Matthew, C., Pigott, T., Snilstveit, B., Waddington, H., & Welch, V. (2020). Guidance for producing a Campbell evidence and gap map . Campbell Systematic Reviews, 16 (4), e1125. Check also this comparison between evidence and gaps maps and systematic reviews.

Rapid Reviews Tutorials

Rapid Review Guidebook  by the National Collaborating Centre of Methods and Tools (NCCMT)

Hamel, C., Michaud, A., Thuku, M., Skidmore, B., Stevens, A., Nussbaumer-Streit, B., & Garritty, C. (2021). Defining Rapid Reviews: a systematic scoping review and thematic analysis of definitions and defining characteristics of rapid reviews.  Journal of clinical epidemiology ,  129 , 74–85.

  • Müller, C., Lautenschläger, S., Meyer, G., & Stephan, A. (2017). Interventions to support people with dementia and their caregivers during the transition from home care to nursing home care: A systematic review . International Journal of Nursing Studies, 71 , 139–152.
  • Bhui, K. S., Aslam, R. W., Palinski, A., McCabe, R., Johnson, M. R. D., Weich, S., … Szczepura, A. (2015). Interventions to improve therapeutic communications between Black and minority ethnic patients and professionals in psychiatric services: Systematic review . The British Journal of Psychiatry, 207 (2), 95–103.
  • Rosen, L. J., Noach, M. B., Winickoff, J. P., & Hovell, M. F. (2012). Parental smoking cessation to protect young children: A systematic review and meta-analysis . Pediatrics, 129 (1), 141–152.

Scoping Review

  • Hyshka, E., Karekezi, K., Tan, B., Slater, L. G., Jahrig, J., & Wild, T. C. (2017). The role of consumer perspectives in estimating population need for substance use services: A scoping review . BMC Health Services Research, 171-14.
  • Olson, K., Hewit, J., Slater, L.G., Chambers, T., Hicks, D., Farmer, A., & ... Kolb, B. (2016). Assessing cognitive function in adults during or following chemotherapy: A scoping review . Supportive Care In Cancer, 24 (7), 3223-3234.
  • Pham, M. T., Rajić, A., Greig, J. D., Sargeant, J. M., Papadopoulos, A., & McEwen, S. A. (2014). A scoping review of scoping reviews: Advancing the approach and enhancing the consistency . Research Synthesis Methods, 5 (4), 371–385.
  • Scoping Review Tutorial from UNC at Chapel Hill

Qualitative Systematic Review/Meta-Synthesis

  • Lee, H., Tamminen, K. A., Clark, A. M., Slater, L., Spence, J. C., & Holt, N. L. (2015). A meta-study of qualitative research examining determinants of children's independent active free play . International Journal Of Behavioral Nutrition & Physical Activity, 12 (5), 121-12.

Videos on systematic reviews

Systematic Reviews: What are they? Are they right for my research? - 47 min. video recording with a closed caption option.

More training videos  on systematic reviews:   

Books on Systematic Reviews

Cover Art

Books on Meta-analysis

systematic review research meaning

  • University of Toronto Libraries  - very detailed with good tips on the sensitivity and specificity of searches.
  • Monash University  - includes an interactive case study tutorial. 
  • Dalhousie University Libraries - a comprehensive How-To Guide on conducting a systematic review.

Guidelines for a systematic review as part of the dissertation

  • Guidelines for Systematic Reviews in the Context of Doctoral Education Background  by University of Victoria (PDF)
  • Can I conduct a Systematic Review as my Master’s dissertation or PhD thesis? Yes, It Depends!  by Farhad (blog)
  • What is a Systematic Review Dissertation Like? by the University of Edinburgh (50 min video) 

Further readings on experiences of PhD students and doctoral programs with systematic reviews

Puljak, L., & Sapunar, D. (2017). Acceptance of a systematic review as a thesis: Survey of biomedical doctoral programs in Europe . Systematic Reviews , 6 (1), 253.

Perry, A., & Hammond, N. (2002). Systematic reviews: The experiences of a PhD Student . Psychology Learning & Teaching , 2 (1), 32–35.

Daigneault, P.-M., Jacob, S., & Ouimet, M. (2014). Using systematic review methods within a Ph.D. dissertation in political science: Challenges and lessons learned from practice . International Journal of Social Research Methodology , 17 (3), 267–283.

UMD Doctor of Philosophy Degree Policies

Before you embark on a systematic review research project, check the UMD PhD Policies to make sure you are on the right path. Systematic reviews require a team of at least two reviewers and an information specialist or a librarian. Discuss with your advisor the authorship roles of the involved team members. Keep in mind that the  UMD Doctor of Philosophy Degree Policies (scroll down to the section, Inclusion of one's own previously published materials in a dissertation ) outline such cases, specifically the following: 

" It is recognized that a graduate student may co-author work with faculty members and colleagues that should be included in a dissertation . In such an event, a letter should be sent to the Dean of the Graduate School certifying that the student's examining committee has determined that the student made a substantial contribution to that work. This letter should also note that the inclusion of the work has the approval of the dissertation advisor and the program chair or Graduate Director. The letter should be included with the dissertation at the time of submission.  The format of such inclusions must conform to the standard dissertation format. A foreword to the dissertation, as approved by the Dissertation Committee, must state that the student made substantial contributions to the relevant aspects of the jointly authored work included in the dissertation."

  • Cochrane Handbook for Systematic Reviews of Interventions - See Part 2: General methods for Cochrane reviews
  • Systematic Searches - Yale library video tutorial series 
  • Using PubMed's Clinical Queries to Find Systematic Reviews  - From the U.S. National Library of Medicine
  • Systematic reviews and meta-analyses: A step-by-step guide - From the University of Edinsburgh, Centre for Cognitive Ageing and Cognitive Epidemiology


  • Mariano, D. C., Leite, C., Santos, L. H., Rocha, R. E., & de Melo-Minardi, R. C. (2017). A guide to performing systematic literature reviews in bioinformatics .  arXiv preprint arXiv:1707.05813.

Environmental Sciences

Collaboration for Environmental Evidence. 2018.  Guidelines and Standards for Evidence synthesis in Environmental Management. Version 5.0 (AS Pullin, GK Frampton, B Livoreil & G Petrokofsky, Eds) .

Pullin, A. S., & Stewart, G. B. (2006). Guidelines for systematic review in conservation and environmental management. Conservation Biology, 20 (6), 1647–1656.

Engineering Education

  • Borrego, M., Foster, M. J., & Froyd, J. E. (2014). Systematic literature reviews in engineering education and other developing interdisciplinary fields. Journal of Engineering Education, 103 (1), 45–76.

Public Health

  • Hannes, K., & Claes, L. (2007). Learn to read and write systematic reviews: The Belgian Campbell Group . Research on Social Work Practice, 17 (6), 748–753.
  • McLeroy, K. R., Northridge, M. E., Balcazar, H., Greenberg, M. R., & Landers, S. J. (2012). Reporting guidelines and the American Journal of Public Health’s adoption of preferred reporting items for systematic reviews and meta-analyses . American Journal of Public Health, 102 (5), 780–784.
  • Pollock, A., & Berge, E. (2018). How to do a systematic review.   International Journal of Stroke, 13 (2), 138–156.
  • Institute of Medicine. (2011). Finding what works in health care: Standards for systematic reviews .
  • Wanden-Berghe, C., & Sanz-Valero, J. (2012). Systematic reviews in nutrition: Standardized methodology . The British Journal of Nutrition, 107 Suppl 2, S3-7.

Social Sciences

  • Bronson, D., & Davis, T. (2012).  Finding and evaluating evidence: Systematic reviews and evidence-based practice (Pocket guides to social work research methods). Oxford: Oxford University Press.
  • Petticrew, M., & Roberts, H. (2006).  Systematic reviews in the social sciences: A practical guide . Malden, MA: Blackwell Pub.
  • Cornell University Library Guide -  Systematic literature reviews in engineering: Example: Software Engineering
  • Biolchini, J., Mian, P. G., Natali, A. C. C., & Travassos, G. H. (2005). Systematic review in software engineering .  System Engineering and Computer Science Department COPPE/UFRJ, Technical Report ES, 679 (05), 45.
  • Biolchini, J. C., Mian, P. G., Natali, A. C. C., Conte, T. U., & Travassos, G. H. (2007). Scientific research ontology to support systematic review in software engineering . Advanced Engineering Informatics, 21 (2), 133–151.
  • Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software engineering . [Technical Report]. Keele, UK, Keele University, 33(2004), 1-26.
  • Weidt, F., & Silva, R. (2016). Systematic literature review in computer science: A practical guide .  Relatórios Técnicos do DCC/UFJF ,  1 .
  • Academic Phrasebank - Get some inspiration and find some terms and phrases for writing your research paper
  • Oxford English Dictionary  - Use to locate word variants and proper spelling
  • << Previous: Library Help
  • Next: Steps of a Systematic Review >>
  • Last Updated: Mar 4, 2024 12:09 PM
  • URL:

Systematic Reviews

  • What is a Systematic Review?

A systematic review is an evidence synthesis that uses explicit, reproducible methods to perform a comprehensive literature search and critical appraisal of individual studies and that uses appropriate statistical techniques to combine these valid studies.

Key Characteristics of a Systematic Review:

Generally, systematic reviews must have:

  • a clearly stated set of objectives with pre-defined eligibility criteria for studies
  • an explicit, reproducible methodology
  • a systematic search that attempts to identify all studies that would meet the eligibility criteria
  • an assessment of the validity of the findings of the included studies, for example through the assessment of the risk of bias
  • a systematic presentation, and synthesis, of the characteristics and findings of the included studies.

A meta-analysis is a systematic review that uses quantitative methods to synthesize and summarize the pooled data from included studies.

Additional Information

  • How-to Books
  • Beyond Health Sciences

Cover Art

  • Cochrane Handbook For Systematic Reviews of Interventions Provides guidance to authors for the preparation of Cochrane Intervention reviews. Chapter 6 covers searching for reviews.
  • Systematic Reviews: CRD’s Guidance for Undertaking Reviews in Health Care From The University of York Centre for Reviews and Dissemination: Provides practical guidance for undertaking evidence synthesis based on a thorough understanding of systematic review methodology. It presents the core principles of systematic reviewing, and in complementary chapters, highlights issues that are specific to reviews of clinical tests, public health interventions, adverse effects, and economic evaluations.
  • Cornell, Sytematic Reviews and Evidence Synthesis Beyond the Health Sciences Video series geared for librarians but very informative about searching outside medicine.
  • << Previous: Getting Started
  • Next: Levels of Evidence >>
  • Getting Started
  • Levels of Evidence
  • Locating Systematic Reviews
  • Searching Systematically
  • Developing Answerable Questions
  • Identifying Synonyms & Related Terms
  • Using Truncation and Wildcards
  • Identifying Search Limits/Exclusion Criteria
  • Keyword vs. Subject Searching
  • Where to Search
  • Search Filters
  • Sensitivity vs. Precision
  • Core Databases
  • Other Databases
  • Clinical Trial Registries
  • Conference Presentations
  • Databases Indexing Grey Literature
  • Web Searching
  • Handsearching
  • Citation Indexes
  • Documenting the Search Process
  • Managing your Review

Research Support

  • Last Updated: Feb 29, 2024 3:16 PM
  • URL:

1.2.2  What is a systematic review?

A systematic review attempts to collate all empirical evidence that fits pre-specified eligibility criteria in order to answer a specific research question.  It  uses explicit, systematic methods that are selected with a view to minimizing bias, thus providing more reliable findings from which conclusions can be drawn and decisions made (Antman 1992, Oxman 1993) . The key characteristics of a systematic review are:

a clearly stated set of objectives with pre-defined eligibility criteria for studies;

an explicit, reproducible methodology;

a systematic search that attempts to identify all studies that would meet the eligibility criteria;

an assessment of the validity of the findings of the included studies, for example through the assessment of risk of bias; and

a systematic presentation, and synthesis, of the characteristics and findings of the included studies.

Many systematic reviews contain meta-analyses. Meta-analysis is the use of statistical methods to summarize the results of independent studies (Glass 1976). By combining information from all relevant studies, meta-analyses can provide more precise estimates of the effects of health care than those derived from the individual studies included within a review (see Chapter 9, Section 9.1.3 ). They also facilitate investigations of the consistency of evidence across studies, and the exploration of differences across studies.

systematic review research meaning

Evidence Synthesis and Systematic Reviews

Systematic reviews, rapid reviews, scoping reviews.

  • Other Review Types
  • Resources for Reviews by Discipline and Type
  • Tools for Evidence Synthesis
  • Grey Literature

Definition : A systematic review is a summary of research results (evidence) that uses explicit and reproducible methods to systematically search, critically appraise, and synthesize on a specific issue. It synthesizes the results of multiple primary studies related to each other by using strategies that reduce biases and errors.

When to use : If you want to identify, appraise, and synthesize all available research that is relevant to a particular question with reproduceable search methods.

Limitations : It requires extensive time and a team

Resources :

  • Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare
  • The 8 stages of a systematic review
  • Determining the scope of the review and the questions it will address
  • Reporting the review

Definition : Rapid reviews are a form of evidence synthesis that may provide more timely information for decision making compared with standard systematic reviews

When to use : When you want to evaluate new or emerging research topics using some systematic review methods at a faster pace

Limitations : It is not as rigorous or as thorough as a systematic review and therefore may be more likely to be biased

  • Cochrane guidance for rapid reviews
  • Steps for conducting a rapid review
  • Expediting systematic reviews: methods and implications of rapid reviews

Definition : Scoping reviews are often used to categorize or group existing literature in a given field in terms of its nature, features, and volume.

When to use : Label body of literature with relevance to time, location (e.g. country or context), source (e.g. peer-reviewed or grey literature), and origin (e.g. healthcare discipline or academic field) It also is used to clarify working definitions and conceptual boundaries of a topic or field or to identify gaps in existing literature/research

Limitations : More citations to screen and takes as long or longer than a systematic review.  Larger teams may be required because of the larger volumes of literature.  Different screening criteria and process than a systematic review

  • PRISMA-ScR for scoping reviews
  • JBI Updated methodological guidance for the conduct of scoping reviews
  • JBI Manual: Scoping Reviews (2020)
  • Equator Network-Current Best Practices for the Conduct of Scoping Reviews
  • << Previous: Home Page
  • Next: Other Review Types >>
  • Last Updated: Feb 14, 2024 8:15 AM
  • URL:

Temple University

University libraries.

See all library locations

  • Library Directory
  • Locations and Directions
  • Frequently Called Numbers

Twitter Icon

Need help? Email us at [email protected]

Easy guide to conducting a systematic review


  • 1 Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia.
  • 2 Department of Nephrology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.
  • 3 Education Department, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.
  • PMID: 32364273
  • DOI: 10.1111/jpc.14853

A systematic review is a type of study that synthesises research that has been conducted on a particular topic. Systematic reviews are considered to provide the highest level of evidence on the hierarchy of evidence pyramid. Systematic reviews are conducted following rigorous research methodology. To minimise bias, systematic reviews utilise a predefined search strategy to identify and appraise all available published literature on a specific topic. The meticulous nature of the systematic review research methodology differentiates a systematic review from a narrative review (literature review or authoritative review). This paper provides a brief step by step summary of how to conduct a systematic review, which may be of interest for clinicians and researchers.

Keywords: research; research design; systematic review.

© 2020 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

Publication types

  • Systematic Review
  • Research Design*

Jump to navigation

  • Bahasa Malaysia


What are systematic reviews?

Watch this video from   Cochrane Consumers and Communication to learn what systematic reviews are, how researchers prepare them, and why they’re an important part of making informed decisions about health - for everyone. 

Cochrane evidence, including our systematic reviews, provides a powerful tool to enhance your healthcare knowledge and decision making. This video from Cochrane Sweden explains a bit about how we create health evidence and what Cochrane does. 

  • Search our Plain Language Summaries of health evidence
  • Learn more about Cochrane and our work


Library Services


  • Guides and databases
  • Library skills
  • Systematic reviews

What are systematic reviews?

  • Types of systematic reviews
  • Formulating a research question
  • Identifying studies
  • Searching databases
  • Describing and appraising studies
  • Synthesis and systematic maps
  • Software for systematic reviews
  • Online training and support
  • Live and face to face training
  • Individual support
  • Further help

Searching for information

Systematic reviews are a type of literature review of research which require equivalent standards of rigour as primary research. They have a clear, logical rationale that is reported to the reader of the review. They are used in research and policymaking to inform evidence-based decisions and practice. They differ from traditional literature reviews particularly in the following elements of conduct and reporting.

Systematic reviews: 

  • use explicit and transparent methods
  • are a piece of research following a standard set of stages
  • are accountable, replicable and updateable
  • involve users to ensure a review is relevant and useful.

For example, systematic reviews (like all research) should have a clear research question, and the perspective of the authors in their approach to addressing the question is described. There are clearly described methods on how each study in a review was identified, how that study was appraised for quality and relevance and how it is combined with other studies in order to address the review question. A systematic review usually involves more than one person in order to increase the objectivity and trustworthiness of the reviews methods and findings.

Research protocols for systematic reviews may be peer-reviewed and published or registered in a suitable repository to help avoid duplication of reviews and for comparisons to be made with the final review and the planned review.

  • History of systematic reviews to inform policy (EPPI-Centre)
  • Six reasons why it is important to be systematic (EPPI-Centre)
  • Evidence Synthesis International (ESI): Position Statement Describes the issues, principles and goals in synthesising research evidence to inform policy, practice and decisions

On this page

Should all literature reviews be 'systematic reviews', different methods for systematic reviews, reporting standards for systematic reviews.

Literature reviews provide a more complete picture of research knowledge than is possible from individual pieces of research. This can be used to: clarify what is known from research, provide new perspectives, build theory, test theory, identify research gaps or inform research agendas.

A systematic review requires a considerable amount of time and resources, and is one type of literature review.

If the purpose of a review is to make justifiable evidence claims, then it should be systematic, as a systematic review uses rigorous explicit methods. The methods used can depend on the purpose of the review, and the time and resources available.

A 'non-systematic review' might use some of the same methods as systematic reviews, such as systematic approaches to identify studies or quality appraise the literature. There may be times when this approach can be useful. In a student dissertation, for example, there may not be the time to be fully systematic in a review of the literature if this is only one small part of the thesis. In other types of research, there may also be a need to obtain a quick and not necessarily thorough overview of a literature to inform some other work (including a systematic review). Another example, is where policymakers, or other people using research findings, want to make quick decisions and there is no systematic review available to help them. They have a choice of gaining a rapid overview of the research literature or not having any research evidence to help their decision-making. 

Just like any other piece of research, the methods used to undertake any literature review should be carefully planned to justify the conclusions made. 

Finding out about different types of systematic reviews and the methods used for systematic reviews, and reading both systematic and other types of review will help to understand some of the differences. 

Typically, a systematic review addresses a focussed, structured research question in order to inform understanding and decisions on an area. (see the  Formulating a research question  section for examples). 

Sometimes systematic reviews ask a broad research question, and one strategy to achieve this is the use of several focussed sub-questions each addressed by sub-components of the review.  

Another strategy is to develop a map to describe the type of research that has been undertaken in relation to a research question. Some maps even describe over 2,000 papers, while others are much smaller. One purpose of a map is to help choose a sub-set of studies to explore more fully in a synthesis. There are also other purposes of maps: see the box on  systematic evidence maps  for further information. 

Reporting standards specify minimum elements that need to go into the reporting of a review. The reporting standards refer mainly to methodological issues but they are not as detailed or specific as critical appraisal for the methodological standards of conduct of a review.

A number of organisations have developed specific guidelines and standards for both the conducting and reporting on systematic reviews in different topic areas.  

  • PRISMA PRISMA is a reporting standard and is an acronym for Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The Key Documents section of the PRISMA website links to a checklist, flow diagram and explanatory notes. PRISMA is less useful for certain types of reviews, including those that are iterative.
  • eMERGe eMERGe is a reporting standard that has been developed for meta-ethnographies, a qualitative synthesis method.
  • ROSES: RepOrting standards for Systematic Evidence Syntheses Reporting standards, including forms and flow diagram, designed specifically for systematic reviews and maps in the field of conservation and environmental management.

Useful books about systematic reviews

systematic review research meaning

Systematic approaches to a successful literature review

systematic review research meaning

An introduction to systematic reviews

systematic review research meaning

Cochrane handbook for systematic reviews of interventions

Systematic reviews: crd's guidance for undertaking reviews in health care.

systematic review research meaning

Finding what works in health care: Standards for systematic reviews

Book cover image

Systematic Reviews in the Social Sciences

Meta-analysis and research synthesis.

Book cover image

Research Synthesis and Meta-Analysis

Book cover image

Doing a Systematic Review

Literature reviews.

  • What is a literature review?
  • Why are literature reviews important?
  • << Previous: Systematic reviews
  • Next: Types of systematic reviews >>
  • Last Updated: Mar 21, 2024 1:29 PM
  • URL:

The University of Manchester

Systematic Reviews: What is a systematic review?

What is a systematic review.

  • Planning your review
  • Additional resources

A systematic review is a tightly structured literature review that focuses on a topic with strict research parameters. The methodology used to collect research has to be consistent in order to reduce misinterpretation and misrepresentation of the data.

To help you understand and conduct your systematic review we have produce a number of posts to help you: 

  • Getting started with your systematic review
  • Introduction to Health Science databases
  • Planning your systematic review
  • Using frameworks to structure your search
  • Advanced search: making use of Boolean operators
  • Systematic review: organising your keywords and subject terms
  • Making use of MeSH and Suggested Subject Terms

You can access these and more from the Specialist Library Support online resources page .

What is a Systematic literature search?

A systematic literature search is a literature review on a database (such as Medline) which demonstrates that you have compiled a list of appropriate search terms and includes the structure of your search history which provides the evidence on which your assignment is based.

This is a less rigorous process than a systematic review. A systematic review usually covers a wider scope; you would be expected to look at all the available research in the area in question. For example, you would be expected to visit the Library if articles were only held in hard copy format, and where necessary obtain articles not held by the Library via the Inter-Library Loan service .

You may be told that you need to conduct a systematic review when in fact you just need to perform a literature search in a systematic manner. 

If you are unsure about the differences between a systematic review and a literature review take a look at this guide:  What’s in a Name? The difference between a Systematic Review and a Literature Review and Why it Matters .

  • << Previous: Home
  • Next: Planning your review >>
  • Last Updated: Feb 6, 2024 3:18 PM
  • URL:

Creative Commons Licence

Systematic Reviews and Meta Analysis

  • Getting Started
  • Guides and Standards
  • Review Protocols
  • Databases and Sources
  • Randomized Controlled Trials
  • Controlled Clinical Trials
  • Observational Designs
  • Tests of Diagnostic Accuracy
  • Software and Tools
  • Where do I get all those articles?
  • Collaborations
  • EPI 233/528
  • Countway Mediated Search
  • Risk of Bias (RoB)

Systematic review Q & A

What is a systematic review.

A systematic review is guided filtering and synthesis of all available evidence addressing a specific, focused research question, generally about a specific intervention or exposure. The use of standardized, systematic methods and pre-selected eligibility criteria reduce the risk of bias in identifying, selecting and analyzing relevant studies. A well-designed systematic review includes clear objectives, pre-selected criteria for identifying eligible studies, an explicit methodology, a thorough and reproducible search of the literature, an assessment of the validity or risk of bias of each included study, and a systematic synthesis, analysis and presentation of the findings of the included studies. A systematic review may include a meta-analysis.

For details about carrying out systematic reviews, see the Guides and Standards section of this guide.

Is my research topic appropriate for systematic review methods?

A systematic review is best deployed to test a specific hypothesis about a healthcare or public health intervention or exposure. By focusing on a single intervention or a few specific interventions for a particular condition, the investigator can ensure a manageable results set. Moreover, examining a single or small set of related interventions, exposures, or outcomes, will simplify the assessment of studies and the synthesis of the findings.

Systematic reviews are poor tools for hypothesis generation: for instance, to determine what interventions have been used to increase the awareness and acceptability of a vaccine or to investigate the ways that predictive analytics have been used in health care management. In the first case, we don't know what interventions to search for and so have to screen all the articles about awareness and acceptability. In the second, there is no agreed on set of methods that make up predictive analytics, and health care management is far too broad. The search will necessarily be incomplete, vague and very large all at the same time. In most cases, reviews without clearly and exactly specified populations, interventions, exposures, and outcomes will produce results sets that quickly outstrip the resources of a small team and offer no consistent way to assess and synthesize findings from the studies that are identified.

If not a systematic review, then what?

You might consider performing a scoping review . This framework allows iterative searching over a reduced number of data sources and no requirement to assess individual studies for risk of bias. The framework includes built-in mechanisms to adjust the analysis as the work progresses and more is learned about the topic. A scoping review won't help you limit the number of records you'll need to screen (broad questions lead to large results sets) but may give you means of dealing with a large set of results.

This tool can help you decide what kind of review is right for your question.

Can my student complete a systematic review during her summer project?

Probably not. Systematic reviews are a lot of work. Including creating the protocol, building and running a quality search, collecting all the papers, evaluating the studies that meet the inclusion criteria and extracting and analyzing the summary data, a well done review can require dozens to hundreds of hours of work that can span several months. Moreover, a systematic review requires subject expertise, statistical support and a librarian to help design and run the search. Be aware that librarians sometimes have queues for their search time. It may take several weeks to complete and run a search. Moreover, all guidelines for carrying out systematic reviews recommend that at least two subject experts screen the studies identified in the search. The first round of screening can consume 1 hour per screener for every 100-200 records. A systematic review is a labor-intensive team effort.

How can I know if my topic has been been reviewed already?

Before starting out on a systematic review, check to see if someone has done it already. In PubMed you can use the systematic review subset to limit to a broad group of papers that is enriched for systematic reviews. You can invoke the subset by selecting if from the Article Types filters to the left of your PubMed results, or you can append AND systematic[sb] to your search. For example:

"neoadjuvant chemotherapy" AND systematic[sb]

The systematic review subset is very noisy, however. To quickly focus on systematic reviews (knowing that you may be missing some), simply search for the word systematic in the title:

"neoadjuvant chemotherapy" AND systematic[ti]

Any PRISMA-compliant systematic review will be captured by this method since including the words "systematic review" in the title is a requirement of the PRISMA checklist. Cochrane systematic reviews do not include 'systematic' in the title, however. It's worth checking the Cochrane Database of Systematic Reviews independently.

You can also search for protocols that will indicate that another group has set out on a similar project. Many investigators will register their protocols in PROSPERO , a registry of review protocols. Other published protocols as well as Cochrane Review protocols appear in the Cochrane Methodology Register, a part of the Cochrane Library .

  • Next: Guides and Standards >>
  • Last Updated: Feb 26, 2024 3:17 PM
  • URL:

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Wiley-Blackwell Online Open

Logo of blackwellopen

An overview of methodological approaches in systematic reviews

Prabhakar veginadu.

1 Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo Victoria, Australia

Hanny Calache

2 Lincoln International Institute for Rural Health, University of Lincoln, Brayford Pool, Lincoln UK

Akshaya Pandian

3 Department of Orthodontics, Saveetha Dental College, Chennai Tamil Nadu, India

Mohd Masood

Associated data.

APPENDIX B: List of excluded studies with detailed reasons for exclusion

APPENDIX C: Quality assessment of included reviews using AMSTAR 2

The aim of this overview is to identify and collate evidence from existing published systematic review (SR) articles evaluating various methodological approaches used at each stage of an SR.

The search was conducted in five electronic databases from inception to November 2020 and updated in February 2022: MEDLINE, Embase, Web of Science Core Collection, Cochrane Database of Systematic Reviews, and APA PsycINFO. Title and abstract screening were performed in two stages by one reviewer, supported by a second reviewer. Full‐text screening, data extraction, and quality appraisal were performed by two reviewers independently. The quality of the included SRs was assessed using the AMSTAR 2 checklist.

The search retrieved 41,556 unique citations, of which 9 SRs were deemed eligible for inclusion in final synthesis. Included SRs evaluated 24 unique methodological approaches used for defining the review scope and eligibility, literature search, screening, data extraction, and quality appraisal in the SR process. Limited evidence supports the following (a) searching multiple resources (electronic databases, handsearching, and reference lists) to identify relevant literature; (b) excluding non‐English, gray, and unpublished literature, and (c) use of text‐mining approaches during title and abstract screening.

The overview identified limited SR‐level evidence on various methodological approaches currently employed during five of the seven fundamental steps in the SR process, as well as some methodological modifications currently used in expedited SRs. Overall, findings of this overview highlight the dearth of published SRs focused on SR methodologies and this warrants future work in this area.


Evidence synthesis is a prerequisite for knowledge translation. 1 A well conducted systematic review (SR), often in conjunction with meta‐analyses (MA) when appropriate, is considered the “gold standard” of methods for synthesizing evidence related to a topic of interest. 2 The central strength of an SR is the transparency of the methods used to systematically search, appraise, and synthesize the available evidence. 3 Several guidelines, developed by various organizations, are available for the conduct of an SR; 4 , 5 , 6 , 7 among these, Cochrane is considered a pioneer in developing rigorous and highly structured methodology for the conduct of SRs. 8 The guidelines developed by these organizations outline seven fundamental steps required in SR process: defining the scope of the review and eligibility criteria, literature searching and retrieval, selecting eligible studies, extracting relevant data, assessing risk of bias (RoB) in included studies, synthesizing results, and assessing certainty of evidence (CoE) and presenting findings. 4 , 5 , 6 , 7

The methodological rigor involved in an SR can require a significant amount of time and resource, which may not always be available. 9 As a result, there has been a proliferation of modifications made to the traditional SR process, such as refining, shortening, bypassing, or omitting one or more steps, 10 , 11 for example, limits on the number and type of databases searched, limits on publication date, language, and types of studies included, and limiting to one reviewer for screening and selection of studies, as opposed to two or more reviewers. 10 , 11 These methodological modifications are made to accommodate the needs of and resource constraints of the reviewers and stakeholders (e.g., organizations, policymakers, health care professionals, and other knowledge users). While such modifications are considered time and resource efficient, they may introduce bias in the review process reducing their usefulness. 5

Substantial research has been conducted examining various approaches used in the standardized SR methodology and their impact on the validity of SR results. There are a number of published reviews examining the approaches or modifications corresponding to single 12 , 13 or multiple steps 14 involved in an SR. However, there is yet to be a comprehensive summary of the SR‐level evidence for all the seven fundamental steps in an SR. Such a holistic evidence synthesis will provide an empirical basis to confirm the validity of current accepted practices in the conduct of SRs. Furthermore, sometimes there is a balance that needs to be achieved between the resource availability and the need to synthesize the evidence in the best way possible, given the constraints. This evidence base will also inform the choice of modifications to be made to the SR methods, as well as the potential impact of these modifications on the SR results. An overview is considered the choice of approach for summarizing existing evidence on a broad topic, directing the reader to evidence, or highlighting the gaps in evidence, where the evidence is derived exclusively from SRs. 15 Therefore, for this review, an overview approach was used to (a) identify and collate evidence from existing published SR articles evaluating various methodological approaches employed in each of the seven fundamental steps of an SR and (b) highlight both the gaps in the current research and the potential areas for future research on the methods employed in SRs.

An a priori protocol was developed for this overview but was not registered with the International Prospective Register of Systematic Reviews (PROSPERO), as the review was primarily methodological in nature and did not meet PROSPERO eligibility criteria for registration. The protocol is available from the corresponding author upon reasonable request. This overview was conducted based on the guidelines for the conduct of overviews as outlined in The Cochrane Handbook. 15 Reporting followed the Preferred Reporting Items for Systematic reviews and Meta‐analyses (PRISMA) statement. 3

2.1. Eligibility criteria

Only published SRs, with or without associated MA, were included in this overview. We adopted the defining characteristics of SRs from The Cochrane Handbook. 5 According to The Cochrane Handbook, a review was considered systematic if it satisfied the following criteria: (a) clearly states the objectives and eligibility criteria for study inclusion; (b) provides reproducible methodology; (c) includes a systematic search to identify all eligible studies; (d) reports assessment of validity of findings of included studies (e.g., RoB assessment of the included studies); (e) systematically presents all the characteristics or findings of the included studies. 5 Reviews that did not meet all of the above criteria were not considered a SR for this study and were excluded. MA‐only articles were included if it was mentioned that the MA was based on an SR.

SRs and/or MA of primary studies evaluating methodological approaches used in defining review scope and study eligibility, literature search, study selection, data extraction, RoB assessment, data synthesis, and CoE assessment and reporting were included. The methodological approaches examined in these SRs and/or MA can also be related to the substeps or elements of these steps; for example, applying limits on date or type of publication are the elements of literature search. Included SRs examined or compared various aspects of a method or methods, and the associated factors, including but not limited to: precision or effectiveness; accuracy or reliability; impact on the SR and/or MA results; reproducibility of an SR steps or bias occurred; time and/or resource efficiency. SRs assessing the methodological quality of SRs (e.g., adherence to reporting guidelines), evaluating techniques for building search strategies or the use of specific database filters (e.g., use of Boolean operators or search filters for randomized controlled trials), examining various tools used for RoB or CoE assessment (e.g., ROBINS vs. Cochrane RoB tool), or evaluating statistical techniques used in meta‐analyses were excluded. 14

2.2. Search

The search for published SRs was performed on the following scientific databases initially from inception to third week of November 2020 and updated in the last week of February 2022: MEDLINE (via Ovid), Embase (via Ovid), Web of Science Core Collection, Cochrane Database of Systematic Reviews, and American Psychological Association (APA) PsycINFO. Search was restricted to English language publications. Following the objectives of this study, study design filters within databases were used to restrict the search to SRs and MA, where available. The reference lists of included SRs were also searched for potentially relevant publications.

The search terms included keywords, truncations, and subject headings for the key concepts in the review question: SRs and/or MA, methods, and evaluation. Some of the terms were adopted from the search strategy used in a previous review by Robson et al., which reviewed primary studies on methodological approaches used in study selection, data extraction, and quality appraisal steps of SR process. 14 Individual search strategies were developed for respective databases by combining the search terms using appropriate proximity and Boolean operators, along with the related subject headings in order to identify SRs and/or MA. 16 , 17 A senior librarian was consulted in the design of the search terms and strategy. Appendix A presents the detailed search strategies for all five databases.

2.3. Study selection and data extraction

Title and abstract screening of references were performed in three steps. First, one reviewer (PV) screened all the titles and excluded obviously irrelevant citations, for example, articles on topics not related to SRs, non‐SR publications (such as randomized controlled trials, observational studies, scoping reviews, etc.). Next, from the remaining citations, a random sample of 200 titles and abstracts were screened against the predefined eligibility criteria by two reviewers (PV and MM), independently, in duplicate. Discrepancies were discussed and resolved by consensus. This step ensured that the responses of the two reviewers were calibrated for consistency in the application of the eligibility criteria in the screening process. Finally, all the remaining titles and abstracts were reviewed by a single “calibrated” reviewer (PV) to identify potential full‐text records. Full‐text screening was performed by at least two authors independently (PV screened all the records, and duplicate assessment was conducted by MM, HC, or MG), with discrepancies resolved via discussions or by consulting a third reviewer.

Data related to review characteristics, results, key findings, and conclusions were extracted by at least two reviewers independently (PV performed data extraction for all the reviews and duplicate extraction was performed by AP, HC, or MG).

2.4. Quality assessment of included reviews

The quality assessment of the included SRs was performed using the AMSTAR 2 (A MeaSurement Tool to Assess systematic Reviews). The tool consists of a 16‐item checklist addressing critical and noncritical domains. 18 For the purpose of this study, the domain related to MA was reclassified from critical to noncritical, as SRs with and without MA were included. The other six critical domains were used according to the tool guidelines. 18 Two reviewers (PV and AP) independently responded to each of the 16 items in the checklist with either “yes,” “partial yes,” or “no.” Based on the interpretations of the critical and noncritical domains, the overall quality of the review was rated as high, moderate, low, or critically low. 18 Disagreements were resolved through discussion or by consulting a third reviewer.

2.5. Data synthesis

To provide an understandable summary of existing evidence syntheses, characteristics of the methods evaluated in the included SRs were examined and key findings were categorized and presented based on the corresponding step in the SR process. The categories of key elements within each step were discussed and agreed by the authors. Results of the included reviews were tabulated and summarized descriptively, along with a discussion on any overlap in the primary studies. 15 No quantitative analyses of the data were performed.

From 41,556 unique citations identified through literature search, 50 full‐text records were reviewed, and nine systematic reviews 14 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 were deemed eligible for inclusion. The flow of studies through the screening process is presented in Figure  1 . A list of excluded studies with reasons can be found in Appendix B .

An external file that holds a picture, illustration, etc.
Object name is JEBM-15-39-g001.jpg

Study selection flowchart

3.1. Characteristics of included reviews

Table  1 summarizes the characteristics of included SRs. The majority of the included reviews (six of nine) were published after 2010. 14 , 22 , 23 , 24 , 25 , 26 Four of the nine included SRs were Cochrane reviews. 20 , 21 , 22 , 23 The number of databases searched in the reviews ranged from 2 to 14, 2 reviews searched gray literature sources, 24 , 25 and 7 reviews included a supplementary search strategy to identify relevant literature. 14 , 19 , 20 , 21 , 22 , 23 , 26 Three of the included SRs (all Cochrane reviews) included an integrated MA. 20 , 21 , 23

Characteristics of included studies

SR = systematic review; MA = meta‐analysis; RCT = randomized controlled trial; CCT = controlled clinical trial; N/R = not reported.

The included SRs evaluated 24 unique methodological approaches (26 in total) used across five steps in the SR process; 8 SRs evaluated 6 approaches, 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 while 1 review evaluated 18 approaches. 14 Exclusion of gray or unpublished literature 21 , 26 and blinding of reviewers for RoB assessment 14 , 23 were evaluated in two reviews each. Included SRs evaluated methods used in five different steps in the SR process, including methods used in defining the scope of review ( n  = 3), literature search ( n  = 3), study selection ( n  = 2), data extraction ( n  = 1), and RoB assessment ( n  = 2) (Table  2 ).

Summary of findings from review evaluating systematic review methods

There was some overlap in the primary studies evaluated in the included SRs on the same topics: Schmucker et al. 26 and Hopewell et al. 21 ( n  = 4), Hopewell et al. 20 and Crumley et al. 19 ( n  = 30), and Robson et al. 14 and Morissette et al. 23 ( n  = 4). There were no conflicting results between any of the identified SRs on the same topic.

3.2. Methodological quality of included reviews

Overall, the quality of the included reviews was assessed as moderate at best (Table  2 ). The most common critical weakness in the reviews was failure to provide justification for excluding individual studies (four reviews). Detailed quality assessment is provided in Appendix C .

3.3. Evidence on systematic review methods

3.3.1. methods for defining review scope and eligibility.

Two SRs investigated the effect of excluding data obtained from gray or unpublished sources on the pooled effect estimates of MA. 21 , 26 Hopewell et al. 21 reviewed five studies that compared the impact of gray literature on the results of a cohort of MA of RCTs in health care interventions. Gray literature was defined as information published in “print or electronic sources not controlled by commercial or academic publishers.” Findings showed an overall greater treatment effect for published trials than trials reported in gray literature. In a more recent review, Schmucker et al. 26 addressed similar objectives, by investigating gray and unpublished data in medicine. In addition to gray literature, defined similar to the previous review by Hopewell et al., the authors also evaluated unpublished data—defined as “supplemental unpublished data related to published trials, data obtained from the Food and Drug Administration  or other regulatory websites or postmarketing analyses hidden from the public.” The review found that in majority of the MA, excluding gray literature had little or no effect on the pooled effect estimates. The evidence was limited to conclude if the data from gray and unpublished literature had an impact on the conclusions of MA. 26

Morrison et al. 24 examined five studies measuring the effect of excluding non‐English language RCTs on the summary treatment effects of SR‐based MA in various fields of conventional medicine. Although none of the included studies reported major difference in the treatment effect estimates between English only and non‐English inclusive MA, the review found inconsistent evidence regarding the methodological and reporting quality of English and non‐English trials. 24 As such, there might be a risk of introducing “language bias” when excluding non‐English language RCTs. The authors also noted that the numbers of non‐English trials vary across medical specialties, as does the impact of these trials on MA results. Based on these findings, Morrison et al. 24 conclude that literature searches must include non‐English studies when resources and time are available to minimize the risk of introducing “language bias.”

3.3.2. Methods for searching studies

Crumley et al. 19 analyzed recall (also referred to as “sensitivity” by some researchers; defined as “percentage of relevant studies identified by the search”) and precision (defined as “percentage of studies identified by the search that were relevant”) when searching a single resource to identify randomized controlled trials and controlled clinical trials, as opposed to searching multiple resources. The studies included in their review frequently compared a MEDLINE only search with the search involving a combination of other resources. The review found low median recall estimates (median values between 24% and 92%) and very low median precisions (median values between 0% and 49%) for most of the electronic databases when searched singularly. 19 A between‐database comparison, based on the type of search strategy used, showed better recall and precision for complex and Cochrane Highly Sensitive search strategies (CHSSS). In conclusion, the authors emphasize that literature searches for trials in SRs must include multiple sources. 19

In an SR comparing handsearching and electronic database searching, Hopewell et al. 20 found that handsearching retrieved more relevant RCTs (retrieval rate of 92%−100%) than searching in a single electronic database (retrieval rates of 67% for PsycINFO/PsycLIT, 55% for MEDLINE, and 49% for Embase). The retrieval rates varied depending on the quality of handsearching, type of electronic search strategy used (e.g., simple, complex or CHSSS), and type of trial reports searched (e.g., full reports, conference abstracts, etc.). The authors concluded that handsearching was particularly important in identifying full trials published in nonindexed journals and in languages other than English, as well as those published as abstracts and letters. 20

The effectiveness of checking reference lists to retrieve additional relevant studies for an SR was investigated by Horsley et al. 22 The review reported that checking reference lists yielded 2.5%–40% more studies depending on the quality and comprehensiveness of the electronic search used. The authors conclude that there is some evidence, although from poor quality studies, to support use of checking reference lists to supplement database searching. 22

3.3.3. Methods for selecting studies

Three approaches relevant to reviewer characteristics, including number, experience, and blinding of reviewers involved in the screening process were highlighted in an SR by Robson et al. 14 Based on the retrieved evidence, the authors recommended that two independent, experienced, and unblinded reviewers be involved in study selection. 14 A modified approach has also been suggested by the review authors, where one reviewer screens and the other reviewer verifies the list of excluded studies, when the resources are limited. It should be noted however this suggestion is likely based on the authors’ opinion, as there was no evidence related to this from the studies included in the review.

Robson et al. 14 also reported two methods describing the use of technology for screening studies: use of Google Translate for translating languages (for example, German language articles to English) to facilitate screening was considered a viable method, while using two computer monitors for screening did not increase the screening efficiency in SR. Title‐first screening was found to be more efficient than simultaneous screening of titles and abstracts, although the gain in time with the former method was lesser than the latter. Therefore, considering that the search results are routinely exported as titles and abstracts, Robson et al. 14 recommend screening titles and abstracts simultaneously. However, the authors note that these conclusions were based on very limited number (in most instances one study per method) of low‐quality studies. 14

3.3.4. Methods for data extraction

Robson et al. 14 examined three approaches for data extraction relevant to reviewer characteristics, including number, experience, and blinding of reviewers (similar to the study selection step). Although based on limited evidence from a small number of studies, the authors recommended use of two experienced and unblinded reviewers for data extraction. The experience of the reviewers was suggested to be especially important when extracting continuous outcomes (or quantitative) data. However, when the resources are limited, data extraction by one reviewer and a verification of the outcomes data by a second reviewer was recommended.

As for the methods involving use of technology, Robson et al. 14 identified limited evidence on the use of two monitors to improve the data extraction efficiency and computer‐assisted programs for graphical data extraction. However, use of Google Translate for data extraction in non‐English articles was not considered to be viable. 14 In the same review, Robson et al. 14 identified evidence supporting contacting authors for obtaining additional relevant data.

3.3.5. Methods for RoB assessment

Two SRs examined the impact of blinding of reviewers for RoB assessments. 14 , 23 Morissette et al. 23 investigated the mean differences between the blinded and unblinded RoB assessment scores and found inconsistent differences among the included studies providing no definitive conclusions. Similar conclusions were drawn in a more recent review by Robson et al., 14 which included four studies on reviewer blinding for RoB assessment that completely overlapped with Morissette et al. 23

Use of experienced reviewers and provision of additional guidance for RoB assessment were examined by Robson et al. 14 The review concluded that providing intensive training and guidance on assessing studies reporting insufficient data to the reviewers improves RoB assessments. 14 Obtaining additional data related to quality assessment by contacting study authors was also found to help the RoB assessments, although based on limited evidence. When assessing the qualitative or mixed method reviews, Robson et al. 14 recommends the use of a structured RoB tool as opposed to an unstructured tool. No SRs were identified on data synthesis and CoE assessment and reporting steps.


4.1. summary of findings.

Nine SRs examining 24 unique methods used across five steps in the SR process were identified in this overview. The collective evidence supports some current traditional and modified SR practices, while challenging other approaches. However, the quality of the included reviews was assessed to be moderate at best and in the majority of the included SRs, evidence related to the evaluated methods was obtained from very limited numbers of primary studies. As such, the interpretations from these SRs should be made cautiously.

The evidence gathered from the included SRs corroborate a few current SR approaches. 5 For example, it is important to search multiple resources for identifying relevant trials (RCTs and/or CCTs). The resources must include a combination of electronic database searching, handsearching, and reference lists of retrieved articles. 5 However, no SRs have been identified that evaluated the impact of the number of electronic databases searched. A recent study by Halladay et al. 27 found that articles on therapeutic intervention, retrieved by searching databases other than PubMed (including Embase), contributed only a small amount of information to the MA and also had a minimal impact on the MA results. The authors concluded that when the resources are limited and when large number of studies are expected to be retrieved for the SR or MA, PubMed‐only search can yield reliable results. 27

Findings from the included SRs also reiterate some methodological modifications currently employed to “expedite” the SR process. 10 , 11 For example, excluding non‐English language trials and gray/unpublished trials from MA have been shown to have minimal or no impact on the results of MA. 24 , 26 However, the efficiency of these SR methods, in terms of time and the resources used, have not been evaluated in the included SRs. 24 , 26 Of the SRs included, only two have focused on the aspect of efficiency 14 , 25 ; O'Mara‐Eves et al. 25 report some evidence to support the use of text‐mining approaches for title and abstract screening in order to increase the rate of screening. Moreover, only one included SR 14 considered primary studies that evaluated reliability (inter‐ or intra‐reviewer consistency) and accuracy (validity when compared against a “gold standard” method) of the SR methods. This can be attributed to the limited number of primary studies that evaluated these outcomes when evaluating the SR methods. 14 Lack of outcome measures related to reliability, accuracy, and efficiency precludes making definitive recommendations on the use of these methods/modifications. Future research studies must focus on these outcomes.

Some evaluated methods may be relevant to multiple steps; for example, exclusions based on publication status (gray/unpublished literature) and language of publication (non‐English language studies) can be outlined in the a priori eligibility criteria or can be incorporated as search limits in the search strategy. SRs included in this overview focused on the effect of study exclusions on pooled treatment effect estimates or MA conclusions. Excluding studies from the search results, after conducting a comprehensive search, based on different eligibility criteria may yield different results when compared to the results obtained when limiting the search itself. 28 Further studies are required to examine this aspect.

Although we acknowledge the lack of standardized quality assessment tools for methodological study designs, we adhered to the Cochrane criteria for identifying SRs in this overview. This was done to ensure consistency in the quality of the included evidence. As a result, we excluded three reviews that did not provide any form of discussion on the quality of the included studies. The methods investigated in these reviews concern supplementary search, 29 data extraction, 12 and screening. 13 However, methods reported in two of these three reviews, by Mathes et al. 12 and Waffenschmidt et al., 13 have also been examined in the SR by Robson et al., 14 which was included in this overview; in most instances (with the exception of one study included in Mathes et al. 12 and Waffenschmidt et al. 13 each), the studies examined in these excluded reviews overlapped with those in the SR by Robson et al. 14

One of the key gaps in the knowledge observed in this overview was the dearth of SRs on the methods used in the data synthesis component of SR. Narrative and quantitative syntheses are the two most commonly used approaches for synthesizing data in evidence synthesis. 5 There are some published studies on the proposed indications and implications of these two approaches. 30 , 31 These studies found that both data synthesis methods produced comparable results and have their own advantages, suggesting that the choice of the method must be based on the purpose of the review. 31 With increasing number of “expedited” SR approaches (so called “rapid reviews”) avoiding MA, 10 , 11 further research studies are warranted in this area to determine the impact of the type of data synthesis on the results of the SR.

4.2. Implications for future research

The findings of this overview highlight several areas of paucity in primary research and evidence synthesis on SR methods. First, no SRs were identified on methods used in two important components of the SR process, including data synthesis and CoE and reporting. As for the included SRs, a limited number of evaluation studies have been identified for several methods. This indicates that further research is required to corroborate many of the methods recommended in current SR guidelines. 4 , 5 , 6 , 7 Second, some SRs evaluated the impact of methods on the results of quantitative synthesis and MA conclusions. Future research studies must also focus on the interpretations of SR results. 28 , 32 Finally, most of the included SRs were conducted on specific topics related to the field of health care, limiting the generalizability of the findings to other areas. It is important that future research studies evaluating evidence syntheses broaden the objectives and include studies on different topics within the field of health care.

4.3. Strengths and limitations

To our knowledge, this is the first overview summarizing current evidence from SRs and MA on different methodological approaches used in several fundamental steps in SR conduct. The overview methodology followed well established guidelines and strict criteria defined for the inclusion of SRs.

There are several limitations related to the nature of the included reviews. Evidence for most of the methods investigated in the included reviews was derived from a limited number of primary studies. Also, the majority of the included SRs may be considered outdated as they were published (or last updated) more than 5 years ago 33 ; only three of the nine SRs have been published in the last 5 years. 14 , 25 , 26 Therefore, important and recent evidence related to these topics may not have been included. Substantial numbers of included SRs were conducted in the field of health, which may limit the generalizability of the findings. Some method evaluations in the included SRs focused on quantitative analyses components and MA conclusions only. As such, the applicability of these findings to SR more broadly is still unclear. 28 Considering the methodological nature of our overview, limiting the inclusion of SRs according to the Cochrane criteria might have resulted in missing some relevant evidence from those reviews without a quality assessment component. 12 , 13 , 29 Although the included SRs performed some form of quality appraisal of the included studies, most of them did not use a standardized RoB tool, which may impact the confidence in their conclusions. Due to the type of outcome measures used for the method evaluations in the primary studies and the included SRs, some of the identified methods have not been validated against a reference standard.

Some limitations in the overview process must be noted. While our literature search was exhaustive covering five bibliographic databases and supplementary search of reference lists, no gray sources or other evidence resources were searched. Also, the search was primarily conducted in health databases, which might have resulted in missing SRs published in other fields. Moreover, only English language SRs were included for feasibility. As the literature search retrieved large number of citations (i.e., 41,556), the title and abstract screening was performed by a single reviewer, calibrated for consistency in the screening process by another reviewer, owing to time and resource limitations. These might have potentially resulted in some errors when retrieving and selecting relevant SRs. The SR methods were grouped based on key elements of each recommended SR step, as agreed by the authors. This categorization pertains to the identified set of methods and should be considered subjective.


This overview identified limited SR‐level evidence on various methodological approaches currently employed during five of the seven fundamental steps in the SR process. Limited evidence was also identified on some methodological modifications currently used to expedite the SR process. Overall, findings highlight the dearth of SRs on SR methodologies, warranting further work to confirm several current recommendations on conventional and expedited SR processes.


The authors declare no conflicts of interest.

Supporting information

APPENDIX A: Detailed search strategies


The first author is supported by a La Trobe University Full Fee Research Scholarship and a Graduate Research Scholarship.

Open Access Funding provided by La Trobe University.

Veginadu P, Calache H, Gussy M, Pandian A, Masood M. An overview of methodological approaches in systematic reviews . J Evid Based Med . 2022; 15 :39–54. 10.1111/jebm.12468 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]


  1. How to Conduct a Systematic Review

    systematic review research meaning

  2. Before you begin

    systematic review research meaning

  3. Systematic reviews

    systematic review research meaning

  4. Systematic review protocols and registration

    systematic review research meaning

  5. Systematic Review: essential steps and practical tips

    systematic review research meaning

  6. The Systematic Review Process

    systematic review research meaning


  1. Statistical Procedure in Meta-Essentials

  2. تحديد موضوع ومجال البحث بطريقة ممنهجة |Determine the topic and field of research systematically

  3. Developing a Systematic Review Topic and Research Questions

  4. Approaches , Analysis And Sources Of Literature Review ( RESEARCH METHODOLOGY AND IPR)

  5. Introduction to Systematic Review of Research

  6. What is Research? #researchaptitude #meaningofresearch #sociology #Definitionofresearch #viral


  1. Systematic Review

    A systematic review is a type of review that uses repeatable methods to find, select, and synthesize all available evidence. It answers a clearly formulated research question and explicitly states the methods used to arrive at the answer. Example: Systematic review. In 2008, Dr. Robert Boyle and his colleagues published a systematic review in ...

  2. Introduction to systematic review and meta-analysis

    It is easy to confuse systematic reviews and meta-analyses. A systematic review is an objective, reproducible method to find answers to a certain research question, by collecting all available studies related to that question and reviewing and analyzing their results. A meta-analysis differs from a systematic review in that it uses statistical ...

  3. Systematic review

    A systematic review is a scholarly synthesis of the evidence on a clearly presented topic using critical methods to identify, define and assess research on the topic. A systematic review extracts and interprets data from published studies on the topic (in the scientific literature), then analyzes, describes, critically appraises and summarizes interpretations into a refined evidence-based ...

  4. Systematic Review

    What is a systematic review? A review is an overview of the research that's already been completed on a topic.. What makes a systematic review different from other types of reviews is that the research methods are designed to reduce research bias.The methods are repeatable, and the approach is formal and systematic:. Formulate a research question; Develop a protocol

  5. How to Do a Systematic Review: A Best Practice Guide for Conducting and

    Systematic reviews are characterized by a methodical and replicable methodology and presentation. They involve a comprehensive search to locate all relevant published and unpublished work on a subject; a systematic integration of search results; and a critique of the extent, nature, and quality of evidence in relation to a particular research question.

  6. What is a Systematic Review (SR)?

    Systematic Reviews in the Social Sciences by Roberts, H., & Petticrew, M. Such diverse thinkers as Lao-Tze, Confucius, and U.S. Defense Secretary Donald Rumsfeld have all pointed out that we need to be able to tell the difference between real and assumed knowledge. The systematic review is a scientific tool that can help with this difficult task.

  7. Systematic reviews: Structure, form and content

    Topic selection and planning. In recent years, there has been an explosion in the number of systematic reviews conducted and published (Chalmers & Fox 2016, Fontelo & Liu 2018, Page et al 2015) - although a systematic review may be an inappropriate or unnecessary research methodology for answering many research questions.Systematic reviews can be inadvisable for a variety of reasons.

  8. What is a Systematic Review?

    an explicit, reproducible methodology. a systematic search that attempts to identify all studies that would meet the eligibility criteria. an assessment of the validity of the findings of the included studies, for example through the assessment of the risk of bias. a systematic presentation, and synthesis, of the characteristics and findings of ...

  9. 1.2.2 What is a systematic review?

    A systematic review attempts to collate all empirical evidence that fits pre-specified eligibility criteria in order to answer a specific research question. It uses explicit, systematic methods that are selected with a view to minimizing bias, thus providing more reliable findings from which conclusions can be drawn and decisions made (Antman ...

  10. Evidence Synthesis and Systematic Reviews

    Definition: A systematic review is a summary of research results (evidence) that uses explicit and reproducible methods to systematically search, critically appraise, and synthesize on a specific issue.It synthesizes the results of multiple primary studies related to each other by using strategies that reduce biases and errors. When to use: If you want to identify, appraise, and synthesize all ...

  11. What is a systematic review?

    A high-quality systematic review is described as the most reliable source of evidence to guide clinical practice. The purpose of a systematic review is to deliver a meticulous summary of all the available primary research in response to a research question. A systematic review uses all the existing research and is sometime called 'secondary research' (research on research). They are often ...

  12. Easy guide to conducting a systematic review

    A systematic review is a type of study that synthesises research that has been conducted on a particular topic. Systematic reviews are considered to provide the highest level of evidence on the hierarchy of evidence pyramid. Systematic reviews are conducted following rigorous research methodology. To minimise bias, systematic reviews utilise a ...

  13. What are systematic reviews?

    Cochrane evidence, including our systematic reviews, provides a powerful tool to enhance your healthcare knowledge and decision making. This video from Cochrane Sweden explains a bit about how we create health evidence and what Cochrane does. About Cochrane. Watch on.

  14. How to Write a Systematic Review: A Narrative Review

    Background. A systematic review, as its name suggests, is a systematic way of collecting, evaluating, integrating, and presenting findings from several studies on a specific question or topic.[] A systematic review is a research that, by identifying and combining evidence, is tailored to and answers the research question, based on an assessment of all relevant studies.[2,3] To identify assess ...

  15. What are systematic reviews?

    Sometimes systematic reviews ask a broad research question, and one strategy to achieve this is the use of several focussed sub-questions each addressed by sub-components of the review. Another strategy is to develop a map to describe the type of research that has been undertaken in relation to a research question. Some maps even describe over ...

  16. Systematic Reviews: What is a systematic review?

    A systematic review is a tightly structured literature review that focuses on a topic with strict research parameters. The methodology used to collect research has to be consistent in order to reduce misinterpretation and misrepresentation of the data. You can access these and more from the Specialist Library Support online resources page.

  17. How to do a systematic review

    A systematic review aims to bring evidence together to answer a pre-defined research question. This involves the identification of all primary research relevant to the defined review question, the critical appraisal of this research, and the synthesis of the findings.13 Systematic reviews may combine data from different.

  18. PDF Systematic Literature Reviews: an Introduction

    review process as a scientific process in itself, which developed into the SR process (Dixon-Woods, 2010). 2.2 Definition, principles and procedures for systematic reviews SRs are a way of synthesising scientific evidence to answer a particular research question in a way that

  19. Getting Started

    A systematic review is guided filtering and synthesis of all available evidence addressing a specific, focused research question, generally about a specific intervention or exposure. The use of standardized, systematic methods and pre-selected eligibility criteria reduce the risk of bias in identifying, selecting and analyzing relevant studies.

  20. What are systematic reviews and meta-analyses?

    Systematic reviews summarize the results of all the studies on a medical treatment and assess the quality of the studies. The analysis is done following a specific, methodologically sound process. In a way, it's a "study of studies.". Good systematic reviews can provide a reliable overview of the current knowledge in a certain area.

  21. Systematic Reviews and Meta-analysis: Understanding the Best Evidence

    Systematic reviews can also demonstrate where knowledge is lacking. This can then be used to guide future research. Systematic reviews are usually carried out in the areas of clinical tests (diagnostic, screening, and ... The steps undertaken in evaluating the study quality are early definition of study quality and criteria, setting up a good ...

  22. The rationale behind systematic reviews in clinical medicine: a

    A systematic review (SR) is a type of review that uses a systematic method to provide a valid summary of existing literature addressing a clear and specific question. ... the distinction of SR from other types of synthetic research (or reviews) is important. ... characteristics of the participants or intervention), the definition or status of ...

  23. An overview of methodological approaches in systematic reviews

    1. INTRODUCTION. Evidence synthesis is a prerequisite for knowledge translation. 1 A well conducted systematic review (SR), often in conjunction with meta‐analyses (MA) when appropriate, is considered the "gold standard" of methods for synthesizing evidence related to a topic of interest. 2 The central strength of an SR is the transparency of the methods used to systematically search ...