• Research Report: Definition, Types + [Writing Guide]

busayo.longe

One of the reasons for carrying out research is to add to the existing body of knowledge. Therefore, when conducting research, you need to document your processes and findings in a research report. 

With a research report, it is easy to outline the findings of your systematic investigation and any gaps needing further inquiry. Knowing how to create a detailed research report will prove useful when you need to conduct research.  

What is a Research Report?

A research report is a well-crafted document that outlines the processes, data, and findings of a systematic investigation. It is an important document that serves as a first-hand account of the research process, and it is typically considered an objective and accurate source of information.

In many ways, a research report can be considered as a summary of the research process that clearly highlights findings, recommendations, and other important details. Reading a well-written research report should provide you with all the information you need about the core areas of the research process.

Features of a Research Report 

So how do you recognize a research report when you see one? Here are some of the basic features that define a research report. 

  • It is a detailed presentation of research processes and findings, and it usually includes tables and graphs. 
  • It is written in a formal language.
  • A research report is usually written in the third person.
  • It is informative and based on first-hand verifiable information.
  • It is formally structured with headings, sections, and bullet points.
  • It always includes recommendations for future actions. 

Types of Research Report 

The research report is classified based on two things; nature of research and target audience.

Nature of Research

  • Qualitative Research Report

This is the type of report written for qualitative research . It outlines the methods, processes, and findings of a qualitative method of systematic investigation. In educational research, a qualitative research report provides an opportunity for one to apply his or her knowledge and develop skills in planning and executing qualitative research projects.

A qualitative research report is usually descriptive in nature. Hence, in addition to presenting details of the research process, you must also create a descriptive narrative of the information.

  • Quantitative Research Report

A quantitative research report is a type of research report that is written for quantitative research. Quantitative research is a type of systematic investigation that pays attention to numerical or statistical values in a bid to find answers to research questions. 

In this type of research report, the researcher presents quantitative data to support the research process and findings. Unlike a qualitative research report that is mainly descriptive, a quantitative research report works with numbers; that is, it is numerical in nature. 

Target Audience

Also, a research report can be said to be technical or popular based on the target audience. If you’re dealing with a general audience, you would need to present a popular research report, and if you’re dealing with a specialized audience, you would submit a technical report. 

  • Technical Research Report

A technical research report is a detailed document that you present after carrying out industry-based research. This report is highly specialized because it provides information for a technical audience; that is, individuals with above-average knowledge in the field of study. 

In a technical research report, the researcher is expected to provide specific information about the research process, including statistical analyses and sampling methods. Also, the use of language is highly specialized and filled with jargon. 

Examples of technical research reports include legal and medical research reports. 

  • Popular Research Report

A popular research report is one for a general audience; that is, for individuals who do not necessarily have any knowledge in the field of study. A popular research report aims to make information accessible to everyone. 

It is written in very simple language, which makes it easy to understand the findings and recommendations. Examples of popular research reports are the information contained in newspapers and magazines. 

Importance of a Research Report 

  • Knowledge Transfer: As already stated above, one of the reasons for carrying out research is to contribute to the existing body of knowledge, and this is made possible with a research report. A research report serves as a means to effectively communicate the findings of a systematic investigation to all and sundry.  
  • Identification of Knowledge Gaps: With a research report, you’d be able to identify knowledge gaps for further inquiry. A research report shows what has been done while hinting at other areas needing systematic investigation. 
  • In market research, a research report would help you understand the market needs and peculiarities at a glance. 
  • A research report allows you to present information in a precise and concise manner. 
  • It is time-efficient and practical because, in a research report, you do not have to spend time detailing the findings of your research work in person. You can easily send out the report via email and have stakeholders look at it. 

Guide to Writing a Research Report

A lot of detail goes into writing a research report, and getting familiar with the different requirements would help you create the ideal research report. A research report is usually broken down into multiple sections, which allows for a concise presentation of information.

Structure and Example of a Research Report

This is the title of your systematic investigation. Your title should be concise and point to the aims, objectives, and findings of a research report. 

  • Table of Contents

This is like a compass that makes it easier for readers to navigate the research report.

An abstract is an overview that highlights all important aspects of the research including the research method, data collection process, and research findings. Think of an abstract as a summary of your research report that presents pertinent information in a concise manner. 

An abstract is always brief; typically 100-150 words and goes straight to the point. The focus of your research abstract should be the 5Ws and 1H format – What, Where, Why, When, Who and How. 

  • Introduction

Here, the researcher highlights the aims and objectives of the systematic investigation as well as the problem which the systematic investigation sets out to solve. When writing the report introduction, it is also essential to indicate whether the purposes of the research were achieved or would require more work.

In the introduction section, the researcher specifies the research problem and also outlines the significance of the systematic investigation. Also, the researcher is expected to outline any jargons and terminologies that are contained in the research.  

  • Literature Review

A literature review is a written survey of existing knowledge in the field of study. In other words, it is the section where you provide an overview and analysis of different research works that are relevant to your systematic investigation. 

It highlights existing research knowledge and areas needing further investigation, which your research has sought to fill. At this stage, you can also hint at your research hypothesis and its possible implications for the existing body of knowledge in your field of study. 

  • An Account of Investigation

This is a detailed account of the research process, including the methodology, sample, and research subjects. Here, you are expected to provide in-depth information on the research process including the data collection and analysis procedures. 

In a quantitative research report, you’d need to provide information surveys, questionnaires and other quantitative data collection methods used in your research. In a qualitative research report, you are expected to describe the qualitative data collection methods used in your research including interviews and focus groups. 

In this section, you are expected to present the results of the systematic investigation. 

This section further explains the findings of the research, earlier outlined. Here, you are expected to present a justification for each outcome and show whether the results are in line with your hypotheses or if other research studies have come up with similar results.

  • Conclusions

This is a summary of all the information in the report. It also outlines the significance of the entire study. 

  • References and Appendices

This section contains a list of all the primary and secondary research sources. 

Tips for Writing a Research Report

  • Define the Context for the Report

As is obtainable when writing an essay, defining the context for your research report would help you create a detailed yet concise document. This is why you need to create an outline before writing so that you do not miss out on anything. 

  • Define your Audience

Writing with your audience in mind is essential as it determines the tone of the report. If you’re writing for a general audience, you would want to present the information in a simple and relatable manner. For a specialized audience, you would need to make use of technical and field-specific terms. 

  • Include Significant Findings

The idea of a research report is to present some sort of abridged version of your systematic investigation. In your report, you should exclude irrelevant information while highlighting only important data and findings. 

  • Include Illustrations

Your research report should include illustrations and other visual representations of your data. Graphs, pie charts, and relevant images lend additional credibility to your systematic investigation.

  • Choose the Right Title

A good research report title is brief, precise, and contains keywords from your research. It should provide a clear idea of your systematic investigation so that readers can grasp the entire focus of your research from the title. 

  • Proofread the Report

Before publishing the document, ensure that you give it a second look to authenticate the information. If you can, get someone else to go through the report, too, and you can also run it through proofreading and editing software. 

How to Gather Research Data for Your Report  

  • Understand the Problem

Every research aims at solving a specific problem or set of problems, and this should be at the back of your mind when writing your research report. Understanding the problem would help you to filter the information you have and include only important data in your report. 

  • Know what your report seeks to achieve

This is somewhat similar to the point above because, in some way, the aim of your research report is intertwined with the objectives of your systematic investigation. Identifying the primary purpose of writing a research report would help you to identify and present the required information accordingly. 

  • Identify your audience

Knowing your target audience plays a crucial role in data collection for a research report. If your research report is specifically for an organization, you would want to present industry-specific information or show how the research findings are relevant to the work that the company does. 

  • Create Surveys/Questionnaires

A survey is a research method that is used to gather data from a specific group of people through a set of questions. It can be either quantitative or qualitative. 

A survey is usually made up of structured questions, and it can be administered online or offline. However, an online survey is a more effective method of research data collection because it helps you save time and gather data with ease. 

You can seamlessly create an online questionnaire for your research on Formplus . With the multiple sharing options available in the builder, you would be able to administer your survey to respondents in little or no time. 

Formplus also has a report summary too l that you can use to create custom visual reports for your research.

Step-by-step guide on how to create an online questionnaire using Formplus  

  • Sign into Formplus

In the Formplus builder, you can easily create different online questionnaires for your research by dragging and dropping preferred fields into your form. To access the Formplus builder, you will need to create an account on Formplus. 

Once you do this, sign in to your account and click on Create new form to begin. 

  • Edit Form Title : Click on the field provided to input your form title, for example, “Research Questionnaire.”
  • Edit Form : Click on the edit icon to edit the form.
  • Add Fields : Drag and drop preferred form fields into your form in the Formplus builder inputs column. There are several field input options for questionnaires in the Formplus builder. 
  • Edit fields
  • Click on “Save”
  • Form Customization: With the form customization options in the form builder, you can easily change the outlook of your form and make it more unique and personalized. Formplus allows you to change your form theme, add background images, and even change the font according to your needs. 
  • Multiple Sharing Options: Formplus offers various form-sharing options, which enables you to share your questionnaire with respondents easily. You can use the direct social media sharing buttons to share your form link to your organization’s social media pages.  You can also send out your survey form as email invitations to your research subjects too. If you wish, you can share your form’s QR code or embed it on your organization’s website for easy access. 

Conclusion  

Always remember that a research report is just as important as the actual systematic investigation because it plays a vital role in communicating research findings to everyone else. This is why you must take care to create a concise document summarizing the process of conducting any research. 

In this article, we’ve outlined essential tips to help you create a research report. When writing your report, you should always have the audience at the back of your mind, as this would set the tone for the document. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • ethnographic research survey
  • research report
  • research report survey
  • busayo.longe

Formplus

You may also like:

How to Write a Problem Statement for your Research

Learn how to write problem statements before commencing any research effort. Learn about its structure and explore examples

different parts of a research report

Assessment Tools: Types, Examples & Importance

In this article, you’ll learn about different assessment tools to help you evaluate performance in various contexts

Ethnographic Research: Types, Methods + [Question Examples]

Simple guide on ethnographic research, it types, methods, examples and advantages. Also highlights how to conduct an ethnographic...

21 Chrome Extensions for Academic Researchers in 2022

In this article, we will discuss a number of chrome extensions you can use to make your research process even seamless

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Search This Site All UCSD Sites Faculty/Staff Search Term
  • Contact & Directions
  • Climate Statement
  • Cognitive Behavioral Neuroscience
  • Cognitive Psychology
  • Developmental Psychology
  • Social Psychology
  • Adjunct Faculty
  • Non-Senate Instructors
  • Researchers
  • Psychology Grads
  • Affiliated Grads
  • New and Prospective Students
  • Honors Program
  • Experiential Learning
  • Programs & Events
  • Psi Chi / Psychology Club
  • Prospective PhD Students
  • Current PhD Students
  • Area Brown Bags
  • Colloquium Series
  • Anderson Distinguished Lecture Series
  • Speaker Videos
  • Undergraduate Program
  • Academic and Writing Resources

Writing Research Papers

  • Research Paper Structure

Whether you are writing a B.S. Degree Research Paper or completing a research report for a Psychology course, it is highly likely that you will need to organize your research paper in accordance with American Psychological Association (APA) guidelines.  Here we discuss the structure of research papers according to APA style.

Major Sections of a Research Paper in APA Style

A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1  Many will also contain Figures and Tables and some will have an Appendix or Appendices.  These sections are detailed as follows (for a more in-depth guide, please refer to " How to Write a Research Paper in APA Style ”, a comprehensive guide developed by Prof. Emma Geller). 2

What is this paper called and who wrote it? – the first page of the paper; this includes the name of the paper, a “running head”, authors, and institutional affiliation of the authors.  The institutional affiliation is usually listed in an Author Note that is placed towards the bottom of the title page.  In some cases, the Author Note also contains an acknowledgment of any funding support and of any individuals that assisted with the research project.

One-paragraph summary of the entire study – typically no more than 250 words in length (and in many cases it is well shorter than that), the Abstract provides an overview of the study.

Introduction

What is the topic and why is it worth studying? – the first major section of text in the paper, the Introduction commonly describes the topic under investigation, summarizes or discusses relevant prior research (for related details, please see the Writing Literature Reviews section of this website), identifies unresolved issues that the current research will address, and provides an overview of the research that is to be described in greater detail in the sections to follow.

What did you do? – a section which details how the research was performed.  It typically features a description of the participants/subjects that were involved, the study design, the materials that were used, and the study procedure.  If there were multiple experiments, then each experiment may require a separate Methods section.  A rule of thumb is that the Methods section should be sufficiently detailed for another researcher to duplicate your research.

What did you find? – a section which describes the data that was collected and the results of any statistical tests that were performed.  It may also be prefaced by a description of the analysis procedure that was used. If there were multiple experiments, then each experiment may require a separate Results section.

What is the significance of your results? – the final major section of text in the paper.  The Discussion commonly features a summary of the results that were obtained in the study, describes how those results address the topic under investigation and/or the issues that the research was designed to address, and may expand upon the implications of those findings.  Limitations and directions for future research are also commonly addressed.

List of articles and any books cited – an alphabetized list of the sources that are cited in the paper (by last name of the first author of each source).  Each reference should follow specific APA guidelines regarding author names, dates, article titles, journal titles, journal volume numbers, page numbers, book publishers, publisher locations, websites, and so on (for more information, please see the Citing References in APA Style page of this website).

Tables and Figures

Graphs and data (optional in some cases) – depending on the type of research being performed, there may be Tables and/or Figures (however, in some cases, there may be neither).  In APA style, each Table and each Figure is placed on a separate page and all Tables and Figures are included after the References.   Tables are included first, followed by Figures.   However, for some journals and undergraduate research papers (such as the B.S. Research Paper or Honors Thesis), Tables and Figures may be embedded in the text (depending on the instructor’s or editor’s policies; for more details, see "Deviations from APA Style" below).

Supplementary information (optional) – in some cases, additional information that is not critical to understanding the research paper, such as a list of experiment stimuli, details of a secondary analysis, or programming code, is provided.  This is often placed in an Appendix.

Variations of Research Papers in APA Style

Although the major sections described above are common to most research papers written in APA style, there are variations on that pattern.  These variations include: 

  • Literature reviews – when a paper is reviewing prior published research and not presenting new empirical research itself (such as in a review article, and particularly a qualitative review), then the authors may forgo any Methods and Results sections. Instead, there is a different structure such as an Introduction section followed by sections for each of the different aspects of the body of research being reviewed, and then perhaps a Discussion section. 
  • Multi-experiment papers – when there are multiple experiments, it is common to follow the Introduction with an Experiment 1 section, itself containing Methods, Results, and Discussion subsections. Then there is an Experiment 2 section with a similar structure, an Experiment 3 section with a similar structure, and so on until all experiments are covered.  Towards the end of the paper there is a General Discussion section followed by References.  Additionally, in multi-experiment papers, it is common for the Results and Discussion subsections for individual experiments to be combined into single “Results and Discussion” sections.

Departures from APA Style

In some cases, official APA style might not be followed (however, be sure to check with your editor, instructor, or other sources before deviating from standards of the Publication Manual of the American Psychological Association).  Such deviations may include:

  • Placement of Tables and Figures  – in some cases, to make reading through the paper easier, Tables and/or Figures are embedded in the text (for example, having a bar graph placed in the relevant Results section). The embedding of Tables and/or Figures in the text is one of the most common deviations from APA style (and is commonly allowed in B.S. Degree Research Papers and Honors Theses; however you should check with your instructor, supervisor, or editor first). 
  • Incomplete research – sometimes a B.S. Degree Research Paper in this department is written about research that is currently being planned or is in progress. In those circumstances, sometimes only an Introduction and Methods section, followed by References, is included (that is, in cases where the research itself has not formally begun).  In other cases, preliminary results are presented and noted as such in the Results section (such as in cases where the study is underway but not complete), and the Discussion section includes caveats about the in-progress nature of the research.  Again, you should check with your instructor, supervisor, or editor first.
  • Class assignments – in some classes in this department, an assignment must be written in APA style but is not exactly a traditional research paper (for instance, a student asked to write about an article that they read, and to write that report in APA style). In that case, the structure of the paper might approximate the typical sections of a research paper in APA style, but not entirely.  You should check with your instructor for further guidelines.

Workshops and Downloadable Resources

  • For in-person discussion of the process of writing research papers, please consider attending this department’s “Writing Research Papers” workshop (for dates and times, please check the undergraduate workshops calendar).

Downloadable Resources

  • How to Write APA Style Research Papers (a comprehensive guide) [ PDF ]
  • Tips for Writing APA Style Research Papers (a brief summary) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – empirical research) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – literature review) [ PDF ]

Further Resources

How-To Videos     

  • Writing Research Paper Videos

APA Journal Article Reporting Guidelines

  • Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 3.
  • Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 26.  

External Resources

  • Formatting APA Style Papers in Microsoft Word
  • How to Write an APA Style Research Paper from Hamilton University
  • WikiHow Guide to Writing APA Research Papers
  • Sample APA Formatted Paper with Comments
  • Sample APA Formatted Paper
  • Tips for Writing a Paper in APA Style

1 VandenBos, G. R. (Ed). (2010). Publication manual of the American Psychological Association (6th ed.) (pp. 41-60).  Washington, DC: American Psychological Association.

2 geller, e. (2018).  how to write an apa-style research report . [instructional materials]. , prepared by s. c. pan for ucsd psychology.

Back to top  

  • Formatting Research Papers
  • Using Databases and Finding References
  • What Types of References Are Appropriate?
  • Evaluating References and Taking Notes
  • Citing References
  • Writing a Literature Review
  • Writing Process and Revising
  • Improving Scientific Writing
  • Academic Integrity and Avoiding Plagiarism
  • Writing Research Papers Videos

Banner

How to Write a Research Paper: Parts of the Paper

  • Choosing Your Topic
  • Citation & Style Guides This link opens in a new window
  • Critical Thinking
  • Evaluating Information
  • Parts of the Paper
  • Writing Tips from UNC-Chapel Hill
  • Librarian Contact

Parts of the Research Paper Papers should have a beginning, a middle, and an end. Your introductory paragraph should grab the reader's attention, state your main idea, and indicate how you will support it. The body of the paper should expand on what you have stated in the introduction. Finally, the conclusion restates the paper's thesis and should explain what you have learned, giving a wrap up of your main ideas.

1. The Title The title should be specific and indicate the theme of the research and what ideas it addresses. Use keywords that help explain your paper's topic to the reader. Try to avoid abbreviations and jargon. Think about keywords that people would use to search for your paper and include them in your title.

2. The Abstract The abstract is used by readers to get a quick overview of your paper. Typically, they are about 200 words in length (120 words minimum to  250 words maximum). The abstract should introduce the topic and thesis, and should provide a general statement about what you have found in your research. The abstract allows you to mention each major aspect of your topic and helps readers decide whether they want to read the rest of the paper. Because it is a summary of the entire research paper, it is often written last. 

3. The Introduction The introduction should be designed to attract the reader's attention and explain the focus of the research. You will introduce your overview of the topic,  your main points of information, and why this subject is important. You can introduce the current understanding and background information about the topic. Toward the end of the introduction, you add your thesis statement, and explain how you will provide information to support your research questions. This provides the purpose and focus for the rest of the paper.

4. Thesis Statement Most papers will have a thesis statement or main idea and supporting facts/ideas/arguments. State your main idea (something of interest or something to be proven or argued for or against) as your thesis statement, and then provide your supporting facts and arguments. A thesis statement is a declarative sentence that asserts the position a paper will be taking. It also points toward the paper's development. This statement should be both specific and arguable. Generally, the thesis statement will be placed at the end of the first paragraph of your paper. The remainder of your paper will support this thesis.

Students often learn to write a thesis as a first step in the writing process, but often, after research, a writer's viewpoint may change. Therefore a thesis statement may be one of the final steps in writing. 

Examples of Thesis Statements from Purdue OWL

5. The Literature Review The purpose of the literature review is to describe past important research and how it specifically relates to the research thesis. It should be a synthesis of the previous literature and the new idea being researched. The review should examine the major theories related to the topic to date and their contributors. It should include all relevant findings from credible sources, such as academic books and peer-reviewed journal articles. You will want  to:

  • Explain how the literature helps the researcher understand the topic.
  • Try to show connections and any disparities between the literature.
  • Identify new ways to interpret prior research.
  • Reveal any gaps that exist in the literature.

More about writing a literature review. . .

6. The Discussion ​The purpose of the discussion is to interpret and describe what you have learned from your research. Make the reader understand why your topic is important. The discussion should always demonstrate what you have learned from your readings (and viewings) and how that learning has made the topic evolve, especially from the short description of main points in the introduction.Explain any new understanding or insights you have had after reading your articles and/or books. Paragraphs should use transitioning sentences to develop how one paragraph idea leads to the next. The discussion will always connect to the introduction, your thesis statement, and the literature you reviewed, but it does not simply repeat or rearrange the introduction. You want to: 

  • Demonstrate critical thinking, not just reporting back facts that you gathered.
  • If possible, tell how the topic has evolved over the past and give it's implications for the future.
  • Fully explain your main ideas with supporting information.
  • Explain why your thesis is correct giving arguments to counter points.

7. The Conclusion A concluding paragraph is a brief summary of your main ideas and restates the paper's main thesis, giving the reader the sense that the stated goal of the paper has been accomplished. What have you learned by doing this research that you didn't know before? What conclusions have you drawn? You may also want to suggest further areas of study, improvement of research possibilities, etc. to demonstrate your critical thinking regarding your research.

  • << Previous: Evaluating Information
  • Next: Research >>
  • Last Updated: Feb 13, 2024 8:35 AM
  • URL: https://libguides.ucc.edu/research_paper

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Section 1- Evidence-based practice (EBP)

Chapter 6: Components of a Research Report

Components of a research report.

Partido, B.B.

Elements of  research report

The research report contains four main areas:

  • Introduction – What is the issue? What is known? What is not known? What are you trying to find out? This sections ends with the purpose and specific aims of the study.
  • Methods – The recipe for the study. If someone wanted to perform the same study, what information would they need? How will you answer your research question? This part usually contains subheadings: Participants, Instruments, Procedures, Data Analysis,
  • Results – What was found? This is organized by specific aims and provides the results of the statistical analysis.
  • Discussion – How do the results fit in with the existing  literature? What were the limitations and areas of future research?

Formalized Curiosity for Knowledge and Innovation Copyright © by partido1. All Rights Reserved.

  • Academic Skills
  • Reading, writing and referencing

Research reports

This resource will help you identify the common elements and basic format of a research report.

Research reports generally follow a similar structure and have common elements, each with a particular purpose. Learn more about each of these elements below.

Common elements of reports

Your title should be brief, topic-specific, and informative, clearly indicating the purpose and scope of your study. Include key words in your title so that search engines can easily access your work. For example:  Measurement of water around Station Pier.

An abstract is a concise summary that helps readers to quickly assess the content and direction of your paper. It should be brief, written in a single paragraph and cover: the scope and purpose of your report; an overview of methodology; a summary of the main findings or results; principal conclusions or significance of the findings; and recommendations made.

The information in the abstract must be presented in the same order as it is in your report. The abstract is usually written last when you have developed your arguments and synthesised the results.

The introduction creates the context for your research. It should provide sufficient background to allow the reader to understand and evaluate your study without needing to refer to previous publications. After reading the introduction your reader should understand exactly what your research is about, what you plan to do, why you are undertaking this research and which methods you have used. Introductions generally include:

  • The rationale for the present study. Why are you interested in this topic? Why is this topic worth investigating?
  • Key terms and definitions.
  • An outline of the research questions and hypotheses; the assumptions or propositions that your research will test.

Not all research reports have a separate literature review section. In shorter research reports, the review is usually part of the Introduction.

A literature review is a critical survey of recent relevant research in a particular field. The review should be a selection of carefully organised, focused and relevant literature that develops a narrative ‘story’ about your topic. Your review should answer key questions about the literature:

  • What is the current state of knowledge on the topic?
  • What differences in approaches / methodologies are there?
  • Where are the strengths and weaknesses of the research?
  • What further research is needed? The review may identify a gap in the literature which provides a rationale for your study and supports your research questions and methodology.

The review is not just a summary of all you have read. Rather, it must develop an argument or a point of view that supports your chosen methodology and research questions.

The purpose of this section is to detail how you conducted your research so that others can understand and replicate your approach.

You need to briefly describe the subjects (if appropriate), any equipment or materials used and the approach taken. If the research method or method of data analysis is commonly used within your field of study, then simply reference the procedure. If, however, your methods are new or controversial then you need to describe them in more detail and provide a rationale for your approach. The methodology is written in the past tense and should be as concise as possible.

This section is a concise, factual summary of your findings, listed under headings appropriate to your research questions. It’s common to use tables and graphics. Raw data or details about the method of statistical analysis used should be included in the Appendices.

Present your results in a consistent manner. For example, if you present the first group of results as percentages, it will be confusing for the reader and difficult to make comparisons of data if later results are presented as fractions or as decimal values.

In general, you won’t discuss your results here. Any analysis of your results usually occurs in the Discussion section.

Notes on visual data representation:

  • Graphs and tables may be used to reveal trends in your data, but they must be explained and referred to in adjacent accompanying text.
  • Figures and tables do not simply repeat information given in the text: they summarise, amplify or complement it.
  • Graphs are always referred to as ‘Figures’, and both axes must be clearly labelled.
  • Tables must be numbered, and they must be able to stand-alone or make sense without your reader needing to read all of the accompanying text.

The Discussion responds to the hypothesis or research question. This section is where you interpret your results, account for your findings and explain their significance within the context of other research. Consider the adequacy of your sampling techniques, the scope and long-term implications of your study, any problems with data collection or analysis and any assumptions on which your study was based. This is also the place to discuss any disappointing results and address limitations.

Checklist for the discussion

  • To what extent was each hypothesis supported?
  • To what extent are your findings validated or supported by other research?
  • Were there unexpected variables that affected your results?
  • On reflection, was your research method appropriate?
  • Can you account for any differences between your results and other studies?

Conclusions in research reports are generally fairly short and should follow on naturally from points raised in the Discussion. In this section you should discuss the significance of your findings. To what extent and in what ways are your findings useful or conclusive? Is further research required? If so, based on your research experience, what suggestions could you make about improvements to the scope or methodology of future studies?

Also, consider the practical implications of your results and any recommendations you could make. For example, if your research is on reading strategies in the primary school classroom, what are the implications of your results for the classroom teacher? What recommendations could you make for teachers?

A Reference List contains all the resources you have cited in your work, while a Bibliography is a wider list containing all the resources you have consulted (but not necessarily cited) in the preparation of your work. It is important to check which of these is required, and the preferred format, style of references and presentation requirements of your own department.

Appendices (singular ‘Appendix’) provide supporting material to your project. Examples of such materials include:

  • Relevant letters to participants and organisations (e.g. regarding the ethics or conduct of the project).
  • Background reports.
  • Detailed calculations.

Different types of data are presented in separate appendices. Each appendix must be titled, labelled with a number or letter, and referred to in the body of the report.

Appendices are placed at the end of a report, and the contents are generally not included in the word count.

Fi nal ti p

While there are many common elements to research reports, it’s always best to double check the exact requirements for your task. You may find that you don’t need some sections, can combine others or have specific requirements about referencing, formatting or word limits.

Two people looking over study materials

Looking for one-on-one advice?

Get tailored advice from an Academic Skills Adviser by booking an Individual appointment, or get quick feedback from one of our Academic Writing Mentors via email through our Writing advice service.

Go to Student appointments

  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Scientific and Scholarly Writing

  • Literature Searches
  • Tracking and Citing References

Parts of a Scientific & Scholarly Paper

Introduction.

  • Writing Effectively
  • Where to Publish?
  • Capstone Resources

Different sections are needed in different types of scientific papers (lab reports, literature reviews, systematic reviews, methods papers, research papers, etc.). Projects that overlap with the social sciences or humanities may have different requirements. Generally, however, you'll need to include:

INTRODUCTION (Background)

METHODS SECTION (Materials and Methods)

What is a title

Titles have two functions: to identify the main topic or the message of the paper and to attract readers.

The title will be read by many people. Only a few will read the entire paper, therefore all words in the title should be chosen with care. Too short a title is not helpful to the potential reader. Too long a title can sometimes be even less meaningful. Remember a title is not an abstract. Neither is a title a sentence.

What makes a good title?

A good title is accurate, complete, and specific. Imagine searching for your paper in PubMed. What words would you use?

  • Use the fewest possible words that describe the contents of the paper.
  • Avoid waste words like "Studies on", or "Investigations on".
  • Use specific terms rather than general.
  • Use the same key terms in the title as the paper.
  • Watch your word order and syntax.

The abstract is a miniature version of your paper. It should present the main story and a few essential details of the paper for readers who only look at the abstract and should serve as a clear preview for readers who read your whole paper. They are usually short (250 words or less).

The goal is to communicate:

  •  What was done?
  •  Why was it done?
  •  How was it done?
  •  What was found?

A good abstract is specific and selective. Try summarizing each of the sections of your paper in a sentence two. Do the abstract last, so you know exactly what you want to write.

  • Use 1 or more well developed paragraphs.
  • Use introduction/body/conclusion structure.
  • Present purpose, results, conclusions and recommendations in that order.
  • Make it understandable to a wide audience.
  • << Previous: Tracking and Citing References
  • Next: Writing Effectively >>
  • Last Updated: Apr 17, 2024 3:27 PM
  • URL: https://libraryguides.umassmed.edu/scientific-writing

Boston College Libraries homepage

  • Research guides

Writing an Educational Research Paper

Research paper sections, customary parts of an education research paper.

There is no one right style or manner for writing an education paper. Content aside, the writing style and presentation of papers in different educational fields vary greatly. Nevertheless, certain parts are common to most papers, for example:

Title/Cover Page

Contains the paper's title, the author's name, address, phone number, e-mail, and the day's date.

Not every education paper requires an abstract. However, for longer, more complex papers abstracts are particularly useful. Often only 100 to 300 words, the abstract generally provides a broad overview and is never more than a page. It describes the essence, the main theme of the paper. It includes the research question posed, its significance, the methodology, and the main results or findings. Footnotes or cited works are never listed in an abstract. Remember to take great care in composing the abstract. It's the first part of the paper the instructor reads. It must impress with a strong content, good style, and general aesthetic appeal. Never write it hastily or carelessly.

Introduction and Statement of the Problem

A good introduction states the main research problem and thesis argument. What precisely are you studying and why is it important? How original is it? Will it fill a gap in other studies? Never provide a lengthy justification for your topic before it has been explicitly stated.

Limitations of Study

Indicate as soon as possible what you intend to do, and what you are not going to attempt. You may limit the scope of your paper by any number of factors, for example, time, personnel, gender, age, geographic location, nationality, and so on.

Methodology

Discuss your research methodology. Did you employ qualitative or quantitative research methods? Did you administer a questionnaire or interview people? Any field research conducted? How did you collect data? Did you utilize other libraries or archives? And so on.

Literature Review

The research process uncovers what other writers have written about your topic. Your education paper should include a discussion or review of what is known about the subject and how that knowledge was acquired. Once you provide the general and specific context of the existing knowledge, then you yourself can build on others' research. The guide Writing a Literature Review will be helpful here.

Main Body of Paper/Argument

This is generally the longest part of the paper. It's where the author supports the thesis and builds the argument. It contains most of the citations and analysis. This section should focus on a rational development of the thesis with clear reasoning and solid argumentation at all points. A clear focus, avoiding meaningless digressions, provides the essential unity that characterizes a strong education paper.

After spending a great deal of time and energy introducing and arguing the points in the main body of the paper, the conclusion brings everything together and underscores what it all means. A stimulating and informative conclusion leaves the reader informed and well-satisfied. A conclusion that makes sense, when read independently from the rest of the paper, will win praise.

Works Cited/Bibliography

See the Citation guide .

Education research papers often contain one or more appendices. An appendix contains material that is appropriate for enlarging the reader's understanding, but that does not fit very well into the main body of the paper. Such material might include tables, charts, summaries, questionnaires, interview questions, lengthy statistics, maps, pictures, photographs, lists of terms, glossaries, survey instruments, letters, copies of historical documents, and many other types of supplementary material. A paper may have several appendices. They are usually placed after the main body of the paper but before the bibliography or works cited section. They are usually designated by such headings as Appendix A, Appendix B, and so on.

  • << Previous: Choosing a Topic
  • Next: Find Books >>
  • Last Updated: Dec 5, 2023 2:26 PM
  • Subjects: Education
  • Tags: education , education_paper , education_research_paper

Writing up a Research Report

  • First Online: 04 January 2024

Cite this chapter

different parts of a research report

  • Stefan Hunziker 3 &
  • Michael Blankenagel 3  

401 Accesses

A research report is one big argument about how and why you came up with your conclusions. To make it a convincing argument, a typical guiding structure has developed. In the different chapters, there are distinct issues that need to be addressed to explain to the reader why your conclusions are valid. The governing principle for writing the report is full disclosure: to explain everything and ensure replicability by another researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Barros, L. O. (2016). The only academic phrasebook you’ll ever need . Createspace Independent Publishing Platform.

Google Scholar  

Field, A. (2016). An adventure in statistics. The reality enigma . SAGE.

Field, A. (2020). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE.

Früh, M., Keimer, I., & Blankenagel, M. (2019). The impact of Balanced Scorecard excellence on shareholder returns. IFZ Working Paper No. 0003/2019. https://zenodo.org/record/2571603#.YMDUafkzZaQ . Accessed: 9 June 2021.

Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic Books.

Yin, R. K. (2013). Case study research: Design and methods (5th ed.). SAGE.

Download references

Author information

Authors and affiliations.

Wirtschaft/IFZ, Campus Zug-Rotkreuz, Hochschule Luzern, Zug-Rotkreuz, Zug, Switzerland

Stefan Hunziker & Michael Blankenagel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stefan Hunziker .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Hunziker, S., Blankenagel, M. (2024). Writing up a Research Report. In: Research Design in Business and Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-42739-9_4

Download citation

DOI : https://doi.org/10.1007/978-3-658-42739-9_4

Published : 04 January 2024

Publisher Name : Springer Gabler, Wiesbaden

Print ISBN : 978-3-658-42738-2

Online ISBN : 978-3-658-42739-9

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Structure of a Research Paper

Phillips-Wangensteen Building.

Structure of a Research Paper: IMRaD Format

I. The Title Page

  • Title: Tells the reader what to expect in the paper.
  • Author(s): Most papers are written by one or two primary authors. The remaining authors have reviewed the work and/or aided in study design or data analysis (International Committee of Medical Editors, 1997). Check the Instructions to Authors for the target journal for specifics about authorship.
  • Keywords [according to the journal]
  • Corresponding Author: Full name and affiliation for the primary contact author for persons who have questions about the research.
  • Financial & Equipment Support [if needed]: Specific information about organizations, agencies, or companies that supported the research.
  • Conflicts of Interest [if needed]: List and explain any conflicts of interest.

II. Abstract: “Structured abstract” has become the standard for research papers (introduction, objective, methods, results and conclusions), while reviews, case reports and other articles have non-structured abstracts. The abstract should be a summary/synopsis of the paper.

III. Introduction: The “why did you do the study”; setting the scene or laying the foundation or background for the paper.

IV. Methods: The “how did you do the study.” Describe the --

  • Context and setting of the study
  • Specify the study design
  • Population (patients, etc. if applicable)
  • Sampling strategy
  • Intervention (if applicable)
  • Identify the main study variables
  • Data collection instruments and procedures
  • Outline analysis methods

V. Results: The “what did you find” --

  • Report on data collection and/or recruitment
  • Participants (demographic, clinical condition, etc.)
  • Present key findings with respect to the central research question
  • Secondary findings (secondary outcomes, subgroup analyses, etc.)

VI. Discussion: Place for interpreting the results

  • Main findings of the study
  • Discuss the main results with reference to previous research
  • Policy and practice implications of the results
  • Strengths and limitations of the study

VII. Conclusions: [occasionally optional or not required]. Do not reiterate the data or discussion. Can state hunches, inferences or speculations. Offer perspectives for future work.

VIII. Acknowledgements: Names people who contributed to the work, but did not contribute sufficiently to earn authorship. You must have permission from any individuals mentioned in the acknowledgements sections. 

IX. References:  Complete citations for any articles or other materials referenced in the text of the article.

  • IMRD Cheatsheet (Carnegie Mellon) pdf.
  • Adewasi, D. (2021 June 14).  What Is IMRaD? IMRaD Format in Simple Terms! . Scientific-editing.info. 
  • Nair, P.K.R., Nair, V.D. (2014). Organization of a Research Paper: The IMRAD Format. In: Scientific Writing and Communication in Agriculture and Natural Resources. Springer, Cham. https://doi.org/10.1007/978-3-319-03101-9_2
  • Sollaci, L. B., & Pereira, M. G. (2004). The introduction, methods, results, and discussion (IMRAD) structure: a fifty-year survey.   Journal of the Medical Library Association : JMLA ,  92 (3), 364–367.
  • Cuschieri, S., Grech, V., & Savona-Ventura, C. (2019). WASP (Write a Scientific Paper): Structuring a scientific paper.   Early human development ,  128 , 114–117. https://doi.org/10.1016/j.earlhumdev.2018.09.011

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 11: Presenting Your Research

Writing a Research Report in American Psychological Association (APA) Style

Learning Objectives

  • Identify the major sections of an APA-style research report and the basic contents of each section.
  • Plan and write an effective APA-style research report.

In this section, we look at how to write an APA-style empirical research report , an article that presents the results of one or more new studies. Recall that the standard sections of an empirical research report provide a kind of outline. Here we consider each of these sections in detail, including what information it contains, how that information is formatted and organized, and tips for writing each section. At the end of this section is a sample APA-style research report that illustrates many of these principles.

Sections of a Research Report

Title page and abstract.

An APA-style research report begins with a  title page . The title is centred in the upper half of the page, with each important word capitalized. The title should clearly and concisely (in about 12 words or fewer) communicate the primary variables and research questions. This sometimes requires a main title followed by a subtitle that elaborates on the main title, in which case the main title and subtitle are separated by a colon. Here are some titles from recent issues of professional journals published by the American Psychological Association.

  • Sex Differences in Coping Styles and Implications for Depressed Mood
  • Effects of Aging and Divided Attention on Memory for Items and Their Contexts
  • Computer-Assisted Cognitive Behavioural Therapy for Child Anxiety: Results of a Randomized Clinical Trial
  • Virtual Driving and Risk Taking: Do Racing Games Increase Risk-Taking Cognitions, Affect, and Behaviour?

Below the title are the authors’ names and, on the next line, their institutional affiliation—the university or other institution where the authors worked when they conducted the research. As we have already seen, the authors are listed in an order that reflects their contribution to the research. When multiple authors have made equal contributions to the research, they often list their names alphabetically or in a randomly determined order.

In some areas of psychology, the titles of many empirical research reports are informal in a way that is perhaps best described as “cute.” They usually take the form of a play on words or a well-known expression that relates to the topic under study. Here are some examples from recent issues of the Journal Psychological Science .

  • “Smells Like Clean Spirit: Nonconscious Effects of Scent on Cognition and Behavior”
  • “Time Crawls: The Temporal Resolution of Infants’ Visual Attention”
  • “Scent of a Woman: Men’s Testosterone Responses to Olfactory Ovulation Cues”
  • “Apocalypse Soon?: Dire Messages Reduce Belief in Global Warming by Contradicting Just-World Beliefs”
  • “Serial vs. Parallel Processing: Sometimes They Look Like Tweedledum and Tweedledee but They Can (and Should) Be Distinguished”
  • “How Do I Love Thee? Let Me Count the Words: The Social Effects of Expressive Writing”

Individual researchers differ quite a bit in their preference for such titles. Some use them regularly, while others never use them. What might be some of the pros and cons of using cute article titles?

For articles that are being submitted for publication, the title page also includes an author note that lists the authors’ full institutional affiliations, any acknowledgments the authors wish to make to agencies that funded the research or to colleagues who commented on it, and contact information for the authors. For student papers that are not being submitted for publication—including theses—author notes are generally not necessary.

The  abstract  is a summary of the study. It is the second page of the manuscript and is headed with the word  Abstract . The first line is not indented. The abstract presents the research question, a summary of the method, the basic results, and the most important conclusions. Because the abstract is usually limited to about 200 words, it can be a challenge to write a good one.

Introduction

The  introduction  begins on the third page of the manuscript. The heading at the top of this page is the full title of the manuscript, with each important word capitalized as on the title page. The introduction includes three distinct subsections, although these are typically not identified by separate headings. The opening introduces the research question and explains why it is interesting, the literature review discusses relevant previous research, and the closing restates the research question and comments on the method used to answer it.

The Opening

The  opening , which is usually a paragraph or two in length, introduces the research question and explains why it is interesting. To capture the reader’s attention, researcher Daryl Bem recommends starting with general observations about the topic under study, expressed in ordinary language (not technical jargon)—observations that are about people and their behaviour (not about researchers or their research; Bem, 2003 [1] ). Concrete examples are often very useful here. According to Bem, this would be a poor way to begin a research report:

Festinger’s theory of cognitive dissonance received a great deal of attention during the latter part of the 20th century (p. 191)

The following would be much better:

The individual who holds two beliefs that are inconsistent with one another may feel uncomfortable. For example, the person who knows that he or she enjoys smoking but believes it to be unhealthy may experience discomfort arising from the inconsistency or disharmony between these two thoughts or cognitions. This feeling of discomfort was called cognitive dissonance by social psychologist Leon Festinger (1957), who suggested that individuals will be motivated to remove this dissonance in whatever way they can (p. 191).

After capturing the reader’s attention, the opening should go on to introduce the research question and explain why it is interesting. Will the answer fill a gap in the literature? Will it provide a test of an important theory? Does it have practical implications? Giving readers a clear sense of what the research is about and why they should care about it will motivate them to continue reading the literature review—and will help them make sense of it.

Breaking the Rules

Researcher Larry Jacoby reported several studies showing that a word that people see or hear repeatedly can seem more familiar even when they do not recall the repetitions—and that this tendency is especially pronounced among older adults. He opened his article with the following humourous anecdote:

A friend whose mother is suffering symptoms of Alzheimer’s disease (AD) tells the story of taking her mother to visit a nursing home, preliminary to her mother’s moving there. During an orientation meeting at the nursing home, the rules and regulations were explained, one of which regarded the dining room. The dining room was described as similar to a fine restaurant except that tipping was not required. The absence of tipping was a central theme in the orientation lecture, mentioned frequently to emphasize the quality of care along with the advantages of having paid in advance. At the end of the meeting, the friend’s mother was asked whether she had any questions. She replied that she only had one question: “Should I tip?” (Jacoby, 1999, p. 3)

Although both humour and personal anecdotes are generally discouraged in APA-style writing, this example is a highly effective way to start because it both engages the reader and provides an excellent real-world example of the topic under study.

The Literature Review

Immediately after the opening comes the  literature review , which describes relevant previous research on the topic and can be anywhere from several paragraphs to several pages in length. However, the literature review is not simply a list of past studies. Instead, it constitutes a kind of argument for why the research question is worth addressing. By the end of the literature review, readers should be convinced that the research question makes sense and that the present study is a logical next step in the ongoing research process.

Like any effective argument, the literature review must have some kind of structure. For example, it might begin by describing a phenomenon in a general way along with several studies that demonstrate it, then describing two or more competing theories of the phenomenon, and finally presenting a hypothesis to test one or more of the theories. Or it might describe one phenomenon, then describe another phenomenon that seems inconsistent with the first one, then propose a theory that resolves the inconsistency, and finally present a hypothesis to test that theory. In applied research, it might describe a phenomenon or theory, then describe how that phenomenon or theory applies to some important real-world situation, and finally suggest a way to test whether it does, in fact, apply to that situation.

Looking at the literature review in this way emphasizes a few things. First, it is extremely important to start with an outline of the main points that you want to make, organized in the order that you want to make them. The basic structure of your argument, then, should be apparent from the outline itself. Second, it is important to emphasize the structure of your argument in your writing. One way to do this is to begin the literature review by summarizing your argument even before you begin to make it. “In this article, I will describe two apparently contradictory phenomena, present a new theory that has the potential to resolve the apparent contradiction, and finally present a novel hypothesis to test the theory.” Another way is to open each paragraph with a sentence that summarizes the main point of the paragraph and links it to the preceding points. These opening sentences provide the “transitions” that many beginning researchers have difficulty with. Instead of beginning a paragraph by launching into a description of a previous study, such as “Williams (2004) found that…,” it is better to start by indicating something about why you are describing this particular study. Here are some simple examples:

Another example of this phenomenon comes from the work of Williams (2004).

Williams (2004) offers one explanation of this phenomenon.

An alternative perspective has been provided by Williams (2004).

We used a method based on the one used by Williams (2004).

Finally, remember that your goal is to construct an argument for why your research question is interesting and worth addressing—not necessarily why your favourite answer to it is correct. In other words, your literature review must be balanced. If you want to emphasize the generality of a phenomenon, then of course you should discuss various studies that have demonstrated it. However, if there are other studies that have failed to demonstrate it, you should discuss them too. Or if you are proposing a new theory, then of course you should discuss findings that are consistent with that theory. However, if there are other findings that are inconsistent with it, again, you should discuss them too. It is acceptable to argue that the  balance  of the research supports the existence of a phenomenon or is consistent with a theory (and that is usually the best that researchers in psychology can hope for), but it is not acceptable to  ignore contradictory evidence. Besides, a large part of what makes a research question interesting is uncertainty about its answer.

The Closing

The  closing  of the introduction—typically the final paragraph or two—usually includes two important elements. The first is a clear statement of the main research question or hypothesis. This statement tends to be more formal and precise than in the opening and is often expressed in terms of operational definitions of the key variables. The second is a brief overview of the method and some comment on its appropriateness. Here, for example, is how Darley and Latané (1968) [2] concluded the introduction to their classic article on the bystander effect:

These considerations lead to the hypothesis that the more bystanders to an emergency, the less likely, or the more slowly, any one bystander will intervene to provide aid. To test this proposition it would be necessary to create a situation in which a realistic “emergency” could plausibly occur. Each subject should also be blocked from communicating with others to prevent his getting information about their behaviour during the emergency. Finally, the experimental situation should allow for the assessment of the speed and frequency of the subjects’ reaction to the emergency. The experiment reported below attempted to fulfill these conditions. (p. 378)

Thus the introduction leads smoothly into the next major section of the article—the method section.

The  method section  is where you describe how you conducted your study. An important principle for writing a method section is that it should be clear and detailed enough that other researchers could replicate the study by following your “recipe.” This means that it must describe all the important elements of the study—basic demographic characteristics of the participants, how they were recruited, whether they were randomly assigned, how the variables were manipulated or measured, how counterbalancing was accomplished, and so on. At the same time, it should avoid irrelevant details such as the fact that the study was conducted in Classroom 37B of the Industrial Technology Building or that the questionnaire was double-sided and completed using pencils.

The method section begins immediately after the introduction ends with the heading “Method” (not “Methods”) centred on the page. Immediately after this is the subheading “Participants,” left justified and in italics. The participants subsection indicates how many participants there were, the number of women and men, some indication of their age, other demographics that may be relevant to the study, and how they were recruited, including any incentives given for participation.

Three ways of organizing an APA-style method. Long description available.

After the participants section, the structure can vary a bit. Figure 11.1 shows three common approaches. In the first, the participants section is followed by a design and procedure subsection, which describes the rest of the method. This works well for methods that are relatively simple and can be described adequately in a few paragraphs. In the second approach, the participants section is followed by separate design and procedure subsections. This works well when both the design and the procedure are relatively complicated and each requires multiple paragraphs.

What is the difference between design and procedure? The design of a study is its overall structure. What were the independent and dependent variables? Was the independent variable manipulated, and if so, was it manipulated between or within subjects? How were the variables operationally defined? The procedure is how the study was carried out. It often works well to describe the procedure in terms of what the participants did rather than what the researchers did. For example, the participants gave their informed consent, read a set of instructions, completed a block of four practice trials, completed a block of 20 test trials, completed two questionnaires, and were debriefed and excused.

In the third basic way to organize a method section, the participants subsection is followed by a materials subsection before the design and procedure subsections. This works well when there are complicated materials to describe. This might mean multiple questionnaires, written vignettes that participants read and respond to, perceptual stimuli, and so on. The heading of this subsection can be modified to reflect its content. Instead of “Materials,” it can be “Questionnaires,” “Stimuli,” and so on.

The  results section  is where you present the main results of the study, including the results of the statistical analyses. Although it does not include the raw data—individual participants’ responses or scores—researchers should save their raw data and make them available to other researchers who request them. Several journals now encourage the open sharing of raw data online.

Although there are no standard subsections, it is still important for the results section to be logically organized. Typically it begins with certain preliminary issues. One is whether any participants or responses were excluded from the analyses and why. The rationale for excluding data should be described clearly so that other researchers can decide whether it is appropriate. A second preliminary issue is how multiple responses were combined to produce the primary variables in the analyses. For example, if participants rated the attractiveness of 20 stimulus people, you might have to explain that you began by computing the mean attractiveness rating for each participant. Or if they recalled as many items as they could from study list of 20 words, did you count the number correctly recalled, compute the percentage correctly recalled, or perhaps compute the number correct minus the number incorrect? A third preliminary issue is the reliability of the measures. This is where you would present test-retest correlations, Cronbach’s α, or other statistics to show that the measures are consistent across time and across items. A final preliminary issue is whether the manipulation was successful. This is where you would report the results of any manipulation checks.

The results section should then tackle the primary research questions, one at a time. Again, there should be a clear organization. One approach would be to answer the most general questions and then proceed to answer more specific ones. Another would be to answer the main question first and then to answer secondary ones. Regardless, Bem (2003) [3] suggests the following basic structure for discussing each new result:

  • Remind the reader of the research question.
  • Give the answer to the research question in words.
  • Present the relevant statistics.
  • Qualify the answer if necessary.
  • Summarize the result.

Notice that only Step 3 necessarily involves numbers. The rest of the steps involve presenting the research question and the answer to it in words. In fact, the basic results should be clear even to a reader who skips over the numbers.

The  discussion  is the last major section of the research report. Discussions usually consist of some combination of the following elements:

  • Summary of the research
  • Theoretical implications
  • Practical implications
  • Limitations
  • Suggestions for future research

The discussion typically begins with a summary of the study that provides a clear answer to the research question. In a short report with a single study, this might require no more than a sentence. In a longer report with multiple studies, it might require a paragraph or even two. The summary is often followed by a discussion of the theoretical implications of the research. Do the results provide support for any existing theories? If not, how  can  they be explained? Although you do not have to provide a definitive explanation or detailed theory for your results, you at least need to outline one or more possible explanations. In applied research—and often in basic research—there is also some discussion of the practical implications of the research. How can the results be used, and by whom, to accomplish some real-world goal?

The theoretical and practical implications are often followed by a discussion of the study’s limitations. Perhaps there are problems with its internal or external validity. Perhaps the manipulation was not very effective or the measures not very reliable. Perhaps there is some evidence that participants did not fully understand their task or that they were suspicious of the intent of the researchers. Now is the time to discuss these issues and how they might have affected the results. But do not overdo it. All studies have limitations, and most readers will understand that a different sample or different measures might have produced different results. Unless there is good reason to think they  would have, however, there is no reason to mention these routine issues. Instead, pick two or three limitations that seem like they could have influenced the results, explain how they could have influenced the results, and suggest ways to deal with them.

Most discussions end with some suggestions for future research. If the study did not satisfactorily answer the original research question, what will it take to do so? What  new  research questions has the study raised? This part of the discussion, however, is not just a list of new questions. It is a discussion of two or three of the most important unresolved issues. This means identifying and clarifying each question, suggesting some alternative answers, and even suggesting ways they could be studied.

Finally, some researchers are quite good at ending their articles with a sweeping or thought-provoking conclusion. Darley and Latané (1968) [4] , for example, ended their article on the bystander effect by discussing the idea that whether people help others may depend more on the situation than on their personalities. Their final sentence is, “If people understand the situational forces that can make them hesitate to intervene, they may better overcome them” (p. 383). However, this kind of ending can be difficult to pull off. It can sound overreaching or just banal and end up detracting from the overall impact of the article. It is often better simply to end when you have made your final point (although you should avoid ending on a limitation).

The references section begins on a new page with the heading “References” centred at the top of the page. All references cited in the text are then listed in the format presented earlier. They are listed alphabetically by the last name of the first author. If two sources have the same first author, they are listed alphabetically by the last name of the second author. If all the authors are the same, then they are listed chronologically by the year of publication. Everything in the reference list is double-spaced both within and between references.

Appendices, Tables, and Figures

Appendices, tables, and figures come after the references. An  appendix  is appropriate for supplemental material that would interrupt the flow of the research report if it were presented within any of the major sections. An appendix could be used to present lists of stimulus words, questionnaire items, detailed descriptions of special equipment or unusual statistical analyses, or references to the studies that are included in a meta-analysis. Each appendix begins on a new page. If there is only one, the heading is “Appendix,” centred at the top of the page. If there is more than one, the headings are “Appendix A,” “Appendix B,” and so on, and they appear in the order they were first mentioned in the text of the report.

After any appendices come tables and then figures. Tables and figures are both used to present results. Figures can also be used to illustrate theories (e.g., in the form of a flowchart), display stimuli, outline procedures, and present many other kinds of information. Each table and figure appears on its own page. Tables are numbered in the order that they are first mentioned in the text (“Table 1,” “Table 2,” and so on). Figures are numbered the same way (“Figure 1,” “Figure 2,” and so on). A brief explanatory title, with the important words capitalized, appears above each table. Each figure is given a brief explanatory caption, where (aside from proper nouns or names) only the first word of each sentence is capitalized. More details on preparing APA-style tables and figures are presented later in the book.

Sample APA-Style Research Report

Figures 11.2, 11.3, 11.4, and 11.5 show some sample pages from an APA-style empirical research report originally written by undergraduate student Tomoe Suyama at California State University, Fresno. The main purpose of these figures is to illustrate the basic organization and formatting of an APA-style empirical research report, although many high-level and low-level style conventions can be seen here too.

""

Key Takeaways

  • An APA-style empirical research report consists of several standard sections. The main ones are the abstract, introduction, method, results, discussion, and references.
  • The introduction consists of an opening that presents the research question, a literature review that describes previous research on the topic, and a closing that restates the research question and comments on the method. The literature review constitutes an argument for why the current study is worth doing.
  • The method section describes the method in enough detail that another researcher could replicate the study. At a minimum, it consists of a participants subsection and a design and procedure subsection.
  • The results section describes the results in an organized fashion. Each primary result is presented in terms of statistical results but also explained in words.
  • The discussion typically summarizes the study, discusses theoretical and practical implications and limitations of the study, and offers suggestions for further research.
  • Practice: Look through an issue of a general interest professional journal (e.g.,  Psychological Science ). Read the opening of the first five articles and rate the effectiveness of each one from 1 ( very ineffective ) to 5 ( very effective ). Write a sentence or two explaining each rating.
  • Practice: Find a recent article in a professional journal and identify where the opening, literature review, and closing of the introduction begin and end.
  • Practice: Find a recent article in a professional journal and highlight in a different colour each of the following elements in the discussion: summary, theoretical implications, practical implications, limitations, and suggestions for future research.

Long Descriptions

Figure 11.1 long description: Table showing three ways of organizing an APA-style method section.

In the simple method, there are two subheadings: “Participants” (which might begin “The participants were…”) and “Design and procedure” (which might begin “There were three conditions…”).

In the typical method, there are three subheadings: “Participants” (“The participants were…”), “Design” (“There were three conditions…”), and “Procedure” (“Participants viewed each stimulus on the computer screen…”).

In the complex method, there are four subheadings: “Participants” (“The participants were…”), “Materials” (“The stimuli were…”), “Design” (“There were three conditions…”), and “Procedure” (“Participants viewed each stimulus on the computer screen…”). [Return to Figure 11.1]

  • Bem, D. J. (2003). Writing the empirical journal article. In J. M. Darley, M. P. Zanna, & H. R. Roediger III (Eds.),  The compleat academic: A practical guide for the beginning social scientist  (2nd ed.). Washington, DC: American Psychological Association. ↵
  • Darley, J. M., & Latané, B. (1968). Bystander intervention in emergencies: Diffusion of responsibility.  Journal of Personality and Social Psychology, 4 , 377–383. ↵

A type of research article which describes one or more new empirical studies conducted by the authors.

The page at the beginning of an APA-style research report containing the title of the article, the authors’ names, and their institutional affiliation.

A summary of a research study.

The third page of a manuscript containing the research question, the literature review, and comments about how to answer the research question.

An introduction to the research question and explanation for why this question is interesting.

A description of relevant previous research on the topic being discusses and an argument for why the research is worth addressing.

The end of the introduction, where the research question is reiterated and the method is commented upon.

The section of a research report where the method used to conduct the study is described.

The main results of the study, including the results from statistical analyses, are presented in a research article.

Section of a research report that summarizes the study's results and interprets them by referring back to the study's theoretical background.

Part of a research report which contains supplemental material.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

different parts of a research report

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

Research report guide: Definition, types, and tips

Last updated

5 March 2024

Reviewed by

From successful product launches or software releases to planning major business decisions, research reports serve many vital functions. They can summarize evidence and deliver insights and recommendations to save companies time and resources. They can reveal the most value-adding actions a company should take.

However, poorly constructed reports can have the opposite effect! Taking the time to learn established research-reporting rules and approaches will equip you with in-demand skills. You’ll be able to capture and communicate information applicable to numerous situations and industries, adding another string to your resume bow.

  • What are research reports?

A research report is a collection of contextual data, gathered through organized research, that provides new insights into a particular challenge (which, for this article, is business-related). Research reports are a time-tested method for distilling large amounts of data into a narrow band of focus.

Their effectiveness often hinges on whether the report provides:

Strong, well-researched evidence

Comprehensive analysis

Well-considered conclusions and recommendations

Though the topic possibilities are endless, an effective research report keeps a laser-like focus on the specific questions or objectives the researcher believes are key to achieving success. Many research reports begin as research proposals, which usually include the need for a report to capture the findings of the study and recommend a course of action.

A description of the research method used, e.g., qualitative, quantitative, or other

Statistical analysis

Causal (or explanatory) research (i.e., research identifying relationships between two variables)

Inductive research, also known as ‘theory-building’

Deductive research, such as that used to test theories

Action research, where the research is actively used to drive change

  • Importance of a research report

Research reports can unify and direct a company's focus toward the most appropriate strategic action. Of course, spending resources on a report takes up some of the company's human and financial resources. Choosing when a report is called for is a matter of judgment and experience.

Some development models used heavily in the engineering world, such as Waterfall development, are notorious for over-relying on research reports. With Waterfall development, there is a linear progression through each step of a project, and each stage is precisely documented and reported on before moving to the next.

The pace of the business world is faster than the speed at which your authors can produce and disseminate reports. So how do companies strike the right balance between creating and acting on research reports?

The answer lies, again, in the report's defined objectives. By paring down your most pressing interests and those of your stakeholders, your research and reporting skills will be the lenses that keep your company's priorities in constant focus.

Honing your company's primary objectives can save significant amounts of time and align research and reporting efforts with ever-greater precision.

Some examples of well-designed research objectives are:

Proving whether or not a product or service meets customer expectations

Demonstrating the value of a service, product, or business process to your stakeholders and investors

Improving business decision-making when faced with a lack of time or other constraints

Clarifying the relationship between a critical cause and effect for problematic business processes

Prioritizing the development of a backlog of products or product features

Comparing business or production strategies

Evaluating past decisions and predicting future outcomes

  • Features of a research report

Research reports generally require a research design phase, where the report author(s) determine the most important elements the report must contain.

Just as there are various kinds of research, there are many types of reports.

Here are the standard elements of almost any research-reporting format:

Report summary. A broad but comprehensive overview of what readers will learn in the full report. Summaries are usually no more than one or two paragraphs and address all key elements of the report. Think of the key takeaways your primary stakeholders will want to know if they don’t have time to read the full document.

Introduction. Include a brief background of the topic, the type of research, and the research sample. Consider the primary goal of the report, who is most affected, and how far along the company is in meeting its objectives.

Methods. A description of how the researcher carried out data collection, analysis, and final interpretations of the data. Include the reasons for choosing a particular method. The methods section should strike a balance between clearly presenting the approach taken to gather data and discussing how it is designed to achieve the report's objectives.

Data analysis. This section contains interpretations that lead readers through the results relevant to the report's thesis. If there were unexpected results, include here a discussion on why that might be. Charts, calculations, statistics, and other supporting information also belong here (or, if lengthy, as an appendix). This should be the most detailed section of the research report, with references for further study. Present the information in a logical order, whether chronologically or in order of importance to the report's objectives.

Conclusion. This should be written with sound reasoning, often containing useful recommendations. The conclusion must be backed by a continuous thread of logic throughout the report.

  • How to write a research paper

With a clear outline and robust pool of research, a research paper can start to write itself, but what's a good way to start a research report?

Research report examples are often the quickest way to gain inspiration for your report. Look for the types of research reports most relevant to your industry and consider which makes the most sense for your data and goals.

The research report outline will help you organize the elements of your report. One of the most time-tested report outlines is the IMRaD structure:

Introduction

...and Discussion

Pay close attention to the most well-established research reporting format in your industry, and consider your tone and language from your audience's perspective. Learn the key terms inside and out; incorrect jargon could easily harm the perceived authority of your research paper.

Along with a foundation in high-quality research and razor-sharp analysis, the most effective research reports will also demonstrate well-developed:

Internal logic

Narrative flow

Conclusions and recommendations

Readability, striking a balance between simple phrasing and technical insight

How to gather research data for your report

The validity of research data is critical. Because the research phase usually occurs well before the writing phase, you normally have plenty of time to vet your data.

However, research reports could involve ongoing research, where report authors (sometimes the researchers themselves) write portions of the report alongside ongoing research.

One such research-report example would be an R&D department that knows its primary stakeholders are eager to learn about a lengthy work in progress and any potentially important outcomes.

However you choose to manage the research and reporting, your data must meet robust quality standards before you can rely on it. Vet any research with the following questions in mind:

Does it use statistically valid analysis methods?

Do the researchers clearly explain their research, analysis, and sampling methods?

Did the researchers provide any caveats or advice on how to interpret their data?

Have you gathered the data yourself or were you in close contact with those who did?

Is the source biased?

Usually, flawed research methods become more apparent the further you get through a research report.

It's perfectly natural for good research to raise new questions, but the reader should have no uncertainty about what the data represents. There should be no doubt about matters such as:

Whether the sampling or analysis methods were based on sound and consistent logic

What the research samples are and where they came from

The accuracy of any statistical functions or equations

Validation of testing and measuring processes

When does a report require design validation?

A robust design validation process is often a gold standard in highly technical research reports. Design validation ensures the objects of a study are measured accurately, which lends more weight to your report and makes it valuable to more specialized industries.

Product development and engineering projects are the most common research-report examples that typically involve a design validation process. Depending on the scope and complexity of your research, you might face additional steps to validate your data and research procedures.

If you’re including design validation in the report (or report proposal), explain and justify your data-collection processes. Good design validation builds greater trust in a research report and lends more weight to its conclusions.

Choosing the right analysis method

Just as the quality of your report depends on properly validated research, a useful conclusion requires the most contextually relevant analysis method. This means comparing different statistical methods and choosing the one that makes the most sense for your research.

Most broadly, research analysis comes down to quantitative or qualitative methods (respectively: measurable by a number vs subjectively qualified values). There are also mixed research methods, which bridge the need for merging hard data with qualified assessments and still reach a cohesive set of conclusions.

Some of the most common analysis methods in research reports include:

Significance testing (aka hypothesis analysis), which compares test and control groups to determine how likely the data was the result of random chance.

Regression analysis , to establish relationships between variables, control for extraneous variables , and support correlation analysis.

Correlation analysis (aka bivariate testing), a method to identify and determine the strength of linear relationships between variables. It’s effective for detecting patterns from complex data, but care must be exercised to not confuse correlation with causation.

With any analysis method, it's important to justify which method you chose in the report. You should also provide estimates of the statistical accuracy (e.g., the p-value or confidence level of quantifiable data) of any data analysis.

This requires a commitment to the report's primary aim. For instance, this may be achieving a certain level of customer satisfaction by analyzing the cause and effect of changes to how service is delivered. Even better, use statistical analysis to calculate which change is most positively correlated with improved levels of customer satisfaction.

  • Tips for writing research reports

There's endless good advice for writing effective research reports, and it almost all depends on the subjective aims of the people behind the report. Due to the wide variety of research reports, the best tips will be unique to each author's purpose.

Consider the following research report tips in any order, and take note of the ones most relevant to you:

No matter how in depth or detailed your report might be, provide a well-considered, succinct summary. At the very least, give your readers a quick and effective way to get up to speed.

Pare down your target audience (e.g., other researchers, employees, laypersons, etc.), and adjust your voice for their background knowledge and interest levels

For all but the most open-ended research, clarify your objectives, both for yourself and within the report.

Leverage your team members’ talents to fill in any knowledge gaps you might have. Your team is only as good as the sum of its parts.

Justify why your research proposal’s topic will endure long enough to derive value from the finished report.

Consolidate all research and analysis functions onto a single user-friendly platform. There's no reason to settle for less than developer-grade tools suitable for non-developers.

What's the format of a research report?

The research-reporting format is how the report is structured—a framework the authors use to organize their data, conclusions, arguments, and recommendations. The format heavily determines how the report's outline develops, because the format dictates the overall structure and order of information (based on the report's goals and research objectives).

What's the purpose of a research-report outline?

A good report outline gives form and substance to the report's objectives, presenting the results in a readable, engaging way. For any research-report format, the outline should create momentum along a chain of logic that builds up to a conclusion or interpretation.

What's the difference between a research essay and a research report?

There are several key differences between research reports and essays:

Research report:

Ordered into separate sections

More commercial in nature

Often includes infographics

Heavily descriptive

More self-referential

Usually provides recommendations

Research essay

Does not rely on research report formatting

More academically minded

Normally text-only

Less detailed

Omits discussion of methods

Usually non-prescriptive 

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 11 January 2024

Last updated: 15 January 2024

Last updated: 17 January 2024

Last updated: 25 November 2023

Last updated: 12 May 2023

Last updated: 30 April 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

different parts of a research report

Users report unexpectedly high data usage, especially during streaming sessions.

different parts of a research report

Users find it hard to navigate from the home page to relevant playlists in the app.

different parts of a research report

It would be great to have a sleep timer feature, especially for bedtime listening.

different parts of a research report

I need better filters to find the songs or artists I’m looking for.

Log in or sign up

Get started for free

Apr 26, 2024

Everything You Need to Know about the Parts of a Research Paper

Not sure where to start with your research paper or how all the parts fit together? Don't worry! From crafting a compelling title page to compiling your references, we'll demystify each section of a research paper.

Learn how to write an attention-grabbing abstract, construct a powerful introduction, and confidently present your results and discussion. With this guide, you'll gain the tools to assemble a polished and impactful piece of work.

What Are Research Papers?

A research paper is a piece of academic writing that presents an original argument or analysis based on independent, in-depth investigation into a specific topic.

Key Characteristics:

Evidence-Driven: Research papers rely on data, analysis, and interpretation of credible sources.

Focused Argument: They develop a clear thesis that is defended with logical reasoning and evidence.

Structured: Research papers follow specific organizational formats and citation styles.

Contribution to Knowledge: They aim to add something new to the existing body of knowledge within a field.

Types of Research Papers

Research papers come in various forms across academic disciplines:

Argumentative Papers : Present a compelling claim and utilize evidence to persuade readers.

Analytical Papers : Break down complex subjects, ideas, or texts, examining their components and implications.

Empirical Studies: Involve collecting and analyzing original data (through experiments, surveys, etc.) to answer specific research questions.

Literature Reviews: Synthesize existing research on a topic, highlighting key findings, debates, and areas for future exploration.

And More! Depending on the field, you may encounter case studies, reports, theoretical proposals, etc.

Defining Research Papers

Here's how research papers stand apart from other forms of writing:

Originality vs. Summary: While essays might recap existing knowledge, research papers offer new insights, arguments, or data.

Depth of Inquiry: Research papers delve deeper, going beyond basic definitions or summaries into a systematic investigation.

Scholarly Audience: Research papers are often written with a specialized academic audience in mind, employing discipline-specific language and conventions.

Important Note: The specific requirements of research papers can vary depending on the subject area, level of study (undergraduate vs. graduate), and the instructor's instructions.

Importance of Research Paper Structure

Think of structure as the backbone of your research paper. Here's why it matters for academic success:

Clarity for the Reader: A logical structure guides the reader through your research journey. They understand your thought process, easily follow your arguments, and grasp the significance of your findings.

Author's Roadmap: Structure serves as your blueprint. It helps you maintain focus, ensures you address all essential elements, and prevents you from veering off-topic.

Enhanced Persuasion: A well-structured paper builds a convincing case. Your ideas flow logically, evidence supports your claims, and your conclusion feels grounded and impactful.

Demonstration of Competence: A clear structure signals to your instructor or peers that you have a thorough understanding of research practices and scholarly writing conventions.

Is a Structured Approach Critical for the Success of Research Papers?

Yes! It's difficult to overstate the importance of structure. Here's why:

Lost in Chaos: Rambling or disorganized papers leave the reader confused and frustrated. Even the most insightful findings risk being overlooked if presented poorly.

Missed Components: Without structure, you might forget to include critical aspects, like a clear methodology section or a thorough literature review, weakening your research.

Hindered Peer Review: Reviewers rely on a standard structure to quickly assess the research's merits. A deviation can make their job harder and might negatively affect how your work is evaluated.

Benefits of a Clear Structure

Enhanced Understanding: Readers can easily follow your chain of reasoning, grasp the connection between your evidence and claims, and critically evaluate your findings.

Efficient Peer Review: A standard structure makes peer review more efficient and focused. Reviewers can easily identify strong points, areas for improvement, and contributions to the field.

Streamlined Writing: Having a structure offers clarity and direction, preventing you from getting stuck mid-flow or overlooking important elements.

Variations of Research Papers

Here's a breakdown of some common types of research papers:

Analytical Papers

Focus: Dissect a complex subject, text, or phenomenon to understand its parts, implications, or underlying meanings.

Structure: Emphasizes a clear thesis statement, systematic analysis, and in-depth exploration of different perspectives.

Example: Examining the symbolism in a literary work or analyzing the economic impact of a policy change.

Argumentative Papers

Focus: Present and defend a specific claim using evidence and logical reasoning.

Structure: Emphasizes a well-defined thesis, persuasive examples, and the anticipation and refutation of counterarguments.

Example: Arguing for the superiority of a particular scientific theory or advocating for a specific social policy.

Experimental Studies (Empirical Research)

Focus: Collect and analyze original data through a designed experiment or methodology.

Structure: Follows scientific practices, including hypothesis, methods, results, discussion, and acknowledgment of limitations.

Example: Measuring the effects of a new drug or conducting psychological experiments on behavior patterns.

Survey-Based Research

Focus: Gather information from a sample population through surveys, questionnaires, or interviews.

Structure: Emphasizes sampling methods, data collection tools, statistical analysis, and cautious interpretation of results.

Example: Investigating public opinion on a political issue or studying consumer preferences for a product.

Do All Research Papers Fit Into Standard Categories?

No. Research is fluid and dynamic. Here's why categorization can get tricky:

Hybrids Exist: Many papers mix elements. An analytical paper might also incorporate arguments to strengthen its interpretation, or an experimental paper might include a review of existing literature to contextualize its findings.

Disciplinary Differences: Fields have specific conventions. A research paper in history differs vastly in style and structure from one in biology.

Innovation: Researchers sometimes develop new structures or methodologies best suited to their unique research questions.

Comparing Research Paper Types

Each type prioritizes different aspects of the research process:

different parts of a research report

An abstract is like a snapshot of your entire paper, providing a brief but informative overview of your research. It's often the first (and sometimes the only) section readers will engage with.

Key Functions: An effective abstract should:

Briefly state the research problem or topic

Outline your methods (briefly)

Summarize the main findings or results

Highlight the significance or implications of your work

Writing a Compelling Abstract

Here are some guidelines to make your abstract shine:

Concise and Clear: Aim for around 150-250 words. Use direct language and avoid unnecessary jargon.

Structured Approach: Even in its brevity, follow a logical flow (problem, methods, results, significance).

Keywords: Include keywords that accurately describe your research, aiding in discoverability within databases.

Self-Contained: The abstract should make sense on its own, without needing the reader to have read the full paper.

Engaging: While focused, pique the reader's interest and make them want to explore your research further.

Write it Last: Often, it's easiest to write your abstract once the rest of your paper is complete, as you can then distill the most essential elements.

Get Feedback: Ask a peer or instructor to read your abstract to ensure it's clear and accurately represents your research.

Introduction

Think of your introduction as the welcome mat for your research. Here's what it should accomplish:

Establish Context: Provide background information relevant to your specific research question. Orient the reader to the broader field or current debates surrounding the topic.

Define the Problem: Clearly outline the gap in knowledge, issue, or question your research aims to address.

State the Hypothesis: Concisely declare your research hypothesis or thesis statement – the central claim you aim to prove.

Significance: Briefly explain why your research matters. What potential contributions or implications does it hold?

Is the Introduction More Important Than Other Sections?

No. While the introduction plays a big role in initially capturing your reader's attention and setting the stage, it is just one piece of the puzzle. Here's why all sections matter:

Methodology Matters: A sound methodology section is essential for establishing the credibility of your findings. Readers need to trust your process.

Results are Key: The results section presents your hard-earned data. Without it, your research doesn't have a foundation to support your claims.

Discussion is Vital: Here's where you interpret your results, connect them back to your hypothesis, and explore the broader implications of your work.

Conclusion is the Culmination: Your conclusion reinforces your key findings, acknowledges limitations, and leaves the reader with a lasting understanding of your research contribution.

Engaging Your Audience Early

Here are some strategies to capture attention from the start:

Open with a Question: Pose a thought-provoking question directly related to your research.

Surprising Statistic: Share a relevant and eye-opening statistic that highlights the significance of your topic.

Brief anecdote: An illustrative anecdote or a vivid example can provide a compelling hook.

Challenge Assumptions: Question a common belief or assumption within your field to signal that your research offers fresh insights.

Tip: Your opening should be relevant and directly connected to your research topic. Avoid gimmicks that don't authentically lead into your core argument.

Literature Review

A literature review goes beyond simply listing past studies on a topic. It synthesizes existing knowledge, laying the foundation for your own research contribution.

Goals of a Strong Literature Review:

Demonstrate your understanding of the field and its key scholarly conversations.

Identify gaps in current knowledge that your research can address.

Position your research in relation to existing work, showing how it builds upon or challenges previous findings.

Provide theoretical context or support for your chosen methodological approach.

Synthesizing Relevant Studies

Don't just summarize – analyze! Here's how to engage with the literature critically:

Identify Trends: Look for patterns or themes across multiple studies. Are there consistent results or ongoing debates?

Note Inconsistencies: Highlight any contradictions or conflicting findings within the existing research.

Assess Methodology: Consider the strengths and limitations of different research methods used in prior studies. Can you improve upon them in your research?

Connections to Your Work: Show how each source directly relates to your research question. Explain how it supports, challenges, or informs your own study.

Tips for Effective Synthesis:

Organization is Key: Structure your literature review thematically or chronologically to present findings in a logical way.

Your Voice Matters: Avoid stringing together quotes. Analyze the literature and offer your own interpretation of the collective insights.

Cite Accurately: Follow the citation style required by your discipline to give credit and avoid plagiarism.

Methodology

Your methodology section details the step-by-step process of how you conducted your research. It allows others to understand and potentially replicate your study.

Components: A methodology section typically includes:

Research Design: The overall approach (experimental, survey-based, qualitative, etc.)

Data Collection: Description of the tools, procedures, and sources used (experiments, surveys, interviews, archival documents).

Sample Selection: Details on participants (if applicable) and how they were chosen.

Data Analysis: Methods used (statistical tests, qualitative analysis techniques).

Ethical considerations: Explain how you safeguarded participants or addressed any ethical concerns related to your research.

Designing a Robust Methodology

Here's how to make your methodology section shine:

Alignment with Research Question: Your methods should be directly chosen to answer your research question in the most effective and appropriate way.

Rigor: Demonstrate a meticulous approach, considering potential sources of bias or error and outlining steps taken to mitigate them.

Transparency: Provide enough detail for replication. Another researcher should be able to follow your method.

Justification: Explain why you chose specific methods. Connect them to established practices within your field or defend their suitability for your unique research.

Does Methodology Determine the Quality of Research Outcomes?

Absolutely! Here's why a robust methodology is important:

Reliability: A sound methodology ensures your results are consistent. If your study was repeated using your methods, similar results should be attainable.

Validity: Validity ensures you're measuring what you intend to. A strong methodology helps you draw accurate conclusions from your data that address your research question.

Credibility: Your paper will be evaluated based on the thoroughness of your procedures. A clear and rigorous methodology enhances trust in your findings.

Your results section is where you present the data collected from your research. This includes raw data, statistical analyses, summaries of observations, etc.

Key Considerations:

Clarity: Organize results logically. Use tables, graphs, or figures to enhance visual clarity when appropriate.

Objectivity: Present data without bias. Even if findings don't support your initial hypothesis, report them accurately.

Don't Interpret (Yet): Avoid discussing implications here. Focus on a clear presentation of your findings.

Interpreting Data Effectively

Your discussion or analysis section is where you make sense of your results. Here's how to ensure your interpretation is persuasive:

Connect Back to the Hypothesis: State whether your results support, refute, or partially support your hypothesis.

Use Evidence: Reference specific data points, statistics, or observations to back up your claims.

Explanatory Power: Don't merely describe what happened. Explain why you believe your data led to these results.

Context is Key: Relate your findings to the existing literature. Do they align with previous research, or do they raise new questions?

Be Transparent: Acknowledge any limitations of your data or unexpected findings, providing potential explanations.

Tips for Effective Data Discussion:

Visuals as Support: Continue using graphs or figures to illustrate trends or comparisons that reinforce your analysis.

Highlight What Matters: Don't over-discuss insignificant data points. Focus on the results that are most relevant to your research question and contribute to your overall argument.

Tell a Story: Data shouldn't feel disjointed. Weave it into a narrative that addresses your research problem and positions your findings within the broader field.

Your discussion section elevates your findings, moving from simply reporting what you discovered to exploring its significance and potential impact.

Interpret the results in relation to your research question and hypothesis.

Consider alternative explanations for unexpected findings and discuss limitations of the research.

Place your findings in the context of the broader field, connecting them to theories and the existing body of research.

Suggest implications for future research or practical applications.

Linking Results to Theory

Here's how to make your discussion section shine:

Return to the Literature Review: Did your results support a specific theory from your literature review? Challenge it? Offer a nuanced modification?

Contradictions Offer Insights: If your results contradict existing theories, don't dismiss them. Explain possible reasons for the discrepancies and how that pushes your field's understanding further.

Conceptual Contribution: How does your research add to the theoretical frameworks within your area of study?

Building Blocks: Frame your research as one piece of a larger puzzle. Explain how your work contributes to the ongoing scholarly conversation.

Tips for a Strong Discussion:

Avoid Overstating Significance: Maintain a scholarly tone and acknowledge the scope of your research. Don't claim your results revolutionize the field if it's not genuinely warranted.

Consider Future Directions: Responsible research isn't just about the past. Discuss what new questions arise based on your findings and offer avenues for potential future study.

Clarity Remains Key: Even when discussing complex ideas, use accessible language. Make your discussion meaningful to a wider audience within the field.

Conclusions

Your conclusion brings your research full circle. It's your chance to re-emphasize the most important takeaways of your work.

A Strong Conclusion Should:

Concisely restate the key research question or problem you sought to address.

Summarize your major findings and the most compelling evidence.

Briefly discuss the broader implications or contributions of your research.

Acknowledge limitations in the study (briefly).

Propose potential avenues for future research.

Can Conclusions Introduce New Research Questions?

Absolutely! Here's why this is valuable:

Sparking Curiosity: Ending with new questions emphasizes the ongoing nature of research and encourages further exploration beyond your own study.

Identifying Limitations: By highlighting where your work fell short, you guide future researchers toward filling those gaps.

Signaling Progress: Research is a continuous process of evolving knowledge. Your conclusion can be a springboard for others to expand upon your findings.

Crafting a Persuasive Conclusion

Here's how to make your conclusion impactful:

Reiterate, Don't Repeat: Remind the reader of your most significant findings, but avoid restating your thesis verbatim.

Confidence: Project a sense of conviction about the value of your work, without overstating its significance.

Clarity: Even in your conclusion, use direct language free of jargon. Leave the reader with a clear and lasting impression.

The Ripple Effect: Briefly highlight the broader relevance of your research. Why should readers beyond your niche field care?

Important: Your conclusion shouldn't introduce entirely new information or analyses. Rather, it should leave the reader pondering the implications of what you've already presented.

Giving Credit Where It's Due: Your references section lists the full details of every source you cited within your paper. This allows readers to locate those sources and acknowledges the intellectual work of others that you built upon.

Supporting Your Arguments: Credible references add weight to your claims, showing that your analysis is informed by established knowledge or reliable data.

Upholding Academic Standards: Accurate citations signal your commitment to scholarly practices and protect you from accusations of plagiarism.

Maintaining Citation Integrity

Here are the main practices to uphold:

Choose the Right Style: Follow the citation style mandated by your discipline (APA, MLA, Chicago, etc.). They have strict rules on formatting and which elements to include.

Consistency is Key: Use your chosen citation style uniformly throughout your paper. Mixed styles look sloppy and unprofessional.

Accuracy Matters: Double-check the details of each citation (authors, title, publication year, page numbers, etc.). Errors undermine your credibility.

Citation Tools: Use reliable resources like:

Online citation generators

Reference management software (Zotero, EndNote, etc..)

University library guides for your required style

Important Notes:

In-Text vs. References: In-text citations (within your writing) point the reader to the full citation in your references list. Both are needed.

Citation ≠ Bibliography: A bibliography may include sources you consulted but didn't directly cite, while the references list is specifically for cited works.

Writing Effective Research Papers: A Guide

Research papers aren't merely about having brilliant ideas – they're about effectively communicating those ideas. Strong writing allows you to showcase the value and rigor of your work.

Is Effective Writing Alone Sufficient for a Successful Research Paper?

No. Strong writing is vital but not a substitute for the core components of research. Consider this:

Even brilliant findings get lost in poor writing: Disorganized papers, unclear sentences, or misuse of discipline-specific terms hinder the reader from grasping your insights.

Writing is intertwined with research: The process of writing helps you clarify your own thinking, refine your arguments, and identify potential weaknesses in your logic.

Tips for Academic Writing

Here's how to elevate your research paper writing:

Define Your Terms: especially if using specialized jargon or complex concepts.

Favor Active Voice: Use strong verbs and keep the subject of your sentences clear. (Example: "The study demonstrates..." rather than "It is demonstrated...")

Avoid Ambiguity: Choose precise language to leave no room for misinterpretation.

Transitions Are Your Friend: Guide the reader smoothly between ideas and sections using signpost words and phrases.

Logical Structure: Your paper's organization (introduction, methods, etc.) should have an intuitive flow.

One Idea per Paragraph: Avoid overly dense paragraphs. Break down complex points for readability.

Strong Argumentation

Thesis as Roadmap: Your central thesis should be apparent throughout the paper. Each section should clearly connect back to it.

Strong Evidence: Use reliable data and examples to support your claims.

Anticipate Counterarguments: Show you've considered alternative viewpoints by respectfully addressing and refuting them.

Additional Tips

Read widely in your field: Analyze how successful papers are structured and how arguments are developed.

Revise relentlessly: Give yourself time to step away from your draft and return with fresh eyes.

Seek Feedback: Ask peers, instructors, or a writing center tutor to review your work for clarity and logic.

Conclusion: Integrating the Components of Research Papers for Academic Excellence

The journey of writing a research paper is truly transformative. By mastering each component, from a rigorously crafted hypothesis to a meticulously compiled reference list, you develop the essential skills of critical thinking, communication, and scholarly inquiry. It's important to remember that these components are not isolated; they form a powerful, synergistic whole.

Let the process of writing research papers empower you. Embrace the challenge of synthesizing information, developing strong arguments, and communicating your findings with clarity and precision. Celebrate your dedication to the pursuit of knowledge and the contributions you make to your academic community and your own intellectual growth.

Try Jenni for free today

Create your first piece of content with Jenni today and never look back

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

different parts of a research report

Home Market Research

Research Reports: Definition and How to Write Them

Research Reports

Reports are usually spread across a vast horizon of topics but are focused on communicating information about a particular topic and a niche target market. The primary motive of research reports is to convey integral details about a study for marketers to consider while designing new strategies.

Certain events, facts, and other information based on incidents need to be relayed to the people in charge, and creating research reports is the most effective communication tool. Ideal research reports are extremely accurate in the offered information with a clear objective and conclusion. These reports should have a clean and structured format to relay information effectively.

What are Research Reports?

Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods .

A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony of all the work done to garner specificities of research.

The various sections of a research report are:

  • Background/Introduction
  • Implemented Methods
  • Results based on Analysis
  • Deliberation

Learn more: Quantitative Research

Components of Research Reports

Research is imperative for launching a new product/service or a new feature. The markets today are extremely volatile and competitive due to new entrants every day who may or may not provide effective products. An organization needs to make the right decisions at the right time to be relevant in such a market with updated products that suffice customer demands.

The details of a research report may change with the purpose of research but the main components of a report will remain constant. The research approach of the market researcher also influences the style of writing reports. Here are seven main components of a productive research report:

  • Research Report Summary: The entire objective along with the overview of research are to be included in a summary which is a couple of paragraphs in length. All the multiple components of the research are explained in brief under the report summary.  It should be interesting enough to capture all the key elements of the report.
  • Research Introduction: There always is a primary goal that the researcher is trying to achieve through a report. In the introduction section, he/she can cover answers related to this goal and establish a thesis which will be included to strive and answer it in detail.  This section should answer an integral question: “What is the current situation of the goal?”.  After the research design was conducted, did the organization conclude the goal successfully or they are still a work in progress –  provide such details in the introduction part of the research report.
  • Research Methodology: This is the most important section of the report where all the important information lies. The readers can gain data for the topic along with analyzing the quality of provided content and the research can also be approved by other market researchers . Thus, this section needs to be highly informative with each aspect of research discussed in detail.  Information needs to be expressed in chronological order according to its priority and importance. Researchers should include references in case they gained information from existing techniques.
  • Research Results: A short description of the results along with calculations conducted to achieve the goal will form this section of results. Usually, the exposition after data analysis is carried out in the discussion part of the report.

Learn more: Quantitative Data

  • Research Discussion: The results are discussed in extreme detail in this section along with a comparative analysis of reports that could probably exist in the same domain. Any abnormality uncovered during research will be deliberated in the discussion section.  While writing research reports, the researcher will have to connect the dots on how the results will be applicable in the real world.
  • Research References and Conclusion: Conclude all the research findings along with mentioning each and every author, article or any content piece from where references were taken.

Learn more: Qualitative Observation

15 Tips for Writing Research Reports

Writing research reports in the manner can lead to all the efforts going down the drain. Here are 15 tips for writing impactful research reports:

  • Prepare the context before starting to write and start from the basics:  This was always taught to us in school – be well-prepared before taking a plunge into new topics. The order of survey questions might not be the ideal or most effective order for writing research reports. The idea is to start with a broader topic and work towards a more specific one and focus on a conclusion or support, which a research should support with the facts.  The most difficult thing to do in reporting, without a doubt is to start. Start with the title, the introduction, then document the first discoveries and continue from that. Once the marketers have the information well documented, they can write a general conclusion.
  • Keep the target audience in mind while selecting a format that is clear, logical and obvious to them:  Will the research reports be presented to decision makers or other researchers? What are the general perceptions around that topic? This requires more care and diligence. A researcher will need a significant amount of information to start writing the research report. Be consistent with the wording, the numbering of the annexes and so on. Follow the approved format of the company for the delivery of research reports and demonstrate the integrity of the project with the objectives of the company.
  • Have a clear research objective: A researcher should read the entire proposal again, and make sure that the data they provide contributes to the objectives that were raised from the beginning. Remember that speculations are for conversations, not for research reports, if a researcher speculates, they directly question their own research.
  • Establish a working model:  Each study must have an internal logic, which will have to be established in the report and in the evidence. The researchers’ worst nightmare is to be required to write research reports and realize that key questions were not included.

Learn more: Quantitative Observation

  • Gather all the information about the research topic. Who are the competitors of our customers? Talk to other researchers who have studied the subject of research, know the language of the industry. Misuse of the terms can discourage the readers of research reports from reading further.
  • Read aloud while writing. While reading the report, if the researcher hears something inappropriate, for example, if they stumble over the words when reading them, surely the reader will too. If the researcher can’t put an idea in a single sentence, then it is very long and they must change it so that the idea is clear to everyone.
  • Check grammar and spelling. Without a doubt, good practices help to understand the report. Use verbs in the present tense. Consider using the present tense, which makes the results sound more immediate. Find new words and other ways of saying things. Have fun with the language whenever possible.
  • Discuss only the discoveries that are significant. If some data are not really significant, do not mention them. Remember that not everything is truly important or essential within research reports.

Learn more: Qualitative Data

  • Try and stick to the survey questions. For example, do not say that the people surveyed “were worried” about an research issue , when there are different degrees of concern.
  • The graphs must be clear enough so that they understand themselves. Do not let graphs lead the reader to make mistakes: give them a title, include the indications, the size of the sample, and the correct wording of the question.
  • Be clear with messages. A researcher should always write every section of the report with an accuracy of details and language.
  • Be creative with titles – Particularly in segmentation studies choose names “that give life to research”. Such names can survive for a long time after the initial investigation.
  • Create an effective conclusion: The conclusion in the research reports is the most difficult to write, but it is an incredible opportunity to excel. Make a precise summary. Sometimes it helps to start the conclusion with something specific, then it describes the most important part of the study, and finally, it provides the implications of the conclusions.
  • Get a couple more pair of eyes to read the report. Writers have trouble detecting their own mistakes. But they are responsible for what is presented. Ensure it has been approved by colleagues or friends before sending the find draft out.

Learn more: Market Research and Analysis

MORE LIKE THIS

When I think of “disconnected”, it is important that this is not just in relation to people analytics, Employee Experience or Customer Experience - it is also relevant to looking across them.

I Am Disconnected – Tuesday CX Thoughts

May 21, 2024

Customer success tools

20 Best Customer Success Tools of 2024

May 20, 2024

AI-Based Services in Market Research

AI-Based Services Buying Guide for Market Research (based on ESOMAR’s 20 Questions) 

data information vs insight

Data Information vs Insight: Essential differences

May 14, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

different parts of a research report

  • Research Paper >

Parts of a Research Paper

One of the most important aspects of science is ensuring that you get all the parts of the written research paper in the right order.

This article is a part of the guide:

  • Outline Examples
  • Example of a Paper
  • Write a Hypothesis
  • Introduction

Browse Full Outline

  • 1 Write a Research Paper
  • 2 Writing a Paper
  • 3.1 Write an Outline
  • 3.2 Outline Examples
  • 4.1 Thesis Statement
  • 4.2 Write a Hypothesis
  • 5.2 Abstract
  • 5.3 Introduction
  • 5.4 Methods
  • 5.5 Results
  • 5.6 Discussion
  • 5.7 Conclusion
  • 5.8 Bibliography
  • 6.1 Table of Contents
  • 6.2 Acknowledgements
  • 6.3 Appendix
  • 7.1 In Text Citations
  • 7.2 Footnotes
  • 7.3.1 Floating Blocks
  • 7.4 Example of a Paper
  • 7.5 Example of a Paper 2
  • 7.6.1 Citations
  • 7.7.1 Writing Style
  • 7.7.2 Citations
  • 8.1.1 Sham Peer Review
  • 8.1.2 Advantages
  • 8.1.3 Disadvantages
  • 8.2 Publication Bias
  • 8.3.1 Journal Rejection
  • 9.1 Article Writing
  • 9.2 Ideas for Topics

You may have finished the best research project on earth but, if you do not write an interesting and well laid out paper, then nobody is going to take your findings seriously.

The main thing to remember with any research paper is that it is based on an hourglass structure. It begins with general information and undertaking a literature review , and becomes more specific as you nail down a research problem and hypothesis .

Finally, it again becomes more general as you try to apply your findings to the world at general.

Whilst there are a few differences between the various disciplines, with some fields placing more emphasis on certain parts than others, there is a basic underlying structure.

These steps are the building blocks of constructing a good research paper. This section outline how to lay out the parts of a research paper, including the various experimental methods and designs.

The principles for literature review and essays of all types follow the same basic principles.

Reference List

different parts of a research report

For many students, writing the introduction is the first part of the process, setting down the direction of the paper and laying out exactly what the research paper is trying to achieve.

For others, the introduction is the last thing written, acting as a quick summary of the paper. As long as you have planned a good structure for the parts of a research paper, both approaches are acceptable and it is a matter of preference.

A good introduction generally consists of three distinct parts:

  • You should first give a general presentation of the research problem.
  • You should then lay out exactly what you are trying to achieve with this particular research project.
  • You should then state your own position.

Ideally, you should try to give each section its own paragraph, but this will vary given the overall length of the paper.

1) General Presentation

Look at the benefits to be gained by the research or why the problem has not been solved yet. Perhaps nobody has thought about it, or maybe previous research threw up some interesting leads that the previous researchers did not follow up.

Another researcher may have uncovered some interesting trends, but did not manage to reach the significance level , due to experimental error or small sample sizes .

2) Purpose of the Paper

The research problem does not have to be a statement, but must at least imply what you are trying to find.

Many writers prefer to place the thesis statement or hypothesis here, which is perfectly acceptable, but most include it in the last sentences of the introduction, to give the reader a fuller picture.

3) A Statement of Intent From the Writer

The idea is that somebody will be able to gain an overall view of the paper without needing to read the whole thing. Literature reviews are time-consuming enough, so give the reader a concise idea of your intention before they commit to wading through pages of background.

In this section, you look to give a context to the research, including any relevant information learned during your literature review. You are also trying to explain why you chose this area of research, attempting to highlight why it is necessary. The second part should state the purpose of the experiment and should include the research problem. The third part should give the reader a quick summary of the form that the parts of the research paper is going to take and should include a condensed version of the discussion.

different parts of a research report

This should be the easiest part of the paper to write, as it is a run-down of the exact design and methodology used to perform the research. Obviously, the exact methodology varies depending upon the exact field and type of experiment .

There is a big methodological difference between the apparatus based research of the physical sciences and the methods and observation methods of social sciences. However, the key is to ensure that another researcher would be able to replicate the experiment to match yours as closely as possible, but still keeping the section concise.

You can assume that anybody reading your paper is familiar with the basic methods, so try not to explain every last detail. For example, an organic chemist or biochemist will be familiar with chromatography, so you only need to highlight the type of equipment used rather than explaining the whole process in detail.

In the case of a survey , if you have too many questions to cover in the method, you can always include a copy of the questionnaire in the appendix . In this case, make sure that you refer to it.

This is probably the most variable part of any research paper, and depends on the results and aims of the experiment.

For quantitative research , it is a presentation of the numerical results and data, whereas for qualitative research it should be a broader discussion of trends, without going into too much detail.

For research generating a lot of results , then it is better to include tables or graphs of the analyzed data and leave the raw data in the appendix, so that a researcher can follow up and check your calculations.

A commentary is essential to linking the results together, rather than just displaying isolated and unconnected charts and figures.

It can be quite difficult to find a good balance between the results and the discussion section, because some findings, especially in a quantitative or descriptive experiment , will fall into a grey area. Try to avoid repeating yourself too often.

It is best to try to find a middle path, where you give a general overview of the data and then expand on it in the discussion - you should try to keep your own opinions and interpretations out of the results section, saving that for the discussion later on.

This is where you elaborate on your findings, and explain what you found, adding your own personal interpretations.

Ideally, you should link the discussion back to the introduction, addressing each point individually.

It’s important to make sure that every piece of information in your discussion is directly related to the thesis statement , or you risk cluttering your findings. In keeping with the hourglass principle, you can expand on the topic later in the conclusion .

The conclusion is where you build on your discussion and try to relate your findings to other research and to the world at large.

In a short research paper, it may be a paragraph or two, or even a few lines.

In a dissertation, it may well be the most important part of the entire paper - not only does it describe the results and discussion in detail, it emphasizes the importance of the results in the field, and ties it in with the previous research.

Some research papers require a recommendations section, postulating the further directions of the research, as well as highlighting how any flaws affected the results. In this case, you should suggest any improvements that could be made to the research design .

No paper is complete without a reference list , documenting all the sources that you used for your research. This should be laid out according to APA , MLA or other specified format, allowing any interested researcher to follow up on the research.

One habit that is becoming more common, especially with online papers, is to include a reference to your own paper on the final page. Lay this out in MLA, APA and Chicago format, allowing anybody referencing your paper to copy and paste it.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Jun 5, 2009). Parts of a Research Paper. Retrieved May 22, 2024 from Explorable.com: https://explorable.com/parts-of-a-research-paper

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Check out the official book.

Learn how to construct, style and format an Academic paper and take your skills to the next level.

different parts of a research report

(also available as ebook )

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

different parts of a research report

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

different parts of a research report

The Plagiarism Checker Online For Your Academic Work

Start Plagiarism Check

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Plagiarism Check within 10min

Printing & Binding with 3D Live Preview

Parts of a Research Paper

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Parts-of-a-Research-Paper-3-350x233-1

Inhaltsverzeichnis

  • 1 Parts of a Research Paper: Definition
  • 3 Research Paper Structure
  • 4 Research Paper Examples
  • 5 Research Paper APA Formatting
  • 6 In a Nutshell

Parts of a Research Paper: Definition

The point of having specifically defined parts of a research paper is not to make your life as a student harder. In fact, it’s very much the opposite. The different parts of a research paper have been established to provide a structure that can be consistently used to make your research projects easier, as well as helping you follow the proper scientific methodology.

This will help guide your writing process so you can focus on key elements one at a time. It will also provide a valuable outline that you can rely on to effectively structure your assignment. Having a solid structure will make your research paper easier to understand, and it will also prepare you for a possible future as a researcher, since all modern science is created around similar precepts.

Have you been struggling with your academic homework lately, especially where it concerns all the different parts of a research paper? This is actually a very common situation, so we have prepared this article to outline all the key parts of a research paper and explain what you must focus as you go through each one of the various parts of a research paper; read the following sections and you should have a clearer idea of how to tackle your next research paper effectively.

  • ✓ Post a picture on Instagram
  • ✓ Get the most likes on your picture
  • ✓ Receive up to $300 cash back

What are the main parts of a research paper?

There are eight main parts in a research paper :

  • Title (cover page)

Introduction

  • Literature review
  • Research methodology
  • Data analysis
  • Reference page

If you stick to this structure, your end product will be a concise, well-organized research paper.

Do you have to follow the exact research paper structure?

Yes, and failing to do so will likely impact your grade very negatively. It’s very important to write your research paper according to the structure given on this article. Follow your research paper outline   to avoid a messy structure. Different types of academic papers have very particular structures. For example, the structure required for a literature review is very different to the structure required for a scientific research paper.

What if I'm having trouble with certain parts of a research paper?

If you’re having problems with some parts of a research paper, it will be useful to look at some examples of finished research papers in a similar field of study, so you will have a better idea of the elements you need to include. Read a step-by-step guide for writing a research paper, or take a look at the section towards the end of this article for some research paper examples. Perhaps you’re just lacking inspiration!

Is there a special formatting you need to use when citing sources?

Making adequate citations to back up your research is a key consideration in almost every part of a research paper. There are various formatting conventions and referencing styles that should be followed as specified in your assignment. The most common is APA formatting, but you could also be required to use MLA formatting. Your professor or supervisor should tell you which one you need to use.

What should I do once I have my research paper outlined?

If you have created your research paper outline, then you’re ready to start writing. Remember, the first copy will be a draft, so don’t leave it until the last minute to begin writing. Check out some tips for overcoming writer’s block if you’re having trouble getting started.

Research Paper Structure

There are 8 parts of a research paper that you should go through in this order:

The very first page in your research paper should be used to identify its title, along with your name, the date of your assignment, and your learning institution. Additional elements may be required according to the specifications of your instructors, so it’s a good idea to check with them to make sure you feature all the required information in the right order. You will usually be provided with a template or checklist of some kind that you can refer to when writing your cover page .

This is the very beginning of your research paper, where you are expected to provide your thesis statement ; this is simply a summary of what you’re setting out to accomplish with your research project, including the problems you’re looking to scrutinize and any solutions or recommendations that you anticipate beforehand.

Literature Review

This part of a research paper is supposed to provide the theoretical framework that you elaborated during your research. You will be expected to present the sources you have studied while preparing for the work ahead, and these sources should be credible from an academic standpoint (including educational books, peer-reviewed journals, and other relevant publications). You must make sure to include the name of the relevant authors you’ve studied and add a properly formatted citation that explicitly points to their works you have analyzed, including the publication year (see the section below on APA style citations ).

Research Methodology

Different parts of a research paper have different aims, and here you need to point out the exact methods you have used in the course of your research work. Typical methods can range from direct observation to laboratory experiments, or statistical evaluations. Whatever your chosen methods are, you will need to explicitly point them out in this section.

Data Analysis

While all the parts of a research paper are important, this section is probably the most crucial from a practical standpoint. Out of all the parts of a research paper, here you will be expected to analyze the data you have obtained in the course of your research. This is where you get your chance to really shine, by introducing new data that may contribute to building up on the collective understanding of the topics you have researched. At this point, you’re not expected to analyze your data yet (that will be done in the subsequent parts of a research paper), but simply to present it objectively.

From all the parts of a research paper, this is the one where you’re expected to actually analyze the data you have gathered while researching. This analysis should align with your previously stated methodology, and it should both point out any implications suggested by your data that might be relevant to different fields of study, as well as any shortcomings in your approach that would allow you to improve you results if you were to repeat the same type of research.

As you conclude your research paper, you should succinctly reiterate your thesis statement along with your methodology and analyzed data – by drawing all these elements together you will reach the purpose of your research, so all that is left is to point out your conclusions in a clear manner.

Reference Page

The very last section of your research paper is a reference page where you should collect the academic sources along with all the publications you consulted, while fleshing out your research project. You should make sure to list all these references according to the citation format specified by your instructor; there are various formats now in use, such as MLA, Harvard and APA, which although similar rely on different citation styles that must be consistently and carefully observed.

how-to-write-a-research-paper-printing-binding

Paper printing & binding

You are already done writing your research paper and need a high quality printing & binding service? Then you are right to choose BachelorPrint! Check out our 24-hour online printing service. For more information click the button below :

Research Paper Examples

When you’re still learning about the various parts that make up a research paper, it can be useful to go through some examples of actual research papers from your exact field of study. This is probably the best way to fully grasp what is the purpose of all the different parts.

We can’t provide you universal examples of all the parts of a research paper, since some of these parts can be very different depending on your field of study.

To get a clear sense of what you should cover in each part of your paper, we recommend you to find some successful research papers in a similar field of study. Often, you may be able to refer to studies you have gathered during the initial literature review.

There are also some templates online that may be useful to look at when you’re just getting started, and trying to grasp the exact requirements for each part in your research paper:

Research Paper APA Formatting

When you write a research paper for college, you will have to make sure to add relevant citation to back up your major claims. Only by building up on the work of established authors will you be able to reach valuable conclusions that can be taken seriously on a academic context. This process may seem burdensome at first, but it’s one of the essential parts of a research paper.

The essence of a citation is simply to point out where you learned about the concepts and ideas that make up all the parts of a research paper. This is absolutely essential, both to substantiate your points and to allow other researchers to look into those sources in cause they want to learn more about some aspects of your assignment, or dig deeper into specific parts of a research paper.

There are several citation styles in modern use, and APA citation is probably the most common and widespread; you must follow this convention precisely when adding citations to the relevant part of a research paper. Here is how you should format a citation according to the APA style.

In a Nutshell

  • There are eight different parts of a research paper that you will have to go through in this specific order.
  • Make sure to focus on the different parts of a research paper one at a time, and you’ll find it can actually make the writing process much easier.
  • Producing a research paper can be a very daunting task unless you have a solid plan of action; that is exactly why most modern learning institutions now demand students to observe all these parts of a research paper.
  • These guidelines are not meant to make student’s lives harder, but actually to help them stay focused and produce articulate and thoughtful research that could make an impact in their fields of study.

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

My Paper Done

  • Services Paper editing services Paper proofreading Business papers Philosophy papers Write my paper Term papers for sale Term paper help Academic term papers Buy research papers College writing services Paper writing help Student papers Original term papers Research paper help Nursing papers for sale Psychology papers Economics papers Medical papers Blog

different parts of a research report

Your Ultimate Guide To Parts of a Research Paper

parts of a research paper

Students should know the different parts of a research paper before they start the writing process. Research paper writing is an important task in the academic world. But, many learners don’t know much about the research paper structure when asked to complete this task. Essentially, many learners don’t know about the components of a research paper. Unfortunately, this can ruin the overall quality of their work.

So, what are the basic parts of a research paper? Well, there are five major sections of a research paper. These are the parts that you will find in any paper. However, the number of research paper parts can always vary depending on the nature and length of the work.

The Basic Parts of a Research Paper

Perhaps, you’re wondering, what are the 5 parts of research paper? Well, this article will answer your question. The basic parts to a research paper are the introduction, method, results, discussion, and conclusion. However, a research paper can include other parts like the abstract, discussion, and reference list.

Although a student can be writing on a single topic, each part of research paper requires specific information. That’s why different research paper sections exist. It’s, therefore, important that students learn about the information that should go to different sections of research paper.

Research Paper Introduction

The introduction is one of the most important parts of an APA research paper. This is the section that gives the paper a direction. It tells the readers what the paper will attempt to achieve. The introduction of a research paper is the section where the writer states their thesis argument and research problem. What do you intend to study and what makes it important?

An ideal introduction of a research paper should: Provide a general research problem presentation Layout what you will try to achieve with your work State your position on the topic

Perhaps, you may have always wondered, what are the major parts of an argumentative research paper? Well, the introduction is one of these sections because it tells the readers about your position on the topic.

The Methods Section of a Research Paper

This is also called the methodology part of a research paper. It states the methodology and design used to conduct research. The methodology used in every paper will vary depending on the research type and field.

For instance, social sciences use observation methods to collect data while physical sciences may use apparatus. Such variations should be considered when learning how to write a methods section of a research paper. However, the most important thing is to ensure that other researchers can replicate the performed research using similar methods for verification purposes.

The assumption is that the person that will read the paper knows the basic research methods that you use to gather information and write the paper. Therefore, don’t go into detail trying to explain the methods. For instance, biochemists or organic chemists are familiar with methods like chromatography. Therefore, you should just highlight the equipment that you used instead of explaining the entire process.

If you did a survey, include a questionnaire copy in the appendix if you included too many questions. Nevertheless, refer your readers to the questionnaire in the appendix section whenever you think it’s necessary. Use the internet to learn how to write the methods section of a research paper if still unsure about the best way to go about this section. You can also c ontact us to get professional writing help  online.  

The Results Section of a Research Paper

The content that you include in this section will depend on the aims and results of your research. If you’re writing a quantitative research paper, this section will include a presentation of numerical data and results. When writing a qualitative research paper, this section should include discussions of different trends. However, you should not go into details.

A good results section of a research paper example will include graphs or tables of analyzed data. Raw data can also be included in the appendix to enable other researchers to follow it up and check calculations. Commentary can also be included to link results together instead of displaying unconnected and isolated figures and charts. Striking a balance between the results section and the discussion section can be difficult for some students. That’s because some of the findings, especially in descriptive or quantitative research fall into the grey area. Additionally, you should avoid repetition in your results section.

Therefore, find a middle ground where you can provide a general overview of your data so that you can expand it in your discussion section. Additionally, avoid including personal interpretations and opinions into this section and keep it for the discussion part.

The Discussion Section of a Research Paper

Some people confuse the results section with the discussion section. As such, they wonder what goes in the discussion section of a research paper. Essentially, elaborating your findings in the results section will leave you with nothing to include in the discussion section. Therefore, try to just present your findings in the result section without going into details.

Just like the name suggests, the discussion section is the place where you discuss or explain your findings or results. Here, you tell readers more about what you found. You can also add personal interpretations. Your discussion should be linked to the introduction and address every initial point separately.

It’s also crucial to ensure that the information included in the discussion section is related to your thesis statement. If you don’t do that, you can cloud your findings. Essentially, the discussion section is the place where you show readers how your findings support your argument or thesis statement.

Do you want to write a paper that will impress the tutor to award you the top grade? This section should feature the most analysis and citations. It should also focus on developing your thesis rationally with a solid argument of all major points and clear reasoning. Therefore, avoid unnecessary and meaningless digressions and maintain a clear focus. Provide cohesion and unity to strengthen your research paper.

Research Paper Conclusion

This is the last major part of any research paper. It’s the section where you should build upon the discussion and refer the findings of your research to those of other researchers. The conclusion can have a single paragraph or even two. However, the conclusion can be the most important section of an entire paper when writing a dissertation. That’s because it can describe results while discussing them in detail. It can also emphasize why the results of the research project are important to the field. What’s more, it can tie the paper with previous studies.

In some papers, this section provides recommendations while calling for further research and highlighting flaws that may have affected the results of the study. Thus, this can be the section where the writer suggests improvements that can make the research design better.

Parts Of A Research Paper Explained

Though these are the major sections of a research paper, the reference list or bibliography is also very important. No research paper can be complete without a bibliography or reference list that documents the used sources. These sources should be documented according to the specified format. Thus, the format of the reference list can vary from APA to MLA, Chicago to Harvard, and other formats. Nevertheless, a research paper that features the five major sections and a reference list will be considered complete in most institutions even without the acknowledgment and abstract parts. The best way to get a high grade is to ask professionals ‘Can someone do my assignment for me now?’ and get your papers done on time. 

How To Write An Abstract For A Research Paper

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Terms & Conditions Loyalty Program Privacy Policy Money-Back Policy

Copyright © 2013-2024 MyPaperDone.com

Banner

Report writing

  • Features of good reports
  • Types of Report

Introduction

Organising your information, abstract / executive summary, literature review, results / data / findings, reference list / bibliography.

  • Writing up your report

Useful links for report writing

  • Study Advice Helping students to achieve study success with guides, video tutorials, seminars and one-to-one advice sessions.
  • Maths Support A guide to Maths Support resources which may help if you're finding any mathematical or statistical topic difficult during the transition to University study.

different parts of a research report

  • Academic Phrasebank Use this site for examples of linking phrases and ways to refer to sources.
  • Academic writing LibGuide Expert guidance on punctuation, grammar, writing style and proof-reading.
  • Reading and notemaking LibGuide Expert guidance on managing your reading and making effective notes.
  • Guide to citing references Includes guidance on why, when and how to use references correctly in your academic writing.

The structure of a report has a key role to play in communicating information and enabling the reader to find the information they want quickly and easily. Each section of a report has a different role to play and a writing style suited to that role. Therefore, it is important to understand what your audience is expecting in each section of a report and put the appropriate information in the appropriate sections.

The guidance on this page explains the job each section does and the style in which it is written. Note that all reports are different so you must pay close attention to what you are being asked to include in your assignment brief. For instance, your report may need all of these sections, or only some, or you may be asked to combine sections (e.g. introduction and literature review, or results and discussion). The video tutorial on structuring reports below will also be helpful, especially if you are asked to decide on your own structure.

  • Finding a structure for your report (video) Watch this brief video tutorial for more on the topic.
  • Finding a structure for your report (transcript) Read the transcript.

different parts of a research report

  • When writing an essay, you need to place your information  to make a strong argument
  • When writing a report, you need to place your information  in the appropriate section

Consider the role each item will play in communicating information or ideas to the reader, and place it in the section where it will best perform that role. For instance:

  • Does it provide background to your research? ( Introduction  or  Literature Review )
  • Does it describe the types of activity you used to collect evidence? ( Methods )
  • Does it present factual data? ( Results )
  • Does it place evidence in the context of background? ( Discussion )
  • Does it make recommendations for action? ( Conclusion )

different parts of a research report

  • the purpose of the work
  • methods used for research
  • main conclusions reached
  • any recommendations

The introduction … should explain the rationale for undertaking the work reported on, and the way you decided to do it. Include what you have been asked (or chosen) to do and the reasons for doing it.

- State what the report is about. What is the question you are trying to answer? If it is a brief for a specific reader (e.g. a feasibility report on a construction project for a client), say who they are.

- Describe your starting point and the background to the subject: e.g., what research has already been done (if you have to include a Literature Review, this will only be a brief survey); what are the relevant themes and issues; why are you being asked to investigate it now?

- Explain how you are going to go about responding to the brief. If you are going to test a hypothesis in your research, include this at the end of your introduction. Include a brief outline of your method of enquiry. State the limits of your research and reasons for them, e.g.

different parts of a research report

Introduce your review by explaining how you went about finding your materials, and any clear trends in research that have emerged. Group your texts in themes. Write about each theme as a separate section, giving a critical summary of each piece of work, and showing its relevance to your research. Conclude with how the review has informed your research (things you'll be building on, gaps you'll be filling etc).

  • Literature reviews LibGuide Guide on starting, writing and developing literature reviews.
  • Doing your literature review (video) Watch this brief video tutorial for more on the topic.
  • Doing your literature review (transcript) Read the transcript.

The methods  should be written in such a way that a reader could replicate the research you have done. State clearly how you carried out your investigation. Explain why you chose this particular method (questionnaires, focus group, experimental procedure etc). Include techniques and any equipment you used. If there were participants in your research, who were they? How many? How were they selected?

Write this section  concisely  but  thoroughly  – Go through what you did step by step, including everything that is relevant. You know what you did, but could a reader follow your description?

different parts of a research report

Label your graphs and tables clearly. Give each figure a title and describe in words what the figure demonstrates. Save your interpretation of the results for the Discussion section.

The discussion ...is probably the longest section. It brings everything together, showing how your findings respond to the brief you explained in your introduction and the previous research you surveyed in your literature review. This is the place to mention if there were any problems (e.g. your results were different from expectations, you couldn't find important data, or you had to change your method or participants) and how they were, or could have been, solved.

  • Writing up your report page More information on how to write your discussion and other sections.

The conclusions ...should be a short section with no new arguments or evidence. This section should give a feeling of closure and completion to your report. Sum up the main points of your research. How do they answer the original brief for the work reported on? This section may also include:

  • Recommendations for action
  • Suggestions for further research

different parts of a research report

If you're unsure about how to cite a particular text, ask at the Study Advice Desk on the Ground Floor of the Library or contact your Academic Liaison Librarian for help.

  • Contact your Academic Liaison Librarian

The appendices ...include any additional information that may help the reader but is not essential to the report's main findings. The report should be able to stand alone without the appendices. An appendix can include for instance: interview questions; questionnaires; surveys; raw data; figures; tables; maps; charts; graphs; a glossary of terms used.

  • A separate appendix should be used for each distinct topic or set of data.
  • Order your appendices in the order in which you refer to the content in the text.
  • Start each appendix on a separate page and label sequentially with letters or numbers e.g. Appendix A, Appendix B,…
  • Give each Appendix a meaningful title e.g. Appendix A: Turnover of Tesco PLC 2017-2021.
  • Refer to the relevant appendix where appropriate in the main text e.g. 'See Appendix A for an example questionnaire'.
  • If an appendix contains multiple figures which you will refer to individually then label each one using the Appendix letter and a running number e.g. Table B1, Table B2. Do not continue the numbering of any figures in your text, as your text should be able to stand alone without the appendices.
  • If your appendices draw on information from other sources you should include a citation and add the full details into your list of references (follow the rules for the referencing style you are using).

For more guidance see the following site:

  • Appendices guidance from University of Southern California Detailed guidance on using appendices. Part of the USC's guide to Organizing Your Social Sciences Research Paper.
  • << Previous: Types of Report
  • Next: Writing up your report >>
  • Last Updated: May 14, 2024 8:51 AM
  • URL: https://libguides.reading.ac.uk/reports

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 09 May 2024

Cubic millimetre of brain mapped in spectacular detail

  • Carissa Wong

You can also search for this author in PubMed   Google Scholar

Rendering based on electron-microscope data, showing the positions of neurons in a fragment of the brain cortex. Neurons are coloured according to size. Credit: Google Research & Lichtman Lab (Harvard University). Renderings by D. Berger (Harvard University)

You have full access to this article via your institution.

Researchers have mapped a tiny piece of the human brain in astonishing detail. The resulting cell atlas, which was described today in Science 1 and is available online , reveals new patterns of connections between brain cells called neurons, as well as cells that wrap around themselves to form knots, and pairs of neurons that are almost mirror images of each other.

The 3D map covers a volume of about one cubic millimetre, one-millionth of a whole brain, and contains roughly 57,000 cells and 150 million synapses — the connections between neurons. It incorporates a colossal 1.4 petabytes of data. “It’s a little bit humbling,” says Viren Jain, a neuroscientist at Google in Mountain View, California, and a co-author of the paper. “How are we ever going to really come to terms with all this complexity?”

Slivers of brain

The brain fragment was taken from a 45-year-old woman when she underwent surgery to treat her epilepsy. It came from the cortex, a part of the brain involved in learning, problem-solving and processing sensory signals. The sample was immersed in preservatives and stained with heavy metals to make the cells easier to see. Neuroscientist Jeff Lichtman at Harvard University in Cambridge, Massachusetts, and his colleagues then cut the sample into around 5,000 slices — each just 34 nanometres thick — that could be imaged using electron microscopes.

Jain’s team then built artificial-intelligence models that were able to stitch the microscope images together to reconstruct the whole sample in 3D. “I remember this moment, going into the map and looking at one individual synapse from this woman’s brain, and then zooming out into these other millions of pixels,” says Jain. “It felt sort of spiritual.”

Rendering of a neuron with a round base and many branches, on a black background.

A single neuron (white) shown with 5,600 of the axons (blue) that connect to it. The synapses that make these connections are shown in green. Credit: Google Research & Lichtman Lab (Harvard University). Renderings by D. Berger (Harvard University)

When examining the model in detail, the researchers discovered unconventional neurons, including some that made up to 50 connections with each other. “In general, you would find a couple of connections at most between two neurons,” says Jain. Elsewhere, the model showed neurons with tendrils that formed knots around themselves. “Nobody had seen anything like this before,” Jain adds.

The team also found pairs of neurons that were near-perfect mirror images of each other. “We found two groups that would send their dendrites in two different directions, and sometimes there was a kind of mirror symmetry,” Jain says. It is unclear what role these features have in the brain.

Proofreaders needed

The map is so large that most of it has yet to be manually checked, and it could still contain errors created by the process of stitching so many images together. “Hundreds of cells have been ‘proofread’, but that’s obviously a few per cent of the 50,000 cells in there,” says Jain. He hopes that others will help to proofread parts of the map they are interested in. The team plans to produce similar maps of brain samples from other people — but a map of the entire brain is unlikely in the next few decades, he says.

“This paper is really the tour de force creation of a human cortex data set,” says Hongkui Zeng, director of the Allen Institute for Brain Science in Seattle. The vast amount of data that has been made freely accessible will “allow the community to look deeper into the micro-circuitry in the human cortex”, she adds.

Gaining a deeper understanding of how the cortex works could offer clues about how to treat some psychiatric and neurodegenerative diseases. “This map provides unprecedented details that can unveil new rules of neural connections and help to decipher the inner working of the human brain,” says Yongsoo Kim, a neuroscientist at Pennsylvania State University in Hershey.

Nature 629 , 739-740 (2024)

doi: https://doi.org/10.1038/d41586-024-01387-9

Shapson-Coe, A. et al. Science 384 , eadk4858 (2024).

Article   Google Scholar  

Download references

Reprints and permissions

Related Articles

different parts of a research report

  • Neuroscience

Mapping model units to visual neurons reveals population code for social behaviour

Mapping model units to visual neurons reveals population code for social behaviour

Article 22 MAY 24

Distinct µ-opioid ensembles trigger positive and negative fentanyl reinforcement

Distinct µ-opioid ensembles trigger positive and negative fentanyl reinforcement

Neural pathways for reward and relief promote fentanyl addiction

Neural pathways for reward and relief promote fentanyl addiction

News & Views 22 MAY 24

AI networks reveal how flies find a mate

AI networks reveal how flies find a mate

First ‘bilingual’ brain-reading device decodes Spanish and English words

First ‘bilingual’ brain-reading device decodes Spanish and English words

News 21 MAY 24

Wissenschaftliche/r Mitarbeiter/in - Quantencomputing mit gespeicherten Ionen

Wissenschaftliche/r Mitarbeiter/in - Quantencomputing mit gespeicherten Ionen Bereich: Fakultät IV - Naturwissenschaftlich-Technische Fakultät | St...

Siegen, Nordrhein-Westfalen (DE)

Universität Siegen

different parts of a research report

Wissenschaftliche/r Mitarbeiter/in (PostDoc) - Quantencomputing mit gespeicherten Ionen

Wissenschaftliche/r Mitarbeiter/in (PostDoc) - Quantencomputing mit gespeicherten Ionen Bereich: Fakultät IV - Naturwissenschaftlich-Technische Fak...

different parts of a research report

Professor Helminthology

Excellent track record on the biology and immunobiology of zoonotic helminths and co-infections, with a strong scientific network.

Antwerp, New York

Institute of Tropical Medicine

different parts of a research report

Assistant Professor in Plant Biology

The Plant Science Program in the Biological and Environmental Science and Engineering (BESE) Division at King Abdullah University of Science and Te...

Saudi Arabia (SA)

King Abdullah University of Science and Technology

different parts of a research report

Postdoctoral Fellow

New Orleans, Louisiana

Tulane University School of Medicine

different parts of a research report

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

different parts of a research report

Cultural Relativity and Acceptance of Embryonic Stem Cell Research

Article sidebar.

different parts of a research report

Main Article Content

There is a debate about the ethical implications of using human embryos in stem cell research, which can be influenced by cultural, moral, and social values. This paper argues for an adaptable framework to accommodate diverse cultural and religious perspectives. By using an adaptive ethics model, research protections can reflect various populations and foster growth in stem cell research possibilities.

INTRODUCTION

Stem cell research combines biology, medicine, and technology, promising to alter health care and the understanding of human development. Yet, ethical contention exists because of individuals’ perceptions of using human embryos based on their various cultural, moral, and social values. While these disagreements concerning policy, use, and general acceptance have prompted the development of an international ethics policy, such a uniform approach can overlook the nuanced ethical landscapes between cultures. With diverse viewpoints in public health, a single global policy, especially one reflecting Western ethics or the ethics prevalent in high-income countries, is impractical. This paper argues for a culturally sensitive, adaptable framework for the use of embryonic stem cells. Stem cell policy should accommodate varying ethical viewpoints and promote an effective global dialogue. With an extension of an ethics model that can adapt to various cultures, we recommend localized guidelines that reflect the moral views of the people those guidelines serve.

Stem cells, characterized by their unique ability to differentiate into various cell types, enable the repair or replacement of damaged tissues. Two primary types of stem cells are somatic stem cells (adult stem cells) and embryonic stem cells. Adult stem cells exist in developed tissues and maintain the body’s repair processes. [1] Embryonic stem cells (ESC) are remarkably pluripotent or versatile, making them valuable in research. [2] However, the use of ESCs has sparked ethics debates. Considering the potential of embryonic stem cells, research guidelines are essential. The International Society for Stem Cell Research (ISSCR) provides international stem cell research guidelines. They call for “public conversations touching on the scientific significance as well as the societal and ethical issues raised by ESC research.” [3] The ISSCR also publishes updates about culturing human embryos 14 days post fertilization, suggesting local policies and regulations should continue to evolve as ESC research develops. [4]  Like the ISSCR, which calls for local law and policy to adapt to developing stem cell research given cultural acceptance, this paper highlights the importance of local social factors such as religion and culture.

I.     Global Cultural Perspective of Embryonic Stem Cells

Views on ESCs vary throughout the world. Some countries readily embrace stem cell research and therapies, while others have stricter regulations due to ethical concerns surrounding embryonic stem cells and when an embryo becomes entitled to moral consideration. The philosophical issue of when the “someone” begins to be a human after fertilization, in the morally relevant sense, [5] impacts when an embryo becomes not just worthy of protection but morally entitled to it. The process of creating embryonic stem cell lines involves the destruction of the embryos for research. [6] Consequently, global engagement in ESC research depends on social-cultural acceptability.

a.     US and Rights-Based Cultures

In the United States, attitudes toward stem cell therapies are diverse. The ethics and social approaches, which value individualism, [7] trigger debates regarding the destruction of human embryos, creating a complex regulatory environment. For example, the 1996 Dickey-Wicker Amendment prohibited federal funding for the creation of embryos for research and the destruction of embryos for “more than allowed for research on fetuses in utero.” [8] Following suit, in 2001, the Bush Administration heavily restricted stem cell lines for research. However, the Stem Cell Research Enhancement Act of 2005 was proposed to help develop ESC research but was ultimately vetoed. [9] Under the Obama administration, in 2009, an executive order lifted restrictions allowing for more development in this field. [10] The flux of research capacity and funding parallels the different cultural perceptions of human dignity of the embryo and how it is socially presented within the country’s research culture. [11]

b.     Ubuntu and Collective Cultures

African bioethics differs from Western individualism because of the different traditions and values. African traditions, as described by individuals from South Africa and supported by some studies in other African countries, including Ghana and Kenya, follow the African moral philosophies of Ubuntu or Botho and Ukama , which “advocates for a form of wholeness that comes through one’s relationship and connectedness with other people in the society,” [12] making autonomy a socially collective concept. In this context, for the community to act autonomously, individuals would come together to decide what is best for the collective. Thus, stem cell research would require examining the value of the research to society as a whole and the use of the embryos as a collective societal resource. If society views the source as part of the collective whole, and opposes using stem cells, compromising the cultural values to pursue research may cause social detachment and stunt research growth. [13] Based on local culture and moral philosophy, the permissibility of stem cell research depends on how embryo, stem cell, and cell line therapies relate to the community as a whole . Ubuntu is the expression of humanness, with the person’s identity drawn from the “’I am because we are’” value. [14] The decision in a collectivistic culture becomes one born of cultural context, and individual decisions give deference to others in the society.

Consent differs in cultures where thought and moral philosophy are based on a collective paradigm. So, applying Western bioethical concepts is unrealistic. For one, Africa is a diverse continent with many countries with different belief systems, access to health care, and reliance on traditional or Western medicines. Where traditional medicine is the primary treatment, the “’restrictive focus on biomedically-related bioethics’” [is] problematic in African contexts because it neglects bioethical issues raised by traditional systems.” [15] No single approach applies in all areas or contexts. Rather than evaluating the permissibility of ESC research according to Western concepts such as the four principles approach, different ethics approaches should prevail.

Another consideration is the socio-economic standing of countries. In parts of South Africa, researchers have not focused heavily on contributing to the stem cell discourse, either because it is not considered health care or a health science priority or because resources are unavailable. [16] Each country’s priorities differ given different social, political, and economic factors. In South Africa, for instance, areas such as maternal mortality, non-communicable diseases, telemedicine, and the strength of health systems need improvement and require more focus. [17] Stem cell research could benefit the population, but it also could divert resources from basic medical care. Researchers in South Africa adhere to the National Health Act and Medicines Control Act in South Africa and international guidelines; however, the Act is not strictly enforced, and there is no clear legislation for research conduct or ethical guidelines. [18]

Some parts of Africa condemn stem cell research. For example, 98.2 percent of the Tunisian population is Muslim. [19] Tunisia does not permit stem cell research because of moral conflict with a Fatwa. Religion heavily saturates the regulation and direction of research. [20] Stem cell use became permissible for reproductive purposes only recently, with tight restrictions preventing cells from being used in any research other than procedures concerning ART/IVF.  Their use is conditioned on consent, and available only to married couples. [21] The community's receptiveness to stem cell research depends on including communitarian African ethics.

c.     Asia

Some Asian countries also have a collective model of ethics and decision making. [22] In China, the ethics model promotes a sincere respect for life or human dignity, [23] based on protective medicine. This model, influenced by Traditional Chinese Medicine (TCM), [24] recognizes Qi as the vital energy delivered via the meridians of the body; it connects illness to body systems, the body’s entire constitution, and the universe for a holistic bond of nature, health, and quality of life. [25] Following a protective ethics model, and traditional customs of wholeness, investment in stem cell research is heavily desired for its applications in regenerative therapies, disease modeling, and protective medicines. In a survey of medical students and healthcare practitioners, 30.8 percent considered stem cell research morally unacceptable while 63.5 percent accepted medical research using human embryonic stem cells. Of these individuals, 89.9 percent supported increased funding for stem cell research. [26] The scientific community might not reflect the overall population. From 1997 to 2019, China spent a total of $576 million (USD) on stem cell research at 8,050 stem cell programs, increased published presence from 0.6 percent to 14.01 percent of total global stem cell publications as of 2014, and made significant strides in cell-based therapies for various medical conditions. [27] However, while China has made substantial investments in stem cell research and achieved notable progress in clinical applications, concerns linger regarding ethical oversight and transparency. [28] For example, the China Biosecurity Law, promoted by the National Health Commission and China Hospital Association, attempted to mitigate risks by introducing an institutional review board (IRB) in the regulatory bodies. 5800 IRBs registered with the Chinese Clinical Trial Registry since 2021. [29] However, issues still need to be addressed in implementing effective IRB review and approval procedures.

The substantial government funding and focus on scientific advancement have sometimes overshadowed considerations of regional cultures, ethnic minorities, and individual perspectives, particularly evident during the one-child policy era. As government policy adapts to promote public stability, such as the change from the one-child to the two-child policy, [30] research ethics should also adapt to ensure respect for the values of its represented peoples.

Japan is also relatively supportive of stem cell research and therapies. Japan has a more transparent regulatory framework, allowing for faster approval of regenerative medicine products, which has led to several advanced clinical trials and therapies. [31] South Korea is also actively engaged in stem cell research and has a history of breakthroughs in cloning and embryonic stem cells. [32] However, the field is controversial, and there are issues of scientific integrity. For example, the Korean FDA fast-tracked products for approval, [33] and in another instance, the oocyte source was unclear and possibly violated ethical standards. [34] Trust is important in research, as it builds collaborative foundations between colleagues, trial participant comfort, open-mindedness for complicated and sensitive discussions, and supports regulatory procedures for stakeholders. There is a need to respect the culture’s interest, engagement, and for research and clinical trials to be transparent and have ethical oversight to promote global research discourse and trust.

d.     Middle East

Countries in the Middle East have varying degrees of acceptance of or restrictions to policies related to using embryonic stem cells due to cultural and religious influences. Saudi Arabia has made significant contributions to stem cell research, and conducts research based on international guidelines for ethical conduct and under strict adherence to guidelines in accordance with Islamic principles. Specifically, the Saudi government and people require ESC research to adhere to Sharia law. In addition to umbilical and placental stem cells, [35] Saudi Arabia permits the use of embryonic stem cells as long as they come from miscarriages, therapeutic abortions permissible by Sharia law, or are left over from in vitro fertilization and donated to research. [36] Laws and ethical guidelines for stem cell research allow the development of research institutions such as the King Abdullah International Medical Research Center, which has a cord blood bank and a stem cell registry with nearly 10,000 donors. [37] Such volume and acceptance are due to the ethical ‘permissibility’ of the donor sources, which do not conflict with religious pillars. However, some researchers err on the side of caution, choosing not to use embryos or fetal tissue as they feel it is unethical to do so. [38]

Jordan has a positive research ethics culture. [39] However, there is a significant issue of lack of trust in researchers, with 45.23 percent (38.66 percent agreeing and 6.57 percent strongly agreeing) of Jordanians holding a low level of trust in researchers, compared to 81.34 percent of Jordanians agreeing that they feel safe to participate in a research trial. [40] Safety testifies to the feeling of confidence that adequate measures are in place to protect participants from harm, whereas trust in researchers could represent the confidence in researchers to act in the participants’ best interests, adhere to ethical guidelines, provide accurate information, and respect participants’ rights and dignity. One method to improve trust would be to address communication issues relevant to ESC. Legislation surrounding stem cell research has adopted specific language, especially concerning clarification “between ‘stem cells’ and ‘embryonic stem cells’” in translation. [41] Furthermore, legislation “mandates the creation of a national committee… laying out specific regulations for stem-cell banking in accordance with international standards.” [42] This broad regulation opens the door for future global engagement and maintains transparency. However, these regulations may also constrain the influence of research direction, pace, and accessibility of research outcomes.

e.     Europe

In the European Union (EU), ethics is also principle-based, but the principles of autonomy, dignity, integrity, and vulnerability are interconnected. [43] As such, the opportunity for cohesion and concessions between individuals’ thoughts and ideals allows for a more adaptable ethics model due to the flexible principles that relate to the human experience The EU has put forth a framework in its Convention for the Protection of Human Rights and Dignity of the Human Being allowing member states to take different approaches. Each European state applies these principles to its specific conventions, leading to or reflecting different acceptance levels of stem cell research. [44]

For example, in Germany, Lebenzusammenhang , or the coherence of life, references integrity in the unity of human culture. Namely, the personal sphere “should not be subject to external intervention.” [45]  Stem cell interventions could affect this concept of bodily completeness, leading to heavy restrictions. Under the Grundgesetz, human dignity and the right to life with physical integrity are paramount. [46] The Embryo Protection Act of 1991 made producing cell lines illegal. Cell lines can be imported if approved by the Central Ethics Commission for Stem Cell Research only if they were derived before May 2007. [47] Stem cell research respects the integrity of life for the embryo with heavy specifications and intense oversight. This is vastly different in Finland, where the regulatory bodies find research more permissible in IVF excess, but only up to 14 days after fertilization. [48] Spain’s approach differs still, with a comprehensive regulatory framework. [49] Thus, research regulation can be culture-specific due to variations in applied principles. Diverse cultures call for various approaches to ethical permissibility. [50] Only an adaptive-deliberative model can address the cultural constructions of self and achieve positive, culturally sensitive stem cell research practices. [51]

II.     Religious Perspectives on ESC

Embryonic stem cell sources are the main consideration within religious contexts. While individuals may not regard their own religious texts as authoritative or factual, religion can shape their foundations or perspectives.

The Qur'an states:

“And indeed We created man from a quintessence of clay. Then We placed within him a small quantity of nutfa (sperm to fertilize) in a safe place. Then We have fashioned the nutfa into an ‘alaqa (clinging clot or cell cluster), then We developed the ‘alaqa into mudgha (a lump of flesh), and We made mudgha into bones, and clothed the bones with flesh, then We brought it into being as a new creation. So Blessed is Allah, the Best of Creators.” [52]

Many scholars of Islam estimate the time of soul installment, marked by the angel breathing in the soul to bring the individual into creation, as 120 days from conception. [53] Personhood begins at this point, and the value of life would prohibit research or experimentation that could harm the individual. If the fetus is more than 120 days old, the time ensoulment is interpreted to occur according to Islamic law, abortion is no longer permissible. [54] There are a few opposing opinions about early embryos in Islamic traditions. According to some Islamic theologians, there is no ensoulment of the early embryo, which is the source of stem cells for ESC research. [55]

In Buddhism, the stance on stem cell research is not settled. The main tenets, the prohibition against harming or destroying others (ahimsa) and the pursuit of knowledge (prajña) and compassion (karuna), leave Buddhist scholars and communities divided. [56] Some scholars argue stem cell research is in accordance with the Buddhist tenet of seeking knowledge and ending human suffering. Others feel it violates the principle of not harming others. Finding the balance between these two points relies on the karmic burden of Buddhist morality. In trying to prevent ahimsa towards the embryo, Buddhist scholars suggest that to comply with Buddhist tenets, research cannot be done as the embryo has personhood at the moment of conception and would reincarnate immediately, harming the individual's ability to build their karmic burden. [57] On the other hand, the Bodhisattvas, those considered to be on the path to enlightenment or Nirvana, have given organs and flesh to others to help alleviate grieving and to benefit all. [58] Acceptance varies on applied beliefs and interpretations.

Catholicism does not support embryonic stem cell research, as it entails creation or destruction of human embryos. This destruction conflicts with the belief in the sanctity of life. For example, in the Old Testament, Genesis describes humanity as being created in God’s image and multiplying on the Earth, referencing the sacred rights to human conception and the purpose of development and life. In the Ten Commandments, the tenet that one should not kill has numerous interpretations where killing could mean murder or shedding of the sanctity of life, demonstrating the high value of human personhood. In other books, the theological conception of when life begins is interpreted as in utero, [59] highlighting the inviolability of life and its formation in vivo to make a religious point for accepting such research as relatively limited, if at all. [60] The Vatican has released ethical directives to help apply a theological basis to modern-day conflicts. The Magisterium of the Church states that “unless there is a moral certainty of not causing harm,” experimentation on fetuses, fertilized cells, stem cells, or embryos constitutes a crime. [61] Such procedures would not respect the human person who exists at these stages, according to Catholicism. Damages to the embryo are considered gravely immoral and illicit. [62] Although the Catholic Church officially opposes abortion, surveys demonstrate that many Catholic people hold pro-choice views, whether due to the context of conception, stage of pregnancy, threat to the mother’s life, or for other reasons, demonstrating that practicing members can also accept some but not all tenets. [63]

Some major Jewish denominations, such as the Reform, Conservative, and Reconstructionist movements, are open to supporting ESC use or research as long as it is for saving a life. [64] Within Judaism, the Talmud, or study, gives personhood to the child at birth and emphasizes that life does not begin at conception: [65]

“If she is found pregnant, until the fortieth day it is mere fluid,” [66]

Whereas most religions prioritize the status of human embryos, the Halakah (Jewish religious law) states that to save one life, most other religious laws can be ignored because it is in pursuit of preservation. [67] Stem cell research is accepted due to application of these religious laws.

We recognize that all religions contain subsets and sects. The variety of environmental and cultural differences within religious groups requires further analysis to respect the flexibility of religious thoughts and practices. We make no presumptions that all cultures require notions of autonomy or morality as under the common morality theory , which asserts a set of universal moral norms that all individuals share provides moral reasoning and guides ethical decisions. [68] We only wish to show that the interaction with morality varies between cultures and countries.

III.     A Flexible Ethical Approach

The plurality of different moral approaches described above demonstrates that there can be no universally acceptable uniform law for ESC on a global scale. Instead of developing one standard, flexible ethical applications must be continued. We recommend local guidelines that incorporate important cultural and ethical priorities.

While the Declaration of Helsinki is more relevant to people in clinical trials receiving ESC products, in keeping with the tradition of protections for research subjects, consent of the donor is an ethical requirement for ESC donation in many jurisdictions including the US, Canada, and Europe. [69] The Declaration of Helsinki provides a reference point for regulatory standards and could potentially be used as a universal baseline for obtaining consent prior to gamete or embryo donation.

For instance, in Columbia University’s egg donor program for stem cell research, donors followed standard screening protocols and “underwent counseling sessions that included information as to the purpose of oocyte donation for research, what the oocytes would be used for, the risks and benefits of donation, and process of oocyte stimulation” to ensure transparency for consent. [70] The program helped advance stem cell research and provided clear and safe research methods with paid participants. Though paid participation or covering costs of incidental expenses may not be socially acceptable in every culture or context, [71] and creating embryos for ESC research is illegal in many jurisdictions, Columbia’s program was effective because of the clear and honest communications with donors, IRBs, and related stakeholders.  This example demonstrates that cultural acceptance of scientific research and of the idea that an egg or embryo does not have personhood is likely behind societal acceptance of donating eggs for ESC research. As noted, many countries do not permit the creation of embryos for research.

Proper communication and education regarding the process and purpose of stem cell research may bolster comprehension and garner more acceptance. “Given the sensitive subject material, a complete consent process can support voluntary participation through trust, understanding, and ethical norms from the cultures and morals participants value. This can be hard for researchers entering countries of different socioeconomic stability, with different languages and different societal values. [72]

An adequate moral foundation in medical ethics is derived from the cultural and religious basis that informs knowledge and actions. [73] Understanding local cultural and religious values and their impact on research could help researchers develop humility and promote inclusion.

IV.     Concerns

Some may argue that if researchers all adhere to one ethics standard, protection will be satisfied across all borders, and the global public will trust researchers. However, defining what needs to be protected and how to define such research standards is very specific to the people to which standards are applied. We suggest that applying one uniform guide cannot accurately protect each individual because we all possess our own perceptions and interpretations of social values. [74] Therefore, the issue of not adjusting to the moral pluralism between peoples in applying one standard of ethics can be resolved by building out ethics models that can be adapted to different cultures and religions.

Other concerns include medical tourism, which may promote health inequities. [75] Some countries may develop and approve products derived from ESC research before others, compromising research ethics or drug approval processes. There are also concerns about the sale of unauthorized stem cell treatments, for example, those without FDA approval in the United States. Countries with robust research infrastructures may be tempted to attract medical tourists, and some customers will have false hopes based on aggressive publicity of unproven treatments. [76]

For example, in China, stem cell clinics can market to foreign clients who are not protected under the regulatory regimes. Companies employ a marketing strategy of “ethically friendly” therapies. Specifically, in the case of Beike, China’s leading stem cell tourism company and sprouting network, ethical oversight of administrators or health bureaus at one site has “the unintended consequence of shifting questionable activities to another node in Beike's diffuse network.” [77] In contrast, Jordan is aware of stem cell research’s potential abuse and its own status as a “health-care hub.” Jordan’s expanded regulations include preserving the interests of individuals in clinical trials and banning private companies from ESC research to preserve transparency and the integrity of research practices. [78]

The social priorities of the community are also a concern. The ISSCR explicitly states that guidelines “should be periodically revised to accommodate scientific advances, new challenges, and evolving social priorities.” [79] The adaptable ethics model extends this consideration further by addressing whether research is warranted given the varying degrees of socioeconomic conditions, political stability, and healthcare accessibilities and limitations. An ethical approach would require discussion about resource allocation and appropriate distribution of funds. [80]

While some religions emphasize the sanctity of life from conception, which may lead to public opposition to ESC research, others encourage ESC research due to its potential for healing and alleviating human pain. Many countries have special regulations that balance local views on embryonic personhood, the benefits of research as individual or societal goods, and the protection of human research subjects. To foster understanding and constructive dialogue, global policy frameworks should prioritize the protection of universal human rights, transparency, and informed consent. In addition to these foundational global policies, we recommend tailoring local guidelines to reflect the diverse cultural and religious perspectives of the populations they govern. Ethics models should be adapted to local populations to effectively establish research protections, growth, and possibilities of stem cell research.

For example, in countries with strong beliefs in the moral sanctity of embryos or heavy religious restrictions, an adaptive model can allow for discussion instead of immediate rejection. In countries with limited individual rights and voice in science policy, an adaptive model ensures cultural, moral, and religious views are taken into consideration, thereby building social inclusion. While this ethical consideration by the government may not give a complete voice to every individual, it will help balance policies and maintain the diverse perspectives of those it affects. Embracing an adaptive ethics model of ESC research promotes open-minded dialogue and respect for the importance of human belief and tradition. By actively engaging with cultural and religious values, researchers can better handle disagreements and promote ethical research practices that benefit each society.

This brief exploration of the religious and cultural differences that impact ESC research reveals the nuances of relative ethics and highlights a need for local policymakers to apply a more intense adaptive model.

[1] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[2] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[3] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk ; Kimmelman, J., Hyun, I., Benvenisty, N.  et al.  Policy: Global standards for stem-cell research.  Nature   533 , 311–313 (2016). https://doi.org/10.1038/533311a

[4] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk

[5] Concerning the moral philosophies of stem cell research, our paper does not posit a personal moral stance nor delve into the “when” of human life begins. To read further about the philosophical debate, consider the following sources:

Sandel M. J. (2004). Embryo ethics--the moral logic of stem-cell research.  The New England journal of medicine ,  351 (3), 207–209. https://doi.org/10.1056/NEJMp048145 ; George, R. P., & Lee, P. (2020, September 26). Acorns and Embryos . The New Atlantis. https://www.thenewatlantis.com/publications/acorns-and-embryos ; Sagan, A., & Singer, P. (2007). The moral status of stem cells. Metaphilosophy , 38 (2/3), 264–284. http://www.jstor.org/stable/24439776 ; McHugh P. R. (2004). Zygote and "clonote"--the ethical use of embryonic stem cells.  The New England journal of medicine ,  351 (3), 209–211. https://doi.org/10.1056/NEJMp048147 ; Kurjak, A., & Tripalo, A. (2004). The facts and doubts about beginning of the human life and personality.  Bosnian journal of basic medical sciences ,  4 (1), 5–14. https://doi.org/10.17305/bjbms.2004.3453

[6] Vazin, T., & Freed, W. J. (2010). Human embryonic stem cells: derivation, culture, and differentiation: a review.  Restorative neurology and neuroscience ,  28 (4), 589–603. https://doi.org/10.3233/RNN-2010-0543

[7] Socially, at its core, the Western approach to ethics is widely principle-based, autonomy being one of the key factors to ensure a fundamental respect for persons within research. For information regarding autonomy in research, see: Department of Health, Education, and Welfare, & National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (1978). The Belmont Report. Ethical principles and guidelines for the protection of human subjects of research.; For a more in-depth review of autonomy within the US, see: Beauchamp, T. L., & Childress, J. F. (1994). Principles of Biomedical Ethics . Oxford University Press.

[8] Sherley v. Sebelius , 644 F.3d 388 (D.C. Cir. 2011), citing 45 C.F.R. 46.204(b) and [42 U.S.C. § 289g(b)]. https://www.cadc.uscourts.gov/internet/opinions.nsf/6c690438a9b43dd685257a64004ebf99/$file/11-5241-1391178.pdf

[9] Stem Cell Research Enhancement Act of 2005, H. R. 810, 109 th Cong. (2001). https://www.govtrack.us/congress/bills/109/hr810/text ; Bush, G. W. (2006, July 19). Message to the House of Representatives . National Archives and Records Administration. https://georgewbush-whitehouse.archives.gov/news/releases/2006/07/20060719-5.html

[10] National Archives and Records Administration. (2009, March 9). Executive order 13505 -- removing barriers to responsible scientific research involving human stem cells . National Archives and Records Administration. https://obamawhitehouse.archives.gov/the-press-office/removing-barriers-responsible-scientific-research-involving-human-stem-cells

[11] Hurlbut, W. B. (2006). Science, Religion, and the Politics of Stem Cells.  Social Research ,  73 (3), 819–834. http://www.jstor.org/stable/40971854

[12] Akpa-Inyang, Francis & Chima, Sylvester. (2021). South African traditional values and beliefs regarding informed consent and limitations of the principle of respect for autonomy in African communities: a cross-cultural qualitative study. BMC Medical Ethics . 22. 10.1186/s12910-021-00678-4.

[13] Source for further reading: Tangwa G. B. (2007). Moral status of embryonic stem cells: perspective of an African villager. Bioethics , 21(8), 449–457. https://doi.org/10.1111/j.1467-8519.2007.00582.x , see also Mnisi, F. M. (2020). An African analysis based on ethics of Ubuntu - are human embryonic stem cell patents morally justifiable? African Insight , 49 (4).

[14] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics , 22 (2), 112–122. https://doi.org/10.1111/dewb.12324

[15] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics, 22(2), 112–122. https://doi.org/10.1111/dewb.12324

[16] Jackson, C.S., Pepper, M.S. Opportunities and barriers to establishing a cell therapy programme in South Africa.  Stem Cell Res Ther   4 , 54 (2013). https://doi.org/10.1186/scrt204 ; Pew Research Center. (2014, May 1). Public health a major priority in African nations . Pew Research Center’s Global Attitudes Project. https://www.pewresearch.org/global/2014/05/01/public-health-a-major-priority-in-african-nations/

[17] Department of Health Republic of South Africa. (2021). Health Research Priorities (revised) for South Africa 2021-2024 . National Health Research Strategy. https://www.health.gov.za/wp-content/uploads/2022/05/National-Health-Research-Priorities-2021-2024.pdf

[18] Oosthuizen, H. (2013). Legal and Ethical Issues in Stem Cell Research in South Africa. In: Beran, R. (eds) Legal and Forensic Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32338-6_80 , see also: Gaobotse G (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[19] United States Bureau of Citizenship and Immigration Services. (1998). Tunisia: Information on the status of Christian conversions in Tunisia . UNHCR Web Archive. https://webarchive.archive.unhcr.org/20230522142618/https://www.refworld.org/docid/3df0be9a2.html

[20] Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[21] Kooli, C. Review of assisted reproduction techniques, laws, and regulations in Muslim countries.  Middle East Fertil Soc J   24 , 8 (2020). https://doi.org/10.1186/s43043-019-0011-0 ; Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[22] Pang M. C. (1999). Protective truthfulness: the Chinese way of safeguarding patients in informed treatment decisions. Journal of medical ethics , 25(3), 247–253. https://doi.org/10.1136/jme.25.3.247

[23] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[24] Wang, Y., Xue, Y., & Guo, H. D. (2022). Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction.  Frontiers in pharmacology ,  13 , 1013740. https://doi.org/10.3389/fphar.2022.1013740

[25] Li, X.-T., & Zhao, J. (2012). Chapter 4: An Approach to the Nature of Qi in TCM- Qi and Bioenergy. In Recent Advances in Theories and Practice of Chinese Medicine (p. 79). InTech.

[26] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[27] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[28] Zhang, J. Y. (2017). Lost in translation? accountability and governance of Clinical Stem Cell Research in China. Regenerative Medicine , 12 (6), 647–656. https://doi.org/10.2217/rme-2017-0035

[29] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[30] Chen, H., Wei, T., Wang, H.  et al.  Association of China’s two-child policy with changes in number of births and birth defects rate, 2008–2017.  BMC Public Health   22 , 434 (2022). https://doi.org/10.1186/s12889-022-12839-0

[31] Azuma, K. Regulatory Landscape of Regenerative Medicine in Japan.  Curr Stem Cell Rep   1 , 118–128 (2015). https://doi.org/10.1007/s40778-015-0012-6

[32] Harris, R. (2005, May 19). Researchers Report Advance in Stem Cell Production . NPR. https://www.npr.org/2005/05/19/4658967/researchers-report-advance-in-stem-cell-production

[33] Park, S. (2012). South Korea steps up stem-cell work.  Nature . https://doi.org/10.1038/nature.2012.10565

[34] Resnik, D. B., Shamoo, A. E., & Krimsky, S. (2006). Fraudulent human embryonic stem cell research in South Korea: lessons learned.  Accountability in research ,  13 (1), 101–109. https://doi.org/10.1080/08989620600634193 .

[35] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

[36] Association for the Advancement of Blood and Biotherapies.  https://www.aabb.org/regulatory-and-advocacy/regulatory-affairs/regulatory-for-cellular-therapies/international-competent-authorities/saudi-arabia

[37] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia.  BMC medical ethics ,  21 (1), 35. https://doi.org/10.1186/s12910-020-00482-6

[38] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia. BMC medical ethics , 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

Culturally, autonomy practices follow a relational autonomy approach based on a paternalistic deontological health care model. The adherence to strict international research policies and religious pillars within the regulatory environment is a great foundation for research ethics. However, there is a need to develop locally targeted ethics approaches for research (as called for in Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6), this decision-making approach may help advise a research decision model. For more on the clinical cultural autonomy approaches, see: Alabdullah, Y. Y., Alzaid, E., Alsaad, S., Alamri, T., Alolayan, S. W., Bah, S., & Aljoudi, A. S. (2022). Autonomy and paternalism in Shared decision‐making in a Saudi Arabian tertiary hospital: A cross‐sectional study. Developing World Bioethics , 23 (3), 260–268. https://doi.org/10.1111/dewb.12355 ; Bukhari, A. A. (2017). Universal Principles of Bioethics and Patient Rights in Saudi Arabia (Doctoral dissertation, Duquesne University). https://dsc.duq.edu/etd/124; Ladha, S., Nakshawani, S. A., Alzaidy, A., & Tarab, B. (2023, October 26). Islam and Bioethics: What We All Need to Know . Columbia University School of Professional Studies. https://sps.columbia.edu/events/islam-and-bioethics-what-we-all-need-know

[39] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[40] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[41] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[42] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[43] The EU’s definition of autonomy relates to the capacity for creating ideas, moral insight, decisions, and actions without constraint, personal responsibility, and informed consent. However, the EU views autonomy as not completely able to protect individuals and depends on other principles, such as dignity, which “expresses the intrinsic worth and fundamental equality of all human beings.” Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[44] Council of Europe. Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (ETS No. 164) https://www.coe.int/en/web/conventions/full-list?module=treaty-detail&treatynum=164 (forbidding the creation of embryos for research purposes only, and suggests embryos in vitro have protections.); Also see Drabiak-Syed B. K. (2013). New President, New Human Embryonic Stem Cell Research Policy: Comparative International Perspectives and Embryonic Stem Cell Research Laws in France.  Biotechnology Law Report ,  32 (6), 349–356. https://doi.org/10.1089/blr.2013.9865

[45] Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[46] Tomuschat, C., Currie, D. P., Kommers, D. P., & Kerr, R. (Trans.). (1949, May 23). Basic law for the Federal Republic of Germany. https://www.btg-bestellservice.de/pdf/80201000.pdf

[47] Regulation of Stem Cell Research in Germany . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-germany

[48] Regulation of Stem Cell Research in Finland . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-finland

[49] Regulation of Stem Cell Research in Spain . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-spain

[50] Some sources to consider regarding ethics models or regulatory oversights of other cultures not covered:

Kara MA. Applicability of the principle of respect for autonomy: the perspective of Turkey. J Med Ethics. 2007 Nov;33(11):627-30. doi: 10.1136/jme.2006.017400. PMID: 17971462; PMCID: PMC2598110.

Ugarte, O. N., & Acioly, M. A. (2014). The principle of autonomy in Brazil: one needs to discuss it ...  Revista do Colegio Brasileiro de Cirurgioes ,  41 (5), 374–377. https://doi.org/10.1590/0100-69912014005013

Bharadwaj, A., & Glasner, P. E. (2012). Local cells, global science: The rise of embryonic stem cell research in India . Routledge.

For further research on specific European countries regarding ethical and regulatory framework, we recommend this database: Regulation of Stem Cell Research in Europe . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-europe   

[51] Klitzman, R. (2006). Complications of culture in obtaining informed consent. The American Journal of Bioethics, 6(1), 20–21. https://doi.org/10.1080/15265160500394671 see also: Ekmekci, P. E., & Arda, B. (2017). Interculturalism and Informed Consent: Respecting Cultural Differences without Breaching Human Rights.  Cultura (Iasi, Romania) ,  14 (2), 159–172.; For why trust is important in research, see also: Gray, B., Hilder, J., Macdonald, L., Tester, R., Dowell, A., & Stubbe, M. (2017). Are research ethics guidelines culturally competent?  Research Ethics ,  13 (1), 23-41.  https://doi.org/10.1177/1747016116650235

[52] The Qur'an  (M. Khattab, Trans.). (1965). Al-Mu’minun, 23: 12-14. https://quran.com/23

[53] Lenfest, Y. (2017, December 8). Islam and the beginning of human life . Bill of Health. https://blog.petrieflom.law.harvard.edu/2017/12/08/islam-and-the-beginning-of-human-life/

[54] Aksoy, S. (2005). Making regulations and drawing up legislation in Islamic countries under conditions of uncertainty, with special reference to embryonic stem cell research. Journal of Medical Ethics , 31: 399-403.; see also: Mahmoud, Azza. "Islamic Bioethics: National Regulations and Guidelines of Human Stem Cell Research in the Muslim World." Master's thesis, Chapman University, 2022. https://doi.org/10.36837/ chapman.000386

[55] Rashid, R. (2022). When does Ensoulment occur in the Human Foetus. Journal of the British Islamic Medical Association , 12 (4). ISSN 2634 8071. https://www.jbima.com/wp-content/uploads/2023/01/2-Ethics-3_-Ensoulment_Rafaqat.pdf.

[56] Sivaraman, M. & Noor, S. (2017). Ethics of embryonic stem cell research according to Buddhist, Hindu, Catholic, and Islamic religions: perspective from Malaysia. Asian Biomedicine,8(1) 43-52.  https://doi.org/10.5372/1905-7415.0801.260

[57] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[58] Lecso, P. A. (1991). The Bodhisattva Ideal and Organ Transplantation.  Journal of Religion and Health ,  30 (1), 35–41. http://www.jstor.org/stable/27510629 ; Bodhisattva, S. (n.d.). The Key of Becoming a Bodhisattva . A Guide to the Bodhisattva Way of Life. http://www.buddhism.org/Sutras/2/BodhisattvaWay.htm

[59] There is no explicit religious reference to when life begins or how to conduct research that interacts with the concept of life. However, these are relevant verses pertaining to how the fetus is viewed. (( King James Bible . (1999). Oxford University Press. (original work published 1769))

Jerimiah 1: 5 “Before I formed thee in the belly I knew thee; and before thou camest forth out of the womb I sanctified thee…”

In prophet Jerimiah’s insight, God set him apart as a person known before childbirth, a theme carried within the Psalm of David.

Psalm 139: 13-14 “…Thou hast covered me in my mother's womb. I will praise thee; for I am fearfully and wonderfully made…”

These verses demonstrate David’s respect for God as an entity that would know of all man’s thoughts and doings even before birth.

[60] It should be noted that abortion is not supported as well.

[61] The Vatican. (1987, February 22). Instruction on Respect for Human Life in Its Origin and on the Dignity of Procreation Replies to Certain Questions of the Day . Congregation For the Doctrine of the Faith. https://www.vatican.va/roman_curia/congregations/cfaith/documents/rc_con_cfaith_doc_19870222_respect-for-human-life_en.html

[62] The Vatican. (2000, August 25). Declaration On the Production and the Scientific and Therapeutic Use of Human Embryonic Stem Cells . Pontifical Academy for Life. https://www.vatican.va/roman_curia/pontifical_academies/acdlife/documents/rc_pa_acdlife_doc_20000824_cellule-staminali_en.html ; Ohara, N. (2003). Ethical Consideration of Experimentation Using Living Human Embryos: The Catholic Church’s Position on Human Embryonic Stem Cell Research and Human Cloning. Department of Obstetrics and Gynecology . Retrieved from https://article.imrpress.com/journal/CEOG/30/2-3/pii/2003018/77-81.pdf.

[63] Smith, G. A. (2022, May 23). Like Americans overall, Catholics vary in their abortion views, with regular mass attenders most opposed . Pew Research Center. https://www.pewresearch.org/short-reads/2022/05/23/like-americans-overall-catholics-vary-in-their-abortion-views-with-regular-mass-attenders-most-opposed/

[64] Rosner, F., & Reichman, E. (2002). Embryonic stem cell research in Jewish law. Journal of halacha and contemporary society , (43), 49–68.; Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[65] Schenker J. G. (2008). The beginning of human life: status of embryo. Perspectives in Halakha (Jewish Religious Law).  Journal of assisted reproduction and genetics ,  25 (6), 271–276. https://doi.org/10.1007/s10815-008-9221-6

[66] Ruttenberg, D. (2020, May 5). The Torah of Abortion Justice (annotated source sheet) . Sefaria. https://www.sefaria.org/sheets/234926.7?lang=bi&with=all&lang2=en

[67] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[68] Gert, B. (2007). Common morality: Deciding what to do . Oxford Univ. Press.

[69] World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA , 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 Declaration of Helsinki – WMA – The World Medical Association .; see also: National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. (1979).  The Belmont report: Ethical principles and guidelines for the protection of human subjects of research . U.S. Department of Health and Human Services.  https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html

[70] Zakarin Safier, L., Gumer, A., Kline, M., Egli, D., & Sauer, M. V. (2018). Compensating human subjects providing oocytes for stem cell research: 9-year experience and outcomes.  Journal of assisted reproduction and genetics ,  35 (7), 1219–1225. https://doi.org/10.1007/s10815-018-1171-z https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063839/ see also: Riordan, N. H., & Paz Rodríguez, J. (2021). Addressing concerns regarding associated costs, transparency, and integrity of research in recent stem cell trial. Stem Cells Translational Medicine , 10 (12), 1715–1716. https://doi.org/10.1002/sctm.21-0234

[71] Klitzman, R., & Sauer, M. V. (2009). Payment of egg donors in stem cell research in the USA.  Reproductive biomedicine online ,  18 (5), 603–608. https://doi.org/10.1016/s1472-6483(10)60002-8

[72] Krosin, M. T., Klitzman, R., Levin, B., Cheng, J., & Ranney, M. L. (2006). Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa.  Clinical trials (London, England) ,  3 (3), 306–313. https://doi.org/10.1191/1740774506cn150oa

[73] Veatch, Robert M.  Hippocratic, Religious, and Secular Medical Ethics: The Points of Conflict . Georgetown University Press, 2012.

[74] Msoroka, M. S., & Amundsen, D. (2018). One size fits not quite all: Universal research ethics with diversity.  Research Ethics ,  14 (3), 1-17.  https://doi.org/10.1177/1747016117739939

[75] Pirzada, N. (2022). The Expansion of Turkey’s Medical Tourism Industry.  Voices in Bioethics ,  8 . https://doi.org/10.52214/vib.v8i.9894

[76] Stem Cell Tourism: False Hope for Real Money . Harvard Stem Cell Institute (HSCI). (2023). https://hsci.harvard.edu/stem-cell-tourism , See also: Bissassar, M. (2017). Transnational Stem Cell Tourism: An ethical analysis.  Voices in Bioethics ,  3 . https://doi.org/10.7916/vib.v3i.6027

[77] Song, P. (2011) The proliferation of stem cell therapies in post-Mao China: problematizing ethical regulation,  New Genetics and Society , 30:2, 141-153, DOI:  10.1080/14636778.2011.574375

[78] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[79] International Society for Stem Cell Research. (2024). Standards in stem cell research . International Society for Stem Cell Research. https://www.isscr.org/guidelines/5-standards-in-stem-cell-research

[80] Benjamin, R. (2013). People’s science bodies and rights on the Stem Cell Frontier . Stanford University Press.

Mifrah Hayath

SM Candidate Harvard Medical School, MS Biotechnology Johns Hopkins University

Olivia Bowers

MS Bioethics Columbia University (Disclosure: affiliated with Voices in Bioethics)

Article Details

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License .

IMAGES

  1. Types of Research Report

    different parts of a research report

  2. Parts Of A College Research Paper

    different parts of a research report

  3. PPT

    different parts of a research report

  4. Anatomy of a Scientific Research Paper

    different parts of a research report

  5. Research Paper: Definition, Structure, Characteristics, and Types

    different parts of a research report

  6. Types of research papers

    different parts of a research report

VIDEO

  1. Components of research Report

  2. Research Proposal Components: The Basics

  3. Expert Tips for WRITING an EXCELLENT Research Methodology

  4. 3.Three type of main Research in education

  5. Seven Types of Articles: Communications, Highlight, Letter, Reviews, Perspectives

  6. Report Writing

COMMENTS

  1. Research Report

    Thesis. Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master's or Doctoral degree, although it ...

  2. Research Report: Definition, Types + [Writing Guide]

    A research report is a well-crafted document that outlines the processes, data, and findings of a systematic investigation. It is an important document that serves as a first-hand account of the research process, and it is typically considered an objective and accurate source of information.

  3. Research Paper Structure

    A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1 Many will also contain Figures and Tables and some will have an Appendix or Appendices. These sections are detailed as follows (for a more in ...

  4. How to Write a Research Paper: Parts of the Paper

    1. The Title. The title should be specific and indicate the theme of the research and what ideas it addresses. Use keywords that help explain your paper's topic to the reader. Try to avoid abbreviations and jargon. Think about keywords that people would use to search for your paper and include them in your title. 2.

  5. Chapter 6: Components of a Research Report

    What are the implications of the findings? The research report contains four main areas: Introduction - What is the issue? What is known? What is not known? What are you trying to find out? This sections ends with the purpose and specific aims of the study. Methods - The recipe for the study. If someone wanted to perform the same study ...

  6. Research reports

    An outline of the research questions and hypotheses; the assumptions or propositions that your research will test. Literature Review. Not all research reports have a separate literature review section. In shorter research reports, the review is usually part of the Introduction. A literature review is a critical survey of recent relevant ...

  7. Writing a Research Report

    There are five MAJOR parts of a Research Report: 1. Introduction 2. Review of Literature 3. Methods 4. Results 5. Discussion. As a general guide, the Introduction, Review of Literature, and Methods should be about 1/3 of your paper, Discussion 1/3, then Results 1/3. Section 1: Cover Sheet (APA format cover sheet) optional, if required.

  8. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  9. Parts of the paper

    Different sections are needed in different types of scientific papers (lab reports, literature reviews, systematic reviews, methods papers, research papers, etc.). Projects that overlap with the social sciences or humanities may have different requirements. Generally, however, you'll need to include: TITLE. ABSTRACT. INTRODUCTION (Background)

  10. PDF Writing a Research Report

    Use the section headings (outlined above) to assist with your rough plan. Write a thesis statement that clarifies the overall purpose of your report. Jot down anything you already know about the topic in the relevant sections. 3 Do the Research. Steps 1 and 2 will guide your research for this report.

  11. Writing an Educational Research Paper

    Content aside, the writing style and presentation of papers in different educational fields vary greatly. Nevertheless, certain parts are common to most papers, for example: Title/Cover Page. Contains the paper's title, the author's name, address, phone number, e-mail, and the day's date. Abstract. Not every education paper requires an abstract.

  12. PDF How to Write an Effective Research REport

    Abstract. This guide for writers of research reports consists of practical suggestions for writing a report that is clear, concise, readable, and understandable. It includes suggestions for terminology and notation and for writing each section of the report—introduction, method, results, and discussion. Much of the guide consists of ...

  13. Writing up a Research Report

    If the assignment is a 2000-word essay, the introduction should be between 160 and 200 words, while a 3500-word report should be between 290 and 350 words. There is no absolute rule for the length. Be as reasonable about it as you can. The introduction contains the relevant background of the problem.

  14. Research Guides: Structure of a Research Paper : Home

    II. Abstract: "Structured abstract" has become the standard for research papers (introduction, objective, methods, results and conclusions), while reviews, case reports and other articles have non-structured abstracts. The abstract should be a summary/synopsis of the paper. III. Introduction: The "why did you do the study"; setting the ...

  15. Writing a Research Report in American Psychological Association (APA

    At the end of this section is a sample APA-style research report that illustrates many of these principles. Sections of a Research Report Title Page and Abstract. An APA-style research report begins with a title page. The title is centred in the upper half of the page, with each important word capitalized.

  16. Scientific Reports

    This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach this writing situation ...

  17. Research Report: Definition, Types, Guide

    A description of the research method used, e.g., qualitative, quantitative, or other. Statistical analysis. Causal (or explanatory) research (i.e., research identifying relationships between two variables) Inductive research, also known as 'theory-building'. Deductive research, such as that used to test theories.

  18. Everything You Need to Know about the Parts of a Research Paper

    Here's a breakdown of some common types of research papers: Analytical Papers. Focus: Dissect a complex subject, text, or phenomenon to understand its parts, implications, or underlying meanings. Structure: Emphasizes a clear thesis statement, systematic analysis, and in-depth exploration of different perspectives.

  19. Research Reports: Definition and How to Write Them

    Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods. A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony ...

  20. PDF Parts of a Research Paper

    provides a synopsis by introducing the subject and the specific research question, providing a statement regarding methodology and giving a general statement about the results and the findings. Abstract and body content will vary with a report of an empirical study having different abstract elements than a meta-analysis, theory-oriented paper ...

  21. Parts of a Research Paper

    Method. This should be the easiest part of the paper to write, as it is a run-down of the exact design and methodology used to perform the research. Obviously, the exact methodology varies depending upon the exact field and type of experiment.. There is a big methodological difference between the apparatus based research of the physical sciences and the methods and observation methods of ...

  22. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  23. Parts of a Research Paper

    The different parts of a research paper have been established to provide a structure that can be consistently used to make your research projects easier, as well as helping you follow the proper scientific methodology. This will help guide your writing process so you can focus on key elements one at a time. It will also provide a valuable ...

  24. Writing a Research Paper Introduction

    Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  25. Major Parts of a Research Paper & How to Write Them

    The basic parts to a research paper are the introduction, method, results, discussion, and conclusion. However, a research paper can include other parts like the abstract, discussion, and reference list. Although a student can be writing on a single topic, each part of research paper requires specific information.

  26. Structuring your report

    Report writing. The structure of a report has a key role to play in communicating information and enabling the reader to find the information they want quickly and easily. Each section of a report has a different role to play and a writing style suited to that role. Therefore, it is important to understand what your audience is expecting in ...

  27. Report Writing Format with Templates and Sample Report

    5. Research Report. Sometimes if you need to do some in-depth research, the best way to present that information is with a research report. Whether it's scientific findings, data and statistics from a study, etc., a research report is a great way to share your results. For the visuals in your research report, Visme offers millions of free stock ...

  28. Cubic millimetre of brain mapped in spectacular detail

    The 3D map covers a volume of about one cubic millimetre, one-millionth of a whole brain, and contains roughly 57,000 cells and 150 million synapses — the connections between neurons. It ...

  29. Cultural Relativity and Acceptance of Embryonic Stem Cell Research

    Stem cells, characterized by their unique ability to differentiate into various cell types, enable the repair or replacement of damaged tissues. Two primary types of stem cells are somatic stem cells (adult stem cells) and embryonic stem cells. Adult stem cells exist in developed tissues and maintain the body's repair processes. [1]