We apologize for the inconvenience...
To ensure we keep this website safe, please can you confirm you are a human by ticking the box below.
If you are unable to complete the above request please contact us using the below link, providing a screenshot of your experience.
https://ioppublishing.org/contacts/
Time-dependent quantum transport theory from non-equilibrium Green’s function approach
- Published: 17 May 2013
- Volume 12 , pages 343–355, ( 2013 )
Cite this article
- Jian Wang 1
1322 Accesses
14 Citations
3 Altmetric
Explore all metrics
Current conserving and gauge invariant conditions are two fundamental requirements for ac quantum transport. These two conditions are satisfied by including the displacement current. Three different approaches can achieve this goal: (1) To consider Coulomb interaction implicitly by partitioning the total displacement current into each leads. (2) To include self-consistent Coulomb interaction explicitly into the Hamiltonian and calculate the conduction current only. (3) To consider the displacement current on the operator level. In this article, we will give a review on these approaches based on non-equilibrium Green’s function (NEGF) method. For the first principles atomistic modeling of quantum transport properties, one can carry out the density functional theory (DFT) calculation within the NEGF framework. This NEGF-DFT method has the capability of quantum transport modeling with accurate descriptions of the electronic structure for a wide range of semiconductors, oxides and metals. We will review the current status of this method and its application to molecular junctions in ac regime.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save.
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Price includes VAT (Russian Federation)
Instant access to the full article PDF.
Rent this article via DeepDyve
Institutional subscriptions
Similar content being viewed by others
Green’s function investigation of quantum transport and current patterns in 2d electronic system under spatially modulated magnetic fields.
Electron and Phonon Transport Simulation for Quantum Hybrid System
Nonequilibrium Green’s Functions in the Atomic Representation and the Problem of Quantum Transport of Electrons Through Systems With Internal Degrees of Freedom
Pieper, J.B., Price, J.C.: Phys. Rev. Lett. 72 , 3586 (1994)
Article Google Scholar
Webb, R.A., Washburn, S., Umbach, C.P.: Phys. Rev. B 37 , 8455 (1988)
de Vegvar, P.G.N., Timp, G., Mankiewich, P.M., Cunningham, J.E., Behringer, R., Howard, R.E.: Phys. Rev. B 38 , 4326 (1988)
Chen, W., Smith, T.P. III, Büttiker, M.: Phys. Rev. Lett. 73 , 146 (1994)
Oosterkamp, T.H., et al.: Phys. Rev. Lett. 78 , 1536 (1997)
Gabelli, J., Fève, G., Berroir, J.-M., Placais, B., Cavanna, A., Etienne, B., Jin, Y., Glattli, D.C.: Science 313 , 499 (2006)
Feve, G., et al.: Science 316 , 1169 (2007)
Gabelli, J., et al.: Phys. Rev. Lett. 98 , 166806 (2007)
Flindt, C., Fricke, C., Hohls, F., Novotny, T., Netocny, K., Brandes, T., Haug, R.J.: Proc. Natl. Acad. Sci. USA 106 , 10116 (2009)
Büttiker, M., Prêtre, A., Thomas, H.: Phys. Rev. Lett. 70 , 4114 (1993)
Büttiker, M.: J. Phys. Condens. Matter 5 , 9361 (1993)
Wingreen, N.S., Jauho, A.P., Meir, Y.: Phys. Rev. B 48 , 8487 (1993)
Ng, T.K.: Phys. Rev. Lett. 76 , 487 (1996)
Ivanov, T.: J. Phys. Condens. Matter 8 , 3427 (1996)
Jauho, A.P., Wingreen, N.S., Meir, Y.: Phys. Rev. B 50 , 5528 (1994)
Pastawski, H.M.: Phys. Rev. B 46 , 4053 (1992)
Anantram, M.P., Datta, S.: Phys. Rev. B 51 , 7632 (1995)
Chen, L.Y., Ting, C.S.: Phys. Rev. Lett. 64 , 3159 (1990)
Hettler, M.H., Schoeller, H.: Phys. Rev. Lett. 74 , 4907 (1995)
Moskalets, M., Samuelsson, P., Büttiker, M.: Phys. Rev. Lett. 100 , 086601 (2008)
Albert, M., Flindt, C., Büttiker, M.: Phys. Rev. Lett. 107 , 086805 (2011)
Stone, A.D., Azbel, M.Ya., Lee, P.A.: Phys. Rev. B 31 , 1707 (1985)
Johansson, P.: Phys. Rev. B 41 , 9892 (1990)
Kwapinski, T., Taranko, R., Taranko, E.: Phys. Rev. B 66 , 035315 (2002)
Kwapinski, T.: Phys. Rev. B 69 , 153303 (2004)
Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1998)
Google Scholar
Büttiker, M.: J. Math. Phys. 37 , 4793 (1996)
Article MathSciNet MATH Google Scholar
Moskalets, M., Büttiker, M.: Phys. Rev. B 66 , 205320 (2002)
Moskalets, M., Büttiker, M.: Phys. Rev. B 69 , 205316 (2004)
Baranger, H.U., Stone, A.D.: Phys. Rev. B 40 , 8169 (1989)
Stone, A.D., Szafer, A.: IBM J. Res. Dev. 32 , 384 (1988)
Ma, Z.S., Wang, J., Guo, H.: Phys. Rev. B 59 , 7575 (1999)
Kohler, S., Lehmann, J., Hanggi, P.: Phys. Rep. 406 , 379 (2005)
Foa Torres, L.E.F., Cuniberti, G.: C. R. Phys. 10 , 297 (2009)
Li, X.Q., Yan, Y.J.: Phys. Rev. B 75 , 075114 (2007)
Chen, L.Y., Ting, C.S.: Phys. Rev. B 41 , 8533 (1990)
Frensley, W.R.: Phys. Rev. B 36 , 1570 (1987)
Anders, F.B., Schiller, A.: Phys. Rev. Lett. 95 , 196801 (2005)
Stefanucci, G., Almbladh, C.-O.: Europhys. Lett. 67 , 14 (2004)
Stefanucci, G., Almbladh, C.-O.: Phys. Rev. B 69 , 195318 (2004)
Bushong, N., Sai, N., Di Ventra, M.: Nano Lett. 5 , 2569 (2005)
Runge, E., Gross, E.K.U.: Phys. Rev. Lett. 52 , 997 (1984)
Plihal, M., Langreth, D.C., Nordlander, P.: Phys. Rev. B 61 , R13341 (2000)
Schiller, A., Hershfield, S.: Phys. Rev. B 62 , R16271 (2000)
Xing, Y.X., Sun, Q.F., Wang, J.: Phys. Rev. B 75 , 125308 (2007)
Zhu, Y., Maciejko, J., Ji, T., Guo, H., Wang, J.: Phys. Rev. B 71 , 075317 (2005)
Maciejko, J., Wang, J., Guo, H.: Phys. Rev. B 74 , 085324 (2006)
Caroli, C., Combescot, R., Nozeres, P., Saint-James, D.: J. Phys. C 4 , 916 (1971)
Caroli, C., Combescot, R., Lederer, D., Nozeres, P., Saint-James, D.: J. Phys. C 4 , 2598 (1971)
Taylor, J., Guo, H., Wang, J.: Phys. Rev. B 63 , 245407 (2001)
Taylor, J., Guo, H., Wang, J.: Phys. Rev. B 63 , 121104 (2001)
Brandbyge, M., et al.: Phys. Rev. B 65 , 165401 (2002)
Xue, Y., Datta, S., Ratner, M.A.: Chem. Phys. 281 , 151 (2002)
Cini, M.: Phys. Rev. B 22 , 5887 (1980)
Kurth, S., Stefanucci, G., Almbladh, C.-O., Rubio, A., Gross, E.K.U.: Phys. Rev. B 72 , 035308 (2005)
Wang, B., Xing, Y.X., Zhang, L., Wang, J.: Phys. Rev. B 81 , 121103(R) (2010)
Xing, Y.X., Wang, B., Wang, J.: Phys. Rev. B 82 , 205112 (2010)
Article MathSciNet Google Scholar
Stefanucci, G., Kurth, S., Rubio, A., Gross, E.K.U.: Phys. Rev. B 77 , 075339 (2008)
Landauer, R.: IBM J. Res. Dev. 1 , 233 (1957)
Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Phys. Rev. B 31 , 6207 (1985)
Büttiker, M.: Nuovo Cimento B 110 , 509 (1995)
Blanter, Ya.M., Hekking, F.W.J., Büttiker, M.: Phys. Rev. Lett. 81 , 1925 (1998)
Blanter, Ya.M., Büttiker, M.: Europhys. Lett. 42 , 535 (1998)
Büttiker, M., Christen, T.: In: Kramer, B. (ed.) Quantum Transport in Semiconductor Submicron Structures, p. 263. Kluwer Academic, Dordrecht (1996). See for a review
Chapter Google Scholar
Mahan, G.D.: Phys. Rep. 145 , 251 (1987)
Wang, B.G., Wang, J., Guo, H.: Phys. Rev. Lett. 82 , 398 (1999)
Wei, Y.D., Wang, J.: Phys. Rev. B 79 , 195315 (2009)
Pedersen, M.H., van Langen, S.A., Büttiker, M.: Phys. Rev. B 57 , 1838 (1998)
Wang, Y., Wang, J.: (2013). Unpublished
Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics, p. 21. Benjamin, London (1962)
MATH Google Scholar
Fisher, D.S., Lee, P.A.: Phys. Rev. B 23 , 6851 (1981)
Ratner, M.A.: Mater. Today 5 , 20 (2002)
Joachim, C., et al.: Nature 408 , 541 (2000)
Heath, J.R., Ratner, M.A.: Phys. Today 56 , 43 (2003)
Nitzan, A., Ratner, M.A.: Science 300 , 1384 (2003)
Manoharan, H.C., et al.: Nature 413 , 513 (2000)
Iijima, S.: Nature 354 , 56 (1991)
Collier, C.P., et al.: Science 285 , 391 (1999)
Collier, C.P., et al.: Science 289 , 1172 (2000)
Chen, J., et al.: Science 286 , 1550 (1999)
Gimzewski, J.K., Joachim, C.: Science 283 , 1683 (1999)
Rueckes, T., et al.: Science 289 , 94 (2000)
Tans, S.J., et al.: Nature 393 , 49 (1998)
Wildoeer, J.W.G., et al.: Nature 391 , 59 (1998)
Darnle, P.S., et al.: Phys. Rev. B 64 , 201403 (2001)
Louis, E., et al.: Phys. Rev. B 67 , 155321 (2003)
Wang, B.G., Wang, J., Guo, H.: J. Appl. Phys. 86 , 5094 (1999)
Sergueev, N., Roubtsov, D., Guo, H.: Phys. Rev. Lett. 95 , 146803 (2005)
Waldron, D., Haney, P., Larade, B., MacDonald, A., Guo, H.: Phys. Rev. Lett. 96 , 166804 (2006)
Waldron, D., Timoshevskii, V., Hu, Y.B., Xia, K., Guo, H.: Phys. Rev. Lett. 97 , 226802 (2006)
Ning, Z.Y., Zhu, Y., Wang, J., Guo, H.: Phys. Rev. Lett. 100 , 056803 (2008)
Jia, X.T., Xia, K., Ke, Y.Q., Guo, H.: Phys. Rev. B 84 , 014401 (2011)
Zhao, Y.H., Hu, Y.B., Liu, L., Zhu, Y., Guo, H.: Nano Lett. 11 , 2088 (2011)
Ke, Y., Xia, K., Guo, H.: Phys. Rev. Lett. 105 , 236801 (2010)
Zahid, F., Ke, Y.Q., Gall, D., Guo, H.: Phys. Rev. B 81 , 045406 (2010)
Tran, F., Blaha, P.: Phys. Rev. Lett. 102 , 226401 (2009)
Maassen, J., Guo, H.: Phys. Rev. Lett. 109 , 266803 (2012)
Kaun, C.C., Guo, H.: Nano Lett. 3 , 1521 (2003)
Zahid, F., Zhang, L.N., Chan, M.S., Wang, J., Guo, H., Chan, P.: (2013, preprint)
Roland, C., Buongiorno Nardelli, M., Wang, J., Guo, H.: Phys. Rev. Lett. 84 , 2921 (2000)
Wei, Y.D., Wang, J., Guo, H., Roland, C.: Phys. Rev. B 64 , 115321 (2001)
Wei, Y.D., Wang, J.: Phys. Rev. B 66 , 195419 (2002)
Wei, Y.D., Wan, L.H., Wang, B.G., Wang, J.: Phys. Rev. B 70 , 045418 (2004)
Yu, Y.J., Wei, Y.D., Wang, J.: New J. Phys. 8 , 73 (2006)
Foa Torres, L.E.F., Calvo, H.L., Rocha, C.G., Cuniberti, G.: Appl. Phys. Lett. 99 , 092102 (2011)
Calvo, H.L., Pastawski, H.M., Roche, S., Foa Torres, L.E.F.: Appl. Phys. Lett. 98 , 232103 (2011)
Calvo, H.L., Perez-Piskunow, P.M., Roche, S., Foa Torres, L.E.F.: Appl. Phys. Lett. 101 , 253506 (2012)
Prada, E., San-Jose, P., Schomerus, H.: Phys. Rev. B 80 , 245414 (2009)
San-Jose, P., Prada, E., Kohler, S., Schomerus, H.: Phys. Rev. B 84 , 155408 (2011)
Alos-Palop, M., Blaauboer, M.: Phys. Rev. B 84 , 073402 (2011)
Wu, J.L., Wang, B.G., Wang, J., Guo, H.: Phys. Rev. B 72 , 195324 (2005)
Wang, B., Yu, Y.J., Zhang, L., Wei, Y.D., Wang, J.: Phys. Rev. B 79 , 155117 (2009)
Zhuang, J.N., Zhang, L., Wang, J.: AIP Adv. 1 , 042180 (2011)
Zhang, L., Wang, B., Wang, J.: Phys. Rev. B 86 , 165431 (2012)
Yam, C.Y., Mo, Y., Wang, F., Li, X.B., Chen, G.H., Zheng, X., Matsuda, Y.K., Tahir-Kheli, J., Goddard, W.A. III: Nanotechnology 19 , 495203 (2008)
Smith, T.P., Goldberg, B.B., Stiles, P.J., Heiblum, M.: Phys. Rev. B 32 , 2696 (1985)
Smith, T.P.S. III, Wang, W.I.: Phys. Rev. B 34 , 2995 (1986)
Stern, F.: Appl. Phys. Lett. 43 , 974 (1983)
Stern, F.: Phys. Rev. B 5 , 4891 (1972)
Luryi, S.: Appl. Phys. Lett. 52 (6), 501 (1988)
Büttiker, M., Thomas, H., Prêtre, A.: Phys. Lett. A 180 , 364 (1993)
Christen, T., Büttiker, M.: Phys. Rev. Lett. 77 , 143 (1996)
Zhao, X.A., Wang, J., Guo, H.: Phys. Rev. B 60 , 16730 (1999)
Wang, J., Guo, H., Mozos, J.L., Wan, C.C., Taraschi, G., Zheng, Q.R.: Phys. Rev. Lett. 80 , 4277 (1998)
Hou, J.G., et al.: Phys. Rev. Lett. 86 , 5321 (2001)
Pomorski, P., Roland, C., Guo, H., Wang, J.: Phys. Rev. B 67 , 161404 (2003)
Yang, Z.J., Wan, L.H., Yu, Y.J., Wei, Y.D., Wang, J.: J. Appl. Phys. 108 , 033704 (2010)
Nigg, S.E., López, R., Büttiker, M.: Phys. Rev. Lett. 97 , 206804 (2006)
Wang, B., Wang, J.: Phys. Rev. B 77 , 245309 (2008)
Gasparian, V., Christen, T., Büttiker, M.: Phys. Rev. A 54 , 4022 (1996)
Miyamoto, Y., Rubio, A., Blase, X., Cohen, M.L., Louie, S.G.: Phys. Rev. Lett. 74 , 2993 (1995)
Miyamoto, Y.: Phys. Rev. B 54 , R11149 (1996)
Lambert, C.J., Bailey, S.W.D., Cserti, J.: Phys. Rev. B 78 , 233405 (2008)
Wang, B., Chu, R.L., Wang, J., Guo, H.: Phys. Rev. B 80 , 235430 (2009)
Hamann, D.R., Schlüter, M., Chiang, C.: Phys. Rev. Lett. 43 , 1494 (1979)
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Phys. Rev. B 46 , 6671 (1992)
Li, C.S., Wan, L.H., Wei, Y.D., Wang, J.: Nanotechnology 19 , 155401 (2008)
Zhang, L., Wang, B., Wang, J.: Phys. Rev. B 84 , 115412 (2011)
Stefanucci, G., Kurth, S., Gross, E.K.U., Rubio, A.: Theor. Comput. Chem. 17 , 247 (2007)
Zheng, X., Wang, F., Yam, C.Y., Mo, Y., Chen, G.H.: Phys. Rev. B 75 , 195127 (2007)
Mo, Y., Zheng, X., Chen, G.H., Yan, Y.J.: J. Phys. Condens. Matter 21 , 355301 (2009)
Zhou, Z.Y., Chu, S.I.: Europhys. Lett. 88 , 17008 (2009)
Zhang, L., Xing, Y.X., Wang, J.: Phys. Rev. B 86 , 155438 (2012)
Ke, S.H., Liu, R., Yang, W.T., Baranger, H.U.: J. Chem. Phys. 132 , 234105 (2010)
Kosloff, R., Kosloff, D.: J. Comput. Phys. 63 , 363 (1986)
Henderson, T.M., et al.: J. Chem. Phys. 125 , 244104 (2006)
Driscoll, J.A., Varga, K.: Phys. Rev. B 78 , 245118 (2008)
Varga, K.: Phys. Rev. B 83 , 195130 (2011)
Zhang, L., Chen, J., Wang, J.: Phys. Rev. B 87 , 205401 (2013)
Chen, Y.C., Di Ventra, M.: Phys. Rev. B 67 , 153304 (2003)
Yao, J., Chen, Y.-C., Di Ventra, M., Yang, Z.Q.: Phys. Rev. B 73 , 233407 (2006)
Wang, B., Wang, J.: Phys. Rev. B 84 , 165401 (2011)
Feng, Z.M., Maciejko, J., Wang, J., Guo, H.: Phys. Rev. B 77 , 075302 (2008)
Wang, B., Wei, Y.D., Wang, J.: Phys. Rev. B 86 , 035414 (2012)
Winkelmann, C.B., Roch, N., Wernsdorfer, W., Bouchiat, V., Balestro, F.: Nat. Phys. 5 , 876 (2009)
Download references
Acknowledgements
We gratefully acknowledge the support from Research Grant Council (HKU 705611P) and University Grant Council (Contract No. AoE/P-04/08) of the Government of HKSAR.
Author information
Authors and affiliations.
Department of Physics and the Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Jian Wang .
Rights and permissions
Reprints and permissions
About this article
Wang, J. Time-dependent quantum transport theory from non-equilibrium Green’s function approach. J Comput Electron 12 , 343–355 (2013). https://doi.org/10.1007/s10825-013-0465-8
Download citation
Published : 17 May 2013
Issue Date : September 2013
DOI : https://doi.org/10.1007/s10825-013-0465-8
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Non-equilibrium Green’s function
- Ac quantum transport
- Density functional theory
- Current conservation
- Find a journal
- Publish with us
- Track your research
IMAGES
VIDEO
COMMENTS
The Green function methods for quantum many-body systems were mainly developed in the 1950's and early 60's. Before plunging into the formalism we brie y summarize some main motivations behind this development. 1.1 Connection to experiments Here we will be very sketchy. Consider an experiment in which one exposes the system to
of the general formalism of the N-particle Green function [6]. However, in the practical point of view, in order to calculate such N-particle Green functions one needs to introduce appropriate approximations, which usually lead to the appearance of many novel correlation functions. In 1961, Kadanoff and Baym discussed some fundamental aspects in
In this thesis, Green's function methods are developed to solve several different physical problems. The Green's function is an important feature of linear differential operators. Computing and utilizing the Green's function is a popular method to solving many problems that are related to linear differential equations.
In this paper, we describe some of the applications of Green's function in sciences, to determine the importance of this function. i.e. Boundary and Initial Value problem, Wave Equation, Kirchhoff ...
We consider some non-linear non-homogeneous partial differential equations (PDEs) and derive their exact Green function solution as a functional Taylor expansion in powers of the source. The kind of PDEs we consider are dispersive ones where the exact solution of the corresponding homogeneous equations can have some known shape. The technique has a formal similarity with the Dyson-Schwinger ...
The Green function completely encapsulates a system's linear response to external sources, and plays a central role in optics, electromagnetism, and acoustics. In electromagnetism, a broad range of phenomena are connected to the Green function, including the local density of optical states, superradiance, and the cooperative Lamb shift. ...
This thesis is structured as follows. In Chapter (2) we provide an extended background on the one-body Green's function: what is its mathematical formulation, the physical significance and which quantity it can give access to. We will then detail different approaches employed nowadays for Green's function calculations:
Green's function and inhomogeneous di erential equations (Wikipedia) George Green (14 July 1793 - 31 May 1841) was a British mathematical physicist who wrote An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism (Green, 1828). In mathematics, a Green's function is the impulse
A thesis submitted to the Faculty of Engineering and Physical Sciences of the University of Surrey for the degree of Doctor of Philosophy June 2019. Abstract This dissertation presents an ab initio investigation of modern nuclear Hamiltonians pre- ... self-consistent Green's function (SCGF) theory [14, 15, 16, 17].
The purpose of this chapter is to present a specific numerical application of Green’s functions in tight-binding structures. The numerical technique is conventionally called the recursive Green’s function method. It was first introduced by (1981) to study...
Master-Thesis January 2017 Supervised by Prof. Paolo Bientinesi, PhD Dr. Edoardo Di Napoli Dr. Urs Aeberhard. Alexander Sebastian Achilles: Distributed parallel non-equilibrium Green's ... Green's functions and the nested self-consistent loops. The model includes
This bachelor thesis is about investigating the properties of impurities in superconductors. By introducing tools like the Green's function method and with that the spectral function, it takes a look inside the superconductor, to see what happens to the density of states when a ected by said impurity. Further, it looks into which speci c
The Green's function method is recognized to be a very powerful tool for modelling quantum transport in nanoscale electronic devices. As atomistic calculations are generally expensive, numerical ...
Riemann later coined the "Green's function". In this chapter we will derive the initial value Green's function for ordinary differential equations. Later in the chapter we will return to boundary value Green's functions and Green's functions for partial differential equations. As a simple example, consider Poisson's equation, r2u ...
In this thesis, an overview of non-equilibrium Green's function (NEGF) technique is presented. The entire formulism is derived from the starting point of the defini ... Green's functions and self-consistent equations determining the state of the system are solved numerically. A phase diagram is presented as the result of competition be ...
Introduction and statement of the main results. The classical Green function of the operator −∆ with Dirichlet boundary conditions is defined by. −∆xG(x,y)=δy(x) G(x,y)=0. in Ω, on ∂Ω, where δy is the Dirac function centered at y and Ω. (1.1) is a bounded domain of IRn, It is well known that the Green function can be written as.
In this article, we will give a review on these approaches based on non-equilibrium Green's function (NEGF) method. For the first principles atomistic modeling of quantum transport properties, one can carry out the density functional theory (DFT) calculation within the NEGF framework. This NEGF-DFT method has the capability of quantum ...
Several authors have developed a discrete Green's function (GF) for steady diffusion. Bendito et al. [12] give a procedure for finding the steady discrete GF using graph theory for Dirichlet (type 1) boundary conditions for application to electric resistor networks. Zhang et al. [8] discuss discrete GF for diffusion in large data graphs for a social network application, and an approximate ...
That is, the Green's function for a domain Ω ‰ Rn is the function defined as G(x;y) = Φ(y ¡x)¡hx(y) x;y 2 Ω;x 6= y; where Φ is the fundamental solution of Laplace's equation and for each x 2 Ω, hx is a solution of (4.5). We leave it as an exercise to verify that G(x;y) satisfies (4.2) in the sense of distributions. Conclusion: If ...
tends to 0. The graph of the function µ is illustrated in Figure 2. Figure 2: Test functions with support in the interval [ξ − δ,ξ + δ] ⊂ [0,L]: The characteristic function of height 1 and a smooth test function of max height 1 are illustrated on the left. On the right these functions are normalized (i.e., scaled) to have R µ = 1.