example of hypothesis in marketing research

How to write a hypothesis for marketing experimentation

  • Apr 11, 2021
  • 5 minute read
  • Creating your strongest marketing hypothesis

The potential for your marketing improvement depends on the strength of your testing hypotheses.

But where are you getting your test ideas from? Have you been scouring competitor sites, or perhaps pulling from previous designs on your site? The web is full of ideas and you’re full of ideas – there is no shortage of inspiration, that’s for sure.

Coming up with something you  want  to test isn’t hard to do. Coming up with something you  should  test can be hard to do.

Hard – yes. Impossible? No. Which is good news, because if you can’t create hypotheses for things that should be tested, your test results won’t mean mean much, and you probably shouldn’t be spending your time testing.

Taking the time to write your hypotheses correctly will help you structure your ideas, get better results, and avoid wasting traffic on poor test designs.

With this post, we’re getting advanced with marketing hypotheses, showing you how to write and structure your hypotheses to gain both business results and marketing insights!

By the time you finish reading, you’ll be able to:

  • Distinguish a solid hypothesis from a time-waster, and
  • Structure your solid hypothesis to get results  and  insights

To make this whole experience a bit more tangible, let’s track a sample idea from…well…idea to hypothesis.

Let’s say you identified a call-to-action (CTA)* while browsing the web, and you were inspired to test something similar on your own lead generation landing page. You think it might work for your users! Your idea is:

“My page needs a new CTA.”

*A call-to-action is the point where you, as a marketer, ask your prospect to do something on your page. It often includes a button or link to an action like “Buy”, “Sign up”, or “Request a quote”.

The basics: The correct marketing hypothesis format

Level up: moving from a good to great hypothesis, it’s based on a science, building marketing hypotheses to create insights, what makes a great hypothesis.

A well-structured hypothesis provides insights whether it is proved, disproved, or results are inconclusive.

You should never phrase a marketing hypothesis as a question. It should be written as a statement that can be rejected or confirmed.

Further, it should be a statement geared toward revealing insights – with this in mind, it helps to imagine each statement followed by a  reason :

  • Changing _______ into ______ will increase [conversion goal], because:
  • Changing _______ into ______ will decrease [conversion goal], because:
  • Changing _______ into ______ will not affect [conversion goal], because:

Each of the above sentences ends with ‘because’ to set the expectation that there will be an explanation behind the results of whatever you’re testing.

It’s important to remember to plan ahead when you create a test, and think about explaining why the test turned out the way it did when the results come in.

Understanding what makes an idea worth testing is necessary for your optimization team.

If your tests are based on random ideas you googled or were suggested by a consultant, your testing process still has its training wheels on. Great hypotheses aren’t random. They’re based on rationale and aim for learning.

Hypotheses should be based on themes and analysis that show potential conversion barriers.

At Conversion, we call this investigation phase the “Explore Phase” where we use frameworks like the LIFT Model to understand the prospect’s unique perspective. (You can read more on the the full optimization process here).

A well-founded marketing hypothesis should also provide you with new, testable clues about your users regardless of whether or not the test wins, loses or yields inconclusive results.

These new insights should inform future testing: a solid hypothesis can help you quickly separate worthwhile ideas from the rest when planning follow-up tests.

“Ultimately, what matters most is that you have a hypothesis going into each experiment and you design each experiment to address that hypothesis.” – Nick So, VP of Delivery

Here’s a quick tip :

If you’re about to run a test that isn’t going to tell you anything new about your users and their motivations, it’s probably not worth investing your time in.

Let’s take this opportunity to refer back to your original idea:

Ok, but  what now ? To get actionable insights from ‘a new CTA’, you need to know why it behaved the way it did. You need to ask the right question.

To test the waters, maybe you changed the copy of the CTA button on your lead generation form from “Submit” to “Send demo request”. If this change leads to an increase in conversions, it could mean that your users require more clarity about what their information is being used for.

That’s a potential insight.

Based on this insight, you could follow up with another test that adds copy around the CTA about next steps: what the user should anticipate after they have submitted their information.

For example, will they be speaking to a specialist via email? Will something be waiting for them the next time they visit your site? You can test providing more information, and see if your users are interested in knowing it!

That’s the cool thing about a good hypothesis: the results of the test, while important (of course) aren’t the only component driving your future test ideas. The insights gleaned lead to further hypotheses and insights in a virtuous cycle.

The term “hypothesis” probably isn’t foreign to you. In fact, it may bring up memories of grade-school science class; it’s a critical part of the  scientific method .

The scientific method in testing follows a systematic routine that sets ideation up to predict the results of experiments via:

  • Collecting data and information through observation
  • Creating tentative descriptions of what is being observed
  • Forming  hypotheses  that predict different outcomes based on these observations
  • Testing your  hypotheses
  • Analyzing the data, drawing conclusions and insights from the results

Don’t worry! Hypothesizing may seem ‘sciency’, but it doesn’t have to be complicated in practice.

Hypothesizing simply helps ensure the results from your tests are quantifiable, and is necessary if you want to understand how the results reflect the change made in your test.

A strong marketing hypothesis allows testers to use a structured approach in order to discover what works, why it works, how it works, where it works, and who it works on.

“My page needs a new CTA.” Is this idea in its current state clear enough to help you understand what works? Maybe. Why it works? No. Where it works? Maybe. Who it works on? No.

Your idea needs refining.

Let’s pull back and take a broader look at the lead generation landing page we want to test.

Imagine the situation: you’ve been diligent in your data collection and you notice several recurrences of Clarity pain points – meaning that there are many unclear instances throughout the page’s messaging.

Rather than focusing on the CTA right off the bat, it may be more beneficial to deal with the bigger clarity issue.

Now you’re starting to think about solving your prospects conversion barriers rather than just testing random ideas!

If you believe the overall page is unclear, your overarching theme of inquiry might be positioned as:

  • “Improving the clarity of the page will reduce confusion and improve [conversion goal].”

By testing a hypothesis that supports this clarity theme, you can gain confidence in the validity of it as an actionable marketing insight over time.

If the test results are negative : It may not be worth investigating this motivational barrier any further on this page. In this case, you could return to the data and look at the other motivational barriers that might be affecting user behavior.

If the test results are positive : You might want to continue to refine the clarity of the page’s message with further testing.

Typically, a test will start with a broad idea — you identify the changes to make, predict how those changes will impact your conversion goal, and write it out as a broad theme as shown above. Then, repeated tests aimed at that theme will confirm or undermine the strength of the underlying insight.

You believe you’ve identified an overall problem on your landing page (there’s a problem with clarity). Now you want to understand how individual elements contribute to the problem, and the effect these individual elements have on your users.

It’s game time  – now you can start designing a hypothesis that will generate insights.

You believe your users need more clarity. You’re ready to dig deeper to find out if that’s true!

If a specific question needs answering, you should structure your test to make a single change. This isolation might ask: “What element are users most sensitive to when it comes to the lack of clarity?” and “What changes do I believe will support increasing clarity?”

At this point, you’ll want to boil down your overarching theme…

  • Improving the clarity of the page will reduce confusion and improve [conversion goal].

…into a quantifiable hypothesis that isolates key sections:

  • Changing the wording of this CTA to set expectations for users (from “submit” to “send demo request”) will reduce confusion about the next steps in the funnel and improve order completions.

Does this answer what works? Yes: changing the wording on your CTA.

Does this answer why it works? Yes: reducing confusion about the next steps in the funnel.

Does this answer where it works? Yes: on this page, before the user enters this theoretical funnel.

Does this answer who it works on? No, this question demands another isolation. You might structure your hypothesis more like this:

  • Changing the wording of the CTA to set expectations for users (from “submit” to “send demo request”) will reduce confusion  for visitors coming from my email campaign  about the next steps in the funnel and improve order completions.

Now we’ve got a clear hypothesis. And one worth testing!

1. It’s testable.

2. It addresses conversion barriers.

3. It aims at gaining marketing insights.

Let’s compare:

The original idea : “My page needs a new CTA.”

Following the hypothesis structure : “A new CTA on my page will increase [conversion goal]”

The first test implied a problem with clarity, provides a potential theme : “Improving the clarity of the page will reduce confusion and improve [conversion goal].”

The potential clarity theme leads to a new hypothesis : “Changing the wording of the CTA to set expectations for users (from “submit” to “send demo request”) will reduce confusion about the next steps in the funnel and improve order completions.”

Final refined hypothesis : “Changing the wording of the CTA to set expectations for users (from “submit” to “send demo request”) will reduce confusion for visitors coming from my email campaign about the next steps in the funnel and improve order completions.”

Which test would you rather your team invest in?

Before you start your next test, take the time to do a proper analysis of the page you want to focus on. Do preliminary testing to define bigger issues, and use that information to refine and pinpoint your marketing hypothesis to give you forward-looking insights.

Doing this will help you avoid time-wasting tests, and enable you to start getting some insights for your team to keep testing!

Share this post

Other articles you might like

example of hypothesis in marketing research

Mixed Methods Experimentation

example of hypothesis in marketing research

The Conversion Methodology: an internal training case study

example of hypothesis in marketing research

Why CRO should (probably) be a priority

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

example of hypothesis in marketing research

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Prevent plagiarism. Run a free check.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved September 4, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

example of hypothesis in marketing research

Expert Advice on Developing a Hypothesis for Marketing Experimentation 

  • Conversion Rate Optimization

Simbar Dube

Simbar Dube

Every marketing experimentation process has to have a solid hypothesis. 

That’s a must – unless you want to be roaming in the dark and heading towards a dead-end in your experimentation program.

Hypothesizing is the second phase of our SHIP optimization process here at Invesp.

example of hypothesis in marketing research

It comes after we have completed the research phase. 

This is an indication that we don’t just pull a hypothesis out of thin air. We always make sure that it is based on research data. 

But having a research-backed hypothesis doesn’t mean that the hypothesis will always be correct. In fact, tons of hypotheses bear inconclusive results or get disproved. 

The main idea of having a hypothesis in marketing experimentation is to help you gain insights – regardless of the testing outcome. 

By the time you finish reading this article, you’ll know: 

  • The essential tips on what to do when crafting a hypothesis for marketing experiments
  • How a marketing experiment hypothesis works 

How experts develop a solid hypothesis

The basics: marketing experimentation hypothesis.

A hypothesis is a research-based statement that aims to explain an observed trend and create a solution that will improve the result. This statement is an educated, testable prediction about what will happen.

It has to be stated in declarative form and not as a question.

“ If we add magnification info, product video and making virtual mirror buttons, will that improve engagement? ” is not declarative, but “ Improving the experience of product pages by adding magnification info, product video and making virtual mirror buttons will increase engagement ” is.

Here’s a quick example of how a hypothesis should be phrased: 

  • Replacing ___ with __ will increase [conversion goal] by [%], because:
  • Removing ___ and __ will decrease [conversion goal] by [%], because:
  • Changing ___ into __ will not affect [conversion goal], because:
  • Improving  ___ by  ___will increase [conversion goal], because: 

As you can see from the above sentences, a good hypothesis is written in clear and simple language. Reading your hypothesis should tell your team members exactly what you thought was going to happen in an experiment.

Another important element of a good hypothesis is that it defines the variables in easy-to-measure terms, like who the participants are, what changes during the testing, and what the effect of the changes will be: 

Example : Let’s say this is our hypothesis: 

Displaying full look items on every “continue shopping & view your bag” pop-up and highlighting the value of having a full look will improve the visibility of a full look, encourage visitors to add multiple items from the same look and that will increase the average order value, quantity with cross-selling by 3% .

Who are the participants : 

Visitors. 

What changes during the testing : 

Displaying full look items on every “continue shopping & view your bag” pop-up and highlighting the value of having a full look…

What the effect of the changes will be:  

Will improve the visibility of a full look, encourage visitors to add multiple items from the same look and that will increase the average order value, quantity with cross-selling by 3% .

Don’t bite off more than you can chew! Answering some scientific questions can involve more than one experiment, each with its own hypothesis. so, you have to make sure your hypothesis is a specific statement relating to a single experiment.

How a Marketing Experimentation Hypothesis Works

Assuming that you have done conversion research and you have identified a list of issues ( UX or conversion-related problems) and potential revenue opportunities on the site. The next thing you’d want to do is to prioritize the issues and determine which issues will most impact the bottom line.

Having ranked the issues you need to test them to determine which solution works best. At this point, you don’t have a clear solution for the problems identified. So, to get better results and avoid wasting traffic on poor test designs, you need to make sure that your testing plan is guided. 

This is where a hypothesis comes into play. 

For each and every problem you’re aiming to address, you need to craft a hypothesis for it – unless the problem is a technical issue that can be solved right away without the need to hypothesize or test. 

One important thing you should note about an experimentation hypothesis is that it can be implemented in different ways.  

example of hypothesis in marketing research

This means that one hypothesis can have four or five different tests as illustrated in the image above. Khalid Saleh , the Invesp CEO, explains: 

“There are several ways that can be used to support one single hypothesis. Each and every way is a possible test scenario. And that means you also have to prioritize the test design you want to start with. Ultimately the name of the game is you want to find the idea that has the biggest possible impact on the bottom line with the least amount of effort. We use almost 18 different metrics to score all of those.”

In one of the recent tests we launched after watching video recordings, viewing heatmaps, and conducting expert reviews, we noticed that:  

  • Visitors were scrolling to the bottom of the page to fill out a calculator so as to get a free diet plan. 
  • Brand is missing 
  • Too many free diet plans – and this made it hard for visitors to choose and understand.  
  • No value proposition on the page
  • The copy didn’t mention the benefits of the paid program
  • There was no clear CTA for the next action

To help you understand, let’s have a look at how the original page looked like before we worked on it: 

example of hypothesis in marketing research

So our aim was to make the shopping experience seamless for visitors, make the page more appealing and not confusing. In order to do that, here is how we phrased the hypothesis for the page above: 

Improving the experience of optin landing pages by making the free offer accessible above the fold and highlighting the next action with a clear CTA and will increase the engagement on the offer and increase the conversion rate by 1%.

For this particular hypothesis, we had two design variations aligned to it:

example of hypothesis in marketing research

The two above designs are different, but they are aligned to one hypothesis. This goes on to show how one hypothesis can be implemented in different ways. Looking at the two variations above – which one do you think won?

Yes, you’re right, V2 was the winner. 

Considering that there are many ways you can implement one hypothesis, so when you launch a test and it fails, it doesn’t necessarily mean that the hypothesis was wrong. Khalid adds:

“A single failure of a test doesn’t mean that the hypothesis is incorrect. Nine times out of ten it’s because of the way you’ve implemented the hypothesis. Look at the way you’ve coded and look at the copy you’ve used – you are more likely going to find something wrong with it. Always be open.” 

So there are three things you should keep in mind when it comes to marketing experimentation hypotheses: 

  • It takes a while for this hypothesis to really fully test it.
  • A single failure doesn’t necessarily mean that the hypothesis is incorrect.
  • Whether a hypothesis is proved or disproved, you can still learn something about your users.

I know it’s never easy to develop a hypothesis that informs future testing – I mean it takes a lot of intense research behind the scenes, and tons of ideas to begin with. So, I reached out to six CRO experts for tips and advice to help you understand more about developing a solid hypothesis and what to include in it. 

Maurice   says that a solid hypothesis should have not more than one goal: 

Maurice Beerthuyzen – CRO/CXO Lead at ClickValue “Creating a hypothesis doesn’t begin at the hypothesis itself. It starts with research. What do you notice in your data, customer surveys, and other sources? Do you understand what happens on your website? When you notice an opportunity it is tempting to base one single A/B test on one hypothesis. Create hypothesis A and run a single test, and then move forward to the next test. With another hypothesis. But it is very rare that you solve your problem with only one hypothesis. Often a test provides several other questions. Questions which you can solve with running other tests. But based on that same hypothesis! We should not come up with a new hypothesis for every test. Another mistake that often happens is that we fill the hypothesis with multiple goals. Then we expect that the hypothesis will work on conversion rate, average order value, and/or Click Through Ratio. Of course, this is possible, but when you run your test, your hypothesis can only have one goal at once. And what if you have two goals? Just split the hypothesis then create a secondary hypothesis for your second goal. Every test has one primary goal. What if you find a winner on your secondary hypothesis? Rerun the test with the second hypothesis as the primary one.”

Jon believes that a strong hypothesis is built upon three pillars:

Jon MacDonald – President and Founder of The Good Respond to an established challenge – The challenge must have a strong background based on data, and the background should state an established challenge that the test is looking to address. Example: “Sign up form lacks proof of value, incorrectly assuming if users are on the page, they already want the product.” Propose a specific solution – What is the one, the single thing that is believed will address the stated challenge? Example: “Adding an image of the dashboard as a background to the signup form…”. State the assumed impact – The assumed impact should reference one specific, measurable optimization goal that was established prior to forming a hypothesis. Example: “…will increase signups.” So, if your hypothesis doesn’t have a specific, measurable goal like “will increase signups,” you’re not really stating a test hypothesis!”

Matt uses his own hypothesis builder to collate important data points into a single hypothesis. 

Matt Beischel – Founder of Corvus CRO Like Jon, Matt also breaks down his hypothesis writing process into three sections. Unlike Jon, Matt sections are: Comprehension Response Outcome I set it up so that the names neatly match the “CRO.” It’s a sort of “mad-libs” style fill-in-the-blank where each input is an important piece of information for building out a robust hypothesis. I consider these the minimum required data points for a good hypothesis; if you can’t completely fill out the form, then you don’t have a good hypothesis. Here’s a breakdown of each data point: Comprehension – Identifying something that can be improved upon Problem: “What is a problem we have?” Observation Method: “How did we identify the problem?” Response – Change that can cause improvement Variation: “What change do we think could solve the problem?” Location: “Where should the change occur?” Scope: “What are the conditions for the change?” Audience: “Who should the change affect?” Outcome – Measurable result of the change that determines the success Behavior Change : “What change in behavior are we trying to affect?” Primary KPI: “What is the important metric that determines business impact?” Secondary KPIs: “Other metrics that will help reinforce/refute the Primary KPI” Something else to consider is that I have a “user first” approach to formulating hypotheses. My process above is always considered within the context of how it would first benefit the user. Now, I do feel that a successful experiment should satisfy the needs of BOTH users and businesses, but always be in favor of the user. Notice that “Behavior Change” is the first thing listed in Outcome, not primary business KPI. Sure, at the end of the day you are working for the business’s best interests (both strategically and financially), but placing the user first will better inform your decision making and prioritization; there’s a reason that things like personas, user stories, surveys, session replays, reviews, etc. exist after all. A business-first ideology is how you end up with dark patterns and damaging brand credibility.”

One of the many mistakes that CROs make when writing a hypothesis is that they are focused on wins and not on insights. Shiva advises against this mindset:

Shiva Manjunath – Marketing Manager and CRO at Gartner “Test to learn, not test to win. It’s a very simple reframe of hypotheses but can have a magnitude of difference. Here’s an example: Test to Win Hypothesis: If I put a product video in the middle of the product page, I will improve add to cart rates and improve CVR. Test to Learn Hypothesis: If I put a product video on the product page, there will be high engagement with the video and it will positively influence traffic What you’re doing is framing your hypothesis, and test, in a particular way to learn as much as you can. That is where you gain marketing insights. The more you run ‘marketing insight’ tests, the more you will win. Why? The more you compound marketing insight learnings, your win velocity will start to increase as a proxy of the learnings you’ve achieved. Then, you’ll have a higher chance of winning in your tests – and the more you’ll be able to drive business results.”

Lorenzo  says it’s okay to focus on achieving a certain result as long as you are also getting an answer to: “Why is this event happening or not happening?”

Lorenzo Carreri – CRO Consultant “When I come up with a hypothesis for a new or iterative experiment, I always try to find an answer to a question. It could be something related to a problem people have or an opportunity to achieve a result or a way to learn something. The main question I want to answer is “Why is this event happening or not happening?” The question is driven by data, both qualitative and quantitative. The structure I use for stating my hypothesis is: From [data source], I noticed [this problem/opportunity] among [this audience of users] on [this page or multiple pages]. So I believe that by [offering this experiment solution], [this KPI] will [increase/decrease/stay the same].

Jakub Linowski says that hypotheses are meant to hold researchers accountable:

Jakub Linowski – Chief Editor of GoodUI “They do this by making your change and prediction more explicit. A typical hypothesis may be expressed as: If we change (X), then it will have some measurable effect (A). Unfortunately, this oversimplified format can also become a heavy burden to your experiment design with its extreme reductionism. However you decide to format your hypotheses, here are three suggestions for more flexibility to avoid limiting yourself. One Or More Changes To break out of the first limitation, we have to admit that our experiments may contain a single or multiple changes. Whereas the classic hypothesis encourages a single change or isolated variable, it’s not the only way we can run experiments. In the real world, it’s quite normal to see multiple design changes inside a single variation. One valid reason for doing this is when wishing to optimize a section of a website while aiming for a greater effect. As more positive changes compound together, there are times when teams decide to run bigger experiments. An experiment design (along with your hypotheses) therefore should allow for both single or multiple changes. One Or More Metrics A second limitation of many hypotheses is that they often ask us to only make a single prediction at a time. There are times when we might like to make multiple guesses or predictions to a set of metrics. A simple example of this might be a trade-off experiment with a guess of increased sales but decreased trial signups. Being able to express single or multiple metrics in our experimental designs should therefore be possible. Estimates, Directional Predictions, Or Unknowns Finally, traditional hypotheses also tend to force very simple directional predictions by asking us to guess whether something will increase or decrease. In reality, however, the fidelity of predictions can be higher or lower. On one hand, I’ve seen and made experiment estimations that contain specific numbers from prior data (ex: increase sales by 14%). While at other times it should also be acceptable to admit the unknown and leave the prediction blank. One example of this is when we are testing a completely novel idea without any prior data in a highly exploratory type of experiment. In such cases, it might be dishonest to make any sort of predictions and we should allow ourselves to express the unknown comfortably.”

Conclusion 

So there you have it! Before you jump on launching a test, start by making sure that your hypothesis is solid and backed by research. Ask yourself the questions below when crafting a hypothesis for marketing experimentation:

  • Is the hypothesis backed by research?
  • Can the hypothesis be tested?
  • Does the hypothesis provide insights?
  • Does the hypothesis set the expectation that there will be an explanation behind the results of whatever you’re testing?

Don’t worry! Hypothesizing may seem like a very complicated process, but it’s not complicated in practice especially when you have done proper research.

If you enjoyed reading this article and you’d love to get the best CRO content – delivered by the best experts in the industry – straight to your inbox, every week. Please subscribe here .

Share This Article

Join 25,000+ marketing professionals.

Subscribe to Invesp’s blog feed for future articles delivered to receive weekly updates by email.

Simbar Dube

Discover Similar Topics

What Is Net Promoter Score

Net Promoter Score: A Quick Guide for E-commerce Businesses

Ecommerce customer journey

8 Ways to Optimize Your Ecommerce Customer Journey

example of hypothesis in marketing research

Our Services

  • Conversion Optimization Training
  • Conversion Rate Optimization Professional Services
  • Landing Page Optimization
  • Conversion Rate Audit
  • Design for Growth
  • Conversion Research & Discovery
  • End to End Digital Optimization

By Industry

  • E-commerce CRO Services
  • Lead Generation CRO Services
  • SaaS CRO Services
  • Startup CRO Program
  • Case Studies
  • Privacy Policy
  • © 2006-2020 All rights reserved. Invesp

Subscribe with us

  • US office: Chicago, IL
  • European office: Istanbul, Turkey
  • +1.248.270.3325
  • [email protected]
  • Conversion Rate Optimization Services
  • © 2006-2023 All rights reserved. Invesp
  • Popular Topics
  • A/B Testing
  • Business & Growth
  • Copywriting
  • Infographics
  • Landing Pages
  • Sales & Marketing

Marketing Analytics Lab

Marketing Analytics Lab

Hypothesis Testing in Marketing Research

Hypothesis Testing in Marketing Research

Introduction to Hypothesis Testing in Marketing Research

Hypothesis testing is a critical component of marketing research that allows marketers to draw conclusions about the effectiveness of their strategies. In essence, hypothesis testing involves making an educated guess about a population parameter and then using data to determine if the hypothesis is supported or rejected. In the context of marketing, hypotheses can be formulated about consumer behavior, product preferences, advertising effectiveness, and many other aspects of the marketing mix. By conducting hypothesis tests, marketers can make informed decisions based on empirical evidence rather than intuition or guesswork.

A hypothesis test in marketing research typically follows a structured process that involves defining a null hypothesis (H0) and an alternative hypothesis (HA), collecting and analyzing data, determining the appropriate statistical test to use, setting a significance level, and interpreting the results to either accept or reject the null hypothesis. The null hypothesis represents the status quo or the assumption that there is no significant difference or relationship between variables, while the alternative hypothesis suggests that there is a significant effect or relationship. By rigorously testing hypotheses, marketers can evaluate the impact of their marketing strategies and make data-driven decisions to optimize their campaigns and initiatives.

The results of hypothesis testing in marketing research provide valuable insights that can inform strategic decision-making and help marketers achieve their business objectives. Whether testing the effectiveness of a new product launch, evaluating the impact of a promotional campaign, or analyzing consumer preferences, hypothesis testing enables marketers to quantify the impact of their actions and make evidence-based recommendations. By employing statistical techniques and hypothesis testing in marketing research, organizations can gain a deeper understanding of consumer behavior, identify market trends, and refine their marketing strategies to drive business growth and success.

Key Steps and Considerations for Hypothesis Testing in Marketing Analysis

When conducting hypothesis testing in marketing research, there are several key steps and considerations that marketers should keep in mind to ensure the validity and reliability of their findings. Firstly, it is essential to clearly define the research question and formulate testable hypotheses that are specific, measurable, and relevant to the marketing objectives. By articulating clear hypotheses, marketers can establish a framework for data collection and analysis that aligns with the research objectives.

Once the hypotheses have been formulated, the next step is to determine the appropriate research design and methodology for data collection. Depending on the nature of the research question and the variables involved, marketers may choose to conduct experiments, surveys, observational studies, or other research methods to gather data. It is crucial to ensure that the data collected is representative of the target population and is collected in a systematic and unbiased manner to generate reliable results.

After collecting the data, marketers can perform statistical analysis to test the hypotheses using techniques such as t-tests, ANOVA, regression analysis, or chi-square tests, among others. It is important to select the appropriate statistical test based on the type of data and the research question being investigated. Additionally, setting a significance level (alpha) is crucial for determining the threshold for accepting or rejecting the null hypothesis. By interpreting the results in the context of the significance level, marketers can make informed decisions about the implications of the findings and their impact on marketing strategies.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

example of hypothesis in marketing research

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

A Beginner’s Guide to Hypothesis Testing in Business

Business professionals performing hypothesis testing

  • 30 Mar 2021

Becoming a more data-driven decision-maker can bring several benefits to your organization, enabling you to identify new opportunities to pursue and threats to abate. Rather than allowing subjective thinking to guide your business strategy, backing your decisions with data can empower your company to become more innovative and, ultimately, profitable.

If you’re new to data-driven decision-making, you might be wondering how data translates into business strategy. The answer lies in generating a hypothesis and verifying or rejecting it based on what various forms of data tell you.

Below is a look at hypothesis testing and the role it plays in helping businesses become more data-driven.

Access your free e-book today.

What Is Hypothesis Testing?

To understand what hypothesis testing is, it’s important first to understand what a hypothesis is.

A hypothesis or hypothesis statement seeks to explain why something has happened, or what might happen, under certain conditions. It can also be used to understand how different variables relate to each other. Hypotheses are often written as if-then statements; for example, “If this happens, then this will happen.”

Hypothesis testing , then, is a statistical means of testing an assumption stated in a hypothesis. While the specific methodology leveraged depends on the nature of the hypothesis and data available, hypothesis testing typically uses sample data to extrapolate insights about a larger population.

Hypothesis Testing in Business

When it comes to data-driven decision-making, there’s a certain amount of risk that can mislead a professional. This could be due to flawed thinking or observations, incomplete or inaccurate data , or the presence of unknown variables. The danger in this is that, if major strategic decisions are made based on flawed insights, it can lead to wasted resources, missed opportunities, and catastrophic outcomes.

The real value of hypothesis testing in business is that it allows professionals to test their theories and assumptions before putting them into action. This essentially allows an organization to verify its analysis is correct before committing resources to implement a broader strategy.

As one example, consider a company that wishes to launch a new marketing campaign to revitalize sales during a slow period. Doing so could be an incredibly expensive endeavor, depending on the campaign’s size and complexity. The company, therefore, may wish to test the campaign on a smaller scale to understand how it will perform.

In this example, the hypothesis that’s being tested would fall along the lines of: “If the company launches a new marketing campaign, then it will translate into an increase in sales.” It may even be possible to quantify how much of a lift in sales the company expects to see from the effort. Pending the results of the pilot campaign, the business would then know whether it makes sense to roll it out more broadly.

Related: 9 Fundamental Data Science Skills for Business Professionals

Key Considerations for Hypothesis Testing

1. alternative hypothesis and null hypothesis.

In hypothesis testing, the hypothesis that’s being tested is known as the alternative hypothesis . Often, it’s expressed as a correlation or statistical relationship between variables. The null hypothesis , on the other hand, is a statement that’s meant to show there’s no statistical relationship between the variables being tested. It’s typically the exact opposite of whatever is stated in the alternative hypothesis.

For example, consider a company’s leadership team that historically and reliably sees $12 million in monthly revenue. They want to understand if reducing the price of their services will attract more customers and, in turn, increase revenue.

In this case, the alternative hypothesis may take the form of a statement such as: “If we reduce the price of our flagship service by five percent, then we’ll see an increase in sales and realize revenues greater than $12 million in the next month.”

The null hypothesis, on the other hand, would indicate that revenues wouldn’t increase from the base of $12 million, or might even decrease.

Check out the video below about the difference between an alternative and a null hypothesis, and subscribe to our YouTube channel for more explainer content.

2. Significance Level and P-Value

Statistically speaking, if you were to run the same scenario 100 times, you’d likely receive somewhat different results each time. If you were to plot these results in a distribution plot, you’d see the most likely outcome is at the tallest point in the graph, with less likely outcomes falling to the right and left of that point.

distribution plot graph

With this in mind, imagine you’ve completed your hypothesis test and have your results, which indicate there may be a correlation between the variables you were testing. To understand your results' significance, you’ll need to identify a p-value for the test, which helps note how confident you are in the test results.

In statistics, the p-value depicts the probability that, assuming the null hypothesis is correct, you might still observe results that are at least as extreme as the results of your hypothesis test. The smaller the p-value, the more likely the alternative hypothesis is correct, and the greater the significance of your results.

3. One-Sided vs. Two-Sided Testing

When it’s time to test your hypothesis, it’s important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests , or one-tailed and two-tailed tests, respectively.

Typically, you’d leverage a one-sided test when you have a strong conviction about the direction of change you expect to see due to your hypothesis test. You’d leverage a two-sided test when you’re less confident in the direction of change.

Business Analytics | Become a data-driven leader | Learn More

4. Sampling

To perform hypothesis testing in the first place, you need to collect a sample of data to be analyzed. Depending on the question you’re seeking to answer or investigate, you might collect samples through surveys, observational studies, or experiments.

A survey involves asking a series of questions to a random population sample and recording self-reported responses.

Observational studies involve a researcher observing a sample population and collecting data as it occurs naturally, without intervention.

Finally, an experiment involves dividing a sample into multiple groups, one of which acts as the control group. For each non-control group, the variable being studied is manipulated to determine how the data collected differs from that of the control group.

A Beginner's Guide to Data and Analytics | Access Your Free E-Book | Download Now

Learn How to Perform Hypothesis Testing

Hypothesis testing is a complex process involving different moving pieces that can allow an organization to effectively leverage its data and inform strategic decisions.

If you’re interested in better understanding hypothesis testing and the role it can play within your organization, one option is to complete a course that focuses on the process. Doing so can lay the statistical and analytical foundation you need to succeed.

Do you want to learn more about hypothesis testing? Explore Business Analytics —one of our online business essentials courses —and download our Beginner’s Guide to Data & Analytics .

example of hypothesis in marketing research

About the Author

example of hypothesis in marketing research

  • Subscribers
  • How To Use a New AI App and AI Agents To Build Your Best Landing Page
  • The MECLABS AI Guild in Action: Teamwork in Crafting Their Optimal Landing Page
  • How MECLABS AI Is Being Used To Build the AI Guild
  • MECLABS AI’s Problem Solver in Action
  • MECLABS AI: Harness AI With the Power of Your Voice
  • Harnessing MECLABS AI: Transform Your Copywriting and Landing Pages
  • MECLABS AI: Overcome the ‘Almost Trap’ and Get Real Answers
  • MECLABS AI: A brief glimpse into what is coming!
  • Transforming Marketing with MECLABS AI: A New Paradigm
  • Creative AI Marketing: Escaping the ‘Vending Machine Mentality’

MarketingExperiments

Designing Hypotheses that Win: A four-step framework for gaining customer wisdom and generating marketing results

'  data-src=

There are smart marketers everywhere testing many smart ideas — and bad ones. The problem with ideas is that they are unreliable and unpredictable . Knowing how to test is only half of the equation. As marketing tools and technology evolve rapidly offering new, more powerful ways to measure consumer behavior and conduct more sophisticated testing, it is becoming more important than ever to have a reliable system for deciding what to test .

Without a guiding framework, we are left to draw ideas almost arbitrarily from competitors, brainstorms, colleagues, books and any other sources without truly understanding what makes them good, bad or successful. Ideas are unpredictable because until you can articulate a forceful “because” statement to why your ideas will work, regardless of how good, they are nothing more than a guess , albeit educated, but most often not by the customer.

20+ years of in-depth research, testing, optimization and over 20,000+ sales path experiments have taught us that there is an answer to this problem, and that answer involves rethinking how we view testing and optimization. This short article touches on the keynote message MECLABS Institute’s founder Flint McGlaughlin will give at the upcoming 2018 A/B Testing Summit virtual conference on December 12-13 th .  You can register for free at the link above.

Marketers don’t need better ideas; they need a better understanding of their customer.

So if understanding your customer is the key to efficient and effective optimization and ideas aren’t reliable or predictable, what then? We begin with the process of intensively analyzing existing data, metrics, reports and research to construct our best Customer Theory , which is the articulation of our understanding of our customer and their behavior toward our offer.

Then, as we identify problems/focus areas for higher performance in our funnel, we transform our ideas for solving them into a hypothesis containing four key parts :

  • If [we achieve this in the mind of the consumer]
  • By [adding, subtracting or changing these elements]
  • Then [this result will occur]
  • Because [that will confirm or deny this belief/hypothesis about the customer]

By transforming ideas into hypotheses, we orient our test to learn about our customer rather than merely trying out an idea. The hypothesis grounds our thinking in the psychology of the customer by providing a framework that forces the right questions into the equation of what to test . “The goal of a test is not to get a lift, but to get a learning,” says Flint McGlaughlin, “and learning compounds over time.”

Let’s look at some examples of what to avoid in your testing, along with good examples of hypotheses.

“Let’s advertise our top products in our rotating banner — that’s what Competitor X is doing.”

“We need more attractive imagery … Let’s place a big, powerful hero image as our banner. Everyone is doing it.”

“We should go minimalist … It’s modern, sleek and sexy, and customers love it. It’ll be good for our brand. Less is more.”

 “If we emphasize and sample the diversity of our product line by grouping our top products from various categories in a slowly rotating banner, we will increase clickthrough and engagement from the homepage because customers want to understand the range of what we have to offer (versus some other value, e.g., quality, style, efficacy, affordability, etc.).”

“If we reinforce the clarity of the value proposition by using more relevant imagery to draw attention to the most important information, we will increase clickthrough and ultimately conversion because the customer wants to quickly understand why we’re different in such a competitive space.”

“If we better emphasize the primary message be reducing unnecessary, less-relevant page elements and changing to a simpler, clearer more readable design, we will increase clickthrough and engagement on the homepage because customers are currently overwhelmed by too much friction on this page.”

The golden rule of optimization is “Specificity converts . ” The more specific/relevant you can be to the individual wants and needs of your ideal customer, the more likely the probability of conversion. To be as specific and relevant as possible to a consumer, we use testing not as merely an idea-trial hoping for positive results, but as a mechanism to fill in the gaps of our understanding that existing data can’t answer. Our understanding of the customer is what powers the efficiency and efficacy of our testing .

In Summary …

Smart ideas only work sometimes, but a framework based on understanding your customer will yield more consistent, more rewarding results that only improve over time. The first key to rethinking your approach to optimization is to construct a robust customer theory articulating your best understanding of your customer. From this, you can transform your ideas into hypotheses that will begin producing invaluable insights to lay the groundwork for how you communicate with your customer.

Looking for ideas to inform your hypotheses? We have created and compiled a 60-page guide that contains 21 crafted tools and concepts, and outlines the unique methodology we have used and tested with our partners for 20+ years. You can download the guide for free here: A Model of Your Customer’s Mind

You might also like …

A/B Testing Summit free online conference – Research your seat to see Flint McGlaughlin’s keynote Design Hypotheses that Win: A 4-step framework for gaining customer wisdom and generating significant results

The Hypothesis and the Modern-Day Marketer

Customer Theory: How we learned from a previous test to drive a 40% increase in CTR

'  data-src=

Quin McGlaughlin is currently a Senior Optimization Analyst at MECLABS Institute and full-time distance student at Harvard University, studying psychology and business. He has worked on projects for some of MECLABS’ largest clients ranging from Fortune 50 companies to defense contractors, not-for-profits, major ecommerce organizations and others. He has also served as Vice Chair of Digital Strategy for the Harvard Extension Student Association and provided marketing consulting for small and mid-size businesses.

Low-Hanging Fruit for the Holiday Season: Four simple marketing changes with significant impact

Most Popular MarketingExperiments Articles of 2018

How to Discover Exactly What the Customer Wants to See on the Next Click: 3 critical…

The 21 Psychological Elements that Power Effective Web Design (Part 3)

The 21 Psychological Elements that Power Effective Web Design (Part 2)

The 21 Psychological Elements that Power Effective Web Design (Part 1)

'  data-src=

Awesome work.Just wanted to drop a comment and say I am new to your blog and really like what I am reading.Thanks for the share

Leave A Reply Cancel Reply

Your email address will not be published.

Save my name, email, and website in this browser for the next time I comment.

  • Quick Win Clinics
  • Research Briefs
  • A/B Testing
  • Conversion Marketing
  • Copywriting
  • Digital Advertising
  • Digital Analytics
  • Digital Subscriptions
  • E-commerce Marketing
  • Email Marketing
  • Lead Generation
  • Social Marketing
  • Value Proposition
  • Research Services
  • Video – Transparent Marketing
  • Video – 15 years of marketing research in 11 minutes
  • Lecture – The Web as a Living Laboratory
  • Featured Research

Welcome, Login to your account.

Recover your password.

A password will be e-mailed to you.

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

example of hypothesis in marketing research

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

example of hypothesis in marketing research

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

example of hypothesis in marketing research

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

example of hypothesis in marketing research

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Back to school 2024 sale

Back to School – Lock-in All Access Pack for a Year at the Best Price

journal turnaround time

Journal Turnaround Time: Researcher.Life and Scholarly Intelligence Join Hands to Empower Researchers with Publication Time Insights 

example of hypothesis in marketing research

From Hypothesis to Results: Mastering the Art of Marketing Experiments

image

Max 16 min read

From Hypothesis to Results: Mastering the Art of Marketing Experiments

Click the button to start reading

Suppose you’re trying to convince your friend to watch your favorite movie. You could either tell them about the intriguing plot or show them the exciting trailer.

To find out which approach works best, you try both methods with different friends and see which one gets more people to watch the movie.

Marketing experiments work in much the same way, allowing businesses to test different marketing strategies, gather feedback from their target audience, and make data-driven decisions that lead to improved outcomes and growth.

By testing different approaches and measuring their outcomes, companies can identify what works best for their unique target audience and adapt their marketing strategies accordingly. This leads to more efficient use of marketing resources and results in higher conversion rates, increased customer satisfaction, and, ultimately, business growth.

Marketing experiments are the backbone of building an organization’s culture of learning and curiosity, encouraging employees to think outside the box and challenge the status quo.

In this article, we will delve into the fundamentals of marketing experiments, discussing their key elements and various types. By the end, you’ll be in a position to start running these tests and securing better marketing campaigns with explosive results.

Why Digital Marketing Experiments Matter

Why Digital Marketing Experiments Matter

One of the most effective ways to drive growth and optimize marketing strategies is through digital marketing experiments. These experiments provide invaluable insights into customer preferences, behaviors, and the overall effectiveness of marketing efforts, making them an essential component of any digital marketing strategy.

Digital marketing experiments matter for several reasons:

  • Customer-centric approach: By conducting experiments, businesses can gain a deeper understanding of their target audience’s preferences and behaviors. This enables them to tailor their marketing efforts to better align with customer needs, resulting in more effective and engaging campaigns.
  • Data-driven decision-making: Marketing experiments provide quantitative data on the performance of different marketing strategies and tactics. This empowers businesses to make informed decisions based on actual results rather than relying on intuition or guesswork. Ultimately, this data-driven approach leads to more efficient allocation of resources and improved marketing outcomes.
  • Agility and adaptability: Businesses must be agile and adaptable to keep up with emerging trends and technologies. Digital marketing experiments allow businesses to test new ideas, platforms, and strategies in a controlled environment, helping them stay ahead of the curve and quickly respond to changing market conditions.
  • Continuous improvement: Digital marketing experiments facilitate an iterative process of testing, learning, and refining marketing strategies. This ongoing cycle of improvement enables businesses to optimize their marketing efforts, drive better results, and maintain a competitive edge in the digital marketplace.
  • ROI and profitability: By identifying which marketing tactics are most effective, businesses can allocate their marketing budget more efficiently and maximize their return on investment. This increased profitability can be reinvested into the business, fueling further growth and success.

Developing a culture of experimentation allows businesses to continuously improve their marketing strategies, maximize their ROI, and avoid being left behind by the competition.

The Fundamentals of Digital Marketing Experiments

The Fundamentals of Digital Marketing Experiments

Marketing experiments are structured tests that compare different marketing strategies, tactics, or assets to determine which one performs better in achieving specific objectives.

These experiments use a scientific approach, which involves formulating hypotheses, controlling variables, gathering data, and analyzing the results to make informed decisions.

Marketing experiments provide valuable insights into customer preferences and behaviors, enabling businesses to optimize their marketing efforts and maximize returns on investment (ROI).

There are several types of marketing experiments that businesses can use, depending on their objectives and available resources.

The most common types include:

A/B testing

A/B testing, also known as split testing, is a simple yet powerful technique that compares two variations of a single variable to determine which one performs better.

In an A/B test, the target audience is randomly divided into two groups: one group is exposed to version A (the control). In contrast, the other group is exposed to version B (the treatment). The performance of both versions is then measured and compared to identify the one that yields better results.

A/B testing can be applied to various marketing elements, such as headlines, calls-to-action, email subject lines, landing page designs, and ad copy. The primary advantage of A/B testing is its simplicity, making it easy for businesses to implement and analyze.

Multivariate testing

Multivariate testing is a more advanced technique that allows businesses to test multiple variables simultaneously.

In a multivariate test, several elements of a marketing asset are modified and combined to create different versions. These versions are then shown to different segments of the target audience, and their performance is measured and compared to determine the most effective combination of variables.

Multivariate testing is beneficial when optimizing complex marketing assets, such as websites or email templates, with multiple elements that may interact with one another. However, this method requires a larger sample size and more advanced analytical tools compared to A/B testing.

Pre-post analysis

Pre-post analysis involves comparing the performance of a marketing strategy before and after implementing a change.

This type of experiment is often used when it is not feasible to conduct an A/B or multivariate test, such as when the change affects the entire customer base or when there are external factors that cannot be controlled.

While pre-post analysis can provide useful insights, it is less reliable than A/B or multivariate testing because it does not account for potential confounding factors. To obtain accurate results from a pre-post analysis, businesses must carefully control for external influences and ensure that the observed changes are indeed due to the implemented modifications.

How To Start Growth Marketing Experiments

How To Start Growth Marketing Experiments

To conduct effective marketing experiments, businesses must pay attention to the following key elements:

Clear objectives

Having clear objectives is crucial for a successful marketing experiment. Before starting an experiment, businesses must identify the specific goals they want to achieve, such as increasing conversions, boosting engagement, or improving click-through rates. Clear objectives help guide the experimental design and ensure the results are relevant and actionable.

Hypothesis-driven approach

A marketing experiment should be based on a well-formulated hypothesis that predicts the expected outcome. A reasonable hypothesis is specific, testable, and grounded in existing knowledge or data. It serves as the foundation for experimental design and helps businesses focus on the most relevant variables and outcomes.

Proper experimental design

A marketing experiment requires a well-designed test that controls for potential confounding factors and ensures the reliability and validity of the results. This includes the random assignment of participants, controlling for external influences, and selecting appropriate variables to test. Proper experimental design increases the likelihood that observed differences are due to the tested variables and not other factors.

Adequate sample size

A successful marketing experiment requires an adequate sample size to ensure the results are statistically significant and generalizable to the broader target audience. The required sample size depends on the type of experiment, the expected effect size, and the desired level of confidence. In general, larger sample sizes provide more reliable and accurate results but may also require more resources to conduct the experiment.

Data-driven analysis

Marketing experiments rely on a data-driven analysis of the results. This involves using statistical techniques to determine whether the observed differences between the tested variations are significant and meaningful. Data-driven analysis helps businesses make informed decisions based on empirical evidence rather than intuition or gut feelings.

By understanding the fundamentals of marketing experiments and following best practices, businesses can gain valuable insights into customer preferences and behaviors, ultimately leading to improved outcomes and growth.

Setting up Your First Marketing Experiment

Setting up Your First Marketing Experiment

Embarking on your first marketing experiment can be both exciting and challenging. Following a systematic approach, you can set yourself up for success and gain valuable insights to improve your marketing efforts.

Here’s a step-by-step guide to help you set up your first marketing experiment.

Identifying your marketing objectives

Before diving into your experiment, it’s essential to establish clear marketing objectives. These objectives will guide your entire experiment, from hypothesis formulation to data analysis.

Consider what you want to achieve with your marketing efforts, such as increasing website conversions, improving open email rates, or boosting social media engagement.

Make sure your objectives are specific, measurable, achievable, relevant, and time-bound (SMART) to ensure that they are actionable and provide meaningful insights.

Formulating a hypothesis

With your marketing objectives in mind, the next step is formulating a hypothesis for your experiment. A hypothesis is a testable prediction that outlines the expected outcome of your experiment. It should be based on existing knowledge, data, or observations and provide a clear direction for your experimental design.

For example, suppose your objective is to increase email open rates. In that case, your hypothesis might be, “Adding the recipient’s first name to the email subject line will increase the open rate by 10%.” This hypothesis is specific, testable, and clearly linked to your marketing objective.

Designing the experiment

Once you have a hypothesis in place, you can move on to designing your experiment. This involves several key decisions:

Choosing the right testing method:

Select the most appropriate testing method for your experiment based on your objectives, hypothesis, and available resources.

As discussed earlier, common testing methods include A/B, multivariate, and pre-post analyses. Choose the method that best aligns with your goals and allows you to effectively test your hypothesis.

Selecting the variables to test:

Identify the specific variables you will test in your experiment. These should be directly related to your hypothesis and marketing objectives. In the email open rate example, the variable to test would be the subject line, specifically the presence or absence of the recipient’s first name.

When selecting variables, consider their potential impact on your marketing objectives and prioritize those with the greatest potential for improvement. Also, ensure that the variables are easily measurable and can be manipulated in your experiment.

Identifying the target audience:

Determine the target audience for your experiment, considering factors such as demographics, interests, and behaviors. Your target audience should be representative of the larger population you aim to reach with your marketing efforts.

When segmenting your audience for the experiment, ensure that the groups are as similar as possible to minimize potential confounding factors.

In A/B or multivariate testing, this can be achieved through random assignment, which helps control for external influences and ensures a fair comparison between the tested variations.

Executing the experiment

With your experiment designed, it’s time to put it into action.

This involves several key considerations:

Timing and duration:

Choose the right timing and duration for your experiment based on factors such as the marketing channel, target audience, and the nature of the tested variables.

The duration of the experiment should be long enough to gather a sufficient amount of data for meaningful analysis but not so long that it negatively affects your marketing efforts or causes fatigue among your target audience.

In general, aim for a duration that allows you to reach a predetermined sample size or achieve statistical significance. This may vary depending on the specific experiment and the desired level of confidence.

Monitoring the experiment:

During the experiment, monitor its progress and performance regularly to ensure that everything is running smoothly and according to plan. This includes checking for technical issues, tracking key metrics, and watching for any unexpected patterns or trends.

If any issues arise during the experiment, address them promptly to prevent potential biases or inaccuracies in the results. Additionally, avoid making changes to the experimental design or variables during the experiment, as this can compromise the integrity of the results.

Analyzing the results

Once your experiment has concluded, it’s time to analyze the data and draw conclusions.

This involves two key aspects:

Statistical significance:

Statistical significance is a measure of the likelihood that the observed differences between the tested variations are due to the variables being tested rather than random chance. To determine statistical significance, you will need to perform a statistical test, such as a t-test or chi-squared test, depending on the nature of your data.

Generally, a result is considered statistically significant if the probability of the observed difference occurring by chance (the p-value) is less than a predetermined threshold, often set at 0.05 or 5%. This means there is a 95% confidence level that the observed difference is due to the tested variables and not random chance.

Practical significance:

While statistical significance is crucial, it’s also essential to consider the practical significance of your results. This refers to the real-world impact of the observed differences on your marketing objectives and business goals.

To assess practical significance, consider the effect size of the observed difference (e.g., the percentage increase in email open rates) and the potential return on investment (ROI) of implementing the winning variation. This will help you determine whether the experiment results are worth acting upon and inform your marketing decisions moving forward.

A systematic approach to designing growth marketing experiments helps you to design, execute, and analyze your experiment effectively, ultimately leading to better marketing outcomes and business growth.

Examples of Successful Marketing Experiments

Examples of Successful Marketing Experiments

In this section, we will explore three fictional case studies of successful marketing experiments that led to improved marketing outcomes. These examples will demonstrate the practical application of marketing experiments across different channels and provide valuable lessons that can be applied to your own marketing efforts.

Example 1: Redesigning a website for increased conversions

AcmeWidgets, an online store selling innovative widgets, noticed that its website conversion rate had plateaued.

They conducted a marketing experiment to test whether a redesigned landing page could improve conversions. They hypothesized that a more visually appealing and user-friendly design would increase conversion rates by 15%.

AcmeWidgets used A/B testing to compare their existing landing page (the control) with a new, redesigned version (the treatment). They randomly assigned website visitors to one of the two landing pages. They tracked conversions over a period of four weeks.

At the end of the experiment, AcmeWidgets found that the redesigned landing page had a conversion rate 18% higher than the control. The results were statistically significant, and the company decided to implement the new design across its entire website.

As a result, AcmeWidgets experienced a substantial increase in sales and revenue.

Example 2: Optimizing email marketing campaigns

EcoTravel, a sustainable travel agency, wanted to improve the open rates of their monthly newsletter. They hypothesized that adding a sense of urgency to the subject line would increase open rates by 10%.

To test this hypothesis, EcoTravel used A/B testing to compare two different subject lines for their newsletter:

  • “Discover the world’s most beautiful eco-friendly destinations” (control)
  • “Last chance to book: Explore the world’s most beautiful eco-friendly destinations” (treatment)

EcoTravel sent the newsletter to a random sample of their subscribers. Half received the control subject line, and the other half received the treatment. They then tracked the open rates for both groups over one week.

The results of the experiment showed that the treatment subject line, which included a sense of urgency, led to a 12% increase in open rates compared to the control.

Based on these findings, EcoTravel incorporated a sense of urgency in their future email subject lines to boost newsletter engagement.

Example 3: Improving social media ad performance

FitFuel, a meal delivery service for fitness enthusiasts, was looking to improve its Facebook ad campaign’s click-through rate (CTR). They hypothesized that using an image of a satisfied customer enjoying a FitFuel meal would increase CTR by 8% compared to their current ad featuring a meal image alone.

FitFuel conducted an A/B test on their Facebook ad campaign, comparing the performance of the control ad (meal image only) with the treatment ad (customer enjoying a meal). They targeted a similar audience with both ad variations and measured the CTR over two weeks. The experiment revealed that the treatment ad, featuring the customer enjoying a meal, led to a 10% increase in CTR compared to the control ad. FitFuel decided to update its

Facebook ad campaign with the new image, resulting in a more cost-effective campaign and higher return on investment.

Lessons learned from these examples

These fictional examples of successful marketing experiments highlight several key takeaways:

  • Clearly defined objectives and hypotheses: In each example, the companies had specific marketing objectives and well-formulated hypotheses, which helped guide their experiments and ensure relevant and actionable results.
  • Proper experimental design: Each company used the appropriate testing method for their experiment and carefully controlled variables, ensuring accurate and reliable results.
  • Data-driven decision-making: The companies analyzed the data from their experiments to make informed decisions about implementing changes to their marketing strategies, ultimately leading to improved outcomes.
  • Continuous improvement: These examples demonstrate that marketing experiments can improve marketing efforts continuously. By regularly conducting experiments and applying the lessons learned, businesses can optimize their marketing strategies and stay ahead of the competition.
  • Relevance across channels: Marketing experiments can be applied across various marketing channels, such as website design, email campaigns, and social media advertising. Regardless of the channel, the principles of marketing experimentation remain the same, making them a valuable tool for marketers in diverse industries.

By learning from these fictional examples and applying the principles of marketing experimentation to your own marketing efforts, you can unlock valuable insights, optimize your marketing strategies, and achieve better results for your business.

Common Pitfalls of Marketing Experiments and How to Avoid Them

Common Pitfalls of Marketing Experiments and How to Avoid Them

Conducting marketing experiments can be a powerful way to optimize your marketing strategies and drive better results.

However, it’s important to be aware of common pitfalls that can undermine the effectiveness of your experiments. In this section, we will discuss some of these pitfalls and provide tips on how to avoid them.

Insufficient sample size

An insufficient sample size can lead to unreliable results and limit the generalizability of your findings. When your sample size is too small, you run the risk of not detecting meaningful differences between the tested variations or incorrectly attributing the observed differences to random chance.

To avoid this pitfall, calculate the required sample size for your experiment based on factors such as the expected effect size, the desired level of confidence, and the type of statistical test you will use.

In general, larger sample sizes provide more reliable and accurate results but may require more resources to conduct the experiment. Consider adjusting your experimental design or testing methods to accommodate a larger sample size if necessary.

Lack of clear objectives

Your marketing experiment may not provide meaningful or actionable insights without clear objectives. Unclear objectives can lead to poorly designed experiments, irrelevant variables, or difficulty interpreting the results.

To prevent this issue, establish specific, measurable, achievable, relevant, and time-bound (SMART) objectives before starting your experiment. These objectives should guide your entire experiment, from hypothesis formulation to data analysis, and ensure that your findings are relevant and useful for your marketing efforts.

Confirmation bias

Confirmation bias occurs when you interpret the results of your experiment in a way that supports your pre-existing beliefs or expectations. This can lead to inaccurate conclusions and suboptimal marketing decisions.

To minimize confirmation bias, approach your experiments with an open mind and be willing to accept results that challenge your assumptions.

Additionally, involve multiple team members in the data analysis process to ensure diverse perspectives and reduce the risk of individual biases influencing the interpretation of the results.

Overlooking external factors

External factors, such as changes in market conditions, seasonal fluctuations, or competitor actions, can influence the results of your marketing experiment and potentially confound your findings. Ignoring these factors may lead to inaccurate conclusions about the effectiveness of your marketing strategies.

To account for external factors, carefully control for potential confounding variables during the experimental design process. This might involve using random assignment, testing during stable periods, or controlling for known external influences.

Consider running follow-up experiments or analyzing historical data to confirm your findings and rule out the impact of external factors.

Tips for avoiding these pitfalls

By being aware of these common pitfalls and following best practices, you can ensure the success of your marketing experiments and obtain valuable insights for your marketing efforts. Here are some tips to help you avoid these pitfalls:

  • Plan your experiment carefully: Invest time in the planning stage to establish clear objectives, calculate an adequate sample size, and design a robust experiment that controls for potential confounding factors.
  • Use a hypothesis-driven approach: Formulate a specific, testable hypothesis based on existing knowledge or data to guide your experiment and focus on the most relevant variables and outcomes.
  • Monitor your experiment closely: Regularly check the progress of your experiment, address any issues that arise, and ensure that your experiment is running smoothly and according to plan.
  • Analyze your data objectively: Use statistical techniques to determine the significance of your results and consider the practical implications of your findings before making marketing decisions.
  • Learn from your experiments: Apply the lessons learned from your experiments to continuously improve your marketing strategies and stay ahead of the competition.

By avoiding these common pitfalls and following best practices, you can increase the effectiveness of your marketing experiments, gain valuable insights into customer preferences and behaviors, and ultimately drive better results for your business.

Building a Culture of Experimentation

Building a Culture of Experimentation

To truly reap the benefits of marketing experiments, it’s essential to build a culture of experimentation within your organization. This means fostering an environment where curiosity, learning, data-driven decision-making, and collaboration are valued and encouraged.

Encouraging curiosity and learning within your organization

Cultivating curiosity and learning starts with leadership. Encourage your team to ask questions, explore new ideas, and embrace a growth mindset.

Promote ongoing learning by providing resources, such as training programs, workshops, or access to industry events, that help your team stay up-to-date with the latest marketing trends and techniques.

Create a safe environment where employees feel comfortable sharing their ideas and taking calculated risks. Emphasize the importance of learning from both successes and failures and treat every experiment as an opportunity to grow and improve.

Adopting a data-driven mindset

A data-driven mindset is crucial for successful marketing experimentation. Encourage your team to make decisions based on data rather than relying on intuition or guesswork. This means analyzing the results of your experiments objectively, using statistical techniques to determine the significance of your findings, and considering the practical implications of your results before making marketing decisions.

To foster a data-driven culture, invest in the necessary tools and technologies to collect, analyze, and visualize data effectively. Train your team on how to use these tools and interpret the data to make informed marketing decisions.

Regularly review your data-driven efforts and adjust your strategies as needed to continuously improve and optimize your marketing efforts.

Integrating experimentation into your marketing strategy

Establish a systematic approach to conducting marketing experiments to fully integrate experimentation into your marketing strategy. This might involve setting up a dedicated team or working group responsible for planning, executing, and analyzing experiments or incorporating experimentation as a standard part of your marketing processes.

Create a roadmap for your marketing experiments that outlines each project’s objectives, hypotheses, and experimental designs. Monitor the progress of your experiments and adjust your roadmap as needed based on the results and lessons learned.

Ensure that your marketing team has the necessary resources, such as time, budget, and tools, to conduct experiments effectively. Set clear expectations for the role of experimentation in your marketing efforts and emphasize its importance in driving better results and continuous improvement.

Collaborating across teams for a holistic approach

Marketing experiments often involve multiple teams within an organization, such as design, product, sales, and customer support. Encourage cross-functional collaboration to ensure a holistic approach to experimentation and leverage each team’s unique insights and expertise.

Establish clear communication channels and processes for sharing information and results from your experiments. This might involve regular meetings, shared documentation, or internal presentations to keep all stakeholders informed and engaged.

Collaboration also extends beyond your organization. Connect with other marketing professionals, industry experts, and thought leaders to learn from their experiences, share your own insights, and stay informed about the latest trends and best practices in marketing experimentation.

By building a culture of experimentation within your organization, you can unlock valuable insights, optimize your marketing strategies, and drive better results for your business.

Encourage curiosity and learning, adopt a data-driven mindset, integrate experimentation into your marketing strategy, and collaborate across teams to create a strong foundation for marketing success.

If you’re new to marketing experiments, don’t be intimidated—start small and gradually expand your efforts as your confidence grows. By embracing a curious and data-driven mindset, even small-scale experiments can lead to meaningful insights and improvements.

As you gain experience, you can tackle more complex experiments and further refine your marketing strategies.

Remember, continuous learning and improvement is the key to success in marketing experimentation. By regularly conducting experiments, analyzing the results, and applying the lessons learned, you can stay ahead of the competition and drive better results for your business.

So, take the plunge and start experimenting today—your marketing efforts will be all the better.

#ezw_tco-2 .ez-toc-title{ font-size: 120%; ; ; } #ezw_tco-2 .ez-toc-widget-container ul.ez-toc-list li.active{ background-color: #ededed; } Table of Contents

Manage your remote team with teamly. get your 100% free account today..

example of hypothesis in marketing research

PC and Mac compatible

image

Teamly is everywhere you need it to be. Desktop download or web browser or IOS/Android app. Take your pick.

Get Teamly for FREE by clicking below.

No credit card required. completely free.

image

Teamly puts everything in one place, so you can start and finish projects quickly and efficiently.

Keep reading.

client management software

7 Game-Changing Client Management Software For Every Kind of Business

7 Game-Changing Client Management Software For Every Kind of BusinessManaging clients is the number one aspect of any business. It involves keeping track of numerous details, from contact information to communication history, sales data, and more. It’s a complex task that requires a high level of organization and efficiency. However, as your client base grows, …

Continue reading “7 Game-Changing Client Management Software For Every Kind of Business”

Max 12 min read

macro environment in marketing

Unraveling the Macro Environment: Your Key to Marketing Success

Unraveling the Macro Environment: Your Key to Marketing SuccessEver wondered why some businesses seem to effortlessly succeed while others constantly struggle? It’s time to unravel the mystery of the macro environment in marketing. Think of it as a detective story, but instead of solving crimes, we’re deciphering marketing puzzles. Intrigued? Let’s dive in. What’s This …

Continue reading “Unraveling the Macro Environment: Your Key to Marketing Success”

Max 9 min read

Project Integration Management

Project Management

Project Integration Management: What Is It and Why Does It Matter?

Project Integration Management: What Is It and Why Does It Matter?If you’re reading this you’re probably familiar with the basics of project management. But just in case you’re new to the term, project integration management is the process of bringing all the elements of a project together into one cohesive whole. It’s the job of …

Continue reading “Project Integration Management: What Is It and Why Does It Matter?”

Project Management Software Comparisons

Asana

Asana vs Wrike

Basecamp

Basecamp vs Slack

Smartsheet

Smartsheet vs Airtable

Trello

Trello vs ClickUp

Monday.com

Monday.com vs Jira Work Management

Trello vs asana.

Get Teamly for FREE Enter your email and create your account today!

You must enter a valid email address

You must enter a valid email address!

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Background of The Study

Background of The Study – Examples and Writing...

Evaluating Research

Evaluating Research – Process, Examples and...

Significance of the Study

Significance of the Study – Examples and Writing...

References in Research

References in Research – Types, Examples and...

Problem statement

Problem Statement – Writing Guide, Examples and...

Thesis Format

Thesis Format – Templates and Samples

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO

example of hypothesis in marketing research

9 Key stages in your marketing research process

You can conduct your own marketing research. Follow these steps, add your own flair, knowledge and creativity, and you’ll have bespoke research to be proud of.

Marketing research is the term used to cover the concept, development, placement and evolution of your product or service, its growing customer base and its branding – starting with brand awareness , and progressing to (everyone hopes) brand equity . Like any research, it needs a robust process to be credible and useful.

Marketing research uses four essential key factors known as the ‘marketing mix’ , or the Four Ps of Marketing :

  • Product (goods or service)
  • Price ( how much the customer pays )
  • Place (where the product is marketed)
  • Promotion (such as advertising and PR)

These four factors need to work in harmony for a product or service to be successful in its marketplace.

The marketing research process – an overview

A typical marketing research process is as follows:

  • Identify an issue, discuss alternatives and set out research objectives
  • Develop a research program
  • Choose a sample
  • Gather information
  • Gather data
  • Organize and analyze information and data
  • Present findings
  • Make research-based decisions
  • Take action based on insights

Step 1: Defining the marketing research problem

Defining a problem is the first step in the research process. In many ways, research starts with a problem facing management. This problem needs to be understood, the cause diagnosed, and solutions developed.

However, most management problems are not always easy to research, so they must first be translated into research problems. Once you approach the problem from a research angle, you can find a solution. For example, “sales are not growing” is a management problem, but translated into a research problem, it becomes “ why are sales not growing?” We can look at the expectations and experiences of several groups : potential customers, first-time buyers, and repeat purchasers. We can question whether the lack of sales is due to:

  • Poor expectations that lead to a general lack of desire to buy, or
  • Poor performance experience and a lack of desire to repurchase.

This, then, is the difference between a management problem and a research problem. Solving management problems focuses on actions: Do we advertise more? Do we change our advertising message? Do we change an under-performing product configuration? And if so, how?

Defining research problems, on the other hand, focus on the whys and hows, providing the insights you need to solve your management problem.

Step 2: Developing a research program: method of inquiry

The scientific method is the standard for investigation. It provides an opportunity for you to use existing knowledge as a starting point, and proceed impartially.

The scientific method includes the following steps:

  • Define a problem
  • Develop a hypothesis
  • Make predictions based on the hypothesis
  • Devise a test of the hypothesis
  • Conduct the test
  • Analyze the results

This terminology is similar to the stages in the research process. However, there are subtle differences in the way the steps are performed:

  • the scientific research method is objective and fact-based, using quantitative research and impartial analysis
  • the marketing research process can be subjective, using opinion and qualitative research, as well as personal judgment as you collect and analyze data

Step 3: Developing a research program: research method

As well as selecting a method of inquiry (objective or subjective), you must select a research method . There are two primary methodologies that can be used to answer any research question:

  • Experimental research : gives you the advantage of controlling extraneous variables and manipulating one or more variables that influence the process being implemented.
  • Non-experimental research : allows observation but not intervention – all you do is observe and report on your findings.

Step 4: Developing a research program: research design

Research design is a plan or framework for conducting marketing research and collecting data. It is defined as the specific methods and procedures you use to get the information you need.

There are three core types of marketing research designs: exploratory, descriptive, and causal . A thorough marketing research process incorporates elements of all of them.

Exploratory marketing research

This is a starting point for research. It’s used to reveal facts and opinions about a particular topic, and gain insight into the main points of an issue. Exploratory research is too much of a blunt instrument to base conclusive business decisions on, but it gives the foundation for more targeted study. You can use secondary research materials such as trade publications, books, journals and magazines and primary research using qualitative metrics, that can include open text surveys, interviews and focus groups.

Descriptive marketing research

This helps define the business problem or issue so that companies can make decisions, take action and monitor progress. Descriptive research is naturally quantitative – it needs to be measured and analyzed statistically , using more targeted surveys and questionnaires. You can use it to capture demographic information , evaluate a product or service for market, and monitor a target audience’s opinion and behaviors. Insights from descriptive research can inform conclusions about the market landscape and the product’s place in it.

Causal marketing research

This is useful to explore the cause and effect relationship between two or more variables. Like descriptive research , it uses quantitative methods, but it doesn’t merely report findings; it uses experiments to predict and test theories about a product or market. For example, researchers may change product packaging design or material, and measure what happens to sales as a result.

Step 5: Choose your sample

Your marketing research project will rarely examine an entire population. It’s more practical to use a sample - a smaller but accurate representation of the greater population. To design your sample, you’ll need to answer these questions:

  • Which base population is the sample to be selected from? Once you’ve established who your relevant population is (your research design process will have revealed this), you have a base for your sample. This will allow you to make inferences about a larger population.
  • What is the method (process) for sample selection? There are two methods of selecting a sample from a population:

1. Probability sampling : This relies on a random sampling of everyone within the larger population.

2. Non-probability sampling : This is based in part on the investigator’s judgment, and often uses convenience samples, or by other sampling methods that do not rely on probability.

  • What is your sample size? This important step involves cost and accuracy decisions. Larger samples generally reduce sampling error and increase accuracy, but also increase costs. Find out your perfect sample size with our calculator .

Step 6: Gather data

Your research design will develop as you select techniques to use. There are many channels for collecting data, and it’s helpful to differentiate it into O-data (Operational) and X-data (Experience):

  • O-data is your business’s hard numbers like costs, accounting, and sales. It tells you what has happened, but not why.
  • X-data gives you insights into the thoughts and emotions of the people involved: employees, customers, brand advocates.

When you combine O-data with X-data, you’ll be able to build a more complete picture about success and failure - you’ll know why. Maybe you’ve seen a drop in sales (O-data) for a particular product. Maybe customer service was lacking, the product was out of stock, or advertisements weren’t impactful or different enough: X-data will reveal the reason why those sales dropped. So, while differentiating these two data sets is important, when they are combined, and work with each other, the insights become powerful.

With mobile technology, it has become easier than ever to collect data. Survey research has come a long way since market researchers conducted face-to-face, postal, or telephone surveys. You can run research through:

  • Social media ( polls and listening )

Another way to collect data is by observation. Observing a customer’s or company’s past or present behavior can predict future purchasing decisions. Data collection techniques for predicting past behavior can include market segmentation , customer journey mapping and brand tracking .

Regardless of how you collect data, the process introduces another essential element to your research project: the importance of clear and constant communication .

And of course, to analyze information from survey or observation techniques, you must record your results . Gone are the days of spreadsheets. Feedback from surveys and listening channels can automatically feed into AI-powered analytics engines and produce results, in real-time, on dashboards.

Step 7: Analysis and interpretation

The words ‘ statistical analysis methods ’ aren’t usually guaranteed to set a room alight with excitement, but when you understand what they can do, the problems they can solve and the insights they can uncover, they seem a whole lot more compelling.

Statistical tests and data processing tools can reveal:

  • Whether data trends you see are meaningful or are just chance results
  • Your results in the context of other information you have
  • Whether one thing affecting your business is more significant than others
  • What your next research area should be
  • Insights that lead to meaningful changes

There are several types of statistical analysis tools used for surveys. You should make sure that the ones you choose:

  • Work on any platform - mobile, desktop, tablet etc.
  • Integrate with your existing systems
  • Are easy to use with user-friendly interfaces, straightforward menus, and automated data analysis
  • Incorporate statistical analysis so you don’t just process and present your data, but refine it, and generate insights and predictions.

Here are some of the most common tools:

  • Benchmarking : a way of taking outside factors into account so that you can adjust the parameters of your research. It ‘levels the playing field’ – so that your data and results are more meaningful in context. And gives you a more precise understanding of what’s happening.
  • Regression analysis : this is used for working out the relationship between two (or more) variables. It is useful for identifying the precise impact of a change in an independent variable.
  • T-test is used for comparing two data groups which have different mean values. For example, do women and men have different mean heights?
  • Analysis of variance (ANOVA) Similar to the T-test, ANOVA is a way of testing the differences between three or more independent groups to see if they’re statistically significant.
  • Cluster analysis : This organizes items into groups, or clusters, based on how closely associated they are.
  • Factor analysis: This is a way of condensing many variables into just a few, so that your research data is less unwieldy to work with.
  • Conjoint analysis : this will help you understand and predict why people make the choices they do. It asks people to make trade-offs when making decisions, just as they do in the real world, then analyzes the results to give the most popular outcome.
  • Crosstab analysis : this is a quantitative market research tool used to analyze ‘categorical data’ - variables that are different and mutually exclusive, such as: ‘men’ and ‘women’, or ‘under 30’ and ‘over 30’.
  • Text analysis and sentiment analysis : Analyzing human language and emotions is a rapidly-developing form of data processing, assigning positive, negative or neutral sentiment to customer messages and feedback.

Stats IQ can perform the most complicated statistical tests at the touch of a button using our online survey software , or data from other sources. Learn more about Stats iQ now .

Step 8: The marketing research results

Your marketing research process culminates in the research results. These should provide all the information the stakeholders and decision-makers need to understand the project.

The results will include:

  • all your information
  • a description of your research process
  • the results
  • conclusions
  • recommended courses of action

They should also be presented in a form, language and graphics that are easy to understand, with a balance between completeness and conciseness, neither leaving important information out or allowing it to get so technical that it overwhelms the readers.

Traditionally, you would prepare two written reports:

  • a technical report , discussing the methods, underlying assumptions and the detailed findings of the research project
  • a summary report , that summarizes the research process and presents the findings and conclusions simply.

There are now more engaging ways to present your findings than the traditional PowerPoint presentations, graphs, and face-to-face reports:

  • Live, interactive dashboards for sharing the most important information, as well as tracking a project in real time.
  • Results-reports visualizations – tables or graphs with data visuals on a shareable slide deck
  • Online presentation technology, such as Prezi
  • Visual storytelling with infographics
  • A single-page executive summary with key insights
  • A single-page stat sheet with the top-line stats

You can also make these results shareable so that decision-makers have all the information at their fingertips.

Step 9 Turn your insights into action

Insights are one thing, but they’re worth very little unless they inform immediate, positive action. Here are a few examples of how you can do this:

  • Stop customers leaving – negative sentiment among VIP customers gets picked up; the customer service team contacts the customers, resolves their issues, and avoids churn .
  • Act on important employee concerns – you can set certain topics, such as safety, or diversity and inclusion to trigger an automated notification or Slack message to HR. They can rapidly act to rectify the issue.
  • Address product issues – maybe deliveries are late, maybe too many products are faulty. When product feedback gets picked up through Smart Conversations, messages can be triggered to the delivery or product teams to jump on the problems immediately.
  • Improve your marketing effectiveness - Understand how your marketing is being received by potential customers, so you can find ways to better meet their needs
  • Grow your brand - Understand exactly what consumers are looking for, so you can make sure that you’re meeting their expectations

Free eBook: Quantitative and qualitative research design

Scott Smith

Scott Smith, Ph.D. is a contributor to the Qualtrics blog.

Related Articles

May 20, 2024

Best strategy & research books to read in 2024

May 13, 2024

Experience Management

X4 2024 Strategy & Research Showcase: Introducing the future of insights generation

November 7, 2023

Brand Experience

The 4 market research trends redefining insights in 2024

June 27, 2023

The fresh insights people: Scaling research at Woolworths Group

June 20, 2023

Bank less, delight more: How Bankwest built an engine room for customer obsession

April 1, 2023

Academic Experience

How to write great survey questions (with examples)

March 21, 2023

Sample size calculator

November 18, 2022

Statistical analysis software: your complete guide to getting started

Stay up to date with the latest xm thought leadership, tips and news., request demo.

Ready to learn more about Qualtrics?

Marketing Research Design & Analysis 2019

5 hypothesis testing.

This chapter is primarily based on Field, A., Miles J., & Field, Z. (2012): Discovering Statistics Using R. Sage Publications, chapters 5, 9, 15, 18 .

You can download the corresponding R-Code here

5.1 Introduction

We test hypotheses because we are confined to taking samples – we rarely work with the entire population. In the previous chapter, we introduced the standard error (i.e., the standard deviation of a large number of hypothetical samples) as an estimate of how well a particular sample represents the population. We also saw how we can construct confidence intervals around the sample mean \(\bar x\) by computing \(SE_{\bar x}\) as an estimate of \(\sigma_{\bar x}\) using \(s\) as an estimate of \(\sigma\) and calculating the 95% CI as \(\bar x \pm 1.96 * SE_{\bar x}\) . Although we do not know the true population mean ( \(\mu\) ), we might have an hypothesis about it and this would tell us how the corresponding sampling distribution looks like. Based on the sampling distribution of the hypothesized population mean, we could then determine the probability of a given sample assuming that the hypothesis is true .

Let us again begin by assuming we know the entire population using the example of music listening times among students from the previous example. As a reminder, the following plot shows the distribution of music listening times in the population of WU students.

example of hypothesis in marketing research

In this example, the population mean ( \(\mu\) ) is equal to 19.98, and the population standard deviation \(\sigma\) is equal to 14.15.

5.1.1 The null hypothesis

Let us assume that we were planning to take a random sample of 50 students from this population and our hypothesis was that the mean listening time is equal to some specific value \(\mu_0\) , say \(10\) . This would be our null hypothesis . The null hypothesis refers to the statement that is being tested and is usually a statement of the status quo, one of no difference or no effect. In our example, the null hypothesis would state that there is no difference between the true population mean \(\mu\) and the hypothesized value \(\mu_0\) (in our example \(10\) ), which can be expressed as follows:

\[ H_0: \mu = \mu_0 \] When conducting research, we are usually interested in providing evidence against the null hypothesis. If we then observe sufficient evidence against it and our estimate is said to be significant. If the null hypothesis is rejected, this is taken as support for the alternative hypothesis . The alternative hypothesis assumes that some difference exists, which can be expressed as follows:

\[ H_1: \mu \neq \mu_0 \] Accepting the alternative hypothesis in turn will often lead to changes in opinions or actions. Note that while the null hypothesis may be rejected, it can never be accepted based on a single test. If we fail to reject the null hypothesis, it means that we simply haven’t collected enough evidence against the null hypothesis to disprove it. In classical hypothesis testing, there is no way to determine whether the null hypothesis is true. Hypothesis testing provides a means to quantify to what extent the data from our sample is in line with the null hypothesis.

In order to quantify the concept of “sufficient evidence” we look at the theoretical distribution of the sample means given our null hypothesis and the sample standard error. Using the available information we can infer the sampling distribution for our null hypothesis. Recall that the standard deviation of the sampling distribution (i.e., the standard error of the mean) is given by \(\sigma_{\bar x}={\sigma \over \sqrt{n}}\) , and thus can be computed as follows:

Since we know from the central limit theorem that the sampling distribution is normal for large enough samples, we can now visualize the expected sampling distribution if our null hypothesis was in fact true (i.e., if the was no difference between the true population mean and the hypothesized mean of 10).

example of hypothesis in marketing research

We also know that 95% of the probability is within 1.96 standard deviations from the mean. Values higher than that are rather unlikely, if our hypothesis about the population mean was indeed true. This is shown by the shaded area, also known as the “rejection region”. To test our hypothesis that the population mean is equal to \(10\) , let us take a random sample from the population.

example of hypothesis in marketing research

The mean listening time in the sample (black line) \(\bar x\) is 18.59. We can already see from the graphic above that such a value is rather unlikely under the hypothesis that the population mean is \(10\) . Intuitively, such a result would therefore provide evidence against our null hypothesis. But how could we quantify specifically how unlikely it is to obtain such a value and decide whether or not to reject the null hypothesis? Significance tests can be used to provide answers to these questions.

5.1.2 Statistical inference on a sample

5.1.2.1 test statistic, 5.1.2.1.1 z-scores.

Let’s go back to the sampling distribution above. We know that 95% of all values will fall within 1.96 standard deviations from the mean. So if we could express the distance between our sample mean and the null hypothesis in terms of standard deviations, we could make statements about the probability of getting a sample mean of the observed magnitude (or more extreme values). Essentially, we would like to know how many standard deviations ( \(\sigma_{\bar x}\) ) our sample mean ( \(\bar x\) ) is away from the population mean if the null hypothesis was true ( \(\mu_0\) ). This can be formally expressed as follows:

\[ \bar x- \mu_0 = z \sigma_{\bar x} \]

In this equation, z will tell us how many standard deviations the sample mean \(\bar x\) is away from the null hypothesis \(\mu_0\) . Solving for z gives us:

\[ z = {\bar x- \mu_0 \over \sigma_{\bar x}}={\bar x- \mu_0 \over \sigma / \sqrt{n}} \]

This standardized value (or “z-score”) is also referred to as a test statistic . Let’s compute the test statistic for our example above:

To make a decision on whether the difference can be deemed statistically significant, we now need to compare this calculated test statistic to a meaningful threshold. In order to do so, we need to decide on a significance level \(\alpha\) , which expresses the probability of finding an effect that does not actually exist (i.e., Type I Error). You can find a detailed discussion of this point at the end of this chapter. For now, we will adopt the widely accepted significance level of 5% and set \(\alpha\) to 0.05. The critical value for the normal distribution and \(\alpha\) = 0.05 can be computed using the qnorm() function as follows:

We use 0.975 and not 0.95 since we are running a two-sided test and need to account for the rejection region at the other end of the distribution. Recall that for the normal distribution, 95% of the total probability falls within 1.96 standard deviations of the mean, so that higher (absolute) values provide evidence against the null hypothesis. Generally, we speak of a statistically significant effect if the (absolute) calculated test statistic is larger than the (absolute) critical value. We can easily check if this is the case in our example:

Since the absolute value of the calculated test statistic is larger than the critical value, we would reject \(H_0\) and conclude that the true population mean \(\mu\) is significantly different from the hypothesized value \(\mu_0 = 10\) .

5.1.2.1.2 t-statistic

You may have noticed that the formula for the z-score above assumes that we know the true population standard deviation ( \(\sigma\) ) when computing the standard deviation of the sampling distribution ( \(\sigma_{\bar x}\) ) in the denominator. However, the population standard deviation is usually not known in the real world and therefore represents another unknown population parameter which we have to estimate from the sample. We saw in the previous chapter that we usually use \(s\) as an estimate of \(\sigma\) and \(SE_{\bar x}\) as and estimate of \(\sigma_{\bar x}\) . Intuitively, we should be more conservative regarding the critical value that we used above to assess whether we have a significant effect to reflect this uncertainty about the true population standard deviation. That is, the threshold for a “significant” effect should be higher to safeguard against falsely claiming a significant effect when there is none. If we replace \(\sigma_{\bar x}\) by it’s estimate \(SE_{\bar x}\) in the formula for the z-score, we get a new test statistic (i.e, the t-statistic ) with its own distribution (the t-distribution ):

\[ t = {\bar x- \mu_0 \over SE_{\bar x}}={\bar x- \mu_0 \over s / \sqrt{n}} \]

Here, \(\bar X\) denotes the sample mean and \(s\) the sample standard deviation. The t-distribution has more probability in its “tails”, i.e. farther away from the mean. This reflects the higher uncertainty introduced by replacing the population standard deviation by its sample estimate. Intuitively, this is particularly relevant for small samples, since the uncertainty about the true population parameters decreases with increasing sample size. This is reflected by the fact that the exact shape of the t-distribution depends on the degrees of freedom , which is the sample size minus one (i.e., \(n-1\) ). To see this, the following graph shows the t-distribution with different degrees of freedom for a two-tailed test and \(\alpha = 0.05\) . The grey curve shows the normal distribution.

example of hypothesis in marketing research

Notice that as \(n\) gets larger, the t-distribution gets closer and closer to the normal distribution, reflecting the fact that the uncertainty introduced by \(s\) is reduced. To summarize, we now have an estimate for the standard deviation of the distribution of the sample mean (i.e., \(SE_{\bar x}\) ) and an appropriate distribution that takes into account the necessary uncertainty (i.e., the t-distribution). Let us now compute the t-statistic according to the formula above:

Notice that the value of the t-statistic is higher compared to the z-score (4.29). This can be attributed to the fact that by using the \(s\) as and estimate of \(\sigma\) , we underestimate the true population standard deviation. Hence, the critical value would need to be larger to adjust for this. This is what the t-distribution does. Let us compute the critical value from the t-distribution with n - 1 degrees of freedom.

Again, we use 0.975 and not 0.95 since we are running a two-sided test and need to account for the rejection region at the other end of the distribution. Notice that the new critical value based on the t-distributionis larger, to reflect the uncertainty when estimating \(\sigma\) from \(s\) . Now we can see that the calculated test statistic is still larger than the critical value.

The following graphics shows that the calculated test statistic (red line) falls into the rejection region so that in our example, we would reject the null hypothesis that the true population mean is equal to \(10\) .

example of hypothesis in marketing research

Decision: Reject \(H_0\) , given that the calculated test statistic is larger than critical value.

Something to keep in mind here is the fact the test statistic is a function of the sample size. This, as \(n\) gets large, the test statistic gets larger as well and we are more likely to find a significant effect. This reflects the decrease in uncertainty about the true population mean as our sample size increases.

5.1.2.2 P-values

In the previous section, we computed the test statistic, which tells us how close our sample is to the null hypothesis. The p-value corresponds to the probability that the test statistic would take a value as extreme or more extreme than the one that we actually observed, assuming that the null hypothesis is true . It is important to note that this is a conditional probability : we compute the probability of observing a sample mean (or a more extreme value) conditional on the assumption that the null hypothesis is true. The pnorm() function can be used to compute this probability. It is the cumulative probability distribution function of the `normal distribution. Cumulative probability means that the function returns the probability that the test statistic will take a value less than or equal to the calculated test statistic given the degrees of freedom. However, we are interested in obtaining the probability of observing a test statistic larger than or equal to the calculated test statistic under the null hypothesis (i.e., the p-value). Thus, we need to subtract the cumulative probability from 1. In addition, since we are running a two-sided test, we need to multiply the probability by 2 to account for the rejection region at the other side of the distribution.

This value corresponds to the probability of observing a mean equal to or larger than the one we obtained from our sample, if the null hypothesis was true. As you can see, this probability is very low. A small p-value signals that it is unlikely to observe the calculated test statistic under the null hypothesis. To decide whether or not to reject the null hypothesis, we would now compare this value to the level of significance ( \(\alpha\) ) that we chose for our test. For this example, we adopt the widely accepted significance level of 5%, so any test results with a p-value < 0.05 would be deemed statistically significant. Note that the p-value is directly related to the value of the test statistic. The relationship is such that the higher (lower) the value of the test statistic, the lower (higher) the p-value.

Decision: Reject \(H_0\) , given that the p-value is smaller than 0.05.

5.1.2.3 Confidence interval

For a given statistic calculated for a sample of observations (e.g., listening times), a 95% confidence interval can be constructed such that in 95% of samples, the true value of the true population mean will fall within its limits. If the parameter value specified in the null hypothesis (here \(10\) ) does not lie within the bounds, we reject \(H_0\) . Building on what we learned about confidence intervals in the previous chapter, the 95% confidence interval based on the t-distribution can be computed as follows:

\[ CI_{lower} = {\bar x} - t_{1-{\alpha \over 2}} * SE_{\bar x} \\ CI_{upper} = {\bar x} + t_{1-{\alpha \over 2}} * SE_{\bar x} \]

It is easy to compute this interval manually:

The interpretation of this interval is as follows: if we would (hypothetically) take 100 samples and calculated the mean and confidence interval for each of them, then the true population mean would be included in 95% of these intervals. The CI is informative when reporting the result of your test, since it provides an estimate of the uncertainty associated with the test result. From the test statistic or the p-value alone, it is not easy to judge in which range the true population parameter is located. The CI provides an estimate of this range.

Decision: Reject \(H_0\) , given that the parameter value from the null hypothesis ( \(10\) ) is not included in the interval.

To summarize, you can see that we arrive at the same conclusion (i.e., reject \(H_0\) ), irrespective if we use the test statistic, the p-value, or the confidence interval. However, keep in mind that rejecting the null hypothesis does not prove the alternative hypothesis (we can merely provide support for it). Rather, think of the p-value as the chance of obtaining the data we’ve collected assuming that the null hypothesis is true. You should report the confidence interval to provide an estimate of the uncertainty associated with your test results.

5.1.3 Choosing the right test

The test statistic, as we have seen, measures how close the sample is to the null hypothesis and often follows a well-known distribution (e.g., normal, t, or chi-square). To select the correct test, various factors need to be taken into consideration. Some examples are:

  • On what scale are your variables measured (categorical vs. continuous)?
  • Do you want to test for relationships or differences?
  • If you test for differences, how many groups would you like to test?
  • For parametric tests, are the assumptions fulfilled?

The previous discussion used a one sample t-test as an example, which requires that variable is measured on an interval or ratio scale. If you are confronted with other settings, the following flow chart provides a rough guideline on selecting the correct test:

Flowchart for selecting an appropriate test (source: McElreath, R. (2016): Statistical Rethinking, p. 2)

Flowchart for selecting an appropriate test (source: McElreath, R. (2016): Statistical Rethinking, p. 2)

For a detailed overview over the different type of tests, please also refer to this overview by the UCLA.

5.1.3.1 Parametric vs. non-parametric tests

A basic distinction can be made between parametric and non-parametric tests. Parametric tests require that variables are measured on an interval or ratio scale and that the sampling distribution follows a known distribution. Non-Parametric tests on the other hand do not require the sampling distribution to be normally distributed (a.k.a. “assumption free tests”). These tests may be used when the variable of interest is measured on an ordinal scale or when the parametric assumptions do not hold. They often rely on ranking the data instead of analyzing the actual scores. By ranking the data, information on the magnitude of differences is lost. Thus, parametric tests are more powerful if the sampling distribution is normally distributed. In this chapter, we will first focus on parametric tests and cover non-parametric tests later.

5.1.3.2 One-tailed vs. two-tailed test

For some tests you may choose between a one-tailed test versus a two-tailed test . The choice depends on the hypothesis you specified, i.e., whether you specified a directional or a non-directional hypotheses. In the example above, we used a non-directional hypothesis . That is, we stated that the mean is different from the comparison value \(\mu_0\) , but we did not state the direction of the effect. A directional hypothesis states the direction of the effect. For example, we might test whether the population mean is smaller than a comparison value:

\[ H_0: \mu \ge \mu_0 \\ H_1: \mu < \mu_0 \]

Similarly, we could test whether the population mean is larger than a comparison value:

\[ H_0: \mu \le \mu_0 \\ H_1: \mu > \mu_0 \]

Connected to the decision of how to phrase the hypotheses (directional vs. non-directional) is the choice of a one-tailed test versus a two-tailed test . Let’s first think about the meaning of a one-tailed test. Using a significance level of 0.05, a one-tailed test means that 5% of the total area under the probability distribution of our test statistic is located in one tail. Thus, under a one-tailed test, we test for the possibility of the relationship in one direction only, disregarding the possibility of a relationship in the other direction. In our example, a one-tailed test could test either if the mean listening time is significantly larger or smaller compared to the control condition, but not both. Depending on the direction, the mean listening time is significantly larger (smaller) if the test statistic is located in the top (bottom) 5% of its probability distribution.

The following graph shows the critical values that our test statistic would need to surpass so that the difference between the population mean and the comparison value would be deemed statistically significant.

example of hypothesis in marketing research

It can be seen that under a one-sided test, the rejection region is at one end of the distribution or the other. In a two-sided test, the rejection region is split between the two tails. As a consequence, the critical value of the test statistic is smaller using a one-tailed test, meaning that it has more power to detect an effect. Having said that, in most applications, we would like to be able catch effects in both directions, simply because we can often not rule out that an effect might exist that is not in the hypothesized direction. For example, if we would conduct a one-tailed test for a mean larger than some specified value but the mean turns out to be substantially smaller, then testing a one-directional hypothesis ($H_0: _0 $) would not allow us to conclude that there is a significant effect because there is not rejection at this end of the distribution.

5.1.4 Summary

As we have seen, the process of hypothesis testing consists of various steps:

  • Formulate null and alternative hypotheses
  • Select an appropriate test
  • Choose the level of significance ( \(\alpha\) )
  • Descriptive statistics and data visualization
  • Conduct significance test
  • Report results and draw a marketing conclusion

In the following, we will go through the individual steps using examples for different tests.

5.2 One sample t-test

The example we used in the introduction was an example of the one sample t-test and we computed all statistics by hand to explain the underlying intuition. When you conduct hypothesis tests using R, you do not need to calculate these statistics by hand, since there are build-in routines to conduct the steps for you. Let us use the same example again to see how you would conduct hypothesis tests in R.

1. Formulate null and alternative hypotheses

The null hypothesis states that there is no difference between the true population mean \(\mu\) and the hypothesized value (i.e., \(10\) ), while the alternative hypothesis states the opposite:

\[ H_0: \mu = 10 \\ H_1: \mu \neq 10 \]

2. Select an appropriate test

Because we would like to test if the mean of a variable is different from a specified threshold, the one-sample t-test is appropriate. The assumptions of the test are 1) that the variable is measured using an interval or ratio scale, and 2) that the sampling distribution is normal. Both assumptions are met since 1) listening time is a ratio scale, and 2) we deem the sample size (n = 50) large enough to assume a normal sampling distribution according to the central limit theorem.

3. Choose the level of significance

We choose the conventional 5% significance level.

4. Descriptive statistics and data visualization

Provide descriptive statistics using the stat.desc() function:

From this, we can already see that the mean is different from the hypothesized value. The question however remains, whether this difference is significantly different, given the sample size and the variability in the data. Since we only have one continuous variable, we can visualize the distribution in a histogram.

example of hypothesis in marketing research

5. Conduct significance test

In the beginning of the chapter, we saw, how you could conduct significance test by hand. However, R has built-in routines that you can use to conduct the analyses. The t.test() function can be used to conduct the test. To test if the listening time among WU students was 10, you can use the following code:

Note that if you would have stated a directional hypothesis (i.e., the mean is either greater or smaller than 10 hours), you could easily amend the code to conduct a one sided test by changing the argument alternative from 'two.sided' to either 'less' or 'greater' .

6. Report results and draw a marketing conclusion

Note that the results are the same as above, when we computed the test by hand. You could summarize the results as follows:

On average, the listening times in our sample were different form 10 hours per month (Mean = 18.99 hours, SE = 1.78). This difference was significant t(49) = 5.058, p < .05 (95% CI = [15.42; 22.56]). Based on this evidence, we can conclude that the mean in our sample is significantly lower compared to the hypothesized population mean of \(10\) hours, providing evidence against the null hypothesis.

Note that in the reporting above, the number 49 in parenthesis refers to the degrees of freedom that are available from the output.

5.3 Comparing two means

In the one-sample test above, we tested the hypothesis that the population mean has some specific value \(\mu_0\) using data from only one sample. In marketing (as in many other disciplines), you will often be confronted with a situation where you wish to compare the means of two groups. For example, you may conduct an experiment and randomly split your sample into two groups, one of which receives a treatment (experimental group) while the other doesn’t (control group). In this case, the units (e.g., participants, products) in each group are different (‘between-subjects design’) and the samples are said to be independent. Hence, we would use a independent-means t-test . If you run an experiment with two experimental conditions and the same units (e.g., participants, products) were observed in both experimental conditions, the sample is said to be dependent in the sense that you have the same units in each group (‘within-subjects design’). In this case, we would need to conduct an dependent-means t-test . Both tests are described in the following sections, beginning with the independent-means t-test.

5.3.1 Independent-means t-test

Using an independent-means t-test, we can compare the means of two possibly different populations. It is, for example, quite common for online companies to test new service features by running an experiment and randomly splitting their website visitors into two groups: one is exposed to the website with the new feature (experimental group) and the other group is not exposed to the new feature (control group). This is a typical A/B-Test scenario.

As an example, imagine that a music streaming service would like to introduce a new playlist feature that let’s their users access playlists created by other users. The goal is to analyse how the new service feature impacts the listening time of users. The service randomly splits a representative subset of their users into two groups and collects data about their listening times over one month. Let’s create a data set to simulate such a scenario.

This data set contains two variables: the variable hours indicates the music listening times (in hours) and the variable group indicates from which group the observation comes, where ‘A’ refers to the control group (with the standard service) and ‘B’ refers to the experimental group (with the new playlist feature). Let’s first look at the descriptive statistics by group using the describeBy function:

From this, we can already see that there is a difference in means between groups A and B. We can also see that the number of observations is different, as is the standard deviation. The question that we would like to answer is whether there is a significant difference in mean listening times between the groups. Remember that different users are contained in each group (‘between-subjects design’) and that the observations in one group are independent of the observations in the other group. Before we will see how you can easily conduct an independent-means t-test, let’s go over some theory first.

5.3.1.1 Theory

As a starting point, let us label the unknown population mean of group A (control group) in our experiment \(\mu_1\) , and that of group B (experimental group) \(\mu_2\) . In this setting, the null hypothesis would state that the mean in group A is equal to the mean in group B:

\[ H_0: \mu_1=\mu_2 \]

This is equivalent to stating that the difference between the two groups ( \(\delta\) ) is zero:

\[ H_0: \mu_1 - \mu_2=0=\delta \]

That is, \(\delta\) is the new unknown population parameter, so that the null and alternative hypothesis become:

\[ H_0: \delta = 0 \\ H_1: \delta \ne 0 \]

Remember that we usually don’t have access to the entire population so that we can not observe \(\delta\) and have to estimate is from a sample statistic, which we define as \(d = \bar x_1-\bar x_2\) , i.e., the difference between the sample means from group a ( \(\bar x_1\) ) and group b ( \(\bar x_2\) ). But can we really estimate \(d\) from \(\delta\) ? Remember from the previous chapter, that we could estimate \(\mu\) from \(\bar x\) , because if we (hypothetically) take a larger number of samples, the distribution of the means of these samples (the sampling distribution) will be normally distributed and its mean will be (in the limit) equal to the population mean. It turns out that we can use the same underlying logic here. The above samples were drawn from two different populations with \(\mu_1\) and \(\mu_2\) . Let us compute the difference in means between these two populations:

This means that the true difference between the mean listening times of groups a and b is -7.42. Let us now repeat the exercise from the previous chapter: let us repeatedly draw a large number of \(20,000\) random samples of 100 users from each of these populations, compute the difference (i.e., \(d\) , our estimate of \(\delta\) ), store the difference for each draw and create a histogram of \(d\) .

example of hypothesis in marketing research

This gives us the sampling distribution of the mean differences between the samples. You will notice that this distribution follows a normal distribution and is centered around the true difference between the populations. This means that, on average, the difference between two sample means \(d\) is a good estimate of \(\delta\) . In our example, the difference between \(\bar x_1\) and \(\bar x_2\) is:

Now that we have \(d\) as an estimate of \(\delta\) , how can we find out if the observed difference is significantly different from the null hypothesis (i.e., \(\delta = 0\) )?

Recall from the previous section, that the standard deviation of the sampling distribution \(\sigma_{\bar x}\) (i.e., the standard error) gives us indication about the precision of our estimate. Further recall that the standard error can be calculated as \(\sigma_{\bar x}={\sigma \over \sqrt{n}}\) . So how can we calculate the standard error of the difference between two population means? According to the variance sum law , to find the variance of the sampling distribution of differences, we merely need to add together the variances of the sampling distributions of the two populations that we are comparing. To find the standard error, we only need to take the square root of the variance (because the standard error is the standard deviation of the sampling distribution and the standard deviation is the square root of the variance), so that we get:

\[ \sigma_{\bar x_1-\bar x_2} = \sqrt{{\sigma_1^2 \over n_1}+{\sigma_2^2 \over n_2}} \]

But recall that we don’t actually know the true population standard deviation, so we use \(SE_{\bar x_1-\bar x_2}\) as an estimate of \(\sigma_{\bar x_1-\bar x_2}\) :

\[ SE_{\bar x_1-\bar x_2} = \sqrt{{s_1^2 \over n_1}+{s_2^2 \over n_2}} \]

Hence, for our example, we can calculate the standard error as follows:

Recall from above that we can calculate the t-statistic as:

\[ t= {\bar x - \mu_0 \over {s \over \sqrt{n}}} \]

Exchanging \(\bar x\) for \(d\) , we get

\[ t= {(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2) \over {\sqrt{{s_1^2 \over n_1}+{s_2^2 \over n_2}}}} \]

Note that according to our hypothesis \(\mu_1-\mu_2=0\) , so that we can calculate the t-statistic as:

Following the example of our one sample t-test above, we would now need to compare this calculated test statistic to a critical value in order to assess if \(d\) is sufficiently far away from the null hypothesis to be statistically significant. To do this, we would need to know the exact t-distribution, which depends on the degrees of freedom. The problem is that deriving the degrees of freedom in this case is not that obvious. If we were willing to assume that \(\sigma_1=\sigma_2\) , the correct t-distribution has \(n_1 -1 + n_2-1\) degrees of freedom (i.e., the sum of the degrees of freedom of the two samples). However, because in real life we don not know if \(\sigma_1=\sigma_2\) , we need to account for this additional uncertainty. We will not go into detail here, but R automatically uses a sophisticated approach to correct the degrees of freedom called the Welch’s correction, as we will see in the subsequent application.

5.3.1.2 Application

The section above explained the theory behind the independent-means t-test and showed how to compute the statistics manually. Obviously you don’t have to compute these statistics by hand in this section shows you how to conduct an independent-means t-test in R using the example from above.

We wish to analyze whether there is a significant difference in music listening times between groups A and B. So our null hypothesis is that the means from the two populations are the same (i.e., there is no difference), while the alternative hypothesis states the opposite:

\[ H_0: \mu_1=\mu_2\\ H_1: \mu_1 \ne \mu_2 \]

Since we have a ratio scaled variable (i.e., listening times) and two independent groups, where the mean of one sample is independent of the group of the second sample (i.e., the groups contain different units), the independent-means t-test is appropriate.

We can compute the descriptive statistics for each group separately, using the describeBy() function:

This already shows us that the mean between groups A and B are different. We can visualize the data using a plot of means, boxplot, and a histogram.

example of hypothesis in marketing research

To conduct the independent means t-test, we can use the t.test() function:

The results showed that listening times were higher in the experimental group B (Mean = 28.50, SE = 1.7) compared to the control group (Mean = 18.11, SE = 1.22). This means that the listening times were 10.39 hours higher on average in the experimental group (B), compared to the control group (A). An independent-means t-test showed that this difference is significant t(195.73) = -4.9646, p < .05 (95% CI = [-14.514246,-6.261264]).

5.3.2 Dependent-means t-test

While the independent-means t-test is used when different units (e.g., participants, products) were assigned to the different condition, the dependent-means t-test is used when there are two experimental conditions and the same units (e.g., participants, products) were observed in both experimental conditions.

Imagine, for example, a slightly different experimental setup for the above experiment. Imagine that we do not assign different users to the groups, but that a sample of 100 users gets to use the music streaming service with the new feature for one month and we compare the music listening times of these users during the month of the experiment with the listening time in the previous month. Let us generate data for this example:

Note that the data set has almost the same structure as before only that we know have two variables representing the listening times of each user in the month before the experiment and during the month of the experiment when the new feature was tested.

5.3.2.1 Theory

In this case, we want to test the hypothesis that there is no difference in mean the mean listening times between the two months. This can be expressed as follows:

\[ H_0: \mu_D = 0 \\ \] Note that the hypothesis only refers to one population, since both observations come from the same units (i.e., users). To use consistent notation, we replace \(\mu_D\) with \(\delta\) and get:

\[ H_0: \delta = 0 \\ H_1: \delta \neq 0 \]

where \(\delta\) denotes the difference between the observed listening times from the two consecutive months of the same users . As is the previous example, since we do not observe the entire population, we estimate \(\delta\) based on the sample using \(d\) , which is the difference in mean listening time between the two months for our sample. Note that we assume that everything else (e.g., number of new releases) remained constant over the two month to keep it simple. We can show as above that the sampling distribution follows a normal distribution with a mean that is (in the limit) the same as the population mean. This means, again, that the difference in sample means is a good estimate for the difference in population means. Let’s compute a new variable \(d\) , which is the difference between two month.

Note that we now have a new variable, which is the difference in listening times (in hours) between the two months. The mean of this difference is:

Again, we use \(SE_{\bar x}\) as an estimate of \(\sigma_{\bar x}\) :

\[ SE_{\bar d}={s \over \sqrt{n}} \] Hence, we can compute the standard error as:

The test statistic is therefore:

\[ t = {\bar d- \mu_0 \over SE_{\bar d}} \] on 99 (i.e., n-1) degrees of freedom. Now we can compute the t-statistic as follows:

Note that in the case of the dependent-means t-test, we only base our hypothesis on one population and hence there is only one population variance. This is because in the dependent sample test, the observations come from the same observational units (i.e., users). Hence, there is no unsystematic variation due to potential differences between users that were assigned to the experimental groups. This means that the influence of unobserved factors (unsystematic variation) relative to the variation due to the experimental manipulation (systematic variation) is not as strong in the dependent-means test compared to the independent-means test and we don’t need to correct for differences in the population variances.

5.3.2.2 Application

Again, we don’t have to compute all this by hand since the t.test(...) function can be used to do it for us. Now we have to use the argument paired=TRUE to let R know that we are working with dependent observations.

We would like to the test if there is a difference in music listening times between the two consecutive months, so our null hypothesis is that there is no difference, while the alternative hypothesis states the opposite:

\[ H_0: \mu_D = 0 \\ H_0: \mu_D \ne 0 \]

Since we have a ratio scaled variable (i.e., listening times) and two observations of the same group of users (i.e., the groups contain the same units), the dependent-means t-test is appropriate.

We can compute the descriptive statistics for each month separately, using the describe() function:

This already shows us that the mean between the two months are different. We can visiualize the data using a plot of means, boxplot, and a histogram.

To plot the data, we need to do some restructuring first, since the variables are now stored in two different columns (“hours_a” and “hours_b”). This is also known as the “wide” format. To plot the data we need all observations to be stored in one variable. This is also known as the “long” format. We can use the melt(...) function from the reshape2 package to “melt” the two variable into one column to plot the data.

Now we are ready to plot the data:

example of hypothesis in marketing research

To conduct the independent means t-test, we can use the t.test() function with the argument paired = TRUE :

On average, the same users used the service more when it included the new feature (M = 25.96, SE = 1.68) compared to the service without the feature (M = 20.99, SE = 1.34). This difference was significant t(99) = 2.3781, p < .05 (95% CI = [0.82, 9.12]).

5.3.3 Further considerations

5.3.3.1 type i and type ii errors.

When choosing the level of significance ( \(\alpha\) ). It is important to note that the choice of the significance level affects the type 1 and type 2 error:

  • Type I error: When we believe there is a genuine effect in our population, when in fact there isn’t. Probability of type I error ( \(\alpha\) ) = level of significance.
  • Type II error: When we believe that there is no effect in the population, when in fact there is.

This following table shows the possible outcomes of a test (retain vs. reject \(H_0\) ), depending on whether \(H_0\) is true or false in reality.

  Retain Reject
is true Correct decision:
1-α (probability of correct retention);
Type 1 error:
α (level of significance)
is false Type 2 error:
β (type 2 error rate)
Correct decision:
1-β (power of the test)

5.3.3.2 Significance level, sample size, power, and effect size

When you plan to conduct an experiment, there are some factors that are under direct control of the researcher:

  • Significance level ( \(\alpha\) ) : The probability of finding an effect that does not genuinely exist.
  • Sample size (n) : The number of observations in each group of the experimental design.

Unlike α and n, which are specified by the researcher, the magnitude of β depends on the actual value of the population parameter. In addition, β is influenced by the effect size (e.g., Cohen’s d), which can be used to determine a standardized measure of the magnitude of an observed effect. The following parameters are affected more indirectly:

  • Power (1-β) : The probability of finding an effect that does genuinely exists.
  • Effect size (d) : Standardized measure of the effect size under the alternate hypothesis.

Although β is unknown, it is related to α. For example, if we would like to be absolutely sure that we do not falsely identify an effect which does not exist (i.e., make a type I error), this means that the probability of identifying an effect that does exist (i.e., 1-β) decreases and vice versa. Thus, an extremely low value of α (e.g., α = 0.0001) will result in intolerably high β errors. A common approach is to set α=0.05 and 1-β=0.80.

Unlike the t-value of our test, the effect size (d) is unaffected by the sample size and can be categorized as follows (see Cohen, J. 1988):

  • 0.2 (small effect)
  • 0.5 (medium effect)
  • 0.8 (large effect)

In order to test more subtle effects (smaller effect sizes), you need a larger sample size compared to the test of more obvious effects. In this paper , you can find a list of examples for different effect sizes and the number of observations you need to reliably find an effect of that magnitude. Although the exact effect size is unknown before the experiment, you might be able to make a guess about the effect size (e.g., based on previous studies).

If you wish to obtain a standardized measure of the effect, you may compute the effect size (Cohen’s d) using the cohensD() function from the lsr package. Using the examples from the independent-means t-test above, we would use:

According to the thresholds defined above, this effect would be judged to be a small-medium effect.

For the dependent-means t-test, we would use:

According to the thresholds defined above, this effect would also be judged to be a small-medium effect.

When constructing an experimental design, your goal should be to maximize the power of the test while maintaining an acceptable significance level and keeping the sample as small as possible. To achieve this goal, you may use the pwr package, which let’s you compute n , d , alpha , and power . You only need to specify three of the four input variables to get the fourth.

For example, what sample size do we need (per group) to identify an effect with d = 0.6, α = 0.05, and power = 0.8:

Or we could ask, what is the power of our test with 51 observations in each group, d = 0.6, and α = 0.05:

5.3.3.3 P-values, stopping rules and p-hacking

From my experience, students tend to place a lot of weight on p-values when interpreting their research findings. It is therefore important to note some points that hopefully help to put the meaning of a “significant” vs. “insignificant” test result into perspective.

Significant result

  • Even if the probability of the effect being a chance result is small (e.g., less than .05) it doesn’t necessarily mean that the effect is important.
  • Very small and unimportant effects can turn out to be statistically significant if the sample size is large enough.

Insignificant result

  • If the probability of the effect occurring by chance is large (greater than .05), the alternative hypothesis is rejected. However, this does not mean that the null hypothesis is true.
  • Although an effect might not be large enough to be anything other than a chance finding, it doesn’t mean that the effect is zero.
  • In fact, two random samples will always have slightly different means that would deemed to be statistically significant if the samples were large enough.

Thus, you should not base your research conclusion on p-values alone!

It is also crucial to determine the sample size before you run the experiment or before you start your analysis. Why? Consider the following example:

  • You run an experiment
  • After each respondent you analyze the data and look at the mean difference between the two groups with a t-test
  • You stop when you have a significant effect

This is called p-hacking and should be avoided at all costs. Assuming that both groups come from the same population (i.e., there is no difference in the means): What is the likelihood that the result will be significant at some point? In other words, what is the likelihood that you will draw the wrong conclusion from your data that there is an effect, while there is none? This is shown in the following graph using simulated data - the color red indicates significant test results that arise although there is no effect (i.e., false positives).

p-hacking (red indicates false positives)

Figure 5.1: p-hacking (red indicates false positives)

5.4 Comparing several means

This chapter is primarily based on Field, A., Miles J., & Field, Z. (2012): Discovering Statistics Using R. Sage Publications, chapters 10 & 12 .

5.4.1 Introduction

In the previous section we learned how to compare means using a t-test. The t-test has some limitations since it only lets you compare 2 means and you can only use it with one independent variable. However, often we would like to compare means from 3 or more groups. In addition, there may be instances in which you manipulate more than one independent variable. For these applications, ANOVA (ANalysis Of VAriance) can be used. Hence, to conduct ANOVA you need:

  • A metric dependent variable (i.e., measured using an interval or ratio scale)
  • One or more non-metric (categorical) independent variables (also called factors)

A treatment is a particular combination of factor levels, or categories. One-way ANOVA is used when there is only one categorical variable (factor). In this case, a treatment is the same as a factor level. N-way ANOVA is used with two or more factors. Note that we are only going to talk about a single independent variable in the context of ANOVA. If you have multiple independent variables please refere to the chapter on Regression .

Let’s use an example to see how ANOVA works. Similar to the previous example it is also imaginable that the music streaming service experiments with a recommendation system for user created playlists. We now have three groups, the control group “A” with the current system, treatment group “B” who have access to playlists created by other users but are not shown recommendations and treatment group “C” who are shown recommendations for user created playlists. As always, we load and inspect the data first:

The null hypothesis, typically, is that all means are equal (non-directional hypothesis). Hence, in our case:

\[H_0: \mu_1 = \mu_2 = \mu_3\]

The alternative hypothesis is simply that the means are not all equal, i.e.,

\[H_1: \textrm{Means are not all equal}\]

If you wanted to put this in mathematical notation, you could also write:

\[H_1: \exists {i,j}: {\mu_i \ne \mu_j} \]

To get a first impression if there are any differences in listening times across the experimental groups, we use the describeBy(...) function from the psych package:

In addition, you should visualize the data using appropriate plots:

Plot of means

Figure 5.2: Plot of means

Note that ANOVA is an omnibus test, which means that we test for an overall difference between groups. Hence, the test will only tell you if the group means are different, but it won’t tell you exactly which groups are different from another.

So why don’t we then just conduct a series of t-tests for all combinations of groups (i.e., A vs. B, A vs. C, B vs. C)? The reason is that if we assume each test to be independent, then there is a 5% probability of falsely rejecting the null hypothesis (Type I error) for each test. In our case:

  • A vs. B (α = 0.05)
  • A vs. C (α = 0.05)
  • B vs. C (α = 0.05)

This means that the overall probability of making a Type I error is 1-(0.95 3 ) = 0.143, since the probability of no Type I error is 0.95 for each of the three tests. Consequently, the Type I error probability would be 14.3%, which is above the conventional standard of 5%. This is also known as the family-wise or experiment-wise error.

5.4.2 Decomposing variance

The basic concept underlying ANOVA is the decomposition of the variance in the data. There are three variance components which we need to consider:

  • We calculate how much variability there is between scores: Total sum of squares (SS T )
  • We then calculate how much of this variability can be explained by the model we fit to the data (i.e., how much variability is due to the experimental manipulation): Model sum of squares (SS M )
  • … and how much cannot be explained (i.e., how much variability is due to individual differences in performance): Residual sum of squares (SS R )

The following figure shows the different variance components using a generalized data matrix:

Decomposing variance

Decomposing variance

The total variation is determined by the variation between the categories (due to our experimental manipulation) and the within-category variation that is due to extraneous factors (e.g., promotion of artists on a social network):

\[SS_T= SS_M+SS_R\]

To get a better feeling how this relates to our data set, we can look at the data in a slightly different way. Specifically, we can use the dcast(...) function from the reshape2 package to convert the data to wide format:

In this example, X 1 from the generalized data matrix above would refer to the factor level “A”, X 2 to the level “B”, and X 3 to the level “C”. Y 11 refers to the first data point in the first row (i.e., “13”), Y 12 to the second data point in the first row (i.e., “21”), etc.. The grand mean ( \(\overline{Y}\) ) and the category means ( \(\overline{Y}_c\) ) can be easily computed:

To see how each variance component can be derived, let’s look at the data again. The following graph shows the individual observations by experimental group:

Sum of Squares

Figure 5.3: Sum of Squares

5.4.2.1 Total sum of squares

To compute the total variation in the data, we consider the difference between each observation and the grand mean. The grand mean is the mean over all observations in the data set. The vertical lines in the following plot measure how far each observation is away from the grand mean:

Total Sum of Squares

Figure 5.4: Total Sum of Squares

The formal representation of the total sum of squares (SS T ) is:

\[ SS_T= \sum_{i=1}^{N} (Y_i-\bar{Y})^2 \]

This means that we need to subtract the grand mean from each individual data point, square the difference, and sum up over all the squared differences. Thus, in our example, the total sum of squares can be calculated as:

\[ \begin{align} SS_T =&(13−24.67)^2 + (14−24.67)^2 + … + (2−24.67)^2\\ &+(21−24.67)^2 + (18-24.67)^2 + … + (17−24.67)^2\\ &+(30−24.67)^2 + (37−24.67)^2 + … + (28−24.67)^2\\ &=30855.64 \end{align} \]

You could also compute this in R using:

For the subsequent analyses, it is important to understand the concept behind the degrees of freedom . Remember that in order to estimate a population value from a sample, we need to hold something in the population constant. In ANOVA, the df are generally one less than the number of values used to calculate the SS. For example, when we estimate the population mean from a sample, we assume that the sample mean is equal to the population mean. Then, in order to estimate the population mean from the sample, all but one scores are free to vary and the remaining score needs to be the value that keeps the population mean constant. In our example, we used all 300 observations to calculate the sum of square, so the total degrees of freedom (df T ) are:

\[\begin{equation} \begin{split} df_T = N-1=300-1=299 \end{split} \tag{5.1} \end{equation}\]

5.4.2.2 Model sum of squares

Now we know that there are 26646.33 units of total variation in our data. Next, we compute how much of the total variation can be explained by the differences between groups (i.e., our experimental manipulation). To compute the explained variation in the data, we consider the difference between the values predicted by our model for each observation (i.e., the group mean) and the grand mean. The group mean refers to the mean value within the experimental group. The vertical lines in the following plot measure how far the predicted value for each observation (i.e., the group mean) is away from the grand mean:

Model Sum of Squares

Figure 5.5: Model Sum of Squares

The formal representation of the model sum of squares (SS M ) is:

\[ SS_M= \sum_{j=1}^{c} n_j(\bar{Y}_j-\bar{Y})^2 \]

where c denotes the number of categories (experimental groups). This means that we need to subtract the grand mean from each group mean, square the difference, and sum up over all the squared differences. Thus, in our example, the model sum of squares can be calculated as:

\[ \begin{align} SS_M &= 100*(15.47−24.67)^2 + 100*(24.88−24.67)^2 + 100*(33.66−24.67)^2 \\ &= 21321.21 \end{align} \]

You could also compute this manually in R using:

In this case, we used the three group means to calculate the sum of squares, so the model degrees of freedom (df M ) are:

\[ df_M= c-1=3-1=2 \]

5.4.2.3 Residual sum of squares

Lastly, we calculate the amount of variation that cannot be explained by our model. In ANOVA, this is the sum of squared distances between what the model predicts for each data point (i.e., the group means) and the observed values. In other words, this refers to the amount of variation that is caused by extraneous factors, such as differences between product characteristics of the products in the different experimental groups. The vertical lines in the following plot measure how far each observation is away from the group mean:

Residual Sum of Squares

Figure 5.6: Residual Sum of Squares

The formal representation of the residual sum of squares (SS R ) is:

\[ SS_R= \sum_{j=1}^{c} \sum_{i=1}^{n} ({Y}_{ij}-\bar{Y}_{j})^2 \]

This means that we need to subtract the group mean from each individual observation, square the difference, and sum up over all the squared differences. Thus, in our example, the model sum of squares can be calculated as:

\[ \begin{align} SS_R =& (13−14.34)^2 + (14−14.34)^2 + … + (2−14.34)^2 \\ +&(21−24.7)^2 + (18−24.7)^2 + … + (17−24.7)^2 \\ +& (30−34.99)^2 + (37−34.99)^2 + … + (28−34.99)^2 \\ =& 9534.43 \end{align} \]

In this case, we used the 10 values for each of the SS for each group, so the residual degrees of freedom (df R ) are:

\[ \begin{align} df_R=& (n_1-1)+(n_2-1)+(n_3-1) \\ =&(100-1)+(100-1)+(100-1)=297 \end{align} \]

5.4.2.4 Effect strength

Once you have computed the different sum of squares, you can investigate the effect strength. \(\eta^2\) is a measure of the variation in Y that is explained by X:

\[ \eta^2= \frac{SS_M}{SS_T}=\frac{21321.21}{30855.64}=0.69 \]

To compute this in R:

The statistic can only take values between 0 and 1. It is equal to 0 when all the category means are equal, indicating that X has no effect on Y. In contrast, it has a value of 1 when there is no variability within each category of X but there is some variability between categories.

5.4.2.5 Test of significance

How can we determine whether the effect of X on Y is significant?

  • First, we calculate the fit of the most basic model (i.e., the grand mean)
  • Then, we calculate the fit of the “best” model (i.e., the group means)
  • A good model should fit the data significantly better than the basic model
  • The F-statistic or F-ratio compares the amount of systematic variance in the data to the amount of unsystematic variance

The F-statistic uses the ratio of mean square related to X (explained variation) and the mean square related to the error (unexplained variation):

\(\frac{SS_M}{SS_R}\)

However, since these are summed values, their magnitude is influenced by the number of scores that were summed. For example, to calculate SS M we only used the sum of 3 values (the group means), while we used 30 and 27 values to calculate SS T and SS R , respectively. Thus, we calculate the average sum of squares (“mean square”) to compare the average amount of systematic vs. unsystematic variation by dividing the SS values by the degrees of freedom associated with the respective statistic.

Mean square due to X:

\[ MS_M= \frac{SS_M}{df_M}=\frac{SS_M}{c-1}=\frac{21321.21}{(3-1)} \]

Mean square due to error:

\[ MS_R= \frac{SS_R}{df_R}=\frac{SS_R}{N-c}=\frac{9534.43}{(300-3)} \]

Now, we compare the amount of variability explained by the model (experiment), to the error in the model (variation due to extraneous variables). If the model explains more variability than it can’t explain, then the experimental manipulation has had a significant effect on the outcome (DV). The F-radio can be derived as follows:

\[ F= \frac{MS_M}{MS_R}=\frac{\frac{SS_M}{c-1}}{\frac{SS_R}{N-c}}=\frac{\frac{21321.21}{(3-1)}}{\frac{9534.43}{(300-3)}}=332.08 \]

You can easily compute this in R:

This statistic follows the F distribution with (m = c – 1) and (n = N – c) degrees of freedom. This means that, like the \(\chi^2\) distribution, the shape of the F-distribution depends on the degrees of freedom. In this case, the shape depends on the degrees of freedom associated with the numerator and denominator used to compute the F-ratio. The following figure shows the shape of the F-distribution for different degrees of freedom:

The F distribution

The F distribution

The outcome of the test is one of the following:

  • If the null hypothesis of equal category means is not rejected, then the independent variable does not have a significant effect on the dependent variable
  • If the null hypothesis is rejected, then the effect of the independent variable is significant

For 2 and 297 degrees of freedom, the critical value of F is 3.026 for α=0.05. As usual, you can either look up these values in a table or use the appropriate function in R:

The output tells us that the calculated test statistic exceeds the critical value. We can also show the test result visually:

Visual depiction of the test result

Visual depiction of the test result

Thus, we conclude that because F CAL = 332.08 > F CR = 3.03, H 0 is rejected!

Interpretation: one or more of the differences between means are statistically significant.

Reporting: There was a significant effect of promotion on sales levels, F(2,297) = 332.08, p < 0.05, \(\eta^2\) = 0.69.

Remember: This doesn’t tell us where the differences between groups lie. To find out which group means exactly differ, we need to use post-hoc procedures (see below).

You don’t have to compute these statistics manually! Luckily, there is a function for ANOVA in R, which does the above calculations for you as we will see in the next section.

5.4.3 One-way ANOVA

5.4.3.1 basic anova.

As already indicated, one-way ANOVA is used when there is only one categorical variable (factor). Before conducting ANOVA, you need to check if the assumptions of the test are fulfilled. The assumptions of ANOVA are discussed in the following sections.

Independence of observations

The observations in the groups should be independent. Because we randomly assigned the listeners to the experimental conditions, this assumption can be assumed to be met.

Distributional assumptions

ANOVA is relatively immune to violations to the normality assumption when sample sizes are large due to the Central Limit Theorem. However, if your sample is small (i.e., n < 30 per group) you may nevertheless want to check the normality of your data, e.g., by using the Shapiro-Wilk test or QQ-Plot. In our example, we have 100 observations in each group which is plenty but let’s create another example with only 10 observations in each group. In the latter case we cannot rely on the Central Limit Theorem and we should test the normality of our data. This can be done using the Shapiro-Wilk Test, which has the Null Hypothesis that the data is normally distributed. Hence, an insignificant test results means that the data can be assumed to be approximately normally distributed:

Since the test result is insignificant for all groups, we can conclude that the data approximately follow a normal distribution.

We could also test the distributional assumptions visually using a Q-Q plot (i.e., quantile-quantile plot). This plot can be used to assess if a set of data plausibly came from some theoretical distribution such as the Normal distribution. Since this is just a visual check, it is somewhat subjective. But it may help us to judge if our assumption is plausible, and if not, which data points contribute to the violation. A Q-Q plot is a scatterplot created by plotting two sets of quantiles against one another. If both sets of quantiles came from the same distribution, we should see the points forming a line that’s roughly straight. In other words, Q-Q plots take your sample data, sort it in ascending order, and then plot them versus quantiles calculated from a theoretical distribution. Quantiles are often referred to as “percentiles” and refer to the points in your data below which a certain proportion of your data fall. Recall, for example, the standard Normal distribution with a mean of 0 and a standard deviation of 1. Since the 50th percentile (or 0.5 quantile) is 0, half the data lie below 0. The 95th percentile (or 0.95 quantile), is about 1.64, which means that 95 percent of the data lie below 1.64. The 97.5th quantile is about 1.96, which means that 97.5% of the data lie below 1.96. In the Q-Q plot, the number of quantiles is selected to match the size of your sample data.

To create the Q-Q plot for the normal distribution, you may use the qqnorm() function, which takes the data to be tested as an argument. Using the qqline() function subsequently on the data creates the line on which the data points should fall based on the theoretical quantiles. If the individual data points deviate a lot from this line, it means that the data is not likely to follow a normal distribution.

Q-Q plot 1

Figure 5.7: Q-Q plot 1

Q-Q plot 2

Figure 5.8: Q-Q plot 2

Q-Q plot 3

Figure 5.9: Q-Q plot 3

The Q-Q plots suggest an approximately Normal distribution. If the assumption had been violated, you might consider transforming your data or resort to a non-parametric test.

Homogeneity of variance

Let’s return to our original dataset with 100 observations in each group for the rest of the analysis.

You can test the homogeneity of variances in R using Levene’s test:

The null hypothesis of the test is that the group variances are equal. Thus, if the test result is significant it means that the variances are not equal. If we cannot reject the null hypothesis (i.e., the group variances are not significantly different), we can proceed with the ANOVA as follows:

You can see that the p-value is smaller than 0.05. This means that, if there really was no difference between the population means (i.e., the Null hypothesis was true), the probability of the observed differences (or larger differences) is less than 5%.

To compute η 2 from the output, we can extract the relevant sum of squares as follows

You can see that the results match the results from our manual computation above ( \(\eta^2 =\) 0.69).

The aov() function also automatically generates some plots that you can use to judge if the model assumptions are met. We will inspect two of the plots here.

We will use the first plot to inspect if the residual variances are equal across the experimental groups:

example of hypothesis in marketing research

Generally, the residual variance (i.e., the range of values on the y-axis) should be the same for different levels of our independent variable. The plot shows, that there are some slight differences. Notably, the range of residuals is higher in group “B” than in group “C”. However, the differences are not that large and since the Levene’s test could not reject the Null of equal variances, we conclude that the variances are similar enough in this case.

The second plot can be used to test the assumption that the residuals are approximately normally distributed. We use a Q-Q plot to test this assumption:

example of hypothesis in marketing research

The plot suggests that, the residuals are approximately normally distributed. We could also test this by extracting the residuals from the anova output using the resid() function and using the Shapiro-Wilk test:

Confirming the impression from the Q-Q plot, we cannot reject the Null that the residuals are approximately normally distributed.

Note that if Levene’s test would have been significant (i.e., variances are not equal), we would have needed to either resort to non-parametric tests (see below), or compute the Welch’s F-ratio instead:

You can see that the results are fairly similar, since the variances turned out to be fairly equal across groups.

5.4.3.2 Post-hoc tests

Provided that significant differences were detected by the overall ANOVA you can find out which group means are different using post hoc procedures. Post hoc procedures are designed to conduct pairwise comparisons of all different combinations of the treatment groups by correcting the level of significance for each test such that the overall Type I error rate (α) across all comparisons remains at 0.05.

In other words, we rejected H 0 : μ 1 = μ 2 = μ 3 , and now we would like to test:

\[H_0: \mu_1 = \mu_2\]

\[H_0: \mu_1 = \mu_3\]

\[H_0: \mu_2 = \mu_3\]

There are several post hoc procedures available to choose from. In this tutorial, we will cover Bonferroni and Tukey’s HSD (“honest significant differences”). Both tests control for family-wise error. Bonferroni tends to have more power when the number of comparisons is small, whereas Tukey’ HSDs is better when testing large numbers of means.

5.4.3.2.1 Bonferroni

One of the most popular (and easiest) methods to correct for the family-wise error rate is to conduct the individual t-tests and divide α by the number of comparisons („k“):

\[ p_{CR}= \frac{\alpha}{k} \]

In our example with three groups:

\[p_{CR}= \frac{0.05}{3}=0.017\]

Thus, the “corrected” critical p-value is now 0.017 instead of 0.05 (i.e., the critical t value is higher). You can implement the Bonferroni procedure in R using:

In the output, you will get the corrected p-values for the individual tests. In our example, we can reject H 0 of equal means for all three tests, since p < 0.05 for all combinations of groups.

Note the difference between the results from the post-hoc test compared to individual t-tests. For example, when we test the “B” vs. “C” groups, the result from a t-test would be:

Usually the p-value is lower in the t-test, reflecting the fact that the family-wise error is not corrected (i.e., the test is less conservative). In this case the p-value is extremely small in both cases and thus indistinguishable.

5.4.3.2.2 Tukey’s HSD

Tukey’s HSD also compares all possible pairs of means (two-by-two combinations; i.e., like a t-test, except that it corrects for family-wise error rate).

Test statistic:

\[\begin{equation} \begin{split} HSD= q\sqrt{\frac{MS_R}{n_c}} \end{split} \tag{5.2} \end{equation}\]

  • q = value from studentized range table (see e.g., here )
  • MS R = Mean Square Error from ANOVA
  • n c = number of observations per group
  • Decision: Reject H 0 if

\[|\bar{Y}_i-\bar{Y}_j | > HSD\]

The value from the studentized range table can be obtained using the qtukey() function.

\[HSD= 3.33\sqrt{\frac{33.99}{100}}=1.94\]

Since all mean differences between groups are larger than 1.906, we can reject the null hypothesis for all individual tests, confirming the results from the Bonferroni test. To compute Tukey’s HSD, we can use the appropriate function from the multcomp package.

We may also plot the result for the mean differences incl. their confidence intervals:

Tukey's HSD

Figure 5.10: Tukey’s HSD

You can see that the CIs do not cross zero, which means that the true difference between group means is unlikely zero.

Reporting of post hoc results:

The post hoc tests based on Bonferroni and Tukey’s HSD revealed that people listened to music significantly more when:

  • they had access to user created playlists vs. those who did not,
  • they got recommendations vs. those who did not. This is true for both the control group “A” as well as treatment “B”.

The following video summarizes how to conduct a one-way ANOVA in R

5.5 Non-parametric tests

Non-Parametric tests do not require the sampling distribution to be normally distributed (a.k.a. “assumption free tests”). These tests may be used when the variable of interest is measured on an ordinal scale or when the parametric assumptions do not hold. They often rely on ranking the data instead of analyzing the actual scores. By ranking the data, information on the magnitude of differences is lost. Thus, parametric tests are more powerful if the sampling distribution is normally distributed.

When should you use non-parametric tests?

  • When your DV is measured on an ordinal scale
  • When your data is better represented by the median (e.g., there are outliers that you can’t remove)
  • When the assumptions of parametric tests are not met (e.g., normally distributed sampling distribution)
  • You have a very small sample size (i.e., the central limit theorem does not apply)

5.5.1 Mann-Whitney U Test (a.k.a. Wilcoxon rank-sum test)

The Mann-Whitney U test is a non-parametric test of differences between groups, similar to the two sample t-test. In contrast to the two sample t-test it only requires ordinally scaled data and relies on weaker assumptions. Thus it is often useful if the assumptions of the t-test are violated, especially if the data is not on a ratio scale. The following assumptions must be fulfilled for the test to be applicable:

  • The dependent variable is at least ordinally scaled (i.e. a ranking between values can be established)
  • The independent variable has only two levels
  • A between-subjects design is used (i.e., the subjects are not matched across conditions)

Intuitively, the test compares the frequency of low and high ranks between groups. Under the null hypothesis, the amount of high and low ranks should be roughly equal in the two groups. This is achieved through comparing the expected sum of ranks to the actual sum of ranks.

As an example, we will be using data obtained from a field experiment with random assignment. In a music download store, new releases were randomly assigned to an experimental group and sold at a reduced price (i.e., 7.95€), or a control group and sold at the standard price (9.95€). A representative sample of 102 new releases were sampled and these albums were randomly assigned to the experimental groups (i.e., 51 albums per group). The sales were tracked over one day.

Let’s load and investigate the data first:

Inspect descriptives (overall and by group).

Create boxplot and plot of means.

Boxplot

Figure 5.11: Boxplot

Let’s assume that one of the parametric assumptions has been violated and we needed to conduct a non-parametric test. Then, the Mann-Whitney U test is implemented in R using the function wilcox.test() . Using the ranking data as an independent variable and the listening time as a dependent variable, the test could be executed as follows:

The p-value is smaller than 0.05, which leads us to reject the null hypothesis, i.e. the test yields evidence that the new service feature leads to higher music listening times.

5.5.2 Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a non-parametric test used to analyze the difference between paired observations, analogously to the paired t-test. It can be used when measurements come from the same observational units but the distributional assumptions of the paired t-test do not hold, because it does not require any assumptions about the distribution of the measurements. Since we subtract two values, however, the test requires that the dependent variable is at least interval scaled, meaning that intervals have the same meaning for different points on our measurement scale.

Under the null hypothesis \(H_0\) , the differences of the measurements should follow a symmetric distribution around 0, meaning that, on average, there is no difference between the two matched samples. \(H_1\) states that the distributions mean is non-zero.

As an example, let’s consider a slightly different experimental setup for the music download store. Imagine that new releases were either sold at a reduced price (i.e., 7.95€), or at the standard price (9.95€). Every time a customer came to the store, the prices were randomly determined for every new release. This means that the same 51 albums were either sold at the standard price or at the reduced price and this price was determined randomly. The sales were then recorded over one day. Note the difference to the previous case, where we randomly split the sample and assigned 50% of products to each condition. Now, we randomly vary prices for all albums between high and low prices.

Again, let’s assume that one of the prarametric assumptions has been violated and we needed to conduct a non-parametric test. Then the Wilcoxon signed-rank test can be performed with the same command as the Mann-Whitney U test, provided that the argument paired is set to TRUE .

Using the 95% confidence level, the result would suggest a significant effect of price on sales (i.e., p < 0.05).

5.5.3 Kruskal-Wallis test

  • When the dependent variable is measured at an ordinal scale and we want to compare more than 2 means
  • When the assumptions of independent ANOVA are not met (e.g., assumptions regarding the sampling distribution in small samples)

The Kruskal–Wallis test is the non-parametric counterpart of the one-way independent ANOVA. It is designed to test for significant differences in population medians when you have more than two samples (otherwise you would use the Mann-Whitney U-test). The theory is very similar to that of the Mann–Whitney U-test since it is also based on ranked data. The Kruskal-Wallis test is carried out using the kruskal.test() function. Using the same data as before, we type:

The test-statistic follows a chi-square distribution and since the test is significant (p < 0.05), we can conclude that there are significant differences in population medians. Provided that the overall effect is significant, you may perform a post hoc test to find out which groups are different. To get a first impression, we can plot the data using a boxplot:

Boxplot

Figure 5.12: Boxplot

To test for differences between groups, we can, for example, apply post hoc tests according to Nemenyi for pairwise multiple comparisons of the ranked data using the appropriate function from the PMCMR package.

The results reveal that there is a significant difference between the “low” and “high” promotion groups. Note that the results are different compared to the results from the parametric test above. This difference occurs because non-parametric tests have more power to detect differences between groups since we lose information by ranking the data. Thus, you should rely on parametric tests if the assumptions are met.

5.6 Categorical data

In some instances, you will be confronted with differences between proportions, rather than differences between means. For example, you may conduct an A/B-Test and wish to compare the conversion rates between two advertising campaigns. In this case, your data is binary (0 = no conversion, 1 = conversion) and the sampling distribution for such data is binomial. While binomial probabilities are difficult to calculate, we can use a Normal approximation to the binomial when n is large (>100) and the true likelihood of a 1 is not too close to 0 or 1.

Let’s use an example: assume a call center where service agents call potential customers to sell a product. We consider two call center agents:

  • Service agent 1 talks to 300 customers and gets 200 of them to buy (conversion rate=2/3)
  • Service agent 2 talks to 300 customers and gets 100 of them to buy (conversion rate=1/3)

As always, we load the data first:

Next, we create a table to check the relative frequencies:

We could also plot the data to visualize the frequencies using ggplot:

proportion of conversions per agent (stacked bar chart)

Figure 5.13: proportion of conversions per agent (stacked bar chart)

… or using the mosaicplot() function:

proportion of conversions per agent (mosaic plot)

Figure 5.14: proportion of conversions per agent (mosaic plot)

5.6.1 Confidence intervals for proportions

Recall that we can use confidence intervals to determine the range of values that the true population parameter will take with a certain level of confidence based on the sample. Similar to the confidence interval for means, we can compute a confidence interval for proportions. The (1- \(\alpha\) )% confidence interval for proportions is approximately

\[ CI = p\pm z_{1-\frac{\alpha}{2}}*\sqrt{\frac{p*(1-p)}{N}} \]

where \(\sqrt{p(1-p)}\) is the equivalent to the standard deviation in the formula for the confidence interval for means. Based on the equation, it is easy to compute the confidence intervals for the conversion rates of the call center agents:

Similar to testing for differences in means, we could also ask: Is agent 1 twice as likely as agent 2 to convert a customer? Or, to state it formally:

\[H_0: \pi_1=\pi_2 \\ H_1: \pi_1\ne \pi_2\]

where \(\pi\) denotes the population parameter associated with the proportion in the respective population. One approach to test this is based on confidence intervals to estimate the difference between two populations. We can compute an approximate confidence interval for the difference between the proportion of successes in group 1 and group 2, as:

\[ CI = p_1-p_2\pm z_{1-\frac{\alpha}{2}}*\sqrt{\frac{p_1*(1-p_1)}{n_1}+\frac{p_2*(1-p_2)}{n_2}} \]

If the confidence interval includes zero, then the data does not suggest a difference between the groups. Let’s compute the confidence interval for differences in the proportions by hand first:

Now we can see that the 95% confidence interval estimate of the difference between the proportion of conversions for agent 1 and the proportion of conversions for agent 2 is between 26% and 41%. This interval tells us the range of plausible values for the difference between the two population proportions. According to this interval, zero is not a plausible value for the difference (i.e., interval does not cross zero), so we reject the null hypothesis that the population proportions are the same.

Instead of computing the intervals by hand, we could also use the prop.test() function:

Note that the prop.test() function uses a slightly different (more accurate) way to compute the confidence interval (Wilson’s score method is used). It is particularly a better approximation for smaller N. That’s why the confidence interval in the output slightly deviates from the manual computation above, which uses the Wald interval.

You can also see that the output from the prop.test() includes the results from a χ 2 test for the equality of proportions (which will be discussed below) and the associated p-value. Since the p-value is less than 0.05, we reject the null hypothesis of equal probability. Thus, the reporting would be:

The test showed that the conversion rate for agent 1 was higher by 33%. This difference is significant χ (1) = 70, p < .05 (95% CI = [0.25,0.41]).

5.6.2 Chi-square test

In the previous section, we saw how we can compute the confidence interval for the difference between proportions to decide on whether or not to reject the null hypothesis. Whenever you would like to investigate the relationship between two categorical variables, the \(\chi^2\) test may be used to test whether the variables are independent of each other. It achieves this by comparing the expected number of observations in a group to the actual values. Let’s continue with the example from the previous section. Under the null hypothesis, the two variables agent and conversion in our contingency table are independent (i.e., there is no relationship). This means that the frequency in each field will be roughly proportional to the probability of an observation being in that category, calculated under the assumption that they are independent. The difference between that expected quantity and the actual quantity can be used to construct the test statistic. The test statistic is computed as follows:

\[ \chi^2=\sum_{i=1}^{J}\frac{(f_o-f_e)^2}{f_e} \]

where \(J\) is the number of cells in the contingency table, \(f_o\) are the observed cell frequencies and \(f_e\) are the expected cell frequencies. The larger the differences, the larger the test statistic and the smaller the p-value.

The observed cell frequencies can easily be seen from the contingency table:

The expected cell frequencies can be calculated as follows:

\[ f_e=\frac{(n_r*n_c)}{n} \]

where \(n_r\) are the total observed frequencies per row, \(n_c\) are the total observed frequencies per column, and \(n\) is the total number of observations. Thus, the expected cell frequencies under the assumption of independence can be calculated as:

To sum up, these are the expected cell frequencies

… and these are the observed cell frequencies

To obtain the test statistic, we simply plug the values into the formula:

The test statistic is \(\chi^2\) distributed. The chi-square distribution is a non-symmetric distribution. Actually, there are many different chi-square distributions, one for each degree of freedom as show in the following figure.

The chi-square distribution

Figure 5.15: The chi-square distribution

You can see that as the degrees of freedom increase, the chi-square curve approaches a normal distribution. To find the critical value, we need to specify the corresponding degrees of freedom, given by:

\[ df=(r-1)*(c-1) \]

where \(r\) is the number of rows and \(c\) is the number of columns in the contingency table. Recall that degrees of freedom are generally the number of values that can vary freely when calculating a statistic. In a 2 by 2 table as in our case, we have 2 variables (or two samples) with 2 levels and in each one we have 1 that vary freely. Hence, in our example the degrees of freedom can be calculated as:

Now, we can derive the critical value given the degrees of freedom and the level of confidence using the qchisq() function and test if the calculated test statistic is larger than the critical value:

Visual depiction of the test result

Figure 5.16: Visual depiction of the test result

We could also compute the p-value using the pchisq() function, which tells us the probability of the observed cell frequencies if the null hypothesis was true (i.e., there was no association):

The test statistic can also be calculated in R directly on the contingency table with the function chisq.test() .

Since the p-value is smaller than 0.05 (i.e., the calculated test statistic is larger than the critical value), we reject H 0 that the two variables are independent.

Note that the test statistic is sensitive to the sample size. To see this, let’s assume that we have a sample of 100 observations instead of 1000 observations:

You can see that even though the proportions haven’t changed, the test is insignificant now. The following equation lets you compute a measure of the effect size, which is insensitive to sample size:

\[ \phi=\sqrt{\frac{\chi^2}{n}} \]

The following guidelines are used to determine the magnitude of the effect size (Cohen, 1988):

  • 0.1 (small effect)
  • 0.3 (medium effect)
  • 0.5 (large effect)

In our example, we can compute the effect sizes for the large and small samples as follows:

You can see that the statistic is insensitive to the sample size.

Note that the Φ coefficient is appropriate for two dichotomous variables (resulting from a 2 x 2 table as above). If any your nominal variables has more than two categories, Cramér’s V should be used instead:

\[ V=\sqrt{\frac{\chi^2}{n*df_{min}}} \]

where \(df_{min}\) refers to the degrees of freedom associated with the variable that has fewer categories (e.g., if we have two nominal variables with 3 and 4 categories, \(df_{min}\) would be 3 - 1 = 2). The degrees of freedom need to be taken into account when judging the magnitude of the effect sizes (see e.g., here ).

Note that the correct = FALSE argument above ensures that the test statistic is computed in the same way as we have done by hand above. By default, chisq.test() applies a correction to prevent overestimation of statistical significance for small data (called the Yates’ correction). The correction is implemented by subtracting the value 0.5 from the computed difference between the observed and expected cell counts in the numerator of the test statistic. This means that the calculated test statistic will be smaller (i.e., more conservative). Although the adjustment may go too far in some instances, you should generally rely on the adjusted results, which can be computed as follows:

As you can see, the results don’t change much in our example, since the differences between the observed and expected cell frequencies are fairly large relative to the correction.

Caution is warranted when the cell counts in the contingency table are small. The usual rule of thumb is that all cell counts should be at least 5 (this may be a little too stringent though). When some cell counts are too small, you can use Fisher’s exact test using the fisher.test() function.

The Fisher test, while more conservative, also shows a significant difference between the proportions (p < 0.05). This is not surprising since the cell counts in our example are fairly large.

5.6.3 Sample size

To calculate the required sample size when comparing proportions, the power.prop.test() function can be used. For example, we could ask how large our sample needs to be if we would like to compare two groups with conversion rates of 2% and 2.5%, respectively using the conventional settings for \(\alpha\) and \(\beta\) :

The output tells us that we need 13809 observations per group to detect a difference of the desired size.

From Idea to Insight: A 7-Step Market Research Guide

  • by Alice Ananian
  • September 4, 2024

Market Research Process

In today’s fast-paced business world, guesswork is a luxury no one can afford. Enter market research: your secret weapon for making bold, informed decisions that propel your business forward. Whether you’re an ambitious entrepreneur, a savvy small business owner, or a cutting-edge marketing professional, mastering the market research process is the key to unlocking unprecedented growth and staying ahead of the competition.

Ready to transform raw data into golden opportunities? This guide will walk you through seven essential steps that turn the complex art of market research into a streamlined, powerful tool for success. From defining laser-focused objectives to leveraging cutting-edge AI analysis, you’re about to embark on a journey that will reshape how you understand your market, your customers, and your business potential.

The 7-Step Market Research Process: An Overview

Before diving into the details, let’s take a quick look at the seven steps that comprise an effective market research process:

  • Define Your Research Objectives
  • Develop Your Research Plan
  • Collect Relevant Data
  • Analyze and Interpret the Data
  • Present Your Findings
  • Make Informed Decisions
  • Monitor and Iterate

Following this structured approach ensures that your market research is comprehensive, focused, and yields valuable insights. It’s worth noting that modern tools, such as AI-powered market research platforms like Prelaunch.com’s AI Market Research feature , can significantly streamline this process, making it more efficient and accessible for businesses of all sizes.

Now, let’s explore each step in detail.

Step 1: Define Your Research Objectives

The first and perhaps most crucial step in the market research process is defining your research objectives. This step sets the foundation for your entire research effort and ensures that you’re asking the right questions to get the information you need.

Identifying the problem or opportunity

Start by clearly articulating the business problem you’re trying to solve or the opportunity you’re looking to explore. Are you considering launching a new product? Trying to understand why sales are declining? Or perhaps you’re looking to enter a new market? Clearly defining the issue at hand will help focus your research efforts.

Setting clear, measurable goals

Once you’ve identified the problem or opportunity, set specific, measurable, achievable, relevant, and time-bound (SMART) goals for your research. For example, instead of a vague goal like “understand customer preferences,” you might set a goal to “identify the top three features that 70% of our target market considers essential in a new product within the next two months.”

Formulating research questions

Based on your goals, develop a set of research questions that will guide your data collection efforts. These questions should be specific and directly related to your objectives. For instance, if your goal is to understand customer preferences, you might ask questions like:

  • What features do customers value most in similar products?
  • How much are customers willing to pay for these features?
  • What unmet needs exist in the current market?

By clearly defining your research objectives, you’ll ensure that your market research efforts are focused and yield the insights you need to make informed business decisions.

Step 2: Develop Your Research Plan

With your objectives clearly defined, the next step is to develop a comprehensive research plan. This plan will serve as your roadmap, outlining how you’ll gather the information needed to answer your research questions.

Choosing research methodologies

Decide whether qualitative research, quantitative research, or a combination of both will best serve your objectives:

  • Qualitative research : This method explores the “why” and “how” of consumer behavior through in-depth interviews, focus groups, or observational studies. It’s excellent for gaining deep insights into customer motivations and perceptions.
  • Quantitative research : This approach focuses on numerical data and statistical analysis. Surveys and polls are common quantitative methods that can provide measurable data on consumer preferences and behaviors.

Often, a mixed-method approach combining both qualitative and quantitative research can provide the most comprehensive insights.

Determining your target audience

Identify the specific group of people from whom you need to gather information. This could be based on demographics, psychographics, or behavioral characteristics. The more precisely you define your target audience, the more relevant and valuable your research findings will be.

Selecting appropriate data collection methods

Choose the most suitable methods for collecting data from your target audience. Some options include:

  • Surveys (online, phone, or in-person)
  • Interviews (structured or unstructured)
  • Focus groups
  • Observational studies
  • Secondary data analysis

Consider factors such as cost, time constraints, and the type of information you need when selecting your methods. AI-powered tools like Prelaunch.com’s AI Market Research feature can be particularly helpful in this stage, offering efficient ways to gather and analyze data from various sources.

By developing a thorough research plan, you’ll ensure that your data collection efforts are efficient, targeted, and aligned with your research objectives.

Step 3: Collect Relevant Data

With your research plan in place, it’s time to gather the data that will form the basis of your insights. This step involves implementing the data collection methods you’ve chosen and ensuring that you’re gathering high-quality, relevant information.

Primary research methods

Primary research involves collecting original data directly from your target audience. This can include:

  • Conducting surveys: Use online platforms, email, or in-person methods to gather quantitative data from a large sample of your target audience.
  • Performing interviews: Engage in one-on-one conversations with key individuals to gain in-depth qualitative insights.
  • Organizing focus groups : Bring together small groups of people to discuss your research topics in a moderated setting.
  • Observational studies: Watch and record how people interact with products or services in real-world settings.

Secondary research sources

Secondary research involves analyzing existing data from various sources. This can be a cost-effective way to gather background information and supplement your primary research. Sources may include:

  • Industry reports and market studies
  • Government databases and publications
  • Academic research papers
  • Competitor websites and annual reports
  • Trade association publications

Leveraging AI for efficient data collection

Modern AI-powered tools can significantly enhance your data collection efforts. These tools can:

  • Automate the process of gathering and organizing secondary research data
  • Analyze large datasets quickly to identify trends and patterns
  • Generate survey questions based on your research objectives
  • Provide real-time insights as data is collected

By leveraging both traditional methods and advanced AI tools, you can ensure that you’re collecting a comprehensive and diverse set of data to inform your market research.

Step 4: Analyze and Interpret the Data

Once you’ve collected your data, the next crucial step is to analyze and interpret it. This process involves transforming raw data into actionable insights that can guide your business decisions.

Data cleaning and preparation

Before analysis can begin, it’s essential to clean and prepare your data:

  • Remove any duplicate or irrelevant entries
  • Check for and correct any errors or inconsistencies
  • Standardize data formats for easier analysis
  • Organize data into a structure that facilitates analysis

Statistical analysis techniques

Depending on the type of data you’ve collected and your research objectives, you may employ various statistical analysis techniques :

  • Descriptive statistics: Calculate means, medians, modes, and standard deviations to summarize your data.
  • Inferential statistics: Use techniques like hypothesis testing and regression analysis to draw conclusions about larger populations based on your sample data.
  • Correlation analysis: Identify relationships between different variables in your dataset.
  • Segmentation analysis: Group your data into meaningful segments based on shared characteristics.

Identifying patterns and trends

As you analyze your data, look for patterns, trends, and insights that address your research objectives:

  • Compare results across different demographic groups or market segments
  • Identify common themes in qualitative data
  • Look for unexpected or surprising findings that challenge your assumptions
  • Consider how different data points relate to each other and what story they tell together

Remember that the goal of this step is not just to summarize data, but to derive meaningful insights that can inform your business strategy. Be open to unexpected findings and be prepared to dig deeper into areas that seem particularly relevant or intriguing.

Step 5: Present Your Findings

After analyzing your data, it’s time to communicate your findings effectively to stakeholders. The way you present your research can significantly impact how it’s received and acted upon.

Creating clear and visually appealing reports

  • Organize your findings logically, starting with an executive summary of key insights
  • Use charts, graphs, and infographics to visualize data and make it easier to understand
  • Include relevant quotes or case studies from qualitative research to bring your data to life
  • Ensure your report is well-structured with clear headings and subheadings

Tailoring presentations to different stakeholders

  • Consider the specific interests and needs of your audience (e.g., executives, marketing team, product developers)
  • Adjust the level of detail and technical language based on your audience’s expertise
  • Focus on the findings most relevant to each stakeholder group

Highlighting key insights and actionable recommendations

  • Clearly state the main takeaways from your research
  • Connect your findings directly to your initial research objectives
  • Provide specific, actionable recommendations based on your insights
  • Include potential implications of your findings for different areas of the business

Remember, the goal is not just to share information, but to tell a compelling story with your data that motivates action and informs strategy.

Step 6: Make Informed Decisions

The true value of market research lies in its ability to inform better business decisions. This step is where you translate your research findings into strategic action.

Connecting research findings to business objectives

  • Revisit your initial research objectives and evaluate how your findings address them
  • Identify which insights are most critical for achieving your business goals
  • Consider both the opportunities and potential risks highlighted by your research

Assessing risks and opportunities

  • Use your research to evaluate the potential success of new products, services, or marketing strategies
  • Identify potential obstacles or challenges that your research has uncovered
  • Consider how your findings might impact different scenarios or future market conditions

Developing data-driven strategies

  • Create action plans based on your research insights
  • Set specific, measurable goals for implementing changes or new initiatives
  • Assign responsibilities and timelines for acting on your research findings
  • Ensure that all strategic decisions are directly supported by your research data

Remember that while your research should guide your decisions, it’s also important to balance data with experience, intuition, and other business considerations.

Step 7: Monitor and Iterate

The market research process doesn’t end with implementation. Continuous monitoring and iteration are crucial for long-term success.

Implementing decisions based on research

  • Put your data-driven strategies into action
  • Ensure that all team members understand the research findings and their role in implementing changes

Tracking results and KPIs

  • Set up systems to monitor the impact of your decisions
  • Track relevant key performance indicators (KPIs) that align with your research objectives
  • Regularly review performance against your goals and expectations

Conducting follow-up research for continuous improvement

  • Plan for periodic follow-up research to assess the effectiveness of your strategies
  • Be prepared to adjust your approach based on new data and changing market conditions
  • Consider implementing ongoing research methods, such as customer feedback loops or regular market surveys

By viewing market research as an ongoing process rather than a one-time event, you can ensure that your business remains agile and responsive to market changes.

Mastering the market research process is essential for making informed business decisions in today’s competitive landscape. By following these 7 steps – defining objectives, developing a plan, collecting data, analyzing results, presenting findings, making decisions, and monitoring outcomes – you can gain valuable insights that drive business growth and innovation.

As markets evolve and consumer preferences change, ongoing market research will be key to staying ahead. Embrace this process as a fundamental part of your business strategy, and you’ll be well-equipped to make decisions that resonate with your target audience and drive your business forward.

example of hypothesis in marketing research

Alice Ananian

Alice has over 8 years experience as a strong communicator and creative thinker. She enjoys helping companies refine their branding, deepen their values, and reach their intended audiences through language.

Related Articles

best cities for startups

The Ultimate Guide to the Best Cities for Startups

  • by Arman Khachikyan
  • January 31, 2024

Best Countries to Start a Business

5 Best Countries to Start a Business in 2024

  • by Larisa Avagyan
  • March 28, 2024

example of hypothesis in marketing research

Extract insights from Customer & Employee Interviews. At Scale.

Hypothesis examples for research projects.

Insight7

Home » Hypothesis Examples for Research Projects

Understanding research hypothesis examples is crucial for anyone embarking on a research project. A well-crafted hypothesis serves as a foundation for your study, guiding your investigation and helping you frame your questions clearly. It's essential to differentiate between various types of hypotheses, including null and alternative hypotheses, as they provide a structured approach to testing ideas within your research.

In this section, we will explore several research hypothesis examples to illustrate how to formulate your own effectively. By understanding these examples, you can develop strong hypotheses that will enhance the clarity and purpose of your research. This understanding contributes to a more insightful and successful research journey, ultimately leading to valuable findings.

The Importance of a Clear Hypothesis in Research Projects

A clear hypothesis is the foundation of any successful research project. It not only outlines the research objectives but also guides the methodology and structure of the entire study. A well-articulated hypothesis helps researchers stay focused, minimizing distractions from irrelevant data. Without a clear hypothesis, researchers may struggle to find connections in their data or lose direction in their exploration.

Research hypothesis examples serve as practical models for building a solid framework. They can demonstrate how to formulate predictions that are specific, testable, and relevant to the subject matter. Furthermore, a concise hypothesis allows for more transparent communication of the study’s purpose to stakeholders. This clarity can foster collaboration and ensure that everyone involved understands their roles, ultimately enhancing the overall quality and reliability of the research outcomes.

Defining a Research Hypothesis

A research hypothesis serves as a foundational statement that articulates a testable prediction regarding the relationship between variables in a study. It provides clarity and direction to researchers as they conduct their investigations, allowing them to design experiments and gather data effectively. A well-defined hypothesis not only outlines what the researcher expects to discover but also establishes a framework for analyzing the results.

When crafting a research hypothesis, consider the following key points:

Clarity and Specificity : A hypothesis should be clear and specific, detailing the expected relationship between variables.

Testability : Ensure that the hypothesis can be tested through empirical methods, making it essential for research validity.

Relevance : The hypothesis must be relevant to the research problem, aligning with existing theories or knowledge in the field.

Formulation : It can be framed as a null hypothesis, stating no effect or relationship, or an alternative hypothesis that posits a specific outcome.

By evaluating these aspects, researchers can develop strong research hypothesis examples that guide their projects towards meaningful discoveries.

The Role of Hypotheses in Guiding Research

A well-formulated research hypothesis serves as a foundational guiding compass for any research project. It allows researchers to frame their inquiries, helping them focus on specific variables and potential outcomes. Research hypotheses are crucial as they provide a clear statement that guides the development of experiments and data analysis. This clarity helps in defining the methodologies to be employed and the parameters to be measured throughout the research process.

In practical terms, examples of research hypotheses can illustrate this role effectively. For instance, stating that "increased study hours will enhance student performance" offers a clear, testable proposition. Such hypotheses not only narrow down what to investigate but also help in analyzing data effectively once the research is conducted. Overall, hypotheses act as critical tools in framing research questions, driving experiments, and validating findings.

Research Hypothesis Examples for Different Fields

In various disciplines, research hypothesis examples serve as crucial frameworks to guide investigations and analyses. For instance, in psychology, a typical hypothesis might explore how sleep deprivation affects cognitive performance. This provides a measurable outcome, allowing researchers to conduct experiments that yield significant insights into the human mind.

In the realm of social sciences, researchers often formulate hypotheses concerning socioeconomic factors. A hypothesis could be that higher education levels correlate with increased income. This direction allows for comprehensive data collection and a robust analysis of societal trends. Each field has unique examples, illustrating how hypotheses can focus research efforts and clarify objectives. By examining these research hypothesis examples, researchers can better understand their disciplines and approach their studies systematically.

Research Hypothesis Examples in Social Sciences

In the realm of social sciences, research hypothesis examples serve as foundational elements guiding inquiry and analysis. A well-formulated hypothesis can illuminate the relationships between various social phenomena, providing researchers with a clear objective in their studies. For instance, a researcher might propose, "Increased social media usage negatively impacts face-to-face communication skills among teenagers." This hypothesis offers a testable statement that can be explored through data collection and analysis.

Another example could be, "There is a significant correlation between educational attainment and civic engagement." This hypothesis enables researchers to investigate how education influences participation in community activities. Each hypothesis reflects a specific question, setting the direction for research and helping to identify variables of interest. These research hypothesis examples are instrumental in crafting studies that provide insights into human behavior and social structures.

Ultimately, a successful research project relies on these clear, focused hypotheses to drive meaningful conclusions and advancements in understanding social dynamics.

Research Hypothesis Examples in Natural Sciences

In the realm of natural sciences, research hypothesis examples are crucial for guiding scientific inquiry and experimentation. A well-formulated hypothesis provides a clear direction for research, enabling scientists to test theories and contribute to knowledge. For instance, one may hypothesize that increased sunlight exposure affects plant growth rates. This statement can be tested by comparing growth in controlled conditions with varying light levels, providing empirical evidence to support or refute the hypothesis.

Another example is the hypothesis that microorganisms are responsible for pollution decomposition in aquatic environments. By monitoring pollution levels before and after introducing specific microorganisms, researchers can assess their effectiveness. These research hypothesis examples illustrate how precise, testable statements are essential in natural sciences, driving discoveries and advancements. Hypotheses not only structure the investigation process, but also foster critical thinking and innovation in scientific research. This systematic approach underpins the exploration of complex natural phenomena.

How to Formulate a Strong Research Hypothesis

Formulating a strong research hypothesis is a crucial step in any research project. A research hypothesis proposes a clear and testable prediction regarding the relationship between two or more variables. To effectively create one, begin by identifying the key concepts you wish to explore. This usually involves reviewing relevant literature and pinpointing gaps where further investigation is needed.

Once you have a solid foundation, structure your hypothesis to be specific and measurable. A well-defined hypothesis typically takes the form of a statement, like "Increasing study time enhances student performance." This clarity is essential as it guides your research methods and analysis. Additionally, consider using variables that can be quantified, making it easier to validate your predictions. By employing these strategies, you can develop robust research hypothesis examples that will streamline your research design and lead to meaningful results.

Characteristics of a Good Research Hypothesis

A good research hypothesis is crucial for framing effective research projects. It should be clear and specific, providing a focused question that your study seeks to address. Clarity ensures that researchers and readers understand exactly what is being tested, allowing for clearer analysis and interpretation of results. For instance, consider hypothesis examples that are direct, such as “Increased screen time negatively affects sleep quality among teenagers.” This hypothesis is not only specific but also lends itself to measurable outcomes.

Additionally, a research hypothesis should be testable and falsifiable. This means that the hypothesis must be structured in such a way that it allows for empirical testing, enabling researchers to confirm or deny its validity. A well-structured hypothesis makes for a compelling foundation for research, guiding both methodology and analysis. Ultimately, these characteristics ensure that your research stands on solid ground, fostering accurate insights and contributing to the broader academic conversation.

Common Pitfalls to Avoid When Creating Hypotheses

Creating effective research hypotheses involves avoiding common pitfalls that can lead to confusion and flawed findings. One major mistake is crafting hypotheses that are too broad; specificity is key. A poorly defined hypothesis can result in vague conclusions and a lack of focus throughout your research. For instance, instead of simply stating "sleep affects health," you might specify "increased sleep duration improves cognitive function in adults."

Another pitfall is the inclusion of bias in hypothesis formation. Personal beliefs should not cloud the development of your research hypothesis. Instead, rely on existing literature and data to guide your hypothesis creation. This helps ensure that your research is based on objective observations rather than subjective opinions. Additionally, confirm that your hypothesis is testable and falsifiable, enabling you to gather meaningful data. By avoiding these common pitfalls, you set a solid foundation for robust research outcomes.

Conclusion: Key Takeaways on Research Hypothesis Examples

In conclusion, Research Hypothesis Examples serve as vital tools in effectively guiding research projects. A well-formulated hypothesis can provide clarity, direction, and a basis for meaningful inquiry. Understanding how to construct examples helps in addressing specific research questions while ensuring the study remains focused and relevant.

Moreover, the importance of refining these examples cannot be overstated. Clear and concise hypotheses pave the way for systematic investigation and accurate data interpretation. By applying various hypothesis examples, researchers enhance the quality of their projects, ultimately leading to impactful findings and informed conclusions.

Turn interviews into actionable insights

On this Page

Risk Sensitivity Analysis: AI Tools for Market Research 2024

You may also like, top 6 user interview tools for ux research.

Insight7

5 Best User Research Software for 2024

Downloadable ux research plan template.

Unlock Insights from Interviews 10x faster

example of hypothesis in marketing research

  • Request demo
  • Get started for free

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

How to Generate and Validate Product Hypotheses

example of hypothesis in marketing research

Every product owner knows that it takes effort to build something that'll cater to user needs. You'll have to make many tough calls if you wish to grow the company and evolve the product so it delivers more value. But how do you decide what to change in the product, your marketing strategy, or the overall direction to succeed? And how do you make a product that truly resonates with your target audience?

There are many unknowns in business, so many fundamental decisions start from a simple "what if?". But they can't be based on guesses, as you need some proof to fill in the blanks reasonably.

Because there's no universal recipe for successfully building a product, teams collect data, do research, study the dynamics, and generate hypotheses according to the given facts. They then take corresponding actions to find out whether they were right or wrong, make conclusions, and most likely restart the process again.

On this page, we thoroughly inspect product hypotheses. We'll go over what they are, how to create hypothesis statements and validate them, and what goes after this step.

What Is a Hypothesis in Product Management?

A hypothesis in product development and product management is a statement or assumption about the product, planned feature, market, or customer (e.g., their needs, behavior, or expectations) that you can put to the test, evaluate, and base your further decisions on . This may, for instance, regard the upcoming product changes as well as the impact they can result in.

A hypothesis implies that there is limited knowledge. Hence, the teams need to undergo testing activities to validate their ideas and confirm whether they are true or false.

What Is a Product Hypothesis?

Hypotheses guide the product development process and may point at important findings to help build a better product that'll serve user needs. In essence, teams create hypothesis statements in an attempt to improve the offering, boost engagement, increase revenue, find product-market fit quicker, or for other business-related reasons.

It's sort of like an experiment with trial and error, yet, it is data-driven and should be unbiased . This means that teams don't make assumptions out of the blue. Instead, they turn to the collected data, conducted market research , and factual information, which helps avoid completely missing the mark. The obtained results are then carefully analyzed and may influence decision-making.

Such experiments backed by data and analysis are an integral aspect of successful product development and allow startups or businesses to dodge costly startup mistakes .

‍ When do teams create hypothesis statements and validate them? To some extent, hypothesis testing is an ongoing process to work on constantly. It may occur during various product development life cycle stages, from early phases like initiation to late ones like scaling.

In any event, the key here is learning how to generate hypothesis statements and validate them effectively. We'll go over this in more detail later on.

Idea vs. Hypothesis Compared

You might be wondering whether ideas and hypotheses are the same thing. Well, there are a few distinctions.

What's the difference between an idea and a hypothesis?

An idea is simply a suggested proposal. Say, a teammate comes up with something you can bring to life during a brainstorming session or pitches in a suggestion like "How about we shorten the checkout process?". You can jot down such ideas and then consider working on them if they'll truly make a difference and improve the product, strategy, or result in other business benefits. Ideas may thus be used as the hypothesis foundation when you decide to prove a concept.

A hypothesis is the next step, when an idea gets wrapped with specifics to become an assumption that may be tested. As such, you can refine the idea by adding details to it. The previously mentioned idea can be worded into a product hypothesis statement like: "The cart abandonment rate is high, and many users flee at checkout. But if we shorten the checkout process by cutting down the number of steps to only two and get rid of four excessive fields, we'll simplify the user journey, boost satisfaction, and may get up to 15% more completed orders".

A hypothesis is something you can test in an attempt to reach a certain goal. Testing isn't obligatory in this scenario, of course, but the idea may be tested if you weigh the pros and cons and decide that the required effort is worth a try. We'll explain how to create hypothesis statements next.

example of hypothesis in marketing research

How to Generate a Hypothesis for a Product

The last thing those developing a product want is to invest time and effort into something that won't bring any visible results, fall short of customer expectations, or won't live up to their needs. Therefore, to increase the chances of achieving a successful outcome and product-led growth , teams may need to revisit their product development approach by optimizing one of the starting points of the process: learning to make reasonable product hypotheses.

If the entire procedure is structured, this may assist you during such stages as the discovery phase and raise the odds of reaching your product goals and setting your business up for success. Yet, what's the entire process like?

How hypothesis generation and validation works

  • It all starts with identifying an existing problem . Is there a product area that's experiencing a downfall, a visible trend, or a market gap? Are users often complaining about something in their feedback? Or is there something you're willing to change (say, if you aim to get more profit, increase engagement, optimize a process, expand to a new market, or reach your OKRs and KPIs faster)?
  • Teams then need to work on formulating a hypothesis . They put the statement into concise and short wording that describes what is expected to achieve. Importantly, it has to be relevant, actionable, backed by data, and without generalizations.
  • Next, they have to test the hypothesis by running experiments to validate it (for instance, via A/B or multivariate testing, prototyping, feedback collection, or other ways).
  • Then, the obtained results of the test must be analyzed . Did one element or page version outperform the other? Depending on what you're testing, you can look into various merits or product performance metrics (such as the click rate, bounce rate, or the number of sign-ups) to assess whether your prediction was correct.
  • Finally, the teams can make conclusions that could lead to data-driven decisions. For example, they can make corresponding changes or roll back a step.

How Else Can You Generate Product Hypotheses?

Such processes imply sharing ideas when a problem is spotted by digging deep into facts and studying the possible risks, goals, benefits, and outcomes. You may apply various MVP tools like (FigJam, Notion, or Miro) that were designed to simplify brainstorming sessions, systemize pitched suggestions, and keep everyone organized without losing any ideas.

Predictive product analysis can also be integrated into this process, leveraging data and insights to anticipate market trends and consumer preferences, thus enhancing decision-making and product development strategies. This approach fosters a more proactive and informed approach to innovation, ensuring products are not only relevant but also resonate with the target audience, ultimately increasing their chances of success in the market.

Besides, you can settle on one of the many frameworks that facilitate decision-making processes , ideation phases, or feature prioritization . Such frameworks are best applicable if you need to test your assumptions and structure the validation process. These are a few common ones if you're looking toward a systematic approach:

  • Business Model Canvas (used to establish the foundation of the business model and helps find answers to vitals like your value proposition, finding the right customer segment, or the ways to make revenue);
  • Lean Startup framework (the lean startup framework uses a diagram-like format for capturing major processes and can be handy for testing various hypotheses like how much value a product brings or assumptions on personas, the problem, growth, etc.);
  • Design Thinking Process (is all about interactive learning and involves getting an in-depth understanding of the customer needs and pain points, which can be formulated into hypotheses followed by simple prototypes and tests).

Need a hand with product development?

Upsilon's team of pros is ready to share our expertise in building tech products.

example of hypothesis in marketing research

How to Make a Hypothesis Statement for a Product

Once you've indicated the addressable problem or opportunity and broken down the issue in focus, you need to work on formulating the hypotheses and associated tasks. By the way, it works the same way if you want to prove that something will be false (a.k.a null hypothesis).

If you're unsure how to write a hypothesis statement, let's explore the essential steps that'll set you on the right track.

Making a Product Hypothesis Statement

Step 1: Allocate the Variable Components

Product hypotheses are generally different for each case, so begin by pinpointing the major variables, i.e., the cause and effect . You'll need to outline what you think is supposed to happen if a change or action gets implemented.

Put simply, the "cause" is what you're planning to change, and the "effect" is what will indicate whether the change is bringing in the expected results. Falling back on the example we brought up earlier, the ineffective checkout process can be the cause, while the increased percentage of completed orders is the metric that'll show the effect.

Make sure to also note such vital points as:

  • what the problem and solution are;
  • what are the benefits or the expected impact/successful outcome;
  • which user group is affected;
  • what are the risks;
  • what kind of experiments can help test the hypothesis;
  • what can measure whether you were right or wrong.

Step 2: Ensure the Connection Is Specific and Logical

Mind that generic connections that lack specifics will get you nowhere. So if you're thinking about how to word a hypothesis statement, make sure that the cause and effect include clear reasons and a logical dependency .

Think about what can be the precise and link showing why A affects B. In our checkout example, it could be: fewer steps in the checkout and the removed excessive fields will speed up the process, help avoid confusion, irritate users less, and lead to more completed orders. That's much more explicit than just stating the fact that the checkout needs to be changed to get more completed orders.

Step 3: Decide on the Data You'll Collect

Certainly, multiple things can be used to measure the effect. Therefore, you need to choose the optimal metrics and validation criteria that'll best envision if you're moving in the right direction.

If you need a tip on how to create hypothesis statements that won't result in a waste of time, try to avoid vagueness and be as specific as you can when selecting what can best measure and assess the results of your hypothesis test. The criteria must be measurable and tied to the hypotheses . This can be a realistic percentage or number (say, you expect a 15% increase in completed orders or 2x fewer cart abandonment cases during the checkout phase).

Once again, if you're not realistic, then you might end up misinterpreting the results. Remember that sometimes an increase that's even as little as 2% can make a huge difference, so why make 50% the merit if it's not achievable in the first place?

Step 4: Settle on the Sequence

It's quite common that you'll end up with multiple product hypotheses. Some are more important than others, of course, and some will require more effort and input.

Therefore, just as with the features on your product development roadmap , prioritize your hypotheses according to their impact and importance. Then, group and order them, especially if the results of some hypotheses influence others on your list.

Product Hypothesis Examples

To demonstrate how to formulate your assumptions clearly, here are several more apart from the example of a hypothesis statement given above:

  • Adding a wishlist feature to the cart with the possibility to send a gift hint to friends via email will increase the likelihood of making a sale and bring in additional sign-ups.
  • Placing a limited-time promo code banner stripe on the home page will increase the number of sales in March.
  • Moving up the call to action element on the landing page and changing the button text will increase the click-through rate twice.
  • By highlighting a new way to use the product, we'll target a niche customer segment (i.e., single parents under 30) and acquire 5% more leads. 

example of hypothesis in marketing research

How to Validate Hypothesis Statements: The Process Explained

There are multiple options when it comes to validating hypothesis statements. To get appropriate results, you have to come up with the right experiment that'll help you test the hypothesis. You'll need a control group or people who represent your target audience segments or groups to participate (otherwise, your results might not be accurate).

‍ What can serve as the experiment you may run? Experiments may take tons of different forms, and you'll need to choose the one that clicks best with your hypothesis goals (and your available resources, of course). The same goes for how long you'll have to carry out the test (say, a time period of two months or as little as two weeks). Here are several to get you started.

Experiments for product hypothesis validation

Feedback and User Testing

Talking to users, potential customers, or members of your own online startup community can be another way to test your hypotheses. You may use surveys, questionnaires, or opt for more extensive interviews to validate hypothesis statements and find out what people think. This assumption validation approach involves your existing or potential users and might require some additional time, but can bring you many insights.

Conduct A/B or Multivariate Tests

One of the experiments you may develop involves making more than one version of an element or page to see which option resonates with the users more. As such, you can have a call to action block with different wording or play around with the colors, imagery, visuals, and other things.

To run such split experiments, you can apply tools like VWO that allows to easily construct alternative designs and split what your users see (e.g., one half of the users will see version one, while the other half will see version two). You can track various metrics and apply heatmaps, click maps, and screen recordings to learn more about user response and behavior. Mind, though, that the key to such tests is to get as many users as you can give the tests time. Don't jump to conclusions too soon or if very few people participated in your experiment.

Build Prototypes and Fake Doors

Demos and clickable prototypes can be a great way to save time and money on costly feature or product development. A prototype also allows you to refine the design. However, they can also serve as experiments for validating hypotheses, collecting data, and getting feedback.

For instance, if you have a new feature in mind and want to ensure there is interest, you can utilize such MVP types as fake doors . Make a short demo recording of the feature and place it on your landing page to track interest or test how many people sign up.

Usability Testing

Similarly, you can run experiments to observe how users interact with the feature, page, product, etc. Usually, such experiments are held on prototype testing platforms with a focus group representing your target visitors. By showing a prototype or early version of the design to users, you can view how people use the solution, where they face problems, or what they don't understand. This may be very helpful if you have hypotheses regarding redesigns and user experience improvements before you move on from prototype to MVP development.

You can even take it a few steps further and build a barebone feature version that people can really interact with, yet you'll be the one behind the curtain to make it happen. There were many MVP examples when companies applied Wizard of Oz or concierge MVPs to validate their hypotheses.

Or you can actually develop some functionality but release it for only a limited number of people to see. This is referred to as a feature flag , which can show really specific results but is effort-intensive. 

example of hypothesis in marketing research

What Comes After Hypothesis Validation?

Analysis is what you move on to once you've run the experiment. This is the time to review the collected data, metrics, and feedback to validate (or invalidate) the hypothesis.

You have to evaluate the experiment's results to determine whether your product hypotheses were valid or not. For example, if you were testing two versions of an element design, color scheme, or copy, look into which one performed best.

It is crucial to be certain that you have enough data to draw conclusions, though, and that it's accurate and unbiased . Because if you don't, this may be a sign that your experiment needs to be run for some additional time, be altered, or held once again. You won't want to make a solid decision based on uncertain or misleading results, right?

What happens after hypothesis validation

  • If the hypothesis was supported , proceed to making corresponding changes (such as implementing a new feature, changing the design, rephrasing your copy, etc.). Remember that your aim was to learn and iterate to improve.
  • If your hypothesis was proven false , think of it as a valuable learning experience. The main goal is to learn from the results and be able to adjust your processes accordingly. Dig deep to find out what went wrong, look for patterns and things that may have skewed the results. But if all signs show that you were wrong with your hypothesis, accept this outcome as a fact, and move on. This can help you make conclusions on how to better formulate your product hypotheses next time. Don't be too judgemental, though, as a failed experiment might only mean that you need to improve the current hypothesis, revise it, or create a new one based on the results of this experiment, and run the process once more.

On another note, make sure to record your hypotheses and experiment results . Some companies use CRMs to jot down the key findings, while others use something as simple as Google Docs. Either way, this can be your single source of truth that can help you avoid running the same experiments or allow you to compare results over time.

Have doubts about how to bring your product to life?

Upsilon's team of pros can help you build a product most optimally.

Final Thoughts on Product Hypotheses

The hypothesis-driven approach in product development is a great way to avoid uncalled-for risks and pricey mistakes. You can back up your assumptions with facts, observe your target audience's reactions, and be more certain that this move will deliver value.

However, this only makes sense if the validation of hypothesis statements is backed by relevant data that'll allow you to determine whether the hypothesis is valid or not. By doing so, you can be certain that you're developing and testing hypotheses to accelerate your product management and avoiding decisions based on guesswork.

Certainly, a failed experiment may bring you just as much knowledge and findings as one that succeeds. Teams have to learn from their mistakes, boost their hypothesis generation and testing knowledge , and make improvements according to the results of their experiments. This is an ongoing process, of course, as no product can grow if it isn't iterated and improved.

If you're only planning to or are currently building a product, Upsilon can lend you a helping hand. Our team has years of experience providing product development services for growth-stage startups and building MVPs for early-stage businesses , so you can use our expertise and knowledge to dodge many mistakes. Don't be shy to contact us to discuss your needs! 

example of hypothesis in marketing research

How to Make an MVP Roadmap

How Much Does It Cost to Build an AI Solution in 2024?

How Much Does It Cost to Build an AI Solution in 2024?

Top 30 Financial Terms for Startups

Top 30 Financial Terms for Startups

Never miss an update.

example of hypothesis in marketing research

example of hypothesis in marketing research

  • Free Resources

example of hypothesis in marketing research

14 Market Research Examples

Curiosity.

At the heart of every successful marketing campaign is a curious marketer who learned how to better serve a customer.

In this industry, we scratch that curiosity itch with market research.

To help give you ideas to learn about your customer, in this article we bring you examples from Consumer Reports, Intel, Visa USA, Hallmark, Levi Strauss, John Deere, LeapFrog, Spiceworks Ziff Davis and more.

14 Market Research Examples

This article was originally published in the MarketingSherpa email newsletter .

Example #1: National bank’s A/B testing

You can learn what customers want by conducting experiments on real-life customer decisions using A/B testing. When you ensure your tests do not have any validity threats, the information you garner can offer very reliable insights into customer behavior.

Here’s an example from Flint McGlaughlin, CEO of MarketingSherpa and MECLABS Institute, and the creator of its  online marketing course .

A national bank was working with MECLABS to discover how to increase the number of sign-ups for new checking accounts.

Customers who were interested in checking accounts could click on an “Open in Minutes” link on the bank’s homepage.

Creative Sample #1: Anonymized bank homepage

Creative Sample #1: Anonymized bank homepage

After clicking on the homepage link, visitors were taken to a four-question checking account selector tool.

Creative Sample #2: Original checking account landing page — account recommendation selector tool

Creative Sample #2: Original checking account landing page — account recommendation selector tool

After filling out the selector tool, visitors were taken to a results page that included a suggested package (“Best Choice”) along with a secondary option (“Second Choice”). The results page had several calls to action (CTAs). Website visitors were able to select an account and begin pre-registration (“Open Now”) or find out more information about the account (“Learn More”), go back and change their answers (“Go back and change answers”), or manually browse other checking options (“Other Checking Options”).

Creative Sample #3: Original checking account landing page — account recommendation selector tool results page

Creative Sample #3: Original checking account landing page — account recommendation selector tool results page

After going through the experience, the MECLABS team hypothesized that the selector tool wasn’t really delivering on the expectation the customer had after clicking on the “Open in Minutes” CTA. They created two treatments (new versions) and tested them against the control experience.

In the first treatment, the checking selector tool was removed, and instead, customers were directly presented with three account options in tabs from which customers could select.

Creative Sample #4: Checking account landing page Treatment #1

Creative Sample #4: Checking account landing page Treatment #1

The second treatment’s landing page focused on a single product and had only one CTA. The call-to-action was similar to the CTA customers clicked on the homepage to get to this page — “Open Now.”

Creative Sample #5: Checking account landing page Treatment #2

Creative Sample #5: Checking account landing page Treatment #2

Both treatments increased account applications compared to the control landing page experience, with Treatment #2 generating 65% more applicants at a 98% level of confidence.

Creative Sample #6: Results of bank experiment that used A/B testing

Creative Sample #6: Results of bank experiment that used A/B testing

You’ll note the Level of Confidence in the results. With any research tactic or tool you use to learn about customers, you have to consider whether the information you’re getting really represents most customers, or if you’re just seeing outliers or random chance.

With a high Level of Confidence like this, it is more likely the results actually represent a true difference between the control and treatment landing pages and that the results aren’t just a random event.

The other factor to consider is — testing in and of itself will not produce results. You have to use testing as research to actually learn about the customer and then make changes to better serve the customer.

In the video How to Discover Exactly What the Customer Wants to See on the Next Click: 3 critical skills every marketer must master , McGlaughlin discussed this national bank experiment and explained how to use prioritization, identification and deduction to discover what your customers want.

This example was originally published in Marketing Research: 5 examples of discovering what customers want .

Example #2: Consumer Reports’ market intelligence research from third-party sources

The first example covers A/B testing. But keep in mind, ill-informed A/B testing isn’t market research, it’s just hoping for insights from random guesses.

In other words, A/B testing in a vacuum does not provide valuable information about customers. What you are testing is crucial, and then A/B testing is a means to help better understand whether insights you have about the customer are either validated or refuted by actual customer behavior. So it’s important to start with some research into potential customers and competitors to inform your A/B tests.

For example, when MECLABS and MarketingExperiments (sister publisher to MarketingSherpa) worked with Consumer Reports on a public, crowdsourced A/B test, we provided a market intelligence report to our audience to help inform their test suggestions.

Every successful marketing test should confirm or deny an assumption about the customer. You need enough knowledge about the customer to create marketing messages you think will be effective.

For this public experiment to help marketers improve their split testing abilities, we had a real customer to work with — donors to Consumer Reports.

To help our audience better understand the customer, the MECLABS Marketing Intelligence team created the 26-page ConsumerReports Market Intelligence Research document (which you can see for yourself at that link).

This example was originally published in Calling All Writers and Marketers: Write the most effective copy for this Consumer Reports email and win a MarketingSherpa Summit package and Consumer Reports Value Proposition Test: What you can learn from a 29% drop in clickthrough .

Example #3: Virtual event company’s conversation

What if you don’t have the budget for A/B testing? Or any of the other tactics in this article?

Well, if you’re like most people you likely have some relationships with other human beings. A significant other, friends, family, neighbors, co-workers, customers, a nemesis (“Newman!”). While conducting market research by talking to these people has several validity threats, it at least helps you get out of your own head and identify some of your blind spots.

WebBabyShower.com’s lead magnet is a PDF download of a baby shower thank you card ‘swipe file’ plus some extras. “Women want to print it out and have it where they are writing cards, not have a laptop open constantly,” said Kurt Perschke, owner, WebBabyShower.com.

That is not a throwaway quote from Perschke. That is a brilliant insight, so I want to make sure we don’t overlook it. By better understanding customer behavior, you can better serve customers and increase results.

However, you are not your customer. So you must bridge the gap between you and them.

Often you hear marketers or business leaders review an ad or discuss a marketing campaign and say, “Well, I would never read that entire ad” or “I would not be interested in that promotion.” To which I say … who cares? Who cares what you would do? If you are not in the ideal customer set, sorry to dent your ego, but you really don’t matter. Only the customer does.

Perschke is one step ahead of many marketers and business leaders because he readily understands this. “Owning a business whose customers are 95% women has been a great education for me,” he said.

So I had to ask him, how did he get this insight into his customers’ behavior? Frankly, it didn’t take complex market research. He was just aware of this disconnect he had with the customer, and he was alert for ways to bridge the gap. “To be honest, I first saw that with my wife. Then we asked a few customers, and they confirmed it’s what they did also. Writing notes by hand is viewed as a ‘non-digital’ activity and reading from a laptop kinda spoils the mood apparently,” he said.

Back to WebBabyShower. “We've seen a [more than] 100% increase in email signups using this method, which was both inexpensive and evergreen,” Perschke said.

This example was originally published in Digital Marketing: Six specific examples of incentives that worked .

Example #4: Spiceworks Ziff Davis’ research-informed content marketing

Marketing research isn’t just to inform products and advertising messages. Market research can also give your brand a leg up in another highly competitive space – content marketing.

Don’t just jump in and create content expecting it to be successful just because it’s “free.” Conducting research beforehand can help you understand what your potential audience already receives and where they might need help but are currently being served.

When Spiceworks Ziff Davis (SWZD) published its annual State of IT report, it invested months in conducting primary market research, analyzing year-over-year trends, and finally producing the actual report.

“Before getting into the nuts and bolts of writing an asset, look at market shifts and gaps that complement your business and marketing objectives. Then, you can begin to plan, research, write, review and finalize an asset,” said Priscilla Meisel, Content Marketing Director, SWZD.

This example was originally published in Marketing Writing: 3 simple tips that can help any marketer improve results (even if you’re not a copywriter) .

Example #5: Business travel company’s guerilla research

There are many established, expensive tactics you can use to better understand customers.

But if you don’t have the budget for those tactics, and don’t know any potential customers, you might want to brainstorm creative ways you can get valuable information from the right customer target set.

Here’s an example from a former client of Mitch McCasland, Founding Partner and Director, Brand Inquiry Partners. The company sold a product related to frequent business flyers and was interested in finding out information on people who travel for a living. They needed consumer feedback right away.

“I suggested that they go out to the airport with a bunch of 20-dollar bills and wait outside a gate for passengers to come off their flight,” McCasland said. When people came off the flight, they were politely asked if they would answer a few questions in exchange for the incentive (the $20). By targeting the first people off the flight they had a high likelihood of reaching the first-class passengers.

This example was originally published in Guerrilla Market Research Expert Mitch McCasland Tells How You Can Conduct Quick (and Cheap) Research .

Example #6: Intel’s market research database

When conducting market research, it is crucial to organize your data in a way that allows you to easily and quickly report on it. This is especially important for qualitative studies where you are trying to do more than just quantify the data, but need to manage it so it is easier to analyze.

Anne McClard, Senior Researcher, Doxus worked with Shauna Pettit-Brown of Intel on a research project to understand the needs of mobile application developers throughout the world.

Intel needed to be able to analyze the data from several different angles, including segment and geography, a daunting task complicated by the number of interviews, interviewers, and world languages.

“The interviews were about an hour long, and pretty substantial,” McClard says. So, she needed to build a database to organize the transcripts in a way that made sense.

Different types of data are useful for different departments within a company; once your database is organized you can sort it by various threads.

The Intel study had three different internal sponsors. "When it came to doing the analysis, we ended up creating multiple versions of the presentation targeted to individual audiences," Pettit-Brown says.

The organized database enabled her to go back into the data set to answer questions specific to the interests of the three different groups.

This example was originally published in 4 Steps to Building a Qualitative Market Research Database That Works Better .

Example #7: National security survey’s priming

When conducting market research surveys, the way you word your questions can affect customers’ response. Even the way you word previous questions can put customers in a certain mindset that will skew their answers.

For example, when people were asked if they thought the U.S. government should spend money on an anti-missile shield, the results appeared fairly conclusive. Sixty-four percent of those surveyed thought the country should and only six percent were unsure, according to Opinion Makers: An Insider Exposes the Truth Behind the Polls .

But when pollsters added the option, "...or are you unsure?" the level of uncertainty leaped from six percent to 33 percent. When they asked whether respondents would be upset if the government took the opposite course of action from their selection, 59 percent either didn’t have an opinion or didn’t mind if the government did something differently.

This is an example of how the way you word questions can change a survey’s results. You want survey answers to reflect customer’s actual sentiments that are as free of your company’s previously held biases as possible.

This example was originally published in Are Surveys Misleading? 7 Questions for Better Market Research .

Example #8: Visa USA’s approach to getting an accurate answer

As mentioned in the previous example, the way you ask customers questions can skew their responses with your own biases.

However, the way you ask questions to potential customers can also illuminate your understanding of them. Which is why companies field surveys to begin with.

“One thing you learn over time is how to structure questions so you have a greater likelihood of getting an accurate answer. For example, when we want to find out if people are paying off their bills, we'll ask them to think about the card they use most often. We then ask what the balance was on their last bill after they paid it,” said Michael Marx, VP Research Services, Visa USA.

This example was originally published in Tips from Visa USA's Market Research Expert Michael Marx .

Example #9: Hallmark’s private members-only community

Online communities are a way to interact with and learn from customers. Hallmark created a private members-only community called Idea Exchange (an idea you could replicate with a Facebook or LinkedIn Group).

The community helped the greeting cards company learn the customer’s language.

“Communities…let consumers describe issues in their own terms,” explained Tom Brailsford, Manager of Advancing Capabilities, Hallmark Cards. “Lots of times companies use jargon internally.”

At Hallmark they used to talk internally about “channels” of distribution. But consumers talk about stores, not channels. It is much clearer to ask consumers about the stores they shop in than what channels they shop.

For example, Brailsford clarified, “We say we want to nurture, inspire, and lift one’s spirits. We use those terms, and the communities have defined those terms for us. So we have learned how those things play out in their lives. It gives us a much richer vocabulary to talk about these things.”

This example was originally published in Third Year Results from Hallmark's Online Market Research Experiment .

Example #10: L'Oréal’s social media listening

If you don’t want the long-term responsibility that comes with creating an online community, you can use social media listening to understand how customers talking about your products and industry in their own language.

In 2019, L'Oréal felt the need to upgrade one of its top makeup products – L'Oréal Paris Alliance Perfect foundation. Both the formula and the product communication were outdated – multiple ingredients had emerged on the market along with competitive products made from those ingredients.

These new ingredients and products were overwhelming consumers. After implementing new formulas, the competitor brands would advertise their ingredients as the best on the market, providing almost magical results.

So the team at L'Oréal decided to research their consumers’ expectations instead of simply crafting a new formula on their own. The idea was to understand not only which active ingredients are credible among the audience, but also which particular words they use while speaking about foundations in general.

The marketing team decided to combine two research methods: social media listening and traditional questionnaires.

“For the most part, we conduct social media listening research when we need to find out what our customers say about our brand/product/topic and which words they use to do it. We do conduct traditional research as well and ask questions directly. These surveys are different because we provide a variety of readymade answers that respondents choose from. Thus, we limit them in terms of statements and their wording,” says Marina Tarandiuk, marketing research specialist, L'Oréal Ukraine.

“The key value of social media listening (SML) for us is the opportunity to collect people’s opinions that are as ‘natural’ as possible. When someone leaves a review online, they are in a comfortable environment, they use their ‘own’ language to express themselves, there is no interviewer standing next to them and potentially causing shame for their answer. The analytics of ‘natural’ and honest opinions of our customers enables us to implement the results in our communication and use the same language as them,” Tarandiuk said.

The team worked with a social media listening tool vendor to identify the most popular, in-demand ingredients discussed online and detect the most commonly used words and phrases to create a “consumer glossary.”

Questionnaires had to confirm all the hypotheses and insights found while monitoring social media. This part was performed in-house with the dedicated team. They created custom questionnaires aiming to narrow down all the data to a maximum of three variants that could become the base for the whole product line.

“One of our recent studies had a goal to find out which words our clients used to describe positive and negative qualities of [the] foundation. Due to a change in [the] product’s formula, we also decided to change its communication. Based on the opinions of our customers, we can consolidate the existing positive ideas that our clients have about the product,” Tarandiuk said.

To find the related mentions, the team monitored not only the products made by L'Oréal but also the overall category. “The search query contained both brand names and general words like foundation, texture, smell, skin, pores, etc. The problem was that this approach ended up collecting thousands of mentions, not all of which were relevant to the topic,” said Elena Teselko, content marketing manager, YouScan (L'Oréal’s social media listening tool).

So the team used artificial intelligence-based tagging that divided mentions according to the category, features, or product type.

This approach helped the team discover that customers valued such foundation features as not clogging pores, a light texture, and not spreading. Meanwhile, the most discussed and appreciated cosmetics component was hyaluronic acid.

These exact phrases, found with the help of social media monitoring, were later used for marketing communication.

Creative Sample #7: Marketing communicating for personal care company with messaging based on discoveries from market research

Creative Sample #7: Marketing communicating for personal care company with messaging based on discoveries from market research

“Doing research and detecting audience’s interests BEFORE starting a campaign is an approach that dramatically lowers any risks and increases chances that the campaign would be appreciated by customers,” Teselko said.

This example was originally published in B2C Branding: 3 quick case studies of enhancing the brand with a better customer experience .

Example #11: Levi’s ethnographic research

In a focus group or survey, you are asking customers to explain something they may not even truly understand. Could be why they bought a product. Or what they think of your competitor.

Ethnographic research is a type of anthropology in which you go into customers’ homes or places of business and observe their actual behavior, behavior they may not understand well enough to explain to you.

While cost prohibitive to many brands, and simply unfeasible for others, it can elicit new insights into your customers.

Michael Perman, Senior Director Cultural Insights, Levi Strauss & Co. uses both quantitative and qualitative research on a broad spectrum, but when it comes to gathering consumer insight, he focuses on in-depth ethnographic research provided by partners who specialize in getting deep into the “nooks and crannies of consumer life in America and around the world.” For example, his team spends time in consumers’ homes and in their closets. They shop with consumers, looking for the reality of a consumer’s life and identifying themes that will enable designers and merchandisers to better understand and anticipate consumer needs.

Perman then puts together multi-sensory presentations that illustrate the findings of research. For example, “we might recreate a teenager’s bedroom and show what a teenage girl might have on her dresser.”

This example was originally published in How to Get Your Company to Pay Attention to Market Research Results: Tips from Levi Strauss .

Example #12: eBags’ ethnographic research

Ethnographic research isn’t confined to a physical goods brand like Levi’s. Digital brands can engage in this form of anthropology as well.

While usability testing in a lab is useful, it does miss some of the real-world environmental factors that play a part in the success of a website. Usability testing alone didn’t create a clear enough picture for Gregory Casey, User Experience Designer and Architect, eBags.

“After we had designed our mobile and tablet experience, I wanted to run some contextual user research, which basically meant seeing how people used it in the wild, seeing how people are using it in their homes. So that’s exactly what I did,” Gregory said.

He found consumers willing to open their home to him and be tested in their normal environment. This meant factors like the television, phone calls and other family members played a part in how they experienced the eBags mobile site.

“During these interview sessions, a lot of times we were interrupted by, say, a child coming over and the mother having to do something for the kid … The experience isn’t sovereign. It’s not something where they just sit down, work through a particular user flow and complete their interaction,” Gregory said.

By watching users work through the site as they would in their everyday life, Gregory got to see what parts of the site they actually use.

This example was originally published in Mobile Marketing: 4 takeaways on how to improve your mobile shopping experience beyond just responsive design .

Example #13: John Deere’s shift from product-centric market research to consumer-centric research

One of the major benefits of market research is to overcome company blind spots. However, if you start with your blind spots – i.e., a product focus – you will blunt the effectiveness of your market research.

In the past, “they’d say, Here’s the product, find out how people feel about it,” explained David van Nostrand, Manager, John Deere's Global Market Research. “A lot of companies do that.” Instead, they should be saying, “Let's start with the customers: what do they want, what do they need?”

The solution? A new in-house program called “Category Experts” brings the product-group employees over as full team members working on specific research projects with van Nostrand’s team.

These staffers handle items that don’t require a research background: scheduling, meetings, logistics, communication and vendor management. The actual task they handle is less important than the fact that they serve as human cross-pollinators, bringing consumer-centric sensibility back to their product- focused groups.

For example, if van Nostrand’s team is doing research about a vehicle, they bring in staffers from the Vehicles product groups. “The information about vehicle consumers needs to be out there in the vehicle marketing groups, not locked in here in the heads of the researchers.”

This example was originally published in How John Deere Increased Mass Consumer Market Share by Revamping its Market Research Tactics .

Example #14: LeapFrog’s market research involvement throughout product development (not just at the beginning and the end)

Market research is sometimes thought of as a practice that can either inform the development of a product, or research consumer attitudes about developed products. But what about the middle?

Once the creative people begin working on product designs, the LeapFrog research department stays involved.

They have a lab onsite where they bring moms and kids from the San Francisco Bay area to test preliminary versions of the products. “We do a lot of hands-on, informal qualitative work with kids,” said Craig Spitzer, VP Marketing Research, LeapFrog. “Can they do what they need to do to work the product? Do they go from step A to B to C, or do they go from A to C to B?”

When designing the LeapPad Learning System, for example, the prototype went through the lab “a dozen times or so,” he says.

A key challenge for the research department is keeping and building the list of thousands of families who have agreed to be on call for testing. “We've done everything from recruiting on the Internet to putting out fliers in local schools, working through employees whose kids are in schools, and milking every connection we have,” Spitzer says.

Kids who test products at the lab are compensated with a free, existing product rather than a promise of the getting the product they're testing when it is released in the future.

This example was originally published in How LeapFrog Uses Marketing Research to Launch New Products .

Related resources

The Marketer’s Blind Spot: 3 ways to overcome the marketer’s greatest obstacle to effective messaging

Get Your Free Test Discovery Tool to Help Log all the Results and Discoveries from Your Company’s Marketing Tests

Marketing Research: 5 examples of discovering what customers want

Online Marketing Tests: How do you know you’re really learning anything?

Improve Your Marketing

example of hypothesis in marketing research

Join our thousands of weekly case study readers.

Enter your email below to receive MarketingSherpa news, updates, and promotions:

Note: Already a subscriber? Want to add a subscription? Click Here to Manage Subscriptions

Get Better Business Results With a Skillfully Applied Customer-first Marketing Strategy

example of hypothesis in marketing research

The customer-first approach of MarketingSherpa’s agency services can help you build the most effective strategy to serve customers and improve results, and then implement it across every customer touchpoint.

example of hypothesis in marketing research

Get headlines, value prop, competitive analysis, and more.

Marketer Vs Machine

example of hypothesis in marketing research

Marketer Vs Machine: We need to train the marketer to train the machine.

Free Marketing Course

example of hypothesis in marketing research

Become a Marketer-Philosopher: Create and optimize high-converting webpages (with this free online marketing course)

Project and Ideas Pitch Template

example of hypothesis in marketing research

A free template to help you win approval for your proposed projects and campaigns

Six Quick CTA checklists

example of hypothesis in marketing research

These CTA checklists are specifically designed for your team — something practical to hold up against your CTAs to help the time-pressed marketer quickly consider the customer psychology of your “asks” and how you can improve them.

Infographic: How to Create a Model of Your Customer’s Mind

example of hypothesis in marketing research

You need a repeatable methodology focused on building your organization’s customer wisdom throughout your campaigns and websites. This infographic can get you started.

Infographic: 21 Psychological Elements that Power Effective Web Design

example of hypothesis in marketing research

To build an effective page from scratch, you need to begin with the psychology of your customer. This infographic can get you started.

Receive the latest case studies and data on email, lead gen, and social media along with MarketingSherpa updates and promotions.

  • Your Email Account
  • Customer Service Q&A
  • Search Library
  • Content Directory:

Questions? Contact Customer Service at [email protected]

© 2000-2024 MarketingSherpa LLC, ISSN 1559-5137 Editorial HQ: MarketingSherpa LLC, PO Box 50032, Jacksonville Beach, FL 32240

The views and opinions expressed in the articles of this website are strictly those of the author and do not necessarily reflect in any way the views of MarketingSherpa, its affiliates, or its employees.

Value Hypothesis Fundamentals: A Complete Guide

Last updated on Fri Aug 23 2024

Imagine spending months or even years developing a new feature only to find out it doesn’t resonate with your users, argh! This kind of situation could be any worst Product manager’s nightmare.

There's a way to fix this problem called the Value Hypothesis . This idea helps builders to validate whether the ideas they’re working on are worth pursuing and useful to the people they want to sell to.

This guide will teach you what you need to know about Value Hypothesis and a step-by-step process on how to create a strong one. At the end of this post, you’ll learn how to create a product that satisfies your users.

Are you ready? Let’s get to it!

How a Value Hypothesis Helps Product Managers

Scrutinizing this hypothesis helps you as a developer to come up with a product that your customers like and love to use.

Product managers use the Value Hypothesis as a north star, ensuring focus on client needs and avoiding wasted resources. For more on this, read about the product management process .

Definition and Scope of Value Hypothesis

Let's get into the step-by-step process, but first, we need to understand the basics of the Value Hypothesis:

What Is a Value Hypothesis?

A Value Hypothesis is like a smart guess you can test to see if your product truly solves a problem for your customers. It’s your way of predicting how well your product will address a particular issue for the people you’re trying to help.

You need to know what a Value Hypothesis is, what it covers, and its key parts before you use it. To learn more about finding out what customers need, take a look at our guide on discovering features .

The Value Hypothesis does more than just help with the initial launch, it guides the whole development process. This keeps teams focused on what their users care about helping them choose features that their audience will like.

Critical Components of a Value Hypothesis

Critical Components of a Value Hypothesis

A strong Value Hypothesis rests on three key components:

Value Proposition: The Value Proposition spells out the main advantage your product gives to customers. It explains the "what" and "why" of your product showing how it eases a particular pain point.

This proposition targets a specific group of consumers. To learn more, check out our guide on roadmapping .

Customer Segmentation: Knowing and grasping your target audience is essential. This involves studying their demographics, needs, behaviors, and problems. By dividing your market, you can shape your value proposition to address the unique needs of each group.

Customer feedback surveys can prove priceless in this process. Find out more about this in our customer feedback surveys guide.

Problem Statement : The Problem Statement defines the exact issue your product aims to fix. It should zero in on a real fixable pain point your target users face. For hands-on applications, see our product launch communication plan .

Here are some key questions to guide you:

What are the primary challenges and obstacles faced by your target users?

What existing solutions are available, and where do they fall short?

What unmet needs or desires does your target audience have?

For a structured approach to prioritizing features based on customer needs, consider using a feature prioritization matrix .

Crafting a Strong Value Hypothesis

Crafting a Strong Value Hypothesis

Now that we've covered the basics, let's look at how to build a convincing Value Hypothesis. Here's a two-step method, along with value hypothesis templates, to point you in the right direction:

1. Research and Analysis

To start with, you need to carry out market research. By carrying out proper market research, you will have an understanding of existing solutions and identify areas in which customers' needs are yet to be met. This is integral to effective idea tracking .

Next, use customer interviews, surveys, and support data to understand your target audience's problems and what they want. Check out our list of tools for getting customer feedback to help with this.

2. Finding Out What Customers Need

Once you've completed your research, it's crucial to identify your customers' needs. By merging insights from market research with direct user feedback, you can pinpoint the key requirements of your customers.

Here are some key questions to think about:

What are the most significant challenges that your target users encounter daily?

Which current solutions are available to them, and how do these solutions fail to fully address their needs?

What specific pain points are your target users struggling with that aren't being resolved?

Are there any gaps or shortcomings in the existing products or services that your customers use?

What unfulfilled needs or desires does your target audience express that aren't currently met by the market?

To prioritize features based on customer needs in a structured way, think about using a feature prioritization matrix .

Validating the Value Hypothesis

Once you've created your Value Hypothesis with a template, you need to check if it holds up. Here's how you can do this:

MVP Testing

Build a minimum viable product (MVP)—a basic version of your product with essential functions. This lets you test your value proposition with actual users and get feedback without spending too much. To achieve the best outcomes, look into the best practices for customer feedback software .

Prototyping

Build mock-ups to show your product idea. Use these mock-ups to get user input on the user experience and overall value offer.

Metrics for Evaluation

After you've gathered data about your hypothesis, it's time to examine it. Here are some metrics you can use:

User Engagement : Monitor stats like time on the platform, feature use, and return visits to see how much users interact with your MVP or mock-up.

Conversion Rates : Check conversion rates for key actions like sign-ups, buys, or feature adoption. These numbers help you judge if your value offer clicks with users. To learn more, read our article on SaaS growth benchmarks .

Iterative Improvement of Value Hypothesis

The Value Hypothesis framework shines because you can keep making it better. Here's how to fine-tune your hypothesis:

Set up an ongoing system to gather user data as you develop your product.

Look at what users say to spot areas that need work then update your value proposition based on what you learn.

Read about managing product updates to keep your hypotheses current.

Adaptation to Market Changes

The market keeps changing, and your Value Hypothesis should too. Stay up to date on what's happening in your industry and watch how users' habits change. Tweak your value proposition to stay useful and ahead of the competition.

Here are some ways to keep your Value Hypothesis fresh:

Do market research often to keep up with what's happening in your industry and what your competitors are up to.

Keep an eye on what users are saying to spot new problems or things they need but don't have yet.

Try out different value statements and features to see which ones your audience likes best.

To keep your guesses up-to-date, check out our guide on handling product changes .

Common Mistakes to Avoid

While the Value Hypothesis approach is powerful, it's key to steer clear of these common traps:

Avoid Confirmation Bias : People tend to focus on data that backs up their initial guesses. But it's key to look at feedback that goes against your ideas and stay open to different views.

Watch out for Shiny Object Syndrome : Don't let the newest fads sway you unless they solve a main customer problem. Your value proposition should fix actual issues for your users.

Don't Cling to Your First Hypothesis : As the market changes, your value proposition should too. Be ready to shift your hypothesis when new evidence and user feedback comes in.

Don't Mix Up Busywork with Real Progress : Getting user feedback is key, but making sense of it brings real value. Look at the data to find useful insights that can shape your product. To learn more about this, check out our guide on handling customer feedback .

Value Hypothesis: Action Points

To build a product that succeeds, you need to know your target users inside out and understand how you help them. The Value Hypothesis framework gives you a step-by-step way to do this.

If you follow the steps in this guide, you can create a strong value proposition, check if it works, and keep improving it to ensure your product stays useful and important to your customers.

Keep in mind, a good Value Hypothesis changes as your product and market change. When you use data and put customers first, you're on the right track to create a product that works.

Want to put the Value Hypothesis framework into action? Check out our top templates for creating product roadmaps to streamline your process. Think about using featureOS to manage customer feedback. This tool makes it easier to collect, examine, and put user feedback to work.

Announcements

Privacy Policy

Terms of use

Competitor Comparisons

Canny vs Frill

Beamer vs Frill

Hello Next vs Frill

Our Roadmap

© 2024 Frill – Independent & Bootstrapped.

example of hypothesis in marketing research

IMAGES

  1. What is a Research Hypothesis And How to Write it?

    example of hypothesis in marketing research

  2. 13 Different Types of Hypothesis (2024)

    example of hypothesis in marketing research

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    example of hypothesis in marketing research

  4. Marketing Research Hypothesis Examples : Research questions hypotheses

    example of hypothesis in marketing research

  5. Designing Hypotheses that Win: A four-step framework for gaining

    example of hypothesis in marketing research

  6. How to Do Strong Research Hypothesis

    example of hypothesis in marketing research

VIDEO

  1. Two-Sample Hypothesis Testing: Dependent Sample

  2. Hypothesis and Assumption#research

  3. Intro to hypothesis testing for quantitative variables (pg 104-105)

  4. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  5. Fun Example Hypothesis Testing for Two Populations

  6. How To Formulate The Hypothesis/What is Hypothesis?

COMMENTS

  1. How to write a hypothesis for marketing experimentation

    The original idea: "My page needs a new CTA.". Following the hypothesis structure: "A new CTA on my page will increase [conversion goal]". The first test implied a problem with clarity, provides a potential theme: "Improving the clarity of the page will reduce confusion and improve [conversion goal].".

  2. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  3. How to Write a Strong Hypothesis

    The specific group being studied. The predicted outcome of the experiment or analysis. 5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

  4. Expert Advice on Developing a Hypothesis for Marketing Experimentation

    The Basics: Marketing Experimentation Hypothesis. A hypothesis is a research-based statement that aims to explain an observed trend and create a solution that will improve the result. This statement is an educated, testable prediction about what will happen. It has to be stated in declarative form and not as a question.

  5. Hypothesis Testing in Marketing Research

    In essence, hypothesis testing involves making an educated guess about a population parameter and then using data to determine if the hypothesis is supported or rejected. In the context of marketing, hypotheses can be formulated about consumer behavior, product preferences, advertising effectiveness, and many other aspects of the marketing mix.

  6. A Beginner's Guide to Hypothesis Testing in Business

    3. One-Sided vs. Two-Sided Testing. When it's time to test your hypothesis, it's important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests, or one-tailed and two-tailed tests, respectively. Typically, you'd leverage a one-sided test when you have a strong conviction ...

  7. A/B Testing: Example of a good hypothesis

    For example: Problem Statement: "The lead generation form is too long, causing unnecessary friction.". Hypothesis: "By changing the amount of form fields from 20 to 10, we will increase number of leads.". Proposed solution. When you are thinking about the solution you want to implement, you need to think about the psychology of the ...

  8. Designing Hypotheses that Win: A four-step framework for gaining

    A/B Testing Summit free online conference - Research your seat to see Flint McGlaughlin's keynote Design Hypotheses that Win: A 4-step framework for gaining customer wisdom and generating significant results. The Hypothesis and the Modern-Day Marketer. Customer Theory: How we learned from a previous test to drive a 40% increase in CTR

  9. Marketing Measurement-2: Understanding Hypothesis Testing

    For example, we can observe the actual behaviour of a sample comprising two groups post-marketing exposure. The hypothesis testing process involves assuming a neutral H0 and seeking evidence in ...

  10. A/B Testing in Digital Marketing: Example of four-step hypothesis

    Developing a hypothesis is an essential part of marketing experimentation. Qualitative-based research should inform hypotheses that you test with real-world behavior. The hypotheses help you discover how accurate those insights from qualitative research are. If you engage in hypothesis-driven testing, then you ensure your tests are strategic ...

  11. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  12. Marketing Experiments: From Hypothesis to Results

    With your marketing objectives in mind, the next step is formulating a hypothesis for your experiment. A hypothesis is a testable prediction that outlines the expected outcome of your experiment. It should be based on existing knowledge, data, or observations and provide a clear direction for your experimental design.

  13. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  14. How to Write a Hypothesis w/ Strong Examples

    For example, a hypothesis for the research question stated above might be: "If sunflower plants are watered with varying amounts of water, then those watered more frequently will grow taller due to better hydration." ... The new marketing strategy does not affect the sales numbers of the product. Associative Hypothesis Examples.

  15. Examples of a hypothesis in market research

    Whether it's refining marketing messages or assessing product-market fit, the formulation of hypotheses is an indispensable first step in successful market research. Why Hypotheses Matter in Market Research. Formulating a market hypothesis lays the groundwork for focused research and exploration.

  16. 9 Key Stages in the Marketing Research Process

    The marketing research process - an overview. A typical marketing research process is as follows: Identify an issue, discuss alternatives and set out research objectives. Develop a research program. Choose a sample. Gather information. Gather data. Organize and analyze information and data. Present findings.

  17. 5 Hypothesis testing

    This can be formally expressed as follows: ˉx − μ0 = zσˉx. In this equation, z will tell us how many standard deviations the sample mean ˉx¯x is away from the null hypothesis μ0μ0. Solving for z gives us: z = ˉx − μ0 σˉx = ˉx − μ0 σ / √n. This standardized value (or "z-score") is also referred to as a test statistic.

  18. From Idea to Insight: A 7-Step Market Research Guide

    The 7-Step Market Research Process: An Overview. ... Use online platforms, email, or in-person methods to gather quantitative data from a large sample of your target audience. Performing interviews: Engage in one-on-one conversations with key individuals to gain in-depth qualitative insights. ... Use techniques like hypothesis testing and ...

  19. Hypothesis Examples for Research Projects

    Marketing Research Analyze in-depth interviews, focus groups, ... These research hypothesis examples illustrate how precise, testable statements are essential in natural sciences, driving discoveries and advancements. Hypotheses not only structure the investigation process, but also foster critical thinking and innovation in scientific research

  20. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  21. How to apply hypothesis test in marketing data

    Here are the calculated results. As we stated earlier, one-tailed p-values are just a two-tailed p-value divide by two. Step 4: Draw a conclusion. At this point, I hope you still remember your ...

  22. How to Generate and Validate Product Hypotheses

    A hypothesis in product development and product management is a statement or assumption about the product, planned feature, market, or customer (e.g., their needs, behavior, or expectations) that you can put to the test, evaluate, and base your further decisions on. This may, for instance, regard the upcoming product changes as well as the ...

  23. 14 Market Research Examples

    Curiosity. At the heart of every successful marketing campaign is a curious marketer who learned how to better serve a customer. In this industry, we scratch that curiosity itch with market research. To help give you ideas to learn about your customer, in this article we bring you examples from Consumer Reports, Intel, Visa USA, Hallmark, Levi Strauss, John Deere, LeapFrog, Spiceworks Ziff ...

  24. Value Hypothesis Fundamentals: A Complete Guide

    How a Value Hypothesis Helps Product Managers. Scrutinizing this hypothesis helps you as a developer to come up with a product that your customers like and love to use. Product managers use the Value Hypothesis as a north star, ensuring focus on client needs and avoiding wasted resources. For more on this, read about the product management process.

  25. 8.3: Sampling distribution and hypothesis testing

    Introduction. Understanding the relationship between sampling distributions, probability distributions, and hypothesis testing is the crucial concept in the NHST — Null Hypothesis Significance Testing — approach to inferential statistics. is crucial, and many introductory text books are excellent here. I will add some here to their discussion, perhaps with a different approach, but the ...