Identifying and visualizing technology evolution: A case study of smart grid technology

  • Technological Forecasting and Social Change 79(6):1099–1110
  • 79(6):1099–1110

Ssu-Han Chen at Mingchi University of Technology

  • Mingchi University of Technology
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Dar-Zen Chen at National Taiwan University

  • National Taiwan University

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

No full-text available

Request Full-text Paper PDF

To read the full-text of this research, you can request a copy directly from the authors.

  • TECHNOL FORECAST SOC

Xi Xi

  • Int J Innovat Tech Manag
  • Srigowtham Arunagiri
  • Mary Mathew

Helen Niemann

  • SCIENTOMETRICS

Michael Rennings

  • Barbara D. Klein

Nesreen El-Rayes

  • Jaideep Ghosh

Munan Li

  • Sun Minghan

Jumarni Ami

  • Yumna J. Alzaabi
  • Abeer H Alhammadi

Alaa M Ubaid

  • Lucheng Huang
  • Abdalilah Owaishiz

Mustafa Almuzel

  • Chun-Hao Huang

Weiwei Liu

  • Kathi Eilers
  • Elisabeth Eppinger
  • Alfonso Ávila-Robinson

Shintaro Sengoku

  • Sanghoon Lee

Wonjoon Kim

  • Xiao-Wen Yu

Hao Hu

  • Yi-Tao Wang

Wellington Luiz De Oliveira Da Rosa

  • Simone Gomes
  • Caroline Huber Rosa

Evandro Piva

  • Kazuma Arino

Takao Furukawa

  • Kumi Okuwada
  • Subhashini Venugopalan

Varun Rai

  • Bennet Bruens

Eduard Grünwald

  • Seonho Hwang

Juneseuk Shin

  • Ho-Joon Lee
  • Youngjung Geum
  • Chien-Hsiang Chou

Dar-Zen Chen

  • ELECTRON LIBR
  • Kai-Shing Chang
  • Hsi-Yin Yeh

Ssu-Han Chen

  • Matthias Rüdiger

Majid Esmaelian

  • Jin-Kwan Lin

Chun-Chieh Wang

  • M.-H. Huang

Farshad Madani

  • Calvin Weng
  • Woondong Yeo

Seonho Kim

  • Hyunwoo Park

Jaewoo Kang

  • J AM SOC INF SCI TEC

Wolfgang Glänzel

  • Open Manag J

Hanna Kropsu-Vehkaperä

  • Jukka-Pekka Rusanen

S. Phineas Upham

  • INFORM PROCESS MANAG

Yuen-Hsien Tseng

  • PATTERN RECOGN

Paul L. Rosin

  • Irene Ntoutsi

Yannis Theodoridis

  • Rene Schult

Timothy Cribbin

  • Sonali Morar

Chaomei Chen

  • Steven A. Morris

Gary Yen

  • Benyam Asnake
  • Lori Rosenkopf

Lyle H. Ungar

  • Kathleen M. Eisenhardt
  • A.M. Huberman

Aymen A. Kayal

  • Robert C. Waters
  • RichardR. Nelson

Sidney Winter

  • Mark Newman
  • Tanja Falkowski
  • Jörg Bartelheimer
  • SOC NETWORKS

Patrick Doreian

  • Changwoo Choi
  • Guillermo Rueda
  • Hilary Martin
  • Pisek Gerdsri

Changyong Lee

  • Yoshiyuki Takeda
  • Naoki Shibata

Der-Baau Perng

  • J NANOPART RES

Zan Huang

  • Hsinchun Chen

Mihail Roco

  • M. E. J. Newman

Mahshid Fallah

  • Elliot Fishman

Richard R. Reilly

  • TECHNOVATION

Katsumori Matsushima

  • COMPUT IND ENG

Camille Deyong

  • Dagmawi Yemenu
  • Michelle Girvan
  • Mark E. J. Newman
  • David M. Blei
  • John Lafferty
  • J Am Soc Inform Sci

Birger Hjørland

  • Nobuyuki Otsu

Wouter de Nooy

  • Kolli Naimisha

Etienne Wenger-Trayner

  • Richard Arnold McDermott

William M. Snyder

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • DOI: 10.1016/J.TECHFORE.2011.12.011
  • Corpus ID: 62666732

Identifying and visualizing technology evolution: A case study of smart grid technology

  • Ssu-Han Chen , Mu-Hsuan Huang , Dar-Zen Chen
  • Published 1 July 2012
  • Computer Science, Engineering, Environmental Science
  • Technological Forecasting and Social Change

Figures from this paper

figure 1

59 Citations

Detecting the temporal gaps of technology fronts: a case study of smart grid field.

  • Highly Influenced

A comparison of technology trajectories between the global and the United States in smart grid

Smart grid domain: technology structure and innovation trends, exploring technology evolution and transition characteristics of leading countries: a case of fuel cell field, exploring and visualizing the patent collaboration network: a case study of smart grid field in china, exploring technology evolution in the solar cell field: an aspect from patent analysis, identifying technology and research communication case of wireless power, technology forecasting by analogy-based on social network analysis: the case of autonomous vehicles, a visualization tool of patent topic evolution using a growing cell structure neural network, mapping technological trajectories as patent citation networks: taking the aero-engine industry as an example, 49 references, monic: modeling and monitoring cluster transitions.

  • Highly Influential

DIVA: a visualization system for exploring document databases for technology forecasting

Monitoring trends of technological changes based on the dynamic patent lattice: a modified formal concept analysis approach, an empirical evaluation of the technology cycle time indicator as a measure of the pace of technological progress in superconductor technology, monitoring the organic structure of technology based on the patent development paths, detecting and visualizing emerging trends and transient patterns in fuel cell scientific literature, forecasting emerging technologies: use of bibliometrics and patent analysis, demand side load management of smart grids using intelligent trading/metering/ billing system, analysis of technology management functions in finnish high tech companies, characterization of complex networks: a survey of measurements, related papers.

Showing 1 through 3 of 0 Related Papers

Experts@Minnesota Logo

Understanding patterns of technology evolution: An ecosystem perspective

  • Information and Decision Sciences
  • MIS Quarterly

Research output : Chapter in Book/Report/Conference proceeding › Conference contribution

Understanding the dynamics of technology evolution - whether for the purposes of forecasting new product or technology infrastructure developments, or identifying the basis for future digital convergence in the global market - is a key challenge for innovators, senior managers, and policymakers. This research provides an overview of a new ecosystem model of technology evolution, the purpose of which is to structure these kinds of assessments and suggest reusable analysis structures to ensure that total environment of technological innovation is considered. We use examples from the end-user computing context and the electronics industry to identify five patterns of technology evolution that commonly occur. We also develop a state diagram-based approach to demonstrate the cyclical nature of technology evolution. Finally, we illustrate our findings using a case study on digital music technologies.

Original languageEnglish (US)
Title of host publicationProceedings of the 39th Annual Hawaii International Conference on System Sciences, HICSS'06
Pages189a
DOIs
StatePublished - 2006
Event - Kauai, HI, United States
Duration: Jan 4 2006Jan 7 2006

Publication series

NameProceedings of the Annual Hawaii International Conference on System Sciences
Volume8
ISSN (Print)1530-1605
Other39th Annual Hawaii International Conference on System Sciences, HICSS'06
Country/TerritoryUnited States
CityKauai, HI
Period1/4/061/7/06
  • Business technologies
  • Digital music industry
  • Ecosystem model
  • Evolutionary patterns
  • Management of technology
  • Technology ecosystem
  • Technology evolution

This output contributes to the following UN Sustainable Development Goals (SDGs)

Publisher link

  • 10.1109/HICSS.2006.515

Other files and links

  • Link to publication in Scopus
  • Link to the citations in Scopus

Fingerprint

  • Infrastructure Engineering 100%
  • End-Users Engineering 100%
  • Illustrates Engineering 100%
  • Policymakers Engineering 100%
  • Electronics Industry Engineering 100%
  • Global Market Engineering 100%
  • Technological Innovation Engineering 100%
  • Senior Manager Engineering 100%

T1 - Understanding patterns of technology evolution

T2 - 39th Annual Hawaii International Conference on System Sciences, HICSS'06

AU - Adomavicius, Gediminas

AU - Bockstedt, Jesse

AU - Gupta, Alok

AU - Kauffman, Robert J.

N1 - Copyright: Copyright 2011 Elsevier B.V., All rights reserved.

N2 - Understanding the dynamics of technology evolution - whether for the purposes of forecasting new product or technology infrastructure developments, or identifying the basis for future digital convergence in the global market - is a key challenge for innovators, senior managers, and policymakers. This research provides an overview of a new ecosystem model of technology evolution, the purpose of which is to structure these kinds of assessments and suggest reusable analysis structures to ensure that total environment of technological innovation is considered. We use examples from the end-user computing context and the electronics industry to identify five patterns of technology evolution that commonly occur. We also develop a state diagram-based approach to demonstrate the cyclical nature of technology evolution. Finally, we illustrate our findings using a case study on digital music technologies.

AB - Understanding the dynamics of technology evolution - whether for the purposes of forecasting new product or technology infrastructure developments, or identifying the basis for future digital convergence in the global market - is a key challenge for innovators, senior managers, and policymakers. This research provides an overview of a new ecosystem model of technology evolution, the purpose of which is to structure these kinds of assessments and suggest reusable analysis structures to ensure that total environment of technological innovation is considered. We use examples from the end-user computing context and the electronics industry to identify five patterns of technology evolution that commonly occur. We also develop a state diagram-based approach to demonstrate the cyclical nature of technology evolution. Finally, we illustrate our findings using a case study on digital music technologies.

KW - Business technologies

KW - Digital music industry

KW - Ecosystem model

KW - Evolutionary patterns

KW - Management of technology

KW - Technology ecosystem

KW - Technology evolution

UR - http://www.scopus.com/inward/record.url?scp=33749662924&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749662924&partnerID=8YFLogxK

U2 - 10.1109/HICSS.2006.515

DO - 10.1109/HICSS.2006.515

M3 - Conference contribution

AN - SCOPUS:33749662924

SN - 0769525075

SN - 9780769525075

T3 - Proceedings of the Annual Hawaii International Conference on System Sciences

BT - Proceedings of the 39th Annual Hawaii International Conference on System Sciences, HICSS'06

Y2 - 4 January 2006 through 7 January 2006

Browse Econ Literature

  • Working papers
  • Software components
  • Book chapters
  • JEL classification

More features

  • Subscribe to new research

RePEc Biblio

Author registration.

  • Economics Virtual Seminar Calendar NEW!

IDEAS home

Some searches may not work properly. We apologize for the inconvenience.

Identifying and visualizing technology evolution: A case study of smart grid technology

  • Author & abstract
  • 22 Citations
  • Related works & more

Corrections

  • Chen, Ssu-Han
  • Huang, Mu-Hsuan
  • Chen, Dar-Zen

Suggested Citation

Download full text from publisher.

Follow serials, authors, keywords & more

Public profiles for Economics researchers

Various research rankings in Economics

RePEc Genealogy

Who was a student of whom, using RePEc

Curated articles & papers on economics topics

Upload your paper to be listed on RePEc and IDEAS

New papers by email

Subscribe to new additions to RePEc

EconAcademics

Blog aggregator for economics research

Cases of plagiarism in Economics

About RePEc

Initiative for open bibliographies in Economics

News about RePEc

Questions about IDEAS and RePEc

RePEc volunteers

Participating archives

Publishers indexing in RePEc

Privacy statement

Found an error or omission?

Opportunities to help RePEc

Get papers listed

Have your research listed on RePEc

Open a RePEc archive

Have your institution's/publisher's output listed on RePEc

Get RePEc data

Use data assembled by RePEc

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Kodak’s Downfall Wasn’t About Technology

  • Scott D. Anthony

What it missed was the business model.

A generation ago, a “Kodak moment” meant something that was worth saving and savoring. Today, the term increasingly serves as a corporate bogeyman that warns executives of the need to stand up and respond when disruptive developments encroach on their market. Unfortunately, as time marches on the subtleties of what actually happened to Eastman Kodak are being forgotten, leading executives to draw the wrong conclusions from its struggles.

technology evolution case study

  • Scott D. Anthony is a clinical professor at Dartmouth College’s Tuck School of Business, a senior partner at Innosight , and the lead author of Eat, Sleep, Innovate (2020) and Dual Transformation (2017). ScottDAnthony

Partner Center

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

applsci-logo

Article Menu

technology evolution case study

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Core technology topic identification and evolution analysis based on patent text mining—a case study of unmanned ship.

technology evolution case study

1. Introduction

2. literature review, 3.1. research framework.

  • Patent data collection and preprocessing. First, we collect and download patent data in unmanned ship technology, then clean the collected data, delete irrelevant and duplicate data, and standardize the data.
  • Technical topic identification. Mining and identifying technical topics and keywords through the LDA topic model and TF-IDF text vectorization method, and drawing word cloud diagrams.
  • Evolution results of technical theme intensity. Draw a heat map of technical topics based on the intensity of technical topics, and analyze the attention and rise and fall of technical topics at each stage.
  • Evolution results of technical theme content. This paper divides technology development stages according to the technology life cycle theory, uses cosine distance to measure the similarity between technical topics, draws the content evolution diagram of technical topics, and analyzes the evolutionary relationship between technical topics at each stage.

3.2. Data Acquisition

3.3. methods, 3.3.1. lda topic model, 3.3.2. technical topic extraction, 3.3.3. technical theme intensity, 3.3.4. evolution of technical theme content, 4. results and analysis, 4.1. technical theme identification, 4.2. technical theme intensity evolution, 4.3. technical theme content evolution.

  • In the embryonic stage (2013–2015), the number of annual patent applications in unmanned ships began to increase, and the annual growth rate increased slowly, indicating that the technology in unmanned ships was gradually developing.
  • In the rapid development stage (2016–2019), the number of annual patent applications in unmanned ship technology increased rapidly, and the annual growth rate was relatively high, indicating that the technology in unmanned ships was developing rapidly.
  • In the stable development stage (2020–2022), the annual number of patent applications in the unmanned ship field technology was at a high level, and the annual growth rate was low, indicating that after the rapid development stage of the unmanned ship field technology, unmanned ship technology technology was still evolving.

5. Discussion

6. conclusions, author contributions, data availability statement, conflicts of interest.

  • Ampah, J.D.; Jin, C.; Fattah, I.M.R.; Appiah-Otoo, I.; Afrane, S.; Geng, Z.; Liu, H. Investigating the evolutionary trends and key enablers of hydrogen production technologies: A patent-life cycle and econometric analysis. Int. J. Hydrogen Energy 2023 , 48 , 37674–37707. [ Google Scholar ] [ CrossRef ]
  • Miao, Z.; Du, J.; Dong, F.; Liu, Y.; Wang, X. Identifying technology evolution pathways using topic variation detection based on patent data: A case study of 3D printing. Futures 2020 , 118 , 102530. [ Google Scholar ] [ CrossRef ]
  • Liu, Z.; Feng, J.; Uden, L. From technology opportunities to ideas generation via cross-cutting patent analysis: Application of generative topographic mapping and link prediction. Technol. Forecast. Soc. Chang. 2023 , 192 , 122565. [ Google Scholar ] [ CrossRef ]
  • Baumann, M.; Domnik, T.; Haase, M.; Wulf, C.; Emmerich, P.; Rösch, C.; Weil, M. Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy. Technol. Forecast. Soc. Chang. 2021 , 165 , 120505. [ Google Scholar ] [ CrossRef ]
  • Lee, P.C.; Su, H.N.; Wu, F.S. Quantitative mapping of patented technology—The case of electrical conducting polymer nanocomposite. Technol. Forecast. Soc. Chang. 2010 , 77 , 466–478. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Zhang, H.; Daim, T.; Zhang, Y.P. Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technol. Forecast. Soc. Chang. 2021 , 167 , 120729. [ Google Scholar ] [ CrossRef ]
  • Zhou, H.; Dai, J.; Chen, X.; Hu, B.; Wei, H.; Cai, H.H. Understanding innovation of new energy industry: Observing development trend and evolution of hydrogen fuel cell based on patent mining. Int. J. Hydrogen Energy 2024 , 52 , 548–560. [ Google Scholar ] [ CrossRef ]
  • Liu, Z.; Xiang, X.; Feng, J. Tracing evolutionary trajectory of charging technologies in electric vehicles: Patent citation network analysis. Environ. Dev. Sustain. 2023 , 26 , 12789–12813. [ Google Scholar ] [ CrossRef ]
  • Yang, C.; Huang, C.; Su, J. An improved SAO network-based method for technology trend analysis: A case study of graphene. J. Inf. 2018 , 12 , 271–286. [ Google Scholar ] [ CrossRef ]
  • Wang, J.; Cheng, L.; Feng, L.; Lin, K.Y.; Zhang, L.; Zhao, W. Tracking and predicting technological knowledge interactions between artificial intelligence and wind power: Multimethod patent analysis. Adv. Eng. Inf. 2023 , 58 , 102177. [ Google Scholar ] [ CrossRef ]
  • Dotsika, F.; Watkins, A. Identifying potentially disruptive trends by means of keyword network analysis. Technol. Forecast. Soc. Chang. 2017 , 119 , 114–127. [ Google Scholar ] [ CrossRef ]
  • Xue, D.; Shao, Z. Patent text mining based hydrogen energy technology evolution path identification. Int. J. Hydrogen Energy 2024 , 49 , 699–710. [ Google Scholar ] [ CrossRef ]
  • Lin, W.; Yu, W. Measuring Patent Similarity Based on Text Mining and Image Recognition. Systems 2023 , 11 , 294. [ Google Scholar ] [ CrossRef ]
  • Altuntas, F.; Gok, M.S. A data-driven analysis of renewable energy management: A case study of wind energy technology. Clust. Comput. 2023 , 26 , 4133–4152. [ Google Scholar ] [ CrossRef ]
  • Di Corso, E.; Proto, S.; Vacchetti, B.; Bethaz, P.; Cerquitelli, T. Simplifying text mining activities: Scalable and self-tuning methodology for topic detection and characterization. Appl. Sci. 2022 , 12 , 5125. [ Google Scholar ] [ CrossRef ]
  • Khachatryan, D.; Muehlmann, B. Measuring the drafting alignment of patent documents using text mining. PLoS ONE 2020 , 15 , e0234618. [ Google Scholar ] [ CrossRef ]
  • Garechana, G.; Rio-Belver, R.; Bildosola, I.; Cilleruelo-Carrasco, E. A method for the detection and characterization of technology fronts: Analysis of the dynamics of technological change in 3D printing technology. PLoS ONE 2019 , 14 , e0210441. [ Google Scholar ] [ CrossRef ]
  • Wu, H.; Yi, H.; Li, C. An integrated approach for detecting and quantifying the topic evolutions of patent technology: A case study on graphene field. Scientometrics 2021 , 126 , 6301–6321. [ Google Scholar ] [ CrossRef ]
  • Ashouri, S.; Mention, A.L.; Smyrnios, K.X. Anticipation and analysis of industry convergence using patent-level indicators. Scientometrics 2021 , 126 , 5727–5758. [ Google Scholar ] [ CrossRef ]
  • Hu, R.; Ma, W.; Lin, W.; Chen, X.; Zhong, Z.; Zeng, C. Technology topic identification and trend prediction of new energy vehicle using LDA modeling. Complexity 2022 , 2022 , 1–20. [ Google Scholar ] [ CrossRef ]
  • Small, H.; Boyack, K.W.; Klavans, R. Identifying emerging topics in science and technology. Res. Policy 2014 , 43 , 1450–1467. [ Google Scholar ] [ CrossRef ]
  • Zheng, X.; Aborisade, M.A.; Liu, S.; Lu, S.; Oba, B.T.; Xu, X.; Ding, H. The history and prediction of composting technology: A patent mining. J. Clean. Prod. 2020 , 276 , 124232. [ Google Scholar ] [ CrossRef ]
  • Ning, L.; Guo, R. Technological diversification to green domains: Technological relatedness, invention impact and knowledge integration capabilities. Res. Policy 2022 , 51 , 104406. [ Google Scholar ] [ CrossRef ]
  • Naumanen, M.; Uusitalo, T.; Huttunen-Saarivirta, E.; van der Have, R. Development strategies for heavy duty electric battery vehicles: Comparison between China, EU, Japan and USA. Resour. Conserv. Recycl. 2019 , 151 , 104413. [ Google Scholar ] [ CrossRef ]
  • Govindarajan, U.H.; Trappey, A.J.C.; Trappey, C.V. Intelligent collaborative patent mining using excessive topic generation. Adv. Eng. Inf. 2019 , 42 , 100955. [ Google Scholar ] [ CrossRef ]
  • Wang, B.; Liu, S.; Ding, K.; Liu, Z.; Xu, J. Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: A case study in LTE technology. Scientometrics 2014 , 101 , 685–704. [ Google Scholar ] [ CrossRef ]
  • Han, X.; Zhu, D.; Lei, M.; Daim, T. R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data. Technol. Forecast. Soc. Chang. 2021 , 167 , 120691. [ Google Scholar ]
  • Wei, T.; Jiang, T.; Feng, D.; Xiong, J. Exploring the Evolution of Core Technologies in Agricultural Machinery: A Patent-Based Semantic Mining Analysis. Electronics 2023 , 12 , 4277. [ Google Scholar ] [ CrossRef ]
  • Li, X.; Wu, Y.; Cheng, H.; Xie, Q.; Daim, T. Identifying technology opportunity using SAO semantic mining and outlier detection method: A case of triboelectric nanogenerator technology. Technol. Forecast. Soc. Chang. 2023 , 189 , 122353. [ Google Scholar ] [ CrossRef ]
  • Ghaffari, M.; Aliahmadi, A.; Khalkhali, A.; Zakery, A.; Daim, T.U.; Yalcin, H. Topic-based technology mapping using patent data analysis: A case study of vehicle tires. Technol. Forecast. Soc. Chang. 2023 , 193 , 122576. [ Google Scholar ] [ CrossRef ]
  • Wang, J.; Zhang, Z.; Feng, L.; Lin, K.Y.; Liu, P. Development of technology opportunity analysis based on technology landscape by extending technology elements with BERT and TRIZ. Technol. Forecast. Soc. Chang. 2023 , 191 , 122481. [ Google Scholar ] [ CrossRef ]
  • Wei, C.; Chaoran, L.; Chuanyun, L.; Lingkai, K.; Zaoli, Y. Tracing the evolution of 3-D printing technology in China using LDA-based patent abstract mining. IEEE Trans. Eng. Manag. 2020 , 69 , 1135–1145. [ Google Scholar ] [ CrossRef ]
  • Ma, Y.; Kong, L.; Lin, C.; Yang, X. Research on the identification of generic technology of eco-friendly materials based on text mining. Environ. Sci. Pollut. Res. 2022 , 29 , 35269–35283. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Pan, X.; Zhong, B.; Wang, X.; Xiang, R. Text mining-based patent analysis of BIM application in construction. J. Civ. Eng. Manag. 2021 , 27 , 303–315. [ Google Scholar ] [ CrossRef ]
  • Yun, J.; Geum, Y. Automated classification of patents: A topic modeling approach. Comput. Ind. Eng. 2020 , 147 , 106636. [ Google Scholar ] [ CrossRef ]
  • Wang, J.; Hsu, C.C. A topic-based patent analytics approach for exploring technological trends in smart manufacturing. J. Manuf. Technol. Manag. 2021 , 32 , 110–135. [ Google Scholar ] [ CrossRef ]
  • Hu, Z.; Fang, S.; Liang, T. Empirical study of constructing a knowledge organization system of patent documents using topic modeling. Scientometrics 2014 , 100 , 787–799. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

PaperModel UsedReal DatasetSpecial FeaturesLimitations
Patent classification numbersZhang et al. [ ]LDA, text similarity calculationblockchain field patentsTechnological evolutionInaccurate, Without objectivity
Zhou et al. [ ]IPC co-category analysishydrogen fuel cell patentsmap the knowledge map of hotspotsInaccurate, Insufficient information
Patent citation networksLiu et al. [ ]Main path analysis, Evolutionary trajectoryelectric vehicles patentsco-opetition situation analysisInaccurate, Time lag
Yang et al. [ ]structural holes, SAO networkGraphene patentsidentifying technology development trendsmaybe errors in explaining the relationship
Patent
Text
content
Wang et al. [ ]LDACommunication patentsIncreased institutional topic probability hierarchyWithout dynamic characteristics
Dotsika et al. [ ]keyword network analysis, visualization approach3D Printing, Big Data, Bitcoin, Cloud Technologies,Technical forecastsInaccurate
Xue et al. [ ]technology evolution pathhydrogen energy patentvisualizationUncovered potential information
Lin et al. [ ]SAO, text similaritymechanical structures patentfast, accurateWithout dynamic characteristics
Altuntas et al. [ ]k-means, text mineRenewable energy patentdata-driven analysisUnclear evolutionary path
Di et al. [ ]topic modeling, clusteringscientific papersAutomated determination of parameterstake a long time, long text
TypeContent
DatabasePatsnap Database
Search scope2013–2022
Patent search scopeInvention application patent, Utility model patent, Authorized invention patent, and Design patent
Search expressionKey words = (unmanned ship)
TopicTopic Word
Topic #0.Controller, Design, Velocity, Time, Error, Disturbance, Observer, Performance, Guidance, Surface
Topic #1.Wireless, Terminal, Robot, Base station, Ship, Cable, Technology, Communication, Transmission, User
Topic #2.Navigation, Ship, Command, Action, Experimentation, Status, Risk, Assessment, Status, Capability
Topic #3.Path, Planning, Obstacle, Steps, Route, Algorithm, Goal, Dynamic, Environment, Information
Topic #4.Hull, Structure, Power, Field, Technology, Tail, Water Surface, Anti-collision, Camera, Effect
Topic #5.Pump, Airbag, Pushrod, Bottom, Plate, Hydraulic, Fascia, Inflatable, Rod, Inlet, Pressure
Topic #6.Data, Intelligence, Servers, Environment, Networks, Analytics, Data Processing, Remote, Integrated, Transmission
Topic #7.Body, Spring, Active, Slider, Camera, Motor, Slot, Support, Rod, Slide, Slide Rail
Topic #8.Information, Shore-based, Video, Failure, Status, Transmission, Node, Oil, Spill Control Command, Messages
Topic #9.Boxes, Floats, Openings, Pipes, Grooves, Rings, Components, Rails Water, plants, Containers
Topic #10.Sensors, Positioning, Heading, Distance, Angle, Adjustment, Attitude, Speed, Information, Trajectory
Topic #11.Bracket, Circuit, Mode, Remote, Control, Power, Supply, Flexible, Work, Function, Voltage
Topic #12.Signal, Rescue, Status, Dock, Inertial, Rotor, Personnel, Momentary, Sensing, Gain
Topic #13.Module, Space, Ground, Power, Camera, Size, Object, Electric, Control, Body Management System
Topic #14.Component, Hull, Adjustment, Component, Driver, Tubing, Structure, Fuselage, Impact, Damping
Topic #15.Module, Controller, Positioning, Data, Communication, Attitude, Up, Drive, Transmission, Remote
Topic #16.Formation, Ship, Collaboration, Mothership, Buoyage, Orbit, Network, Distributed, Shelf, Formation
Topic #17.Measurement, Subsystem, River, Hydrology, Observation, Carrier, Data, Acoustic, Work Steps
Topic #18.Thruster, Automatic, Structure, Cabin, Direction, Deck, Helm, Horizontal, Motion, Field
Topic #19.Body, Limit, Battery, Support, Frame, Structure, Sheet, Elasticity, Function, Collection, Box, Technology
Topic #20.Unit, Mechanical, Attitude, Storage, Centre, Winch, Base, Crossbar, Automatic, Monitoring
Topic #21.Partial, task, processor, calibration, test, catheter, indicator, monitoring, point, computational, structure
Topic #22.Powerplant, Mast, Battery, Bow, Sludge, Central, Navigation, System, Electrode, Somewhat, Corresponding
Topic #23.Platform, Movement, Sonar, Emitter, Marker, Direction, Range, Adjustment, Motion, Terminal
Topic #24.Drives, Motors, Propellers, Power, Farming, Feeding, Shafts, Transmission, Fields, Feeding
Topic #25.Image, Ultrasound, Camera, Receiver, Image-processing, Pixel, Classification, Area, Object, Body
Topic #26.Equipment, Operation, Monitoring, Remote, Water, Area, Technology, Field, Communication, Method, Work
Topic #27.Surface, Case, Screw, thread, Slide, Motor, Map, Gear, Structure, Frame, Shaft
Topic #28.Model Move Trajectory Parameter Problem Environment Predict Optimization Algorithm State
Topic #29.Antenna Chassis Test Shell Cable Catamaran Connector Circuit Board Rotating Shaft Structure
Topic #30.Solar, Energy, Battery, Power, Generation, Electricity, Electric, Battery, Panel, Generator, Wind, Wave, Utilisation
Topic #31.Target, Water, surface, Detection, Radar, Features, Vision, Area, Cohesion, Data, Utilization
Topic #32.Mechanisms, Garbage, Surface, Float, Regulating, Drive, Field, Technology, Floaters, Dynamics
Topic #33.Detection, Monitor, Water, quality, Water, body, Waters, Analyze, Watery, Sensor, Automation, Pollution
Topic #34.Area, Guidance, Water, Preset, Bathymetry, Terrain, Technology, Surface, Water, Sample, Operations
Stage 1 (2013–2015)Stage 2 (2016–2019)Stage 3 (2020–2022)
Theme ContentTheme ContentTheme Content
(A-Topic 0) Remote control(B-Topic 0) Power Battery(C-Topic 0) Sampling technology
(A-Topic 1) Sensor Technology(B-Topic 1) Image Processing(C-Topic 1) Solar Battery
(A-Topic 2) Water monitoring(B-Topic 2) Garbage removal(C-Topic 2) Garbage removal
(A-Topic 3) Autonomous navigation(B-Topic 3) Water quality testing(C-Topic 3) Path planning
(A-Topic 4) Measurement technology(B-Topic 4) Hull structure(C-Topic 4) Intelligent Aquaculture
(A-Topic 5) Hull structure(B-Topic 5) Attitude control(C-Topic 5) Speed control
(A-Topic 6) Drive System(B-Topic 6) Target Detection(C-Topic 6) Hull structure
(B-Topic 7) Remote control(C-Topic 7) Remote control
(B-Topic 8) Solar battery(C-Topic 8) Movable platform
(B-Topic 9) Advancing technology(C-Topic 9) Water quality testing
(B-Topic 10) Path planning(C-Topic 10) Propulsion equipment
(B-Topic 11) Surveillance system(C-Topic 11) Surveying and mapping technology
(B-Topic 12) Autonomous navigation(C-Topic 12) Positioning technology
(B-Topic 13) Motor drive(C-Topic 13) Power Battery
(B-Topic 14) Surveying and mapping technology(C-Topic 14) Simulation Technology
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Lin, Y.; Wang, X.; Yang, J.; Wang, S. Core Technology Topic Identification and Evolution Analysis Based on Patent Text Mining—A Case Study of Unmanned Ship. Appl. Sci. 2024 , 14 , 4661. https://doi.org/10.3390/app14114661

Lin Y, Wang X, Yang J, Wang S. Core Technology Topic Identification and Evolution Analysis Based on Patent Text Mining—A Case Study of Unmanned Ship. Applied Sciences . 2024; 14(11):4661. https://doi.org/10.3390/app14114661

Lin, Yan, Xuelei Wang, Jing Yang, and Shutian Wang. 2024. "Core Technology Topic Identification and Evolution Analysis Based on Patent Text Mining—A Case Study of Unmanned Ship" Applied Sciences 14, no. 11: 4661. https://doi.org/10.3390/app14114661

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

About Stanford GSB

  • The Leadership
  • Dean’s Updates
  • School News & History
  • Commencement
  • Business, Government & Society
  • Centers & Institutes
  • Center for Entrepreneurial Studies
  • Center for Social Innovation
  • Stanford Seed

About the Experience

  • Learning at Stanford GSB
  • Experiential Learning
  • Guest Speakers
  • Entrepreneurship
  • Social Innovation
  • Communication
  • Life at Stanford GSB
  • Collaborative Environment
  • Activities & Organizations
  • Student Services
  • Housing Options
  • International Students

Full-Time Degree Programs

  • Why Stanford MBA
  • Academic Experience
  • Financial Aid
  • Why Stanford MSx
  • Research Fellows Program
  • See All Programs

Non-Degree & Certificate Programs

  • Executive Education
  • Stanford Executive Program
  • Programs for Organizations
  • The Difference
  • Online Programs
  • Stanford LEAD
  • Seed Transformation Program
  • Aspire Program
  • Seed Spark Program
  • Faculty Profiles
  • Academic Areas
  • Awards & Honors
  • Conferences

Faculty Research

  • Publications
  • Working Papers
  • Case Studies

Research Hub

  • Research Labs & Initiatives
  • Business Library
  • Data, Analytics & Research Computing
  • Behavioral Lab

Research Labs

  • Cities, Housing & Society Lab
  • Golub Capital Social Impact Lab

Research Initiatives

  • Corporate Governance Research Initiative
  • Corporations and Society Initiative
  • Policy and Innovation Initiative
  • Rapid Decarbonization Initiative
  • Stanford Latino Entrepreneurship Initiative
  • Value Chain Innovation Initiative
  • Venture Capital Initiative
  • Career & Success
  • Climate & Sustainability
  • Corporate Governance
  • Culture & Society
  • Finance & Investing
  • Government & Politics
  • Leadership & Management
  • Markets and Trade
  • Operations & Logistics
  • Opportunity & Access
  • Technology & AI
  • Opinion & Analysis
  • Email Newsletter

Welcome, Alumni

  • Communities
  • Digital Communities & Tools
  • Regional Chapters
  • Women’s Programs
  • Identity Chapters
  • Find Your Reunion
  • Career Resources
  • Job Search Resources
  • Career & Life Transitions
  • Programs & Webinars
  • Career Video Library
  • Alumni Education
  • Research Resources
  • Volunteering
  • Alumni News
  • Class Notes
  • Alumni Voices
  • Contact Alumni Relations
  • Upcoming Events

Admission Events & Information Sessions

  • MBA Program
  • MSx Program
  • PhD Program
  • Alumni Events
  • All Other Events
  • Operations, Information & Technology
  • Organizational Behavior
  • Political Economy
  • Classical Liberalism
  • The Eddie Lunch
  • Accounting Summer Camp
  • California Econometrics Conference
  • California Quantitative Marketing PhD Conference
  • California School Conference
  • China India Insights Conference
  • Homo economicus, Evolving
  • Political Economics (2023–24)
  • Scaling Geologic Storage of CO2 (2023–24)
  • A Resilient Pacific: Building Connections, Envisioning Solutions
  • Adaptation and Innovation
  • Changing Climate
  • Civil Society
  • Climate Impact Summit
  • Climate Science
  • Corporate Carbon Disclosures
  • Earth’s Seafloor
  • Environmental Justice
  • Operations and Information Technology
  • Organizations
  • Sustainability Reporting and Control
  • Taking the Pulse of the Planet
  • Urban Infrastructure
  • Watershed Restoration
  • Junior Faculty Workshop on Financial Regulation and Banking
  • Ken Singleton Celebration
  • Marketing Camp
  • Quantitative Marketing PhD Alumni Conference
  • Presentations
  • Theory and Inference in Accounting Research
  • Stanford Closer Look Series
  • Quick Guides
  • Core Concepts
  • Journal Articles
  • Glossary of Terms
  • Faculty & Staff
  • Subscribe to Corporate Governance Emails
  • Researchers & Students
  • Research Approach
  • Charitable Giving
  • Financial Health
  • Government Services
  • Workers & Careers
  • Short Course
  • Adaptive & Iterative Experimentation
  • Incentive Design
  • Social Sciences & Behavioral Nudges
  • Bandit Experiment Application
  • Conferences & Events
  • Get Involved
  • Reading Materials
  • Teaching & Curriculum
  • Energy Entrepreneurship
  • Faculty & Affiliates
  • SOLE Report
  • Responsible Supply Chains
  • Current Study Usage
  • Pre-Registration Information
  • Participate in a Study

Tesla: Business & Operating Model Evolution

Learning objective.

technology evolution case study

  • See the Current DEI Report
  • Supporting Data
  • Research & Insights
  • Share Your Thoughts
  • Search Fund Primer
  • Affiliated Faculty
  • Faculty Advisors
  • Louis W. Foster Resource Center
  • Defining Social Innovation
  • Impact Compass
  • Global Health Innovation Insights
  • Faculty Affiliates
  • Student Awards & Certificates
  • Changemakers
  • Dean Jonathan Levin
  • Dean Garth Saloner
  • Dean Robert Joss
  • Dean Michael Spence
  • Dean Robert Jaedicke
  • Dean Rene McPherson
  • Dean Arjay Miller
  • Dean Ernest Arbuckle
  • Dean Jacob Hugh Jackson
  • Dean Willard Hotchkiss
  • Faculty in Memoriam
  • Stanford GSB Firsts
  • Annual Alumni Dinner
  • Class of 2024 Candidates
  • Certificate & Award Recipients
  • Dean’s Remarks
  • Keynote Address
  • Teaching Approach
  • Analysis and Measurement of Impact
  • The Corporate Entrepreneur: Startup in a Grown-Up Enterprise
  • Data-Driven Impact
  • Designing Experiments for Impact
  • Digital Marketing
  • The Founder’s Right Hand
  • Marketing for Measurable Change
  • Product Management
  • Public Policy Lab: Financial Challenges Facing US Cities
  • Public Policy Lab: Homelessness in California
  • Lab Features
  • Curricular Integration
  • View From The Top
  • Formation of New Ventures
  • Managing Growing Enterprises
  • Startup Garage
  • Explore Beyond the Classroom
  • Stanford Venture Studio
  • Summer Program
  • Workshops & Events
  • The Five Lenses of Entrepreneurship
  • Leadership Labs
  • Executive Challenge
  • Arbuckle Leadership Fellows Program
  • Selection Process
  • Training Schedule
  • Time Commitment
  • Learning Expectations
  • Post-Training Opportunities
  • Who Should Apply
  • Introductory T-Groups
  • Leadership for Society Program
  • Certificate
  • 2024 Awardees
  • 2023 Awardees
  • 2022 Awardees
  • 2021 Awardees
  • 2020 Awardees
  • 2019 Awardees
  • 2018 Awardees
  • Social Management Immersion Fund
  • Stanford Impact Founder Fellowships
  • Stanford Impact Leader Prizes
  • Social Entrepreneurship
  • Stanford GSB Impact Fund
  • Economic Development
  • Energy & Environment
  • Stanford GSB Residences
  • Environmental Leadership
  • Stanford GSB Artwork
  • A Closer Look
  • California & the Bay Area
  • Voices of Stanford GSB
  • Business & Beneficial Technology
  • Business & Sustainability
  • Business & Free Markets
  • Business, Government, and Society Forum
  • Second Year
  • Global Experiences
  • JD/MBA Joint Degree
  • MA Education/MBA Joint Degree
  • MD/MBA Dual Degree
  • MPP/MBA Joint Degree
  • MS Computer Science/MBA Joint Degree
  • MS Electrical Engineering/MBA Joint Degree
  • MS Environment and Resources (E-IPER)/MBA Joint Degree
  • Academic Calendar
  • Clubs & Activities
  • LGBTQ+ Students
  • Military Veterans
  • Minorities & People of Color
  • Partners & Families
  • Students with Disabilities
  • Student Support
  • Residential Life
  • Student Voices
  • MBA Alumni Voices
  • A Week in the Life
  • Career Support
  • Employment Outcomes
  • Cost of Attendance
  • Knight-Hennessy Scholars Program
  • Yellow Ribbon Program
  • BOLD Fellows Fund
  • Application Process
  • Loan Forgiveness
  • Contact the Financial Aid Office
  • Evaluation Criteria
  • GMAT & GRE
  • English Language Proficiency
  • Personal Information, Activities & Awards
  • Professional Experience
  • Letters of Recommendation
  • Optional Short Answer Questions
  • Application Fee
  • Reapplication
  • Deferred Enrollment
  • Joint & Dual Degrees
  • Entering Class Profile
  • Event Schedule
  • Ambassadors
  • New & Noteworthy
  • Ask a Question
  • See Why Stanford MSx
  • Is MSx Right for You?
  • MSx Stories
  • Leadership Development
  • How You Will Learn
  • Admission Events
  • Personal Information
  • GMAT, GRE & EA
  • English Proficiency Tests
  • Career Change
  • Career Advancement
  • Career Support and Resources
  • Daycare, Schools & Camps
  • U.S. Citizens and Permanent Residents
  • Requirements
  • Requirements: Behavioral
  • Requirements: Quantitative
  • Requirements: Macro
  • Requirements: Micro
  • Annual Evaluations
  • Field Examination
  • Research Activities
  • Research Papers
  • Dissertation
  • Oral Examination
  • Current Students
  • Education & CV
  • International Applicants
  • Statement of Purpose
  • Reapplicants
  • Application Fee Waiver
  • Deadline & Decisions
  • Job Market Candidates
  • Academic Placements
  • Stay in Touch
  • Faculty Mentors
  • Current Fellows
  • Standard Track
  • Fellowship & Benefits
  • Group Enrollment
  • Program Formats
  • Developing a Program
  • Diversity & Inclusion
  • Strategic Transformation
  • Program Experience
  • Contact Client Services
  • Campus Experience
  • Live Online Experience
  • Silicon Valley & Bay Area
  • Digital Credentials
  • Faculty Spotlights
  • Participant Spotlights
  • Eligibility
  • International Participants
  • Stanford Ignite
  • Frequently Asked Questions
  • Founding Donors
  • Program Contacts
  • Location Information
  • Participant Profile
  • Network Membership
  • Program Impact
  • Collaborators
  • Entrepreneur Profiles
  • Company Spotlights
  • Seed Transformation Network
  • Responsibilities
  • Current Coaches
  • How to Apply
  • Meet the Consultants
  • Meet the Interns
  • Intern Profiles
  • Collaborate
  • Research Library
  • News & Insights
  • Databases & Datasets
  • Research Guides
  • Consultations
  • Research Workshops
  • Career Research
  • Research Data Services
  • Course Reserves
  • Course Research Guides
  • Material Loan Periods
  • Fines & Other Charges
  • Document Delivery
  • Interlibrary Loan
  • Equipment Checkout
  • Print & Scan
  • MBA & MSx Students
  • PhD Students
  • Other Stanford Students
  • Faculty Assistants
  • Research Assistants
  • Stanford GSB Alumni
  • Telling Our Story
  • Staff Directory
  • Site Registration
  • Alumni Directory
  • Alumni Email
  • Privacy Settings & My Profile
  • Event Registration Help
  • Success Stories
  • The Story of Circles
  • Support Women’s Circles
  • Stanford Women on Boards Initiative
  • Alumnae Spotlights
  • Insights & Research
  • Industry & Professional
  • Entrepreneurial Commitment Group
  • Recent Alumni
  • Half-Century Club
  • Fall Reunions
  • Spring Reunions
  • MBA 25th Reunion
  • Half-Century Club Reunion
  • Faculty Lectures
  • Ernest C. Arbuckle Award
  • Alison Elliott Exceptional Achievement Award
  • ENCORE Award
  • Excellence in Leadership Award
  • John W. Gardner Volunteer Leadership Award
  • Robert K. Jaedicke Faculty Award
  • Jack McDonald Military Service Appreciation Award
  • Jerry I. Porras Latino Leadership Award
  • Tapestry Award
  • Student & Alumni Events
  • Executive Recruiters
  • Interviewing
  • Land the Perfect Job with LinkedIn
  • Negotiating
  • Elevator Pitch
  • Email Best Practices
  • Resumes & Cover Letters
  • Self-Assessment
  • Whitney Birdwell Ball
  • Margaret Brooks
  • Bryn Panee Burkhart
  • Margaret Chan
  • Ricki Frankel
  • Peter Gandolfo
  • Cindy W. Greig
  • Natalie Guillen
  • Carly Janson
  • Sloan Klein
  • Sherri Appel Lassila
  • Stuart Meyer
  • Tanisha Parrish
  • Virginia Roberson
  • Philippe Taieb
  • Michael Takagawa
  • Terra Winston
  • Johanna Wise
  • Debbie Wolter
  • Rebecca Zucker
  • Complimentary Coaching
  • Changing Careers
  • Work-Life Integration
  • Career Breaks
  • Flexible Work
  • Encore Careers
  • Join a Board
  • D&B Hoovers
  • Data Axle (ReferenceUSA)
  • EBSCO Business Source
  • Global Newsstream
  • Market Share Reporter
  • ProQuest One Business
  • RKMA Market Research Handbook Series
  • Student Clubs
  • Entrepreneurial Students
  • Stanford GSB Trust
  • Alumni Community
  • How to Volunteer
  • Springboard Sessions
  • Consulting Projects
  • 2020 – 2029
  • 2010 – 2019
  • 2000 – 2009
  • 1990 – 1999
  • 1980 – 1989
  • 1970 – 1979
  • 1960 – 1969
  • 1950 – 1959
  • 1940 – 1949
  • Service Areas
  • ACT History
  • ACT Awards Celebration
  • ACT Governance Structure
  • Building Leadership for ACT
  • Individual Leadership Positions
  • Leadership Role Overview
  • Purpose of the ACT Management Board
  • Contact ACT
  • Business & Nonprofit Communities
  • Reunion Volunteers
  • Ways to Give
  • Fiscal Year Report
  • Business School Fund Leadership Council
  • Planned Giving Options
  • Planned Giving Benefits
  • Planned Gifts and Reunions
  • Legacy Partners
  • Giving News & Stories
  • Giving Deadlines
  • Development Staff
  • Submit Class Notes
  • Class Secretaries
  • Board of Directors
  • Health Care
  • Sustainability
  • Class Takeaways
  • All Else Equal: Making Better Decisions
  • If/Then: Business, Leadership, Society
  • Grit & Growth
  • Think Fast, Talk Smart
  • Spring 2022
  • Spring 2021
  • Autumn 2020
  • Summer 2020
  • Winter 2020
  • In the Media
  • For Journalists
  • DCI Fellows
  • Other Auditors
  • Academic Calendar & Deadlines
  • Course Materials
  • Entrepreneurial Resources
  • Campus Drive Grove
  • Campus Drive Lawn
  • CEMEX Auditorium
  • King Community Court
  • Seawell Family Boardroom
  • Stanford GSB Bowl
  • Stanford Investors Common
  • Town Square
  • Vidalakis Courtyard
  • Vidalakis Dining Hall
  • Catering Services
  • Policies & Guidelines
  • Reservations
  • Contact Faculty Recruiting
  • Lecturer Positions
  • Postdoctoral Positions
  • Accommodations
  • CMC-Managed Interviews
  • Recruiter-Managed Interviews
  • Virtual Interviews
  • Campus & Virtual
  • Search for Candidates
  • Think Globally
  • Recruiting Calendar
  • Recruiting Policies
  • Full-Time Employment
  • Summer Employment
  • Entrepreneurial Summer Program
  • Global Management Immersion Experience
  • Social-Purpose Summer Internships
  • Process Overview
  • Project Types
  • Client Eligibility Criteria
  • Client Screening
  • ACT Leadership
  • Social Innovation & Nonprofit Management Resources
  • Develop Your Organization’s Talent
  • Centers & Initiatives
  • Student Fellowships

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Case study on adoption of new technology for innovation: Perspective of institutional and corporate entrepreneurship

Asia Pacific Journal of Innovation and Entrepreneurship

ISSN : 2398-7812

Article publication date: 7 August 2017

This paper aims at investigating the role of institutional entrepreneurship and corporate entrepreneurship to cope with firm’ impasses by adoption of the new technology ahead of other firms. Also, this paper elucidates the importance of own specific institutional and corporate entrepreneurship created from firm’s norm.

Design/methodology/approach

The utilized research frame is as follows: first, perspective of studies on institutional and corporate entrepreneurship are performed using prior literature and preliminary references; second, analytical research frame was proposed; finally, phase-based cases are conducted so as to identify research objective.

Kumho Tire was the first tire manufacturer in the world to exploit the utilization of radio-frequency identification for passenger carâ’s tire. Kumho Tire takes great satisfaction in lots of failures to develop the cutting edge technology using advanced information and communication technology cultivated by heterogeneous institution and corporate entrepreneurship.

Originality/value

The firm concentrated its resources into building the organization’s communication process and enhancing the quality of its human resources from the early stages of their birth so as to create distinguishable corporate entrepreneurship.

  • Corporate entrepreneurship
  • Institutional entrepreneurship

Han, J. and Park, C.-m. (2017), "Case study on adoption of new technology for innovation: Perspective of institutional and corporate entrepreneurship", Asia Pacific Journal of Innovation and Entrepreneurship , Vol. 11 No. 2, pp. 144-158. https://doi.org/10.1108/APJIE-08-2017-031

Emerald Publishing Limited

Copyright © 2017, Junghee Han and Chang-min Park.

Published in the Asia Pacific Journal of Innovation and Entrepreneurship . Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial & non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licenses/by/4.0/legalcode

1. Introduction

Without the entrepreneur, invention and new knowledge possibly have lain dormant in the memory of persons or in the pages of literature. There is a Korean saying, “Even if the beads are too much, they become treasure after sewn”. This implies importance of entrepreneurship. In general, innovativeness and risk-taking are associated with entrepreneurial activity and, more importantly, are considered to be important attributes that impact the implementation of new knowledge pursuing.

Implementation of cutting edge technology ahead of other firms is an important mechanism for firms to achieve competitive advantage ( Capon et al. , 1990 ; D’Aveni, 1994 ). Certainly, new product innovation continues to play a vital role in competitive business environment and is considered to be a key driver of firm performance, especially as a significant form of corporate entrepreneurship ( Srivastava and Lee, 2005 ). Corporate entrepreneurship is critical success factor for a firm’s survival, profitability and growth ( Phan et al. , 2009 ).

The first-mover has identified innovativeness and risk-taking as important attributes of first movers. Lumpkin and Dess (1996) argued that proactiveness is a key entrepreneurial characteristic related to new technology adoption and product. This study aims to investigate the importance of corporate and institutional entrepreneurship through analyzing the K Tire’s first adaptation of Radio-frequency identification (RFID) among the world tire manufactures. Also, this paper can contribute to start ups’ readiness for cultivating of corporate and institutional entrepreneurship from initial stage to grow and survive.

K Tire is the Korean company that, for the first time in the world, applied RFID to manufacturing passenger vehicle tires in 2013. Through such efforts, the company has built an innovation model that utilizes ICTs. The adoption of the technology distinguishes K Tire from other competitors, which usually rely on bar codes. None of the global tire manufacturers have applied the RFID technology to passenger vehicle tires. K Tire’s decision to apply RFID to passenger vehicle tires for the first time in the global tire industry, despite the uncertainties associated with the adoption of innovative technologies, is being lauded as a successful case of innovation. In the global tire market, K Tire belongs to the second tier, rather than the leader group consisting of manufacturers with large market shares. Then, what led K Tire to apply RFID technology to the innovation of its manufacturing process? A company that adopts innovative technologies ahead of others, even if the company is a latecomer, demonstrates its distinguishing characteristics in terms of innovation. As such, this study was motivated by the following questions. With regard to the factors that facilitate innovation, first, what kind of the corporate and institutional situations that make a company more pursue innovation? Second, what are the technological situations? Third, how do the environmental situations affect innovation? A case study offers the benefit of a closer insight into the entrepreneurship frame of a specific company. This study has its frame work rooted in corporate entrepreneurship ( Guth and Ginsberg, 1990 ; Shane and Venkataraman, 2000 ) and institutional entrepreneurship ( Battilana, 2006 ; Fligstein, 1997 ; Rojas, 2010 ). As mentioned, we utilized qualitative research method ( Yin, 2008 ). This paper is structured as follows. Section two presents the literature review, and section three present the methodology and a research case. Four and five presents discussion and conclusions and implications, respectively.

2. Theoretical review and analysis model

RFID technology is to be considered as not high technology; however, it is an entirely cutting edged skills when combined with automotive tire manufacturing. To examine why and how the firm behaves like the first movers, taking incomparable high risks to achieve aims unlike others, we review three kinds of prior literature. As firms move from stage to stage, they have to revamp innovative capabilities to survive and ceaseless stimulate growth.

2.1 Nature of corporate entrepreneurship

Before reviewing the corporate entrepreneurship, it is needed to understand what entrepreneurship is. To more understand the role that entrepreneurship plays in modern economy, one need refer to insights given by Schumpeter (1942) or Kirzner (1997) . Schumpeter suggests that entrepreneurship is an engine of economic growth by utilization of new technologies. He also insists potential for serving to discipline firms in their struggle to survive gale of creative destruction. While Schumper argued principle of entrepreneurship, Kirzner explains the importance of opportunities. The disruptions generated by creative destruction are exploited by individuals who are alert enough to exploit the opportunities that arise ( Kirzner, 1997 ; Shane and Venkataraman, 2000 ).

Commonly all these perspectives on entrepreneurship is an appreciation that the emergence of novelty is not an easy or predictable process. Based on literature review, we note that entrepreneurship is heterogeneous interests and seek “something new” associated with novel outcomes. Considering the literature review, we can observe that entrepreneurship is the belief in individual autonomy and discretion, and a mindset that locates agency in individuals for creating new activities ( Meyer et al. ,1994 ; Jepperson and Meyer, 2001 ).

the firm’s commitment to innovation (including creation and introduction of products, emphasis on R&D investments and commitment to patenting);

the firm’s venturing activities, such as entry into new business fields by sponsoring new ventures and creating new businesses; and

strategic renewal efforts aimed at revitalizing the firm’s ability to compete.

developing innovation an organizational tool;

allowing the employees to propose ideas; and

encouraging and nurturing the new knowledge ( Hisrich, 1986 ; Kuratko, 2007 ).

Consistent with the above stream of research, our paper focuses on a firm’s new adaptation of RFID as a significant form of corporate entrepreneurial activity. Thus, CE refers to the activities a firm undertakes to stimulate innovation and encourage calculated risk taking throughout its operations. Considering prior literature reviews, we propose that corporate entrepreneurship is the process by which individuals inside the organization pursuing opportunities without regards to the resources they control.

If a firm has corporate entrepreneurship, innovation (i.e. transformation of the existing firm, the birth of new business organization and innovation) happens. In sum, corporate entrepreneurship plays a role to pursue to be a first mover from a latecomer by encompassing the three phenomena.

2.2 Institution and institutional entrepreneurship

Most literature regarding entrepreneurship deals with the attribute of individual behavior. More recently, scholars have attended to the wider ecosystem that serves to reinforce risk-taking behavior. Institution and institutional entrepreneurship is one way to look at ecosystem that how individuals and groups attempt to try to become entrepreneurial activities and innovation.

Each organization has original norm and intangible rules. According to the suggestion by Scott (1995) , institutions constrain behavior as a result of processes associated with institutional pillars. The question how actors within the organizations become motivated and enabled to transform the taken-for-granted structures has attracted substantial attention for institutionalist. To understand why some firms are more likely to seek innovation activities despite numerous difficulties and obstacles, we should take look at the institutional entrepreneurship.

the regulative, which induces worker’s action through coercion and formal sanction;

the normative, which induces worker’s action through norms of acceptability and ethics; and

the cognitive, which induces worker’s action through categories and frames by which actors know and interpret their world.

North (1990) defines institutions as the humanly devised constraints that structure human action. Actors within some organization with sufficient resources have intend to look at them an opportunity to realize interests that they value highly ( DiMaggio, 1988 ).

It opened institutional arguments to ideas from the co-evolving entrepreneurship literature ( Aldrich and Fiol, 1994 ; Aldrich and Martinez, 2001 ). The core argument of the institutional entrepreneurship is mechanisms enabling force to motivate for actors to act difficult task based on norm, culture and shared value. The innovation, adopting RFID, a technology not verified in terms of its effectiveness for tires, can be influenced by the institution of the society.

A firm is the organizations. An organization is situated within an institution that has social and economic norms. Opportunity is important for entrepreneurship. The concept of institutional entrepreneurship refer to the activities of worker or actor who have new opportunity to realize interest that they values highly ( DiMaggio, 1988 ). DiMaggio (1988) argues that opportunity for institutional entrepreneurship will be “seen” and “exploited” by within workers and not others depending on their resources and interests respectively.

Despite that ambiguity for success was given, opportunity and motivation for entrepreneurs to act strategically, shape emerging institutional arrangements or standards to their interests ( Fligstein and Mara-Drita, 1996 ; Garud et al. , 2002 ; Hargadon and Douglas, 2001 ; Maguire et al. , 2004 ).

Resource related to opportunity within institutional entrepreneurship include formal or informal authority and power ( Battilana, 2006 ; Rojas, 2010 ). Maguire et al. (2004) suggest legitimacy as an important ingredient related to opportunity for institutional entrepreneurship. Some scholars suggest opportunity resources for institutional entrepreneurship as various aspects. For instance, Marquire and Hardy (2009) show that knowledge and expertise is more crucial resources. Social capital, including market leadership and social network, is importance resource related to opportunity ( Garud et al. , 2002 ; Lawrence et al. , 2005 ; Townley, 2002 ). From a sociological perspective, change associated with entrepreneurship implies deviations from some norm ( Garud and Karnøe, 2003 ).

Institutional entrepreneurship is therefore a concept that reintroduces agency, interests and power into institutional analyses of organizations. Based on the previous discussion, this study defines institution as three processes of network activity; coercion and formal sanction, normative and cognitive, to acquire the external knowledge from adopting common goals and rules inside an organization. It would be an interesting approach to look into a specific company to see whether it is proactive towards adopting ICTs (e.g. RFID) and innovation on the basis of such theoretical background.

2.3. Theoretical analysis frame

Companies innovate themselves in response to the challenges of the ever-changing markets and technologies, so as to ensure their survival and growth ( Tushman and Anderson, 1986 ; Tidd and Bessant, 2009 ; Teece, 2014 ). As illustrated above, to achieve the purpose of this study, the researcher provides the following frames of analyses based on the theoretical background discussed above ( Figure 1 ).

3. Case study

3.1 methodology.

It is a highly complicated and tough task to analyze the long process of innovation at a company. In this paper, we used analytical approach rather than the problem-oriented method because the case is examined to find and understand what has happened and why. It is not necessary to identify problems or suggest solutions. Namely, this paper analyzes that “why K Tire becomes a first mover from a late comer through first adoption of RFID technology for automotive tire manufacture with regards to process and production innovations”.

To study the organizational characteristics such as corporate entrepreneurship, institutional entrepreneurship, innovation process of companies, the qualitative case study is the suitable method. This is because a case study is a useful method when verifying or expanding well-known theories or challenging a specific theory ( Yin, 2008 ). This study seeks to state the frame of analysis established, based on previously established theories through a single case. K Tire was selected as the sample because it is the first global tire manufacturer, first mover to achieve innovation by developing and applying RFID.

The data for the case study were collected as follows. First, this study was conducted from April 2015 to the end of December 2015. Additional expanded data also were collected from September 12 to November 22, 2016, to pursue the goal of this paper. Coauthor worked for K Tire for more than 30 year, and currently serves as the CEO of an affiliate company. As such, we had the most hands-on knowledge and directed data in the process of adoption RFID. This makes this case study a form of participant observation ( Yin, 2008 ). To secure data on institutional entrepreneurship, in-depth interviews were conducted with the vice president of K Tire. The required data were secured using e-mail, and the researchers accepted the interviewees’ demand to keep certain sensitive matters confidential. The interviewees agreed to record the interview sessions. In this way, a 20-min interview data were secured for each interviewee. In addition, apart from the internal data of the subject company, other objective data were obtained by investigating various literatures published through the press.

3.2 Company overview

In September 1960, K Tire was established in South Korea as the name of Samyang Tire. In that time, the domestic automobile industry in Korea was at a primitive stage, as were auto motive parts industries like the tire industry. K Tire products 20 tires a day, depending on manual labor because of our backward technology and shortage of facilities.

The growth of K Tire was astonishment. Despite the 1974 oil shock and difficulties in procuring raw materials, K Tire managed to achieve remarkable growth. In 1976, K Tire became the leader in the tire sector and was listed on the Korea Stock Exchange. Songjung plant II was added in 1977. Receiving the grand prize of the Korea Quality Control Award in 1979, K Tire sharpened its corporate image with the public. The turmoil of political instability and feverish democratization in the 1980s worsened the business environment. K Tire also underwent labor-management struggles but succeeded in straightening out one issue after another. In the meantime, the company chalked up a total output of 50 million tires, broke ground for its Koksung plant and completed its proving ground in preparation for a new takeoff.

In the 1990s, K Tire expanded its research capability and founded technical research centers in the USA and the United Kingdom to establish a global R&D network. It also concentrated its capabilities in securing the foundation as a global brand, by building world-class R&D capabilities and production systems. Even in the 2000s, the company maintained its growth as a global company through continued R&D efforts by securing its production and quality capabilities, supplying tires for new models to Mercedes, Benz, Volkswagen and other global auto manufacturers.

3.3 Implementation of radio-frequency identification technology

RFID is radio-frequency identification technology to recognize stored information by using a magnetic carrier wave. RFID tags can be either passive, active or battery-assisted passive (BAP). An active tag has an on-board battery and periodically transmits its ID signal. A BAP has a small battery on board and is activated when in the presence of an RFID reader. A passive tag is cheaper and smaller because it has no battery; instead, the tag uses the radio energy transmitted by the reader. However, to operate a passive tag, it must be illuminated with a power level roughly a thousand times stronger than for signal transmission. That makes a difference in interference and in exposure to radiation.

an integrated circuit for storing and processing information, modulating and demodulating a radio frequency signal, collecting DC power from the incident reader signal, and other specialized functions; and

an antenna for receiving and transmitting the signal.

capable of recognizing information without contact;

capable of recognizing information regardless of the direction;

capable of reading and saving a large amount of data;

requires less time to recognize information;

can be designed or manufactured in accordance with the system or environmental requirements;

capable of recognizing data unaffected by contamination or the environment;

not easily damaged and cheaper to maintain, compared with the bar code system; and

tags are reusable.

3.3.1 Phase 1. Background of exploitation of radio-frequency identification (2005-2010).

Despite rapid growth of K Tire since 1960, K Tire ranked at the 13th place in the global market (around 2 per cent of the global market share) as of 2012. To enlarge global market share is desperate homework. K Tire was indispensable to develop the discriminated technologies. When bar code system commonly used by the competitors, and the industry leaders, K Tire had a decision for adoption of RFID technology instead of bar code system for tires as a first mover strategy instead of a late comer with regard to manufacture tires for personal vehicle. In fact, K Tire met two kinds of hardship. Among the top 20, the second-tier companies with market shares of 1-2 per cent are immersed in fiercer competitions to advance their ranks. The fierceness of the competition is reflected in the fact that of the companies ranked between the 11th and 20th place, only two maintained their rank from 2013.

With the demand for stricter product quality control and manufacture history tracking expanding among the auto manufacturers, tire manufacturers have come to face the need to change their way of production and logistics management. Furthermore, a tire manufacturer cannot survive if it does not properly respond to the ever stricter and exacting demand for safe passenger vehicle tires of higher quality from customers and auto manufacturers. As mentioned above, K Tire became one of the top 10 companies in the global markets, recording fast growth until the early 2000. During this period, K Tire drew the attention of the global markets with a series of new technologies and innovative technologies through active R&D efforts. Of those new products, innovative products – such as ultra-high-performance tires – led the global markets and spurred the company’s growth. However, into the 2010s, the propriety of the UHP tire technology was gradually lost, and the effect of the innovation grew weaker as the global leading companies stepped forward to take the reign in the markets. Subsequently, K Tire suffered from difficulties across its businesses, owing to the failure to develop follow-up innovative products or market-leading products, as well as the aggressive activities by the company’s hardline labor union. Such difficulties pushed K Tire down to the 13th position in 2014, which sparked the dire need to bring about innovative changes within the company.

3.3.2 Phase 2. Ceaseless endeavor and its failure (2011-2012).

It needs to be lightweight : An RFID tag attached inside a vehicle may adversely affect the weight balance of the tires. A heavier tag has greater adverse impact on the tire performance. Therefore, a tag needs to be as light as possible.

It needs to be durable : Passenger vehicle tires are exposed to extensive bending and stretching, as well as high levels of momentum, which may damage a tag, particularly causing damage to or even loss of the antenna section.

It needs to maintain adhesiveness : Tags are attached on the inner surface, which increase the possibility of the tags falling off from the surface while the vehicle is in motion.

It needs to be resistant to high temperature and high pressure : While going through the tire manufacture process, a tag is exposed to a high temperature of around 200°C and high pressure of around 30 bars. Therefore, a tag should maintain its physical integrity and function at such high pressure and temperature.

It needs to be less costly : A passenger vehicle tire is smaller, and therefore cheaper than truck/bus tires. As a result, an RFID tag places are greater burden on the production cost.

Uncountable tag prototypes, were applied to around 200 test tires in South Korea for actual driving tests. Around 150 prototypes were sent to extremely hot regions overseas for actual driving tests. However, the driving tests revealed damage to the antenna sections of the tags embedded in tires, as the tires reached the end of their wear life. Also, there was separation of the embedded tags from the rubber layers. This confirmed the risk of tire separation, resulting in the failure of the tag development attempt.

3.3.3 Phase 3. Success of adoption RFID (2013-2014).

Despite the numerous difficulties and failures in the course of development, the company ultimately emerged successful, owing to its institutional entrepreneurship and corporate entrepreneurship the government’s support. Owing to the government-led support project, K Tire resumed its RFID development efforts in 2011. This time, the company discarded the idea of the embedded-type tag, which was attempted during the first development. Instead, the company turned to attached-type tag. The initial stages were marked with numerous failures: the size of a tag was large at 20 × 70 mm, which had adverse impact on the rotation balance of the tires, and the attached area was too large, causing the attached sections to fall off as the tire stretched and bent. That was when all personnel from the technical, manufacturing, and logistics department participated in creating ideas to resolve the tag size and adhesiveness issues. Through cooperation across the different departments and repeated tests, K Tire successfully developed its RFID tag by coming up with new methods to minimize the tag size to its current size (9 × 45 mm), maintain adhesiveness and lower the tag price. Finally, K Tire was success the adoption RFID.

3.3.4 Phase 4. Establishment of the manufacture, logistics and marketing tracking system.

Whenever subtle and problematic innovation difficulties arise, every worker and board member moves forward through networking and knowledge sharing within intra and external.

While a bar code is only capable of storing the information on the nationality, manufacturer and category of a product, an RFID tag is capable of storing a far wider scope of information: nationality, manufacturer, category, manufacturing date, machines used, lot number, size, color, quantity, date and place of delivery and recipient. In addition, while the data stored in a bar code cannot be revised or expanded once the code is generated, an RFID tag allows for revisions, additions and removal of data. As for the recognition capability, a bar code recognizes 95per cent of the data at the maximum temperature of 70°C. An RFID tag, on the other hand, recognizes 99.9 per cent of the data at 120°C.

The manufacture and transportation information during the semi-finished product process before the shaping process is stored in the RFID tags, which is attached to the delivery equipment to be provided to the MLMTS;

Logistics Products released from the manufacture process are stored in the warehouses, to be released and transported again to logistics centers inside and outside of South Korea. The RFID tags record the warehousing information, as the products are stored into the warehouses, as well as the release information as the products are released. The information is instantly delivered to the MLMTS;

As a marketing, the RFID tags record the warehousing information of the products supplied and received by sales branches from the logistics centers, as well as the sales information of the products sold to consumers. The information is instantly delivered to the MLMTS; and

As a role of integrative Server, MLM Integrative Server manages the overall information transmitted from the infrastructures for each section (production information, inventory status and release information, product position and inventory information, consumer sales information, etc.).

The MLMTS provides the company with various systemic functions to integrate and manage such information: foolproof against manufacture process errors, manufacture history and quality tracking for each individual product, warehousing/releasing and inventory status control for each process, product position control between processes, real-time warehouse monitoring, release control and history information tracking across products of different sizes, as well as link/control of sales and customer information. To consumers, the system provides convenience services by providing production and quality information of the products, provision of the product history through full tracking in the case of a claim, as well as a tire pressure monitoring system:

“South korea’s K Tire Co. Inc. has begun applying radio-frequency identification (RFID) system tags on: half-finished” tire since June 16. We are now using an IoT based production and distribution integrated management system to apply RFID system on our “half-finished products” the tire maker said, claiming this is a world-first in the industry. The technology will enable K Tire to manage products more efficiently than its competitors, according to the company. RFID allows access to information about a product’s location, storage and release history, as well as its inventory management (London, 22, 2015 Tire Business).

4. Discussions

Originally, aims of RFID adoption for passenger car “half-finished product” is to chase the front runners, Hankook Tire in Korea including global leading companies like Bridgestone, Michaelin and Goodyear. In particular, Hankook Tire, established in 1941 has dominated domestic passenger tire market by using the first mover’s advantage. As a late comer, K Tire needs distinguishable innovation strategy which is RFID adoption for passenger car’s tire, “half-finished product” to overcome shortage of number of distribution channels. Adoption of RFID technology for passenger car’s tire has been known as infeasible methodologies according to explanation by Changmin Park, vice-CTO (chief technology officer) until K Tire’s success.

We lensed success factors as three perspectives; institutional entrepreneurship, corporate entrepreneurship and innovation. First, as a corporate entrepreneurship perspective, adopting innovative technologies having uncertainties accompanies by a certain risk of failure. Corporate entrepreneurship refers to firm’s effort that inculcate and promote innovation and risk taking throughout its operations ( Burgelman, 1983 ; Guth and Ginsberg, 1990 ). K Tire’s success was made possible by overcome the uncountable difficulties based on shared value and norms (e.g. Fligstein and Mara-Drita, 1996 ; Garud et al. , 2002 ; Hargadon and Douglas, 2001 ; Maguire et al. , 2004 ).

An unsuccessful attempt at developing innovative technologies causes direct loss, as well as loss of the opportunity costs. This is why many companies try to avoid risks by adopting or following the leading companies’ technologies or the dominant technologies. Stimulating corporate entrepreneurship requires firms to acquire and use new knowledge to exploit emerging opportunities. This knowledge could be obtained by joining alliances, selectively hiring key personnel, changing the composition or decision-making processes of a company’s board of directors or investing in R&D activities. When the firm uses multiple sources of knowledge ( Branzei and Vertinsky, 2006 ; Thornhill, 2006 ), some of these sources may complement one another, while others may substitute each other ( Zahra and George, 2002 ). Boards also provide managers with appropriate incentives that better align their interests with those of the firm. Given the findings, K Tire seeks new knowledge from external organizations through its discriminative corporate entrepreneurship.

When adopting the RFID system for its passenger vehicle tires, K Tire also had to develop new RFID tags suitable for the specific type of tire. The company’s capabilities were limited by the surrounding conditions, which prevented the application of existing tire RFID tag technologies, such as certain issues with the tire manufacturing process, the characteristic of its tires and the price of RFID tags per tire. Taking risks and confronting challenges are made from board member’s accountability. From the findings, we find that entrepreneurship leadership can be encouraged in case of within the accountability frame work.

Despite its status as a second-tier company, K Tire attempted to adopt the RFID system to its passenger vehicle tires, a feat not achieved even by the leading companies. Thus, the company ultimately built and settled the system through numerous trials and errors. Such success was made possible by the entrepreneurship of K Tire’s management, who took the risk of failure inherent in adopting innovative technologies and confronting challenges head on.

Second, institutional entrepreneurship not only involves the “capacity to imagine alternative possibilities”, it also requires the ability “to contextualize past habits and future projects within the contingencies of the moment” if existing institutions are to be transformed ( Emirbayer and Mische, 1998 ). New technologies, the technical infrastructure, network activities to acquire the new knowledge, learning capabilities, creating a new organization such as Pioneer Lab and new rules to create new technologies are the features. To qualify as institutional entrepreneurs, individuals must break with existing rules and practices associated with the dominant institutional logic(s) and institutionalize the alternative rules, practices or logics they are championing ( Garud and Karnøe, 2003 ; Battilana, 2006 ). K Tire established new organization, “Special lab” to obtain the know technology and information as CEO’s direct sub-committees. Institutional entrepreneurship arise when actors, through their filed position, recognize the opportunity circumstance so called “norms” ( Battilana et al. , 2009 ). To make up the deficit of technologies for RFID, knowledge stream among workers is more needed. Destruction of hierarch ranking system is proxy of the institutional entrepreneurship. Also, K Tire has peculiar norms. Namely, if one requires the further study such as degree course or non-degree course education services, grant systems operated via short screen process. Third, as innovation perspectives, before adopting the RFID system, the majority of K Tire’s researchers insisted that the company use the bar code technology, which had been widely used by the competitors. Such decision was predicated on the prediction that RFID technology would see wider use in the future, as well as the expected effect coming from taking the leading position, with regard to the technology.

Finally, K Tire’s adoption of the RFID technology cannot be understood without government support. The South Korean government has been implementing the “Verification and Dissemination Project for New u-IT Technologies” since 2008. Owing to policy support, K Tire can provide worker with educational service including oversea universities.

5. Conclusions and implications

To cope with various technological impasses, K Tire demonstrated the importance of institutional and corporate entrepreneurship. What a firm pursues more positive act for innovation is a research question.

Unlike firms, K Tire has strongly emphasized IT technology since establishment in 1960. To be promotion, every worker should get certification of IT sectors after recruiting. This has become the firm’s norm. This norm was spontaneously embedded for firm’s culture. K Tire has sought new ICT technology become a first mover. This norm can galvanize to take risk to catch up the first movers in view of institutional entrepreneurship.

That can be cultivated both by corporate entrepreneurship, referred to the activities a firm undertakes to stimulate innovation and encourage calculated risk taking throughout its operations within accountabilities and institutional entrepreneurship, referred to create its own peculiar norm. Contribution of our paper shows both importance of board members of directors in cultivating corporate entrepreneurship and importance of norm and rules in inducing institutional entrepreneurship.

In conclusion, many of them were skeptical about adopting RFID for its passenger vehicle tires at a time when even the global market and technology leaders were not risking such innovation, citing reasons such as risk of failure and development costs. However, enthusiasm and entrepreneurship across the organization towards technical innovation was achieved through the experience of developing leading technologies, as well as the resolve of the company’s management and its institutional entrepreneurship, which resulted in the company’s decision to adopt the RFID technology for small tires, a technology with unverified effects that had not been widely used in the markets. Introduction of new organization which “Special lab” is compelling example of institutional entrepreneurship. Also, to pursue RFID technology, board members unanimously agree to make new organization in the middle of failing and unpredictable success. This decision was possible since K Tire’s cultivated norm which was to boost ICT technologies. In addition, at that time, board of director’s behavior can be explained by corporate entrepreneurship.

From the findings, this paper also suggests importance of firms’ visions or culture from startup stage because they can become a peculiar norm and become firm’s institutional entrepreneurship. In much contemporary research, professionals and experts are identified as key institutional entrepreneurs, who rely on their legitimated claim to authoritative knowledge or particular issue domains. This case study shows that authoritative knowledge by using their peculiar norm, and culture as well as corporate entrepreneurship.

This paper has some limitations. Despite the fact that paper shows various fruitful findings, this study is not free from that our findings are limited to a single exploratory case study. Overcoming such limitation requires securing more samples, including the group of companies that attempt unprecedented innovations across various industries. In this paper, we can’t release all findings through in-depth interview and face-to-face meetings because of promise for preventing the secret tissues.

Nevertheless, the contribution of this study lies in that it shows the importance of corporate entrepreneurship and institutional entrepreneurship for firm’s innovative capabilities to grow ceaselessly.

Integrated frame of analysis

Aldrich , H.E. and Fiol , C.M. ( 1994 ), “ Fools rush in? The institutional context of industry creation ”, Academy of Management Review , Vol. 19 No. 4 , pp. 645 - 670 .

Aldrich , H.E. and Martinez , M.A. ( 2001 ), “ Many are called, but few are chosen: an evolutionary perspective for the study of entrepreneurship ”, Entrepreneurship Theory and Practice , Vol. 25 No. 4 , pp. 41 - 57 .

Battilana , J. ( 2006 ), “ Agency and institutions: the enabling role of individuals’ social position ”, Organization , Vol. 13 No. 5 , pp. 653 - 676 .

Battilana , J. , Leca , B. and Boxenbaum , E. ( 2009 ), “ How actors change institutions: towards a theory of institutional entrepreneurship ”, The Academy of Management Annals , Vol. 3 No. 1 , pp. 65 - 107 .

Branzei , O. and Vertinsky , I. ( 2006 ), “ Strategic pathways to product innovation capabilities in SMEs ”, Journal of Business Venturing , Vol. 21 No. 1 , pp. 75 - 105 .

Burgelman , R.A. ( 1983 ), “ A model of the interaction of strategic behavior, corporate context, and the context of strategy ”, Academy of Management Review , Vol. 8 No. 1 , pp. 61 - 70 .

Capon , N. , Farley , J.U. and Hoenig , S. ( 1990 ), “ Determinants of financial performance: a meta-analysis ”, Management Science , Vol. 36 , pp. 1143 - 1159 .

Covin , J. and Miles , M. ( 1999 ), “ Corporate entrepreneurship and the pursuit of competitive advantage ”, Entrepreneurship Theory and Practice , Vol. 23 , pp. 47 - 63 .

D’Aveni , R.A. ( 1994 ), Hyper-competition: Managing the Dynamics of Strategic Maneuvering . Free Press , New York, NY .

DiMaggio , P.J. ( 1988 ), “ Interest and agency in institutional theory ”, in Zucker , L.G. (Ed.), Institutional Patterns and Organizations , Ballinger , Cambridge, MA .

Emirbayer , M. and Mische , A. ( 1998 ), “ What is agency? ”, American Journal of Sociology , Vol. 103 , pp. 962 - 1023 .

Fligstein , N. ( 1997 ), “ Social skill and institutional theory ”, American Behavioral Scientist , Vol. 40 , pp. 397 - 405 .

Fligstein , N. and Mara-Drita , I. ( 1996 ), “ How to make a market: reflections on the attempt to create a single market in the European Union ”, American Journal of Sociology , Vol. 102 No. 1 , pp. 1 - 33 .

Garud , R. and Karnøe , P. ( 2003 ), “ Bricolage versusbreakthrough: distributed and embedded agency in technology entrepreneurship ”, Research Policy , Vol. 32 , pp. 277 - 300 .

Garud , R. , Jain , S. and Kumaraswamy , A. ( 2002 ), “ Institutional entrepreneurship in the sponsorship of common technological standards: the case of sun microsystems and Java ”, Academy of Management Journal , Vol. 45 No. 1 , pp. 196 - 214 .

Guth , W. and Ginsberg , A. ( 1990 ), “ Guest editors’ introduction: corporate entrepreneurship ”, Strategic Management Journal , Vol. 11 , pp. 5 - 15 .

Hargadon , A.B. and Douglas , Y. ( 2001 ), “ When innovations meet institutions: Edison and the design of the electric light ”, Administrative Science Quarterly , Vol. 46 No. 3 , pp. 476 - 502 .

Hisrich , R.D. ( 1986 ), Entrepreneurship, Intrapreneurship and Venture Capital , Lexington Books , MA .

Hoffman , A.J. ( 1999 ), “ Institutional evolution and change: environmentalism and the US chemical industry ”, Academy of Management Journal , Vol. 42 No. 4 , pp. 351 - 371 .

Jennings , D.F. and Lumpkin , J.R. ( 1989 ), “ Functioning modeling corporate entrepreneurship: an empirical integrative analysis ”, Journal of Management , Vol. 15 , pp. 485 - 502 .

Jepperson , R. and Meyer , J. ( 2001 ), “ The ‘actors’ of modern society: the cultural construction of social agency ”, Sociological Theory , Vol. 18 , pp. 100 - 120 .

Kirzner , I.M. ( 1997 ), “ Entrepreneurial discovery and the competitive market process: an Austrian approach ”, Journal of Economic Literature , Vol. 35 No. 1 , pp. 60 - 85 .

Kuratko , D. ( 2007 ), Corporate Entrepreneurship: Foundations and Trends in Entrepreneurship , Cambridge, MA .

Lawrence , T.B. , Hardy , C. and Phillips , N. ( 2002 ), “ Institutional effects of inter-organizational collaboration: the emergence of proto-institutions ”, Academy of Management Journal , Vol. 45 No. 1 , pp. 281 - 290 .

Lumpkin , G.T. and Dess , G.G. ( 1996 ), “ Clarifying the entrepreneurial orientation construct and linking it to performance ”, Academic. Management Review , Vol. 21 , pp. 135 - 172 .

Maguire , S. , Hardy , C. and Lawrence , T.B. ( 2004 ), “ Institutional entrepreneurship in emerging fields: HIV/AIDS treatment advocacy in Canada ”, The Academy of Management , Vol. 47 No. 5 , pp. 657 - 679 .

Meyer , J.W. , Boli , J. and Thomas , G.M. ( 1994 ), “ Ontology and rationalization in the western cultural account ”, in Richard Scott , W. and Meyer , J.W. (Eds), Institutional Environments and Organizations: Structural Complexity and Individualism , Sage Publications , Thousand Oaks, CA , pp. 9 - 27 .

North , D.C. ( 1990 ), Institutions, Institutional Change and Economic Performance , Cambridge University Press , Cambridge .

Phan , P.H. , Wright , M. , Ucbasaran , D. and Tan , W.L. ( 2009 ), “ Corporate entrepreneurship: current research and future directions ”, Journal of Business Venturing , Vol. 29 , pp. 197 - 205 .

Rojas , F. ( 2010 ), “ Power through institutional work: acquiring academic authority in the 1968 third world strike ”, Academy of Management Journal , Vol. 53 No. 6 , pp. 1263 - 1280 .

Srivastava , A. and Lee , H. ( 2005 ), “ Predicting order and timing of new product moves: the role of top management in corporate entrepreneurship ”, Journal of Business Venturing , Vol. 20 No. 1 , pp. 459 - 481 .

Schumpeter , J.A. ( 1942 ), Capitalism, Socialism, and Democracy , Harper and Brothers , New York, NY .

Scott , R. ( 1995 ), Institutions and Organizations , Sage , Thousand Oaks, CA .

Shane , S. and Venkataraman , S. ( 2000 ), “ The promise of entrepreneurship as a field of research ”, Academy of Management Review , Vol. 25 No. 1 , pp. 217 - 226 .

Teece , D.J. ( 2014 ), “ The foundations of enterprise performance: dynamic and ordinary capabilities in an (economic) theory of firms ”, Academy of Management Perspectives , Vol. 28 No. 4 , pp. 328 - 352 .

Thornhill , S. ( 2006 ), “ Knowledge, innovation and firm performance in high- and low-technology regimes ”, Journal of Business Venturing , Vol. 21 No. 5 , pp. 687 - 703 .

Tidd , J. and Bessant , J. ( 2009 ), Managing Innovation: Integrating Technological, Market and Organizational Change , 4th ed. , John Wiley & Sons , Sussex .

Tushman , M.L. and Anderson , P. ( 1986 ), “ Technological discontinuities and organizational environments ”, Administrative Science Quarterly , Vol. 31 No. 3 , pp. 439 - 465 .

Townley , B. ( 2002 ), “ The role of competing rationalities in institutional change ”, Academy of Management Journal , Vol. 45 No. 1 , pp. 163 - 179 .

Yin , R.K. ( 2008 ), Case Study Research: Design and Methods (Applied Social Research Methods) , 4th ed. , Sage, Thousand Oaks , CA .

Zahra , S.A. ( 1991 ), “ Predictors and financial outcomes of corporate entrepreneurship: an exploratory study ”, Journal of Business Venturing , Vol. 6 , pp. 259 - 285 .

Zahra , S.A. ( 1996 ), “ Governance, ownership, and corporate entrepreneurship: the moderating impact of industry technological opportunities ”, Academy of Management Journal , Vol. 39 No. 6 , pp. 1713 - 1735 .

Zahra , S.A. and George , G. ( 2002 ), “ Absorptive capacity: a review, reconceptualization, and extension ”, Academy of Management Review , Vol. 27 , pp. 185 - 203 .

Further reading

Bresnahan , T.F. , Brynjolfsson , E. and Hitt , L.M. ( 2002 ), “ Information technology, workplace organization, and the demand for skilled labor: firm-level evidence ”, The Quarterly Journal of Economics , Vol. 117 No. 1 , pp. 339 - 376 .

DiMaggio , P.J. ( 1984 ), “ Institutional isomorphism and structural conformity ”, paper presented at the 1984 American Sociological Association meetings, San Antonio, Texas .

Garud , R. ( 2008 ), “ Conferences as venues for the configuration of emerging organizational fields: the case of cochlear implants ”, Journal of Management Studies , Vol. 45 No. 6 , pp. 1061 - 1088 .

Maguire , S. and Hardy , C. ( 2009 ), “ Discourse and deinstitutionalization: the decline of DDT ”, Academy of Management Journal , Vol. 52 No. 1 , pp. 148 - 178 .

Acknowledgements

 This work was supported by 2017 Hongik University Research Fund.

Corresponding author

Related articles, all feedback is valuable.

Please share your general feedback

Report an issue or find answers to frequently asked questions

Contact Customer Support

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 08 September 2024

Longitudinal analysis of teacher self-efficacy evolution during a STEAM professional development program: a qualitative case study

  • Haozhe Jiang   ORCID: orcid.org/0000-0002-7870-0993 1 ,
  • Ritesh Chugh   ORCID: orcid.org/0000-0003-0061-7206 2 ,
  • Xuesong Zhai   ORCID: orcid.org/0000-0002-4179-7859 1 , 3   nAff7 ,
  • Ke Wang 4 &
  • Xiaoqin Wang 5 , 6  

Humanities and Social Sciences Communications volume  11 , Article number:  1162 ( 2024 ) Cite this article

Metrics details

Despite the widespread advocacy for the integration of arts and humanities (A&H) into science, technology, engineering, and mathematics (STEM) education on an international scale, teachers face numerous obstacles in practically integrating A&H into STEM teaching (IAT). To tackle the challenges, a comprehensive five-stage framework for teacher professional development programs focussed on IAT has been developed. Through the use of a qualitative case study approach, this study outlines the shifts in a participant teacher’s self-efficacy following their exposure to each stage of the framework. The data obtained from interviews and reflective analyses were analyzed using a seven-stage inductive method. The findings have substantiated the significant impact of a teacher professional development program based on the framework on teacher self-efficacy, evident in both individual performance and student outcomes observed over eighteen months. The evolution of teacher self-efficacy in IAT should be regarded as an open and multi-level system, characterized by interactions with teacher knowledge, skills and other entrenched beliefs. Building on our research findings, an enhanced model of teacher professional learning is proposed. The revised model illustrates that professional learning for STEAM teachers should be conceived as a continuous and sustainable process, characterized by the dynamic interaction among teaching performance, teacher knowledge, and teacher beliefs. The updated model further confirms the inseparable link between teacher learning and student learning within STEAM education. This study contributes to the existing body of literature on teacher self-efficacy, teacher professional learning models and the design of IAT teacher professional development programs.

Similar content being viewed by others

technology evolution case study

Primary and secondary school teachers’ perceptions of their social science training needs

technology evolution case study

Investigating how subject teachers transition to integrated STEM education: A hybrid qualitative study on primary and middle school teachers

technology evolution case study

Exploring the factors affecting elementary mathematics teachers’ innovative behavior: an integration of social cognitive theory

Introduction.

In the past decade, there has been a surge in the advancement and widespread adoption of Science, Technology, Engineering, and Mathematics (STEM) education on a global scale (Jiang et al. 2021 ; Jiang et al. 2022 ; Jiang et al. 2023 ; Jiang et al. 2024a , b ; Zhan et al. 2023 ; Zhan and Niu 2023 ; Zhong et al. 2022 ; Zhong et al. 2024 ). Concurrently, there has been a growing chorus of advocates urging the integration of Arts and Humanities (A&H) into STEM education (e.g., Alkhabra et al. 2023 ; Land 2020 ; Park and Cho 2022 ; Uştu et al. 2021 ; Vaziri and Bradburn 2021 ). STEM education is frequently characterized by its emphasis on logic and analysis; however, it may be perceived as deficient in emotional and intuitive elements (Ozkan and Umdu Topsakal 2021 ). Through the integration of Arts and Humanities (A&H), the resulting STEAM approach has the potential to become more holistic, incorporating both rationality and emotional intelligence (Ozkan and Umdu Topsakal 2021 ). Many studies have confirmed that A&H can help students increase interest and develop their understanding of the contents in STEM fields, and thus, A&H can attract potential underrepresented STEM learners such as female students and minorities (Land 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ). Despite the increasing interest in STEAM, the approaches to integrating A&H, which represent fundamentally different disciplines, into STEM are theoretically and practically ambiguous (Jacques et al. 2020 ; Uştu et al. 2021 ). Moreover, studies have indicated that the implementation of STEAM poses significant challenges, with STEM educators encountering difficulties in integrating A&H into their teaching practices (e.g., Boice et al. 2021 ; Duong et al. 2024 ; Herro et al. 2019 ; Jacques et al. 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ). Hence, there is a pressing need to provide STEAM teachers with effective professional training.

Motivated by this gap, this study proposes a novel five-stage framework tailored for teacher professional development programs specifically designed to facilitate the integration of A&H into STEM teaching (IAT). Following the establishment of this framework, a series of teacher professional development programs were implemented. To explain the framework, a qualitative case study is employed, focusing on examining a specific teacher professional development program’s impact on a pre-service teacher’s self-efficacy. The case narratives, with a particular focus on the pre-service teacher’s changes in teacher self-efficacy, are organized chronologically, delineating stages before and after each stage of the teacher professional development program. More specifically, meaningful vignettes of the pre-service teacher’s learning and teaching experiences during the teacher professional development program are offered to help understand the five-stage framework. This study contributes to understanding teacher self-efficacy, teacher professional learning model and the design of IAT teacher professional development programs.

Theoretical background

The conceptualization of steam education.

STEM education can be interpreted through various lenses (e.g., Jiang et al. 2021 ; English 2016 ). As Li et al. (2020) claimed, on the one hand, STEM education can be defined as individual STEM disciplinary-based education (i.e., science education, technology education, engineering education and mathematics education). On the other hand, STEM education can also be defined as interdisciplinary or cross-disciplinary education where individual STEM disciplines are integrated (Jiang et al. 2021 ; English 2016 ). In this study, we view it as individual disciplinary-based education separately in science, technology, engineering and mathematics (English 2016 ).

STEAM education emerged as a new pedagogy during the Americans for the Arts-National Policy Roundtable discussion in 2007 (Perignat and Katz-Buonincontro 2019 ). This pedagogy was born out of the necessity to enhance students’ engagement, foster creativity, stimulate innovation, improve problem-solving abilities, and cultivate employability skills such as teamwork, communication and adaptability (Perignat and Katz-Buonincontro 2019 ). In particular, within the framework of STEAM education, the ‘A’ should be viewed as a broad concept that represents arts and humanities (A&H) (Herro and Quigley 2016 ; de la Garza 2021 , Park and Cho 2022 ). This conceptualization emphasizes the need to include humanities subjects alongside arts (Herro and Quigley 2016 ; de la Garza 2021 ; Park and Cho 2022 ). Sanz-Camarero et al. ( 2023 ) listed some important fields of A&H, including physical arts, fine arts, manual arts, sociology, politics, philosophy, history, psychology and so on.

In general, STEM education does not necessarily entail the inclusion of all STEM disciplines collectively (Ozkan and Umdu Topsakal 2021 ), and this principle also applies to STEAM education (Gates 2017 ; Perignat and Katz-Buonincontro 2019 ; Quigley et al. 2017 ; Smith and Paré 2016 ). As an illustration, Smith and Paré ( 2016 ) described a STEAM activity in which pottery (representing A&H) and mathematics were integrated, while other STEAM elements such as science, technology and engineering were not included. In our study, STEAM education is conceptualized as an interdisciplinary approach that involves the integration of one or more components of A&H into one or more STEM school subjects within educational activities (Ozkan and Umdu Topsakal 2021 ; Vaziri and Bradburn 2021 ). Notably, interdisciplinary collaboration entails integrating one or more elements from arts and humanities (A&H) with one or more STEM school subjects, cohesively united by a shared theme while maintaining their distinct identities (Perignat and Katz-Buonincontro 2019 ).

In our teacher professional development programs, we help mathematics, technology, and science pre-service teachers integrate one component of A&H into their disciplinary-based teaching practices. For instance, we help mathematics teachers integrate history (a component of A&H) into mathematics teaching. In other words, in our study, integrating A&H into STEM teaching (IAT) can be defined as integrating one component of A&H into the teaching of one of the STEM school subjects. The components of A&H and the STEM school subject are brought together under a common theme, but each of them remains discrete. Engineering is not taught as an individual subject in the K-12 curriculum in mainland China. Therefore, A&H is not integrated into engineering teaching in our teacher professional development programs.

Self-efficacy and teacher self-efficacy

Self-efficacy was initially introduced by Bandura ( 1977 ) as a key concept within his social cognitive theory. Bandura ( 1997 ) defined self-efficacy as “people’s beliefs about their capabilities to produce designated levels of performance that exercise influence over events that affect their lives” (p. 71). Based on Bandura’s ( 1977 ) theory, Tschannen-Moran et al. ( 1998 ) defined the concept of teacher self-efficacy Footnote 1 as “a teacher’s belief in her or his ability to organize and execute the courses of action required to successfully accomplish a specific teaching task in a particular context” (p. 233). Blonder et al. ( 2014 ) pointed out that this definition implicitly included teachers’ judgment of their ability to bring about desired outcomes in terms of students’ engagement and learning. Moreover, OECD ( 2018 ) defined teacher self-efficacy as “the beliefs that teachers have of their ability to enact certain teaching behavior that influences students’ educational outcomes, such as achievement, interest, and motivation” (p. 51). This definition explicitly included two dimensions: teachers’ judgment of the ability related to their teaching performance (i.e., enacting certain teaching behavior) and their influence on student outcomes.

It is argued that teacher self-efficacy should not be regarded as a general or overarching construct (Zee et al. 2017 ; Zee and Koomen 2016 ). Particularly, in the performance-driven context of China, teachers always connect their beliefs in their professional capabilities with the educational outcomes of their students (Liu et al. 2018 ). Therefore, we operationally conceptualize teacher self-efficacy as having two dimensions: self-efficacy in individual performance and student outcomes (see Table 1 ).

Most importantly, given its consistent association with actual teaching performance and student outcomes (Bray-Clark and Bates 2003 ; Kelley et al. 2020 ), teacher self-efficacy is widely regarded as a pivotal indicator of teacher success (Kelley et al. 2020 ). Moreover, the enhancement of teaching self-efficacy reflects the effectiveness of teacher professional development programs (Bray-Clark and Bates 2003 ; Kelley et al. 2020 ; Wong et al. 2022 ; Zhou et al. 2023 ). For instance, Zhou et al. ( 2023 ) claimed that in STEM teacher education, effective teacher professional development programs should bolster teachers’ self-efficacy “in teaching the content in the STEM discipline” (p. 2).

It has been documented that teachers frequently experience diminished confidence and comfort when teaching subject areas beyond their expertise (Kelley et al. 2020 ; Stohlmann et al. 2012 ). This diminished confidence extends to their self-efficacy in implementing interdisciplinary teaching approaches, such as integrated STEM teaching and IAT (Kelley et al. 2020 ). For instance, Geng et al. ( 2019 ) found that STEM teachers in Hong Kong exhibited low levels of self-efficacy, with only 5.53% of teachers rating their overall self-efficacy in implementing STEM education as higher than a score of 4 out of 5. Additionally, Hunter-Doniger and Sydow ( 2016 ) found that teachers may experience apprehension and lack confidence when incorporating A&H elements into the classroom context, particularly within the framework of IAT. Considering the critical importance of teacher self-efficacy in STEM and STEAM education (Kelley et al. 2020 ; Zakariya, 2020 ; Zhou et al. 2023 ), it is necessary to explore effective measures, frameworks and teacher professional development programs to help teachers improve their self-efficacy regarding interdisciplinary teaching (e.g., IAT).

Teacher professional learning models

The relationship between teachers’ professional learning and students’ outcomes (such as achievements, skills and attitudes) has been a subject of extensive discussion and research for many years (Clarke and Hollingsworth 2002 ). For instance, Clarke and Hollingsworth ( 2002 ) proposed and validated the Interconnected Model of Professional Growth, which illustrates that teacher professional development is influenced by the interaction among four interconnected domains: the personal domain (teacher knowledge, beliefs and attitudes), the domain of practice (professional experimentation), the domain of consequence (salient outcomes), and the external domain (sources of information, stimulus or support). Sancar et al. ( 2021 ) emphasized that teachers’ professional learning or development never occurs independently. In practice, this process is inherently intertwined with many variables, including student outcomes, in various ways (Sancar et al. 2021 ). However, many current teacher professional development programs exclude real in-class teaching and fail to establish a comprehensive link between teachers’ professional learning and student outcomes (Cai et al. 2020 ; Sancar et al. 2021 ). Sancar et al. ( 2021 ) claimed that exploring the complex relationships between teachers’ professional learning and student outcomes should be grounded in monitoring and evaluating real in-class teaching, rather than relying on teachers’ self-assessment. It is essential to understand these relationships from a holistic perspective within the context of real classroom teaching (Sancar et al. 2021 ). However, as Sancar et al. ( 2021 ) pointed out, such efforts in teacher education are often considered inadequate. Furthermore, in the field of STEAM education, such efforts are further exacerbated.

Cai et al. ( 2020 ) proposed a teacher professional learning model where student outcomes are emphasized. This model was developed based on Cai ( 2017 ), Philipp ( 2007 ) and Thompson ( 1992 ). It has also been used and justified in a series of teacher professional development programs (e.g., Calabrese et al. 2024 ; Hwang et al. 2024 ; Marco and Palatnik 2024 ; Örnek and Soylu 2021 ). The model posits that teachers typically increase their knowledge and modify their beliefs through professional teacher learning, subsequently improving their classroom instruction, enhancing teaching performance, and ultimately fostering improved student learning outcomes (Cai et al. 2020 ). Notably, this model can be updated in several aspects. Firstly, prior studies have exhibited the interplay between teacher knowledge and beliefs (e.g., Basckin et al. 2021 ; Taimalu and Luik 2019 ). This indicates that the increase in teacher knowledge and the change in teacher belief may not be parallel. The two processes can be intertwined. Secondly, the Interconnected Model of Professional Growth highlights that the personal domain and the domain of practice are interconnected (Clarke and Hollingsworth 2002 ). Liu et al. ( 2022 ) also confirmed that improvements in classroom instruction may, in turn, influence teacher beliefs. This necessitates a reconsideration of the relationships between classroom instruction, teacher knowledge and teacher beliefs in Cai et al.’s ( 2020 ) model. Thirdly, the Interconnected Model of Professional Growth also exhibits the connections between the domain of consequence and the personal domain (Clarke and Hollingsworth 2002 ). Hence, the improvement of learning outcomes may signify the end of teacher learning. For instance, students’ learning feedback may be a vital source of teacher self-efficacy (Bandura 1977 ). Therefore, the improvement of student outcomes may, in turn, affect teacher beliefs. The aforementioned arguments highlight the need for an updated model that integrates Cai et al.’s ( 2020 ) teacher professional learning model with Clarke and Hollingsworth’s ( 2002 ) Interconnected Model of Professional Growth. This integration may provide a holistic view of the teacher’s professional learning process, especially within the complex contexts of STEAM teacher education.

The framework for teacher professional development programs of integrating arts and humanities into STEM teaching

In this section, we present a framework for IAT teacher professional development programs, aiming to address the practical challenges associated with STEAM teaching implementation. Our framework incorporates the five features of effective teacher professional development programs outlined by Archibald et al. ( 2011 ), Cai et al. ( 2020 ), Darling-Hammond et al. ( 2017 ), Desimone and Garet ( 2015 ) and Roth et al. ( 2017 ). These features include: (a) alignment with shared goals (e.g., school, district, and national policies and practice), (b) emphasis on core content and modeling of teaching strategies for the content, (c) collaboration among teachers within a community, (d) adequate opportunities for active learning of new teaching strategies, and (e) embedded follow-up and continuous feedback. It is worth noting that two concepts, namely community of practice and lesson study, have been incorporated into our framework. Below, we delineate how these features are reflected in our framework.

(a) The Chinese government has issued a series of policies to facilitate STEAM education in K-12 schools (Jiang et al. 2021 ; Li and Chiang 2019 ; Lyu et al. 2024 ; Ro et al. 2022 ). The new curriculum standards released in 2022 mandate that all K-12 teachers implement interdisciplinary teaching, including STEAM education. Our framework for teacher professional development programs, which aims to help teachers integrate A&H into STEM teaching, closely aligns with these national policies and practices supporting STEAM education in K-12 schools.

(b) The core content of the framework is IAT. Specifically, as A&H is a broad concept, we divide it into several subcomponents, such as history, culture, and visual and performing arts (e.g., drama). We are implementing a series of teacher professional development programs to help mathematics, technology and science pre-service teachers integrate these subcomponents of A&H into their teaching Footnote 2 . Notably, pre-service teachers often lack teaching experience, making it challenging to master and implement new teaching strategies. Therefore, our framework provides five step-by-step stages designed to help them effectively model the teaching strategies of IAT.

(c) Our framework advocates for collaboration among teachers within a community of practice. Specifically, a community of practice is “a group of people who share an interest in a domain of human endeavor and engage in a process of collective learning that creates bonds between them” (Wenger et al. 2002 , p. 1). A teacher community of practice can be considered a group of teachers “sharing and critically observing their practices in growth-promoting ways” (Näykki et al. 2021 , p. 497). Long et al. ( 2021 ) claimed that in a teacher community of practice, members collaboratively share their teaching experiences and work together to address teaching problems. Our community of practice includes three types of members. (1) Mentors: These are professors and experts with rich experience in helping pre-service teachers practice IAT. (2) Pre-service teachers: Few have teaching experience before the teacher professional development programs. (3) In-service teachers: All in-service teachers are senior teachers with rich teaching experience. All the members work closely together to share and improve their IAT practice. Moreover, our community includes not only mentors and in-service teachers but also pre-service teachers. We encourage pre-service teachers to collaborate with experienced in-service teachers in various ways, such as developing IAT lesson plans, writing IAT case reports and so on. In-service teachers can provide cognitive and emotional support and share their practical knowledge and experience, which may significantly benefit the professional growth of pre-service teachers (Alwafi et al. 2020 ).

(d) Our framework offers pre-service teachers various opportunities to engage in lesson study, allowing them to actively design and implement IAT lessons. Based on the key points of effective lesson study outlined by Akiba et al. ( 2019 ), Ding et al. ( 2024 ), and Takahashi and McDougal ( 2016 ), our lesson study incorporates the following seven features. (1) Study of IAT materials: Pre-service teachers are required to study relevant IAT materials under the guidance of mentors. (2) Collaboration on lesson proposals: Pre-service teachers should collaborate with in-service teachers to develop comprehensive lesson proposals. (3) Observation and data collection: During the lesson, pre-service teachers are required to carefully observe and collect data on student learning and development. (4) Reflection and analysis: Pre-service teachers use the collected data to reflect on the lesson and their teaching effects. (5) Lesson revision and reteaching: If needed, pre-service teachers revise and reteach the lesson based on their reflections and data analysis. (6) Mentor and experienced in-service teacher involvement: Mentors and experienced in-service teachers, as knowledgeable others, are involved throughout the lesson study process. (7) Collaboration on reporting: Pre-service teachers collaborate with in-service teachers to draft reports and disseminate the results of the lesson study. Specifically, recognizing that pre-service teachers often lack teaching experience, we do not require them to complete all the steps of lesson study independently at once. Instead, we guide them through the lesson study process in a step-by-step manner, allowing them to gradually build their IAT skills and confidence. For instance, in Stage 1, pre-service teachers primarily focus on studying IAT materials. In Stage 2, they develop lesson proposals, observe and collect data, and draft reports. However, the implementation of IAT lessons is carried out by in-service teachers. This approach prevents pre-service teachers from experiencing failures due to their lack of teaching experience. In Stage 3, pre-service teachers implement, revise, and reteach IAT lessons, experiencing the lesson study process within a simulated environment. In Stage 4, pre-service teachers engage in lesson study in an actual classroom environment. However, their focus is limited to one micro-course during each lesson study session. It is not until the fifth stage that they experience a complete lesson study in an actual classroom environment.

(e) Our teacher professional development programs incorporate assessments specifically designed to evaluate pre-service teachers’ IAT practices. We use formative assessments to measure their understanding and application of IAT strategies. Pre-service teachers receive ongoing and timely feedback from peers, mentors, in-service teachers, and students, which helps them continuously refine their IAT practices throughout the program. Recognizing that pre-service teachers often have limited contact with real students and may not fully understand students’ learning needs, processes and outcomes, our framework requires them to actively collect and analyze student feedback. By doing so, they can make informed improvements to their instructional practice based on student feedback.

After undergoing three rounds of theoretical and practical testing and revision over the past five years, we have successfully finalized the optimization of the framework design (Zhou 2021 ). Throughout each cycle, we collected feedback from both participants and researchers on at least three occasions. Subsequently, we analyzed this feedback and iteratively refined the framework. For example, we enlisted the participation of in-service teachers to enhance the implementation of STEAM teaching, extended practice time through micro-teaching sessions, and introduced a stage of micro-course development within the framework to provide more opportunities for pre-service teachers to engage with real teaching situations. In this process, we continuously improved the coherence between each stage of the framework, ensuring that they mutually complement one another. The five-stage framework is described as follows.

Stage 1 Literature study

Pre-service teachers are provided with a series of reading materials from A&H. On a weekly basis, two pre-service teachers are assigned to present their readings and reflections to the entire group, followed by critical discussions thereafter. Mentors and all pre-service teachers discuss and explore strategies for translating the original A&H materials into viable instructional resources suitable for classroom use. Subsequently, pre-service teachers select topics of personal interest for further study under mentor guidance.

Stage 2 Case learning

Given that pre-service teachers have no teaching experience, collaborative efforts between in-service teachers and pre-service teachers are undertaken to design IAT lesson plans. Subsequently, the in-service teachers implement these plans. Throughout this process, pre-service teachers are afforded opportunities to engage in lesson plan implementation. Figure 1 illustrates the role of pre-service teachers in case learning. In the first step, pre-service teachers read about materials related to A&H, select suitable materials, and report their ideas on IAT lesson design to mentors, in-service teachers, and fellow pre-service teachers.

figure 1

Note: A&H refers to arts and humanities.

In the second step, they liaise with the in-service teachers responsible for implementing the lesson plan, discussing the integration of A&H into teaching practices. Pre-service teachers then analyze student learning objectives aligned with curriculum standards, collaboratively designing the IAT lesson plan with in-service teachers. Subsequently, pre-service teachers present lesson plans for feedback from mentors and other in-service teachers.

In the third step, pre-service teachers observe the lesson plan’s implementation, gathering and analyzing feedback from students and in-service teachers using an inductive approach (Merriam 1998 ). Feedback includes opinions on the roles and values of A&H, perceptions of the teaching effect, and recommendations for lesson plan implementation and modification. The second and third steps may iterate multiple times to refine the IAT lesson plan. In the fourth step, pre-service teachers consolidate all data, including various versions of teaching instructions, classroom videos, feedback, and discussion notes, composing reflection notes. Finally, pre-service teachers collaborate with in-service teachers to compile the IAT case report and submit it for publication.

Stage 3 Micro-teaching

Figure 2 illustrates the role of pre-service teachers in micro-teaching. Before entering the micro-classrooms Footnote 3 , all the discussions and communications occur within the pre-service teacher group, excluding mentors and in-service teachers. After designing the IAT lesson plan, pre-service teachers take turns implementing 40-min lesson plans in a simulated micro-classroom setting. Within this simulated environment, one pre-service teacher acts as the teacher, while others, including mentors, in-service teachers, and other fellow pre-service teachers, assume the role of students Footnote 4 . Following the simulated teaching, the implementer reviews the video of their session and self-assesses their performance. Subsequently, the implementer receives feedback from other pre-service teachers, mentors, and in-service teachers. Based on this feedback, the implementer revisits steps 2 and 3, revising the lesson plan and conducting the simulated teaching again. This iterative process typically repeats at least three times until the mentors, in-service teachers, and other pre-service teachers are satisfied with the implementation of the revised lesson plan. Finally, pre-service teachers complete reflection notes and submit a summary of their reflections on the micro-teaching experience. Each pre-service teacher is required to choose at least three topics and undergo at least nine simulated teaching sessions.

figure 2

Stage 4 Micro-course development

While pre-service teachers may not have the opportunity to execute the whole lesson plans in real classrooms, they can design and create five-minute micro-courses Footnote 5 before class, subsequently presenting these videos to actual students. The process of developing micro-courses closely mirrors that of developing IAT cases in the case learning stage (see Fig. 1 ). However, in Step 3, pre-service teachers assume dual roles, not only as observers of IAT lesson implementation but also as implementers of a five-minute IAT micro-course.

Stage 5 Classroom teaching

Pre-service teachers undertake the implementation of IAT lesson plans independently, a process resembling micro-teaching (see Fig. 2 ). However, pre-service teachers engage with real school students in partner schools Footnote 6 instead of simulated classrooms. Furthermore, they collect feedback not only from the mentors, in-service teachers, and fellow pre-service teachers but also from real students.

To provide our readers with a better understanding of the framework, we provide meaningful vignettes of a pre-service teacher’s learning and teaching experiences in one of the teacher professional development programs based on the framework. In addition, we choose teacher self-efficacy as an indicator to assess the framework’s effectiveness, detailing the pre-service teacher’s changes in teacher self-efficacy.

Research design

Research method.

Teacher self-efficacy can be measured both quantitatively and qualitatively (Bandura 1986 , 1997 ; Lee and Bobko 1994 ; Soprano and Yang 2013 ; Unfried et al. 2022 ). However, researchers and theorists in the area of teacher self-efficacy have called for more qualitative and longitudinal studies (Klassen et al. 2011 ). As some critiques stated, most studies were based on correlational and cross-sectional data obtained from self-report surveys, and qualitative studies of teacher efficacy were overwhelmingly neglected (Henson 2002 ; Klassen et al. 2011 ; Tschannen-Moran et al. 1998 ; Xenofontos and Andrews 2020 ). There is an urgent need for more longitudinal studies to shed light on the development of teacher efficacy (Klassen et al. 2011 ; Xenofontos and Andrews 2020 ).

This study utilized a longitudinal qualitative case study methodology to delve deeply into the context (Jiang et al. 2021 ; Corden and Millar 2007 ; Dicks et al. 2023 ; Henderson et al. 2012 ; Matusovich et al. 2010 ; Shirani and Henwood 2011 ), presenting details grounded in real-life situations and analyzing the inner relationships rather than generalize findings about the change of a large group of pre-service teachers’ self-efficacy.

Participant

This study forms a component of a broader multi-case research initiative examining teachers’ professional learning in the STEAM teacher professional development programs in China (Jiang et al. 2021 ; Wang et al. 2018 ; Wang et al. 2024 ). Within this context, one participant, Shuitao (pseudonym), is selected and reported in this current study. Shuitao was a first-year graduate student at a first-tier Normal university in Shanghai, China. Normal universities specialize in teacher education. Her graduate major was mathematics curriculum and instruction. Teaching practice courses are offered to students in this major exclusively during their third year of study. The selection of Shuitao was driven by three primary factors. Firstly, Shuitao attended the entire teacher professional development program and actively engaged in nearly all associated activities. Table 2 illustrates the timeline of the five stages in which Shuitao was involved. Secondly, her undergraduate major was applied mathematics, which was not related to mathematics teaching Footnote 7 . She possessed no prior teaching experience and had not undergone any systematic study of IAT before her involvement in the teacher professional development program. Thirdly, her other master’s courses during her first two years of study focused on mathematics education theory and did not include IAT Footnote 8 . Additionally, she scarcely participated in any other teaching practice outside of the teacher professional development program. As a pre-service teacher, Shuitao harbored a keen interest in IAT. Furthermore, she discovered that she possessed fewer teaching skills compared to her peers who had majored in education during their undergraduate studies. Hence, she had a strong desire to enhance her teaching skills. Consequently, Shuitao decided to participate in our teacher professional development program.

Shuitao was grouped with three other first-year graduate students during the teacher professional development program. She actively collaborated with them at every stage of the program. For instance, they advised each other on their IAT lesson designs, observed each other’s IAT practice and offered constructive suggestions for improvement.

Research question

Shuitao was a mathematics pre-service teacher who participated in one of our teacher professional development programs, focusing on integrating history into mathematics teaching (IHT) Footnote 9 . Notably, this teacher professional development program was designed based on our five-stage framework for teacher professional development programs of IAT. To examine the impact of this teacher professional development program on Shuitao’s self-efficacy related to IHT, this case study addresses the following research question:

What changes in Shuitao’s self-efficacy in individual performance regarding integrating history into mathematics teaching (SE-IHT-IP) may occur through participation in the teacher professional development program?

What changes in Shuitao’s self-efficacy in student outcomes regarding integrating history into mathematics teaching (SE-IHT-SO) may occur through participation in the teacher professional development program?

Data collection and analysis

Before Shuitao joined the teacher professional development program, a one-hour preliminary interview was conducted to guide her in self-narrating her psychological and cognitive state of IHT.

During the teacher professional development program, follow-up unstructured interviews were conducted once a month with Shuitao. All discussions in the development of IHT cases were recorded, Shuitao’s teaching and micro-teaching were videotaped, and the reflection notes, journals, and summary reports written by Shuitao were collected.

After completing the teacher professional development program, Shuitao participated in a semi-structured three-hour interview. The objectives of this interview were twofold: to reassess her self-efficacy and to explore the relationship between her self-efficacy changes and each stage of the teacher professional development program.

Interview data, discussions, reflection notes, journals, summary reports and videos, and analysis records were archived and transcribed before, during, and after the teacher professional development program.

In this study, we primarily utilized data from seven interviews: one conducted before the teacher professional development program, five conducted after each stage of the program, and one conducted upon completion of the program. Additionally, we reviewed Shuitao’s five reflective notes, which were written after each stage, as well as her final summary report that encompassed the entire teacher professional development program.

Merriam’s ( 1998 ) approach to coding data and inductive approach to retrieving possible concepts and themes were employed using a seven-stage method. Considering theoretical underpinnings in qualitative research is common when interpreting data (Strauss and Corbin 1990 ). First, a list based on our conceptual framework of teacher self-efficacy (see Table 1 ) was developed. The list included two codes (i.e., SE-IHT-IP and SE-IHT-SO). Second, all data were sorted chronologically, read and reread to be better understood. Third, texts were coded into multi-colored highlighting and comment balloons. Fourth, the data for groups of meanings, themes, and behaviors were examined. How these groups were connected within the conceptual framework of teacher self-efficacy was confirmed. Fifth, after comparing, confirming, and modifying, the selective codes were extracted and mapped onto the two categories according to the conceptual framework of teacher self-efficacy. Accordingly, changes in SE-IHT-IP and SE-IHT-SO at the five stages of the teacher professional development program were identified, respectively, and then the preliminary findings came (Strauss and Corbin 1990 ). In reality, in Shuitao’s narratives, SE-IHT-IP and SE-IHT-SO were frequently intertwined. Through our coding process, we differentiated between SE-IHT-IP and SE-IHT-SO, enabling us to obtain a more distinct understanding of how these two aspects of teacher self-efficacy evolved over time. This helped us address the two research questions effectively.

Reliability and validity

Two researchers independently analyzed the data to establish inter-rater reliability. The inter-rater reliability was established as kappa = 0.959. Stake ( 1995 ) suggested that the most critical assertions in a study require the greatest effort toward confirmation. In this study, three methods served this purpose and helped ensure the validity of the findings. The first way to substantiate the statement about the changes in self-efficacy was by revisiting each transcript to confirm whether the participant explicitly acknowledged the changes (Yin 2003 ). Such a check was repeated in the analysis of this study. The second way to confirm patterns in the data was by examining whether Shuitao’s statements were replicated in separate interviews (Morris and Usher 2011 ). The third approach involved presenting the preliminary conclusions to Shuitao and affording her the opportunity to provide feedback on the data and conclusions. This step aimed to ascertain whether we accurately grasped the true intentions of her statements and whether our subjective interpretations inadvertently influenced our analysis of her statements. Additionally, data from diverse sources underwent analysis by at least two researchers, with all researchers reaching consensus on each finding.

As each stage of our teacher professional development programs spanned a minimum of three months, numerous documented statements regarding the enhancement of Shuitao’s self-efficacy regarding IHT were recorded. Notably, what we present here offers only a concise overview of findings derived from our qualitative analysis. The changes in Shuitao’s SE-IHT-IP and SE-IHT-SO are organized chronologically, delineating the period before and during the teacher professional development program.

Before the teacher professional development program: “I have no confidence in IHT”

Before the teacher professional development program, Shuitao frequently expressed her lack of confidence in IHT. On the one hand, Shuitao expressed considerable apprehension about her individual performance in IHT. “How can I design and implement IHT lesson plans? I do not know anything [about it]…” With a sense of doubt, confusion and anxiety, Shuitao voiced her lack of confidence in her ability to design and implement an IHT case that would meet the requirements of the curriculum standards. Regarding the reasons for her lack of confidence, Shuitao attributed it to her insufficient theoretical knowledge and practical experience in IHT:

I do not know the basic approaches to IHT that I could follow… it is very difficult for me to find suitable historical materials… I am very confused about how to organize [historical] materials logically around the teaching goals and contents… [Furthermore,] I am [a] novice, [and] I have no IHT experience.

On the other hand, Shuitao articulated very low confidence in the efficacy of her IHT on student outcomes:

I think my IHT will have a limited impact on student outcomes… I do not know any specific effects [of history] other than making students interested in mathematics… In fact, I always think it is difficult for [my] students to understand the history… If students cannot understand [the history], will they feel bored?

This statement suggests that Shuitao did not fully grasp the significance of IHT. In fact, she knew little about the educational significance of history for students, and she harbored no belief that her IHT approach could positively impact students. In sum, her SE-IHT-SO was very low.

After stage 1: “I can do well in the first step of IHT”

After Stage 1, Shuitao indicated a slight improvement in her confidence in IHT. She attributed this improvement to her acquisition of theoretical knowledge in IHT, the approaches for selecting history-related materials, and an understanding of the educational value of history.

One of Shuitao’s primary concerns about implementing IHT before the teacher professional development program was the challenge of sourcing suitable history-related materials. However, after Stage 1, Shuitao explicitly affirmed her capability in this aspect. She shared her experience of organizing history-related materials related to logarithms as an example.

Recognizing the significance of suitable history-related materials in effective IHT implementation, Shuitao acknowledged that conducting literature studies significantly contributed to enhancing her confidence in undertaking this initial step. Furthermore, she expressed increased confidence in designing IHT lesson plans by utilizing history-related materials aligned with teaching objectives derived from the curriculum standards. In other words, her SE-IHT-IP was enhanced. She said:

After experiencing multiple discussions, I gradually know more about what kinds of materials are essential and should be emphasized, what kinds of materials should be adapted, and what kinds of materials should be omitted in the classroom instructions… I have a little confidence to implement IHT that could meet the requirements [of the curriculum standards] since now I can complete the critical first step [of IHT] well…

However, despite the improvement in her confidence in IHT following Stage 1, Shuitao also expressed some concerns. She articulated uncertainty regarding her performance in the subsequent stages of the teacher professional development program. Consequently, her confidence in IHT experienced only a modest increase.

After stage 2: “I participate in the development of IHT cases, and my confidence is increased a little bit more”

Following Stage 2, Shuitao reported further increased confidence in IHT. She attributed this growth to two main factors. Firstly, she successfully developed several instructional designs for IHT through collaboration with in-service teachers. These collaborative experiences enabled her to gain a deeper understanding of IHT approaches and enhance her pedagogical content knowledge in this area, consequently bolstering her confidence in her ability to perform effectively. Secondly, Shuitao observed the tangible impact of IHT cases on students in real classroom settings, which reinforced her belief in the efficacy of IHT. These experiences instilled in her a greater sense of confidence in her capacity to positively influence her students through her implementation of IHT. Shuitao remarked that she gradually understood how to integrate suitable history-related materials into her instructional designs (e.g., employ a genetic approach Footnote 10 ), considering it as the second important step of IHT. She shared her experience of developing IHT instructional design on the concept of logarithms. After creating several iterations of IHT instructional designs, Shuitao emphasized that her confidence in SE-IHT-IP has strengthened. She expressed belief in her ability to apply these approaches to IHT, as well as the pedagogical content knowledge of IHT, acquired through practical experience, in her future teaching endeavors. The following is an excerpt from the interview:

I learned some effective knowledge, skills, techniques and approaches [to IHT]… By employing these approaches, I thought I could [and] I had the confidence to integrate the history into instructional designs very well… For instance, [inspired] by the genetic approach, we designed a series of questions and tasks based on the history of logarithms. The introduction of the new concept of logarithms became very natural, and it perfectly met the requirements of our curriculum standards, [which] asked students to understand the necessity of learning the concept of logarithms…

Shuitao actively observed the classroom teaching conducted by her cooperating in-service teacher. She helped her cooperating in-service teacher in collecting and analyzing students’ feedback. Subsequently, discussions ensued on how to improve the instructional designs based on this feedback. The refined IHT instructional designs were subsequently re-implemented by the in-service teacher. After three rounds of developing IHT cases, Shuitao became increasingly convinced of the significance and efficacy of integrating history into teaching practices, as evidenced by the following excerpt:

The impacts of IHT on students are visible… For instance, more than 93% of the students mentioned in the open-ended questionnaires that they became more interested in mathematics because of the [historical] story of Napier… For another example, according to the results of our surveys, more than 75% of the students stated that they knew log a ( M  +  N ) = log a M  × log a N was wrong because of history… I have a little bit more confidence in the effects of my IHT on students.

This excerpt highlights that Shuitao’s SE-IHT-SO was enhanced. She attributed this enhancement to her realization of the compelling nature of history and her belief in her ability to effectively leverage its power to positively influence her students’ cognitive and emotional development. This also underscores the importance of reinforcing pre-service teachers’ awareness of the significance of history. Nonetheless, Shuiato elucidated that she still retained concerns regarding the effectiveness of her IHT implementation. Her following statement shed light on why her self-efficacy only experienced a marginal increase in this stage:

Knowing how to do it successfully and doing it successfully in practice are two totally different things… I can develop IHT instructional designs well, but I have no idea whether I can implement them well and whether I can introduce the history professionally in practice… My cooperation in-service teacher has a long history of teaching mathematics and gains rich experience in educational practices… If I cannot acquire some required teaching skills and capabilities, I still cannot influence my students powerfully.

After stage 3: “Practice makes perfect, and my SE-IHT-IP is steadily enhanced after a hit”

After successfully developing IHT instructional designs, the next critical step was the implementation of these designs. Drawing from her observations of her cooperating in-service teachers’ IHT implementations and discussions with other pre-service teachers, Shuitao developed her own IHT lesson plans. In Stage 3, she conducted simulated teaching sessions and evaluated her teaching performance ten times Footnote 11 . Shuitao claimed that her SE-IHT-IP steadily improved over the course of these sessions. According to Shuitao, two main processes in Stage 3 facilitated this steady enhancement of SE-IHT-IP.

On the one hand, through the repeated implementation of simulated teaching sessions, Shuitao’s teaching proficiency and fluency markedly improved. Shuitao first described the importance of teaching proficiency and fluency:

Since the detailed history is not included in our curriculum standards and textbooks, if I use my historical materials in class, I have to teach more contents than traditional teachers. Therefore, I have to teach proficiently so that teaching pace becomes a little faster than usual… I have to teach fluently so as to use each minute efficiently in my class. Otherwise, I cannot complete the teaching tasks required [by curriculum standards].

As Shuitao said, at the beginning of Stage 3, her self-efficacy even decreased because she lacked teaching proficiency and fluency and was unable to complete the required teaching tasks:

In the first few times of simulated teaching, I always needed to think for a second about what I should say next when I finish one sentence. I also felt very nervous when I stood in the front of the classrooms. This made my narration of the historical story between Briggs and Napier not fluent at all. I paused many times to look for some hints on my notes… All these made me unable to complete the required teaching tasks… My [teaching] confidence took a hit.

Shuitao quoted the proverb, “practice makes perfect”, and she emphasized that it was repeated practice that improved her teaching proficiency and fluency:

I thought I had no other choice but to practice IHT repeatedly… [At the end of Stage 3,] I could naturally remember most words that I should say when teaching the topics that I selected… My teaching proficiency and fluency was improved through my repeated review of my instructional designs and implementation of IHT in the micro-classrooms… With the improvement [of my teaching proficiency and fluency], I could complete the teaching tasks, and my confidence was increased as well.

In addition, Shuitao also mentioned that through this kind of self-exploration in simulated teaching practice, her teaching skills and capabilities (e.g., blackboard writing, abilities of language organization abilities, etc.) improved. This process was of great help to her enhancement of SE-IHT-IP.

On the other hand, Shuitao’s simulated teaching underwent assessment by herself, with mentors, in-service teachers and fellow pre-service teachers. This comprehensive evaluation process played a pivotal role in enhancing her individual performance and self-efficacy. Reflecting on this aspect, Shuitao articulated the following sentiments in one of her reflection reports:

By watching the videos, conducting self-assessment, and collecting feedback from others, I can understand what I should improve or emphasize in my teaching. [Then,] I think my IHT can better meet the requirements [of curriculum standards]… I think my teaching performance is getting better and better.

After stage 4: “My micro-courses influenced students positively, and my SE-IHT-SO is steadily enhanced”

In Stage 4, Shuitao commenced by creating 5-min micro-course videos. Subsequently, she played these videos in her cooperating in-service teachers’ authentic classroom settings and collected student feedback. This micro-course was played at the end of her cooperating in-service teachers’ lesson Footnote 12 . Shuitao wrote in her reflections that this micro-course of logarithms helped students better understand the nature of mathematics:

According to the results of our surveys, many students stated that they knew the development and evolution of the concept of logarithms is a long process and many mathematicians from different countries have contributed to the development of the concept of logarithms… This indicated that my micro-course helped students better understand the nature of mathematics… My micro-course about the history informed students that mathematics is an evolving and human subject and helped them understand the dynamic development of the [mathematics] concept…

Meanwhile, Shuitao’s micro-course positively influenced some students’ beliefs towards mathematics. As evident from the quote below, integrating historical context into mathematics teaching transformed students’ perception of the subject, boosting Shuitao’s confidence too.

Some students’ responses were very exciting… [O]ne [typical] response stated, he always regarded mathematics as abstract, boring, and dreadful subject; but after seeing the photos of mathematicians and great men and learning the development of the concept of logarithms through the micro-course, he found mathematics could be interesting. He wanted to learn more the interesting history… Students’ such changes made me confident.

Furthermore, during post-class interviews, several students expressed their recognition of the significance of the logarithms concept to Shuitao, attributing this realization to the insights provided by prominent figures in the micro-courses. They also conveyed their intention to exert greater effort in mastering the subject matter. This feedback made Shuitao believe that her IHT had the potential to positively influence students’ attitudes towards learning mathematics.

In summary, Stage 4 marked Shuitao’s first opportunity to directly impact students through her IHT in authentic classroom settings. Despite implementing only brief 5-min micro-courses integrating history during each session, the effectiveness of her short IHT implementation was validated by student feedback. Shuitao unequivocally expressed that students actively engaged with her micro-courses and that these sessions positively influenced them, including attitudes and motivation toward mathematics learning, understanding of mathematics concepts, and beliefs regarding mathematics. These collective factors contributed to a steady enhancement of her confidence in SE-IHT-SO.

After stage 5: “My overall self-efficacy is greatly enhanced”

Following Stage 5, Shuitao reported a significant increase in her overall confidence in IHT, attributing it to gaining mastery through successful implementations of IHT in real classroom settings. On the one hand, Shuitao successfully designed and executed her IHT lesson plans, consistently achieving the teaching objectives mandated by curriculum standards. This significantly enhanced her SE-IHT-IP. On the other hand, as Shuitao’s IHT implementation directly influenced her students, her confidence in SE-IHT-SO experienced considerable improvement.

According to Bandura ( 1997 ), mastery experience is the most powerful source of self-efficacy. Shuitao’s statements confirmed this. As she claimed, her enhanced SE-IHT-IP in Stage 5 mainly came from the experience of successful implementations of IHT in real classrooms:

[Before the teacher professional development program,] I had no idea about implementing IHT… Now, I successfully implemented IHT in senior high school [classrooms] many times… I can complete the teaching tasks and even better completed the teaching objectives required [by the curriculum standards]… The successful experience greatly enhances my confidence to perform well in my future implementation of IHT… Yeah, I think the successful teaching practice experience is the strongest booster of my confidence.

At the end of stage 5, Shuitao’s mentors and in-service teachers gave her a high evaluation. For instance, after Shuitao’s IHT implementation of the concept of logarithms, all mentors and in-service teachers consistently provided feedback that her IHT teaching illustrated the necessity of learning the concept of logarithms and met the requirements of the curriculum standards very well. This kind of verbal persuasion (Bandura 1997 ) enhanced her SE-IHT-IP.

Similarly, Shuitao’s successful experience of influencing students positively through IHT, as one kind of mastery experience, powerfully enhanced her SE-IHT-SO. She described her changes in SE-IHT-SO as follows:

I could not imagine my IHT could be so influential [before]… But now, my IHT implementation directly influenced students in so many aspects… When I witnessed students’ real changes in various cognitive and affective aspects, my confidence was greatly improved.

Shuitao described the influence of her IHT implementation of the concept of logarithms on her students. The depiction is grounded in the outcomes of surveys conducted by Shuitao following her implementation. Shuitao asserted that these results filled her with excitement and confidence regarding her future implementation of IHT.

In summary, following Stage 5 of the teacher professional development program, Shuitao experienced a notable enhancement in her overall self-efficacy, primarily attributed to her successful practical experience in authentic classroom settings during this stage.

A primary objective of our teacher professional development programs is to equip pre-service teachers with the skills and confidence needed to effectively implement IAT. Our findings show that one teacher professional development program, significantly augmented a participant’s TSE-IHT across two dimensions: individual performance and student outcomes. Considering the pressing need to provide STEAM teachers with effective professional training (e.g., Boice et al. 2021 ; Duong et al. 2024 ; Herro et al. 2019 ; Jacques et al. 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ), the proposed five-stage framework holds significant promise in both theoretical and practical realms. Furthermore, this study offers a viable solution to address the prevalent issue of low levels of teacher self-efficacy in interdisciplinary teaching, including IAT, which is critical in STEAM education (Zhou et al. 2023 ). This study holds the potential to make unique contributions to the existing body of literature on teacher self-efficacy, teacher professional learning models and the design of teacher professional development programs of IAT.

Firstly, this study enhances our understanding of the development of teacher self-efficacy. Our findings further confirm the complexity of the development of teacher self-efficacy. On the one hand, the observed enhancement of the participant’s teacher self-efficacy did not occur swiftly but unfolded gradually through a protracted, incremental process. Moreover, it is noteworthy that the participant’s self-efficacy exhibited fluctuations, underscoring that the augmentation of teacher self-efficacy is neither straightforward nor linear. On the other hand, the study elucidated that the augmentation of teacher self-efficacy constitutes an intricate, multi-level system that interacts with teacher knowledge, skills, and other beliefs. This finding resonates with prior research on teacher self-efficacy (Morris et al. 2017 ; Xenofontos and Andrews 2020 ). For example, our study revealed that Shuitao’s enhancement of SE-IHT-SO may always be interwoven with her continuous comprehension of the significance of the A&H in classroom settings. Similarly, the participant progressively acknowledged the educational value of A&H in classroom contexts in tandem with the stepwise enhancement of SE-IHT-SO. Factors such as the participant’s pedagogical content knowledge of IHT, instructional design, and teaching skills were also identified as pivotal components of SE-IHT-IP. This finding corroborates Morris and Usher ( 2011 ) assertion that sustained improvements in self-efficacy stem from developing teachers’ skills and knowledge. With the bolstering of SE-IHT-IP, the participant’s related teaching skills and content knowledge also exhibited improvement.

Methodologically, many researchers advocate for qualitative investigations into self-efficacy (e.g., Philippou and Pantziara 2015; Klassen et al. 2011 ; Wyatt 2015 ; Xenofontos and Andrews 2020 ). While acknowledging limitations in sample scope and the generalizability of the findings, this study offers a longitudinal perspective on the stage-by-stage development of teacher self-efficacy and its interactions with different factors (i.e., teacher knowledge, skills, and beliefs), often ignored by quantitative studies. Considering that studies of self-efficacy have been predominantly quantitative, typically drawing on survey techniques and pre-determined scales (Xenofontos and Andrews, 2020 ; Zhou et al. 2023 ), this study highlights the need for greater attention to qualitative studies so that more cultural, situational and contextual factors in the development of self-efficacy can be captured.

Our study provides valuable practical implications for enhancing pre-service teachers’ self-efficacy. We conceptualize teacher self-efficacy in two primary dimensions: individual performance and student outcomes. On the one hand, pre-service teachers can enhance their teaching qualities, boosting their self-efficacy in individual performance. The adage “practice makes perfect” underscores the necessity of ample teaching practice opportunities for pre-service teachers who lack prior teaching experience. Engaging in consistent and reflective practice helps them develop confidence in their teaching qualities. On the other hand, pre-service teachers should focus on positive feedback from their students, reinforcing their self-efficacy in individual performance. Positive student feedback serves as an affirmation of their teaching effectiveness and encourages continuous improvement. Furthermore, our findings highlight the significance of mentors’ and peers’ positive feedback as critical sources of teacher self-efficacy. Mentors and peers play a pivotal role in the professional growth of pre-service teachers by actively encouraging them and recognizing their teaching achievements. Constructive feedback from experienced mentors and supportive peers fosters a collaborative learning environment and bolsters the self-confidence of pre-service teachers. Additionally, our research indicates that pre-service teachers’ self-efficacy may fluctuate. Therefore, mentors should be prepared to help pre-service teachers manage teaching challenges and setbacks, and alleviate any teaching-related anxiety. Mentors can help pre-service teachers build resilience and maintain a positive outlook on their teaching journey through emotional support and guidance. Moreover, a strong correlation exists between teacher self-efficacy and teacher knowledge and skills. Enhancing pre-service teachers’ knowledge base and instructional skills is crucial for bolstering their overall self-efficacy.

Secondly, this study also responds to the appeal to understand teachers’ professional learning from a holistic perspective and interrelate teachers’ professional learning process with student outcome variables (Sancar et al. 2021 ), and thus contributes to the understanding of the complexity of STEAM teachers’ professional learning. On the one hand, we have confirmed Cai et al.’s ( 2020 ) teacher professional learning model in a new context, namely STEAM teacher education. Throughout the teacher professional development program, the pre-service teacher, Shuitao, demonstrated an augmentation in her knowledge, encompassing both content knowledge and pedagogical understanding concerning IHT. Moreover, her beliefs regarding IHT transformed as a result of her engagement in teacher learning across the five stages. This facilitated her in executing effective IHT teaching and improving her students’ outcomes. On the other hand, notably, in our studies (including this current study and some follow-up studies), student feedback is a pivotal tool to assist teachers in discerning the impact they are effectuating. This enables pre-service teachers to grasp the actual efficacy of their teaching efforts and subsequently contributes significantly to the augmentation of their self-efficacy. Such steps have seldom been conducted in prior studies (e.g., Cai et al. 2020 ), where student outcomes are often perceived solely as the results of teachers’ instruction rather than sources informing teacher beliefs. Additionally, this study has validated both the interaction between teaching performance and teacher beliefs and between teacher knowledge and teacher beliefs. These aspects were overlooked in Cai et al.’s ( 2020 ) model. More importantly, while Clarke and Hollingsworth’s ( 2002 ) Interconnected Model of Professional Growth illustrates the connections between the domain of consequence and the personal domain, as well as between the personal domain and the domain of practice, it does not adequately clarify the complex relationships among the factors within the personal domain (e.g., the interaction between teacher knowledge and teacher beliefs). Therefore, our study also supplements Clarke and Hollingsworth’s ( 2002 ) model by addressing these intricacies. Based on our findings, an updated model of teacher professional learning has been proposed, as shown in Fig. 3 . This expanded model indicates that teacher learning should be an ongoing and sustainable process, with the enhancement of student learning not marking the conclusion of teacher learning, but rather serving as the catalyst for a new phase of learning. In this sense, we advocate for further research to investigate the tangible impacts of teacher professional development programs on students and how those impacts stimulate subsequent cycles of teacher learning.

figure 3

Note: Paths in blue were proposed by Cai et al. ( 2020 ), and paths in yellow are proposed and verified in this study.

Thirdly, in light of the updated model of teacher professional learning (see Fig. 3 ), this study provides insights into the design of teacher professional development programs of IAT. According to Huang et al. ( 2022 ), to date, very few studies have set goals to “develop a comprehensive understanding of effective designs” for STEM (or STEAM) teacher professional development programs (p. 15). To fill this gap, this study proposes a novel and effective five-stage framework for teacher professional development programs of IAT. This framework provides a possible and feasible solution to the challenges of STEAM teacher professional development programs’ design and planning, and teachers’ IAT practice (Boice et al. 2021 ; Herro et al. 2019 ; Jacques et al. 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ).

Specifically, our five-stage framework incorporates at least six important features. Firstly, teacher professional development programs should focus on specific STEAM content. Given the expansive nature of STEAM, teacher professional development programs cannot feasibly encompass all facets of its contents. Consistent with recommendations by Cai et al. ( 2020 ), Desimone et al. ( 2002 ) and Garet et al. ( 2001 ), an effective teacher professional development program should prioritize content focus. Our five-stage framework is centered on IAT. Throughout an 18-month duration, each pre-service teacher is limited to selecting one subcomponent of A&H, such as history, for integration into their subject teaching (i.e., mathematics teaching, technology teaching or science teaching) within one teacher professional development program. Secondly, in response to the appeals that teacher professional development programs should shift from emphasizing teaching and instruction to emphasizing student learning (Cai et al. 2020 ; Calabrese et al. 2024 ; Hwang et al. 2024 ; Marco and Palatnik 2024 ; Örnek and Soylu 2021 ), our framework requires pre-service teachers to pay close attention to the effects of IAT on student learning outcomes, and use students’ feedback as the basis of improving their instruction. Thirdly, prior studies found that teacher education with a preference for theory led to pre-service teachers’ dissatisfaction with the quality of teacher professional development program and hindered the development of pre-service teachers’ teaching skills and teaching beliefs, which also widened the gap between theory and practice (Hennissen et al. 2017 ; Ord and Nuttall 2016 ). In this regard, our five-stage framework connects theory and teaching practice closely. In particular, pre-service teachers can experience the values of IAT not only through theoretical learning but also through diverse teaching practices. Fourthly, we build a teacher community of practice tailored for pre-service teachers. Additionally, we aim to encourage greater participation of in-service teachers in such teacher professional development programs designed for pre-service educators in STEAM teacher education. By engaging in such programs, in-service teachers can offer valuable teaching opportunities for pre-service educators and contribute their insights and experiences from teaching practice. Importantly, pre-service teachers stand to gain from the in-service teachers’ familiarity with textbooks, subject matter expertise, and better understanding of student dynamics. Fifthly, our five-stage framework lasts for an extended period, spanning 18 months. This duration ensures that pre-service teachers engage in a sustained and comprehensive learning journey. Lastly, our framework facilitates a practical understanding of “integration” by offering detailed, sequential instructions for blending two disciplines in teaching. For example, our teacher professional development programs prioritize systematic learning of pedagogical theories and simulated teaching experiences before pre-service teachers embark on real STEAM teaching endeavors. This approach is designed to mitigate the risk of unsuccessful experiences during initial teaching efforts, thereby safeguarding pre-service teachers’ teacher self-efficacy. Considering the complexity of “integration” in interdisciplinary teaching practices, including IAT (Han et al. 2022 ; Ryu et al. 2019 ), we believe detailed stage-by-stage and step-by-step instructions are crucial components of relevant pre-service teacher professional development programs. Notably, this aspect, emphasizing structural instructional guidance, has not been explicitly addressed in prior research (e.g., Cai et al. 2020 ). Figure 4 illustrates the six important features outlined in this study, encompassing both established elements and the novel addition proposed herein, describing an effective teacher professional development program.

figure 4

Note: STEAM refers to science, technology, engineering, arts and humanities, and mathematics.

The successful implementation of this framework is also related to the Chinese teacher education system and cultural background. For instance, the Chinese government has promoted many university-school collaboration initiatives, encouraging in-service teachers to provide guidance and practical opportunities for pre-service teachers (Lu et al. 2019 ). Influenced by Confucian values emphasizing altruism, many experienced in-service teachers in China are eager to assist pre-service teachers, helping them better realize their teaching career aspirations. It is reported that experienced in-service teachers in China show significantly higher motivation than their international peers when mentoring pre-service teachers (Lu et al. 2019 ). Therefore, for the successful implementation of this framework in other countries, it is crucial for universities to forge close collaborative relationships with K-12 schools and actively involve K-12 teachers in pre-service teacher education.

Notably, approximately 5% of our participants dropped out midway as they found that the IAT practice was too challenging or felt overwhelmed by the number of required tasks in the program. Consequently, we are exploring options to potentially simplify this framework in future iterations.

Without minimizing the limitations of this study, it is important to recognize that a qualitative longitudinal case study can be a useful means of shedding light on the development of a pre-service STEAM teacher’s self-efficacy. However, this methodology did not allow for a pre-post or a quasi-experimental design, and the effectiveness of our five-stage framework could not be confirmed quantitatively. In the future, conducting more experimental or design-based studies could further validate the effectiveness of our framework and broaden our findings. Furthermore, future studies should incorporate triangulation methods and utilize multiple data sources to enhance the reliability and validity of the findings. Meanwhile, owing to space limitations, we could only report the changes in Shuitao’s SE-IHT-IP and SE-IHT-SO here, and we could not describe the teacher self-efficacy of other participants regarding IAT. While nearly all of the pre-service teachers experienced an improvement in their teacher self-efficacy concerning IAT upon participating in our teacher professional development programs, the processes of their change were not entirely uniform. We will need to report the specific findings of these variations in the future. Further studies are also needed to explore the factors contributing to these variations. Moreover, following this study, we are implementing more teacher professional development programs of IAT. Future studies can explore the impact of this framework on additional aspects of pre-service STEAM teachers’ professional development. This will help gain a more comprehensive understanding of its effectiveness and potential areas for further improvement. Additionally, our five-stage framework was initially developed and implemented within the Chinese teacher education system. Future research should investigate how this framework can be adapted in other educational systems and cultural contexts.

The impetus behind this study stems from the burgeoning discourse advocating for the integration of A&H disciplines into STEM education on a global scale (e.g., Land 2020 ; Park and Cho 2022 ; Uştu et al. 2021 ; Vaziri and Bradburn 2021 ). Concurrently, there exists a pervasive concern regarding the challenges teachers face in implementing STEAM approaches, particularly in the context of IAT practices (e.g., Boice et al. 2021 ; Herro et al. 2019 ; Jacques et al. 2020 ; Park and Cho 2022 ; Perignat and Katz-Buonincontro 2019 ). To tackle this challenge, we first proposed a five-stage framework designed for teacher professional development programs of IAT. Then, utilizing this innovative framework, we implemented a series of teacher professional development programs. Drawing from the recommendations of Bray-Clark and Bates ( 2003 ), Kelley et al. ( 2020 ) and Zhou et al. ( 2023 ), we have selected teacher self-efficacy as a key metric to examine the effectiveness of the five-stage framework. Through a qualitative longitudinal case study, we scrutinized the influence of a specific teacher professional development program on the self-efficacy of a single pre-service teacher over an 18-month period. Our findings revealed a notable enhancement in teacher self-efficacy across both individual performance and student outcomes. The observed enhancement of the participant’s teacher self-efficacy did not occur swiftly but unfolded gradually through a prolonged, incremental process. Building on our findings, an updated model of teacher learning has been proposed. The updated model illustrates that teacher learning should be viewed as a continuous and sustainable process, wherein teaching performance, teacher beliefs, and teacher knowledge dynamically interact with one another. The updated model also confirms that teacher learning is inherently intertwined with student learning in STEAM education. Furthermore, this study also summarizes effective design features of STEAM teacher professional development programs.

Data availability

The datasets generated and/or analyzed during this study are not publicly available due to general data protection regulations, but are available from the corresponding author on reasonable request.

In their review article, Morris et al. ( 2017 ) equated “teaching self-efficacy” and “teacher self-efficacy” as synonymous concepts. This perspective is also adopted in this study.

An effective teacher professional development program should have specific, focused, and clear content instead of broad and scattered ones. Therefore, each pre-service teacher can only choose to integrate one subcomponent of A&H into their teaching in one teacher professional development program. For instance, Shuitao, a mathematics pre-service teacher, participated in one teacher professional development program focused on integrating history into mathematics teaching. However, she did not explore the integration of other subcomponents of A&H into her teaching during her graduate studies.

In the micro-classrooms, multi-angle, and multi-point high-definition video recorders are set up to record the teaching process.

In micro-teaching, mentors, in-service teachers, and other fellow pre-service teachers take on the roles of students.

In China, teachers can video record one section of a lesson and play them in formal classes. This is a practice known as a micro-course. For instance, in one teacher professional development program of integrating history into mathematics teaching, micro-courses encompass various mathematics concepts, methods, ideas, history-related material and related topics. Typically, teachers use these micro-courses to broaden students’ views, foster inquiry-based learning, and cultivate critical thinking skills. Such initiatives play an important role in improving teaching quality.

Many university-school collaboration initiatives in China focus on pre-service teachers’ practicum experiences (Lu et al. 2019 ). Our teacher professional development program is also supported by many K-12 schools in Shanghai. Personal information in videos is strictly protected.

In China, students are not required to pursue a graduate major that matches their undergraduate major. Most participants in our teacher professional development programs did not pursue undergraduate degrees in education-related fields.

Shuitao’s university reserves Wednesday afternoons for students to engage in various programs or clubs, as classes are not scheduled during this time. Similarly, our teacher professional development program activities are planned for Wednesday afternoons to avoid overlapping with participants’ other coursework commitments.

History is one of the most important components of A&H (Park and Cho 2022 ).

To learn more about genetic approach (i.e., genetic principle), see Jankvist ( 2009 ).

For the assessment process, see Fig. 2 .

Shuitao’s cooperating in-service teacher taught the concept of logarithms in Stage 2. In Stage 4, the teaching objective of her cooperating in-service teacher’s review lesson was to help students review the concept of logarithms to prepare students for the final exam.

Akiba M, Murata A, Howard C, Wilkinson B, Fabrega J (2019) Race to the top and lesson study implementation in Florida: District policy and leadership for teacher professional development. In: Huang R, Takahashi A, daPonte JP (eds) Theory and practice of lesson study in mathematics, pp. 731–754. Springer, Cham. https://doi.org/10.1007/978-3-030-04031-4_35

Alkhabra YA, Ibrahem UM, Alkhabra SA (2023) Augmented reality technology in enhancing learning retention and critical thinking according to STEAM program. Humanit Soc Sci Commun 10:174. https://doi.org/10.1057/s41599-023-01650-w

Article   Google Scholar  

Alwafi EM, Downey C, Kinchin G (2020) Promoting pre-service teachers’ engagement in an online professional learning community: Support from practitioners. J Professional Cap Community 5(2):129–146. https://doi.org/10.1108/JPCC-10-2019-0027

Archibald S, Coggshall JG, Croft A, Goe L (2011) High-quality professional development for all teachers: effectively allocating resources. National Comprehensive Center for Teacher Quality, Washington, DC

Google Scholar  

Bandura A (1977) Self-efficacy: Toward a unifying theory of behavioral change. Psychological Rev 84:191–215. https://doi.org/10.1016/0146-6402(78)90002-4

Article   CAS   Google Scholar  

Bandura A (1986) The explanatory and predictive scope of self-efficacy theory. J Soc Clin Psychol 4:359–373. https://doi.org/10.1521/jscp.1986.4.3.359

Bandura A (1997) Self-efficacy: The exercise of control. Freeman, New York

Basckin C, Strnadová I, Cumming TM (2021) Teacher beliefs about evidence-based practice: A systematic review. Int J Educ Res 106:101727. https://doi.org/10.1016/j.ijer.2020.101727

Bray-Clark N, Bates R (2003) Self-efficacy beliefs and teacher effectiveness: Implications for professional development. Prof Educ 26(1):13–22

Blonder R, Benny N, Jones MG (2014) Teaching self-efficacy of science teachers. In: Evans R, Luft J, Czerniak C, Pea C (eds), The role of science teachers’ beliefs in international classrooms: From teacher actions to student learning, Sense Publishers, Rotterdam, Zuid-Holland, pp. 3–16

Boice KL, Jackson JR, Alemdar M, Rao AE, Grossman S, Usselman M (2021) Supporting teachers on their STEAM journey: A collaborative STEAM teacher training program. Educ Sci 11(3):105. https://doi.org/10.3390/educsci11030105

Cai J (2017) Longitudinally investigating the effect of teacher professional development on instructional practice and student learning: A focus on mathematical problem posing. The University of Delaware, Newark, DE

Cai J, Chen T, Li X, Xu R, Zhang S, Hu Y, Zhang L, Song N (2020) Exploring the impact of a problem-posing workshop on elementary school mathematics teachers’ conceptions on problem posing and lesson design. Int J Educ Res 102:101404. https://doi.org/10.1016/j.ijer.2019.02.004

Calabrese JE, Capraro MM, Viruru R (2024) Semantic structure and problem posing: Preservice teachers’ experience. School Sci Math. https://doi.org/10.1111/ssm.12648

Clarke D, Hollingsworth H (2002) Elaborating a model of teacher professional growth. Teach Teach Educ 18(8):947–967. https://doi.org/10.1016/S0742-051X(02)00053-7

Corden A, Millar J (2007) Time and change: A review of the qualitative longitudinal research literature for social policy. Soc Policy Soc 6(4):583–592. https://doi.org/10.1017/S1474746407003910

Darling-Hammond L, Hyler ME, Gardner M (2017) Effective teacher professional development. Learning Policy Institute, Palo Alto, CA

Book   Google Scholar  

de la Garza A (2021) Internationalizing the curriculum for STEAM (STEM+ Arts and Humanities): From intercultural competence to cultural humility. J Stud Int Educ 25(2):123–135. https://doi.org/10.1177/1028315319888468

Article   MathSciNet   Google Scholar  

Desimone LM, Garet MS (2015) Best practices in teachers’ professional development in the United States. Psychol, Soc, Educ 7(3):252–263

Desimone LM, Porter AC, Garet MS, Yoon KS, Birman BF (2002) Effects of professional development on teachers’ instruction: Results from a three-year longitudinal study. Educ Evaluation Policy Anal 24(2):81–112. https://doi.org/10.3102/01623737024002081

Dicks SG, Northam HL, van Haren FM, Boer DP (2023) The bereavement experiences of families of potential organ donors: a qualitative longitudinal case study illuminating opportunities for family care. Int J Qualitative Stud Health Well-being 18(1):1–24. https://doi.org/10.1080/17482631.2022.2149100

Ding M, Huang R, Pressimone Beckowski C, Li X, Li Y (2024) A review of lesson study in mathematics education from 2015 to 2022: implementation and impact. ZDM Math Educ 56:87–99. https://doi.org/10.1007/s11858-023-01538-8

Duong NH, Nam NH, Trung TT (2024) Factors affecting the implementation of STEAM education among primary school teachers in various countries and Vietnamese educators: comparative analysis. Education 3–13. https://doi.org/10.1080/03004279.2024.2318239

English LD (2016) STEM education K-12: Perspectives on integration. Int J STEM Educ 3:3. https://doi.org/10.1186/s40594-016-0036-1

Garet MS, Porter AC, Desimone L, Birman BF, Yoon KS (2001) What makes professional development effective? Results from a national sample of teachers. Am Educ Res J 38(4):915–945. https://doi.org/10.3102/00028312038004915

Gates AE (2017) Benefits of a STEAM collaboration in Newark, New Jersey: Volcano simulation through a glass-making experience. J Geosci Educ 65(1):4–11. https://doi.org/10.5408/16-188.1

Geng J, Jong MSY, Chai CS (2019) Hong Kong teachers’ self-efficacy and concerns about STEM education. Asia-Pac Educ Researcher 28:35–45. https://doi.org/10.1007/s40299-018-0414-1

Han J, Kelley T, Knowles JG (2022) Building a sustainable model of integrated stem education: investigating secondary school STEM classes after an integrated STEM project. Int J Technol Design Educ. https://doi.org/10.1007/s10798-022-09777-8

Henderson S, Holland J, McGrellis S, Sharpe S, Thomson R (2012) Storying qualitative longitudinal research: Sequence, voice and motif. Qualitative Res 12(1):16–34. https://doi.org/10.1177/1468794111426232

Hennissen P, Beckers H, Moerkerke G (2017) Linking practice to theory in teacher education: A growth in cognitive structures. Teach Teach Educ 63:314–325. https://doi.org/10.1016/j.tate.2017.01.008

Henson RK (2002) From adolescent angst to adulthood: Substantive implications and measurement dilemmas in the development of teacher efficacy research. Educ Psychologist 37:137–150. https://doi.org/10.1207/S15326985EP3703_1

Herro D, Quigley C (2016) Innovating with STEAM in middle school classrooms: remixing education. Horizon 24(3):190–204. https://doi.org/10.1108/OTH-03-2016-0008

Herro D, Quigley C, Cian H (2019) The challenges of STEAM instruction: Lessons from the field. Action Teach Educ 41(2):172–190. https://doi.org/10.1080/01626620.2018.1551159

Huang B, Jong MSY, Tu YF, Hwang GJ, Chai CS, Jiang MYC (2022) Trends and exemplary practices of STEM teacher professional development programs in K-12 contexts: A systematic review of empirical studies. Comput Educ 189:104577. https://doi.org/10.1016/j.compedu.2022.104577

Hunter-Doniger T, Sydow L (2016) A journey from STEM to STEAM: A middle school case study. Clearing House 89(4-5):159–166. https://doi.org/10.1080/00098655.2016.1170461

Hwang S, Xu R, Yao Y, Cai J (2024) Learning to teach through problem posing: A teacher’s journey in a networked teacher−researcher partnership. J Math Behav 73:101120. https://doi.org/10.1016/j.jmathb.2023.101120

Jacques LA, Cian H, Herro DC, Quigley C (2020) The impact of questioning techniques on STEAM instruction. Action Teach Educ 42(3):290–308. https://doi.org/10.1080/01626620.2019.1638848

Jankvist UT (2009) A categorization of the “whys” and “hows” of using history in mathematics education. Educ Stud Math 71:235–261. https://doi.org/10.1007/s10649-008-9174-9

Jiang H, Chugh R, Turnbull D, Wang X, Chen S (2023) Modeling the impact of intrinsic coding interest on STEM career interest: evidence from senior high school students in two large Chinese cities. Educ Inf Technol 28:2639–2659. https://doi.org/10.1007/s10639-022-11277-0

Jiang H, Chugh R, Turnbull D, Wang X, Chen S (2024a) Exploring the effects of technology-related informal mathematics learning activities: A structural equation modeling analysis. Int J Sci Math Educ . Advance online publication. https://doi.org/10.1007/s10763-024-10456-4

Jiang H, Islam AYMA, Gu X, Guan J (2024b) How do thinking styles and STEM attitudes have effects on computational thinking? A structural equation modeling analysis. J Res Sci Teach 61:645–673. https://doi.org/10.1002/tea.21899

Jiang H, Turnbull D, Wang X, Chugh R, Dou Y, Chen S (2022) How do mathematics interest and self-efficacy influence coding interest and self-efficacy? A structural equation modeling analysis. Int J Educ Res 115:102058. https://doi.org/10.1016/j.ijer.2022.102058

Jiang H, Wang K, Wang X, Lei X, Huang Z (2021) Understanding a STEM teacher’s emotions and professional identities: A three-year longitudinal case study. Int J STEM Educ 8:51. https://doi.org/10.1186/s40594-021-00309-9

Kelley TR, Knowles JG, Holland JD, Han J (2020) Increasing high school teachers self-efficacy for integrated STEM instruction through a collaborative community of practice. Int J STEM Educ 7:14. https://doi.org/10.1186/s40594-020-00211-w

Klassen RM, Tze VMC, Betts SM, Gordon KA (2011) Teacher efficacy research 1998–2009: Signs of progress or unfulfilled promise? Educ Psychol Rev 23(1):21–43. https://doi.org/10.1007/s10648-010-9141-8

Land M (2020) The importance of integrating the arts into STEM curriculum. In: Stewart AJ, Mueller MP, Tippins DJ (eds), Converting STEM into STEAM programs, pp. 11–19. Springer. https://doi.org/10.1007/978-3-030-25101-7_2

Lee C, Bobko P (1994) Self-efficacy beliefs: Comparison of five measures. J Appl Psychol 79(3):364–369. https://doi.org/10.1037/0021-9010.79.3.364

Li W, Chiang FK (2019) Preservice teachers’ perceptions of STEAM education and attitudes toward STEAM disciplines and careers in China. In: Sengupta P, Shanahan MC, Kim B, (eds), Critical, transdisciplinary and embodied approaches in STEM education. Springer. https://doi.org/10.1007/978-3-030-29489-2_5

Liu M, Zwart R, Bronkhorst L, Wubbels T (2022) Chinese student teachers’ beliefs and the role of teaching experiences in the development of their beliefs. Teach Teach Educ 109:103525. https://doi.org/10.1016/j.tate.2021.103525

Liu S, Xu X, Stronge J (2018) The influences of teachers’ perceptions of using student achievement data in evaluation and their self-efficacy on job satisfaction: evidence from China. Asia Pac Educ Rev 19:493–509. https://doi.org/10.1007/s12564-018-9552-7

Long T, Zhao G, Yang X, Zhao R, Chen Q (2021) Bridging the belief-action gap in a teachers’ professional learning community on teaching of thinking. Professional Dev Educ 47(5):729–744. https://doi.org/10.1080/19415257.2019.1647872

Lu L, Wang F, Ma Y, Clarke A, Collins J (2019) Exploring Chinese teachers’ commitment to being a cooperating teacher in a university-government-school initiative for rural practicum placements. In: Liu WC, Goh CCM (eds), Teachers’ perceptions, experience and learning, pp. 33–54. Routledge, London

Lyu S, Niu S, Yuan J, Zhan Z (2024) Developing professional capital through technology-enabled university-school-enterprise collaboration: an innovative model for C-STEAM preservice teacher education in the Greater Bay area. Asia Pacific J Innov Entrepreneurship. https://doi.org/10.1108/APJIE-01-2024-0014

Marco N, Palatnik A (2024) From “learning to variate” to “variate for learning”: Teachers learning through collaborative, iterative context-based mathematical problem posing. J Math Behav 73:101119. https://doi.org/10.1016/j.jmathb.2023.101119

Merriam SB (1998) Qualitative research and case study applications in education. Jossey-Bass Publishers, Hoboken, New Jersey

Morris DB, Usher EL (2011) Developing teaching self-efficacy in research institutions: A study of award-winning professors. Contemp Educ Psychol 36(3):232–245. https://doi.org/10.1016/j.cedpsych.2010.10.005

Morris DB, Usher EL, Chen JA (2017) Reconceptualizing the sources of teaching self-efficacy: A critical review of emerging literature. Educ Psychol Rev 29(4):795–833. https://doi.org/10.1007/s10648-016-9378-y

Matusovich HM, Streveler RA, Miller RL (2010) Why do students choose engineering? A qualitative, longitudinal investigation of students’ motivational values. J Eng Educ 99(4):289–303. https://doi.org/10.1002/j.2168-9830.2010.tb01064.x

Näykki P, Kontturi H, Seppänen V, Impiö N, Järvelä S (2021) Teachers as learners–a qualitative exploration of pre-service and in-service teachers’ continuous learning community OpenDigi. J Educ Teach 47(4):495–512. https://doi.org/10.1080/02607476.2021.1904777

OECD (2018) Teaching and learning international survey (TALIS) 2018 conceptual framework. OECD, Paris

Örnek T, Soylu Y (2021) A model design to be used in teaching problem posing to develop problem-posing skills. Think Skills Creativity 41:100905. https://doi.org/10.1016/j.tsc.2021.100905

Ord K, Nuttall J (2016) Bodies of knowledge: The concept of embodiment as an alternative to theory/practice debates in the preparation of teachers. Teach Teach Educ 60:355–362. https://doi.org/10.1016/j.tate.2016.05.019

Ozkan G, Umdu Topsakal U (2021) Investigating the effectiveness of STEAM education on students’ conceptual understanding of force and energy topics. Res Sci Technol Educ 39(4):441–460. https://doi.org/10.1080/02635143.2020.1769586

Park W, Cho H (2022) The interaction of history and STEM learning goals in teacher-developed curriculum materials: opportunities and challenges for STEAM education. Asia Pacific Educ Rev. https://doi.org/10.1007/s12564-022-09741-0

Perignat E, Katz-Buonincontro J (2019) STEAM in practice and research: An integrative literature review. Think Skills Creativity 31:31–43. https://doi.org/10.1016/j.tsc.2018.10.002

Philipp RA (2007) Mathematics teachers’ beliefs and affect. In: Lester Jr FK, (ed), Second handbook of research on mathematics teaching and learning, pp. 257–315. Information Age, Charlotte, NC

Quigley CF, Herro D, Jamil FM (2017) Developing a conceptual model of STEAM teaching practices. Sch Sci Math 117(1–2):1–12. https://doi.org/10.1111/ssm.12201

Ro S, Xiao S, Zhou Z (2022) Starting up STEAM in China: A case study of technology entrepreneurship for STEAM education in China. In: Ray P, Shaw R (eds), Technology entrepreneurship and sustainable development, pp. 115–136. Springer. https://doi.org/10.1007/978-981-19-2053-0_6

Roth KJ, Bintz J, Wickler NI, Hvidsten C, Taylor J, Beardsley PM, Wilson CD (2017) Design principles for effective video-based professional development. Int J STEM Educ 4:31. https://doi.org/10.1186/s40594-017-0091-2

Article   PubMed   PubMed Central   Google Scholar  

Ryu M, Mentzer N, Knobloch N (2019) Preservice teachers’ experiences of STEM integration: Challenges and implications for integrated STEM teacher preparation. Int J Technol Des Educ, 29:493–512. https://doi.org/10.1007/s10798-018-9440-9

Sancar R, Atal D, Deryakulu D (2021) A new framework for teachers’ professional development. Teach Teach Educ 101:103305. https://doi.org/10.1016/j.tate.2021.103305

Sanz-Camarero R, Ortiz-Revilla J, Greca IM (2023) The place of the arts within integrated education. Arts Educ Policy Rev. https://doi.org/10.1080/10632913.2023.2260917

Shirani F, Henwood K (2011) Continuity and change in a qualitative longitudinal study of fatherhood: relevance without responsibility. Int J Soc Res Methodol 14(1):17–29. https://doi.org/10.1080/13645571003690876

Smith CE, Paré JN (2016) Exploring Klein bottles through pottery: A STEAM investigation. Math Teach 110(3):208–214. https://doi.org/10.5951/mathteacher.110.3.0208

Soprano K, Yang L (2013) Inquiring into my science teaching through action research: A case study on one pre-service teacher’s inquiry-based science teaching and self-efficacy. Int J Sci Math Educ 11(6):1351–1368. https://doi.org/10.1007/s10763-012-9380-x

Stake RE (1995) The art of case study research. Sage Publication, Thousand Oaks, California

Stohlmann M, Moore T, Roehrig G (2012) Considerations for teaching integrated STEM education. J Pre Coll Eng Educ Res 2(1):28–34. https://doi.org/10.5703/1288284314653

Strauss AL, Corbin JM (1990) Basics of qualitative research. Sage Publications, Thousand Oaks, California

Taimalu M, Luik P (2019) The impact of beliefs and knowledge on the integration of technology among teacher educators: A path analysis. Teach Teach Educ 79:101–110. https://doi.org/10.1016/j.tate.2018.12.012

Takahashi A, McDougal T (2016) Collaborative lesson research: Maximizing the impact of lesson study. ZDM Math Educ 48:513–526. https://doi.org/10.1007/s11858-015-0752-x

Thompson AG (1992) Teachers’ beliefs and conceptions: A synthesis of the research. In: Grouws DA (ed), Handbook of research on mathematics teaching and learning, pp. 127–146. Macmillan, New York

Tschannen-Moran M, Woolfolk Hoy A, Hoy WK (1998) Teacher efficacy: Its meaning and measure. Rev Educ Res 68:202–248. https://doi.org/10.3102/00346543068002202

Unfried A, Rachmatullah A, Alexander A, Wiebe E (2022) An alternative to STEBI-A: validation of the T-STEM science scale. Int J STEM Educ 9:24. https://doi.org/10.1186/s40594-022-00339-x

Uştu H, Saito T, Mentiş Taş A (2021) Integration of art into STEM education at primary schools: an action research study with primary school teachers. Syst Pract Action Res. https://doi.org/10.1007/s11213-021-09570-z

Vaziri H, Bradburn NM (2021) Flourishing effects of integrating the arts and humanities in STEM Education: A review of past studies and an agenda for future research. In: Tay L, Pawelski JO (eds), The Oxford handbook of the positive humanities, pp. 71–82. Oxford University Press, Oxford

Wang K, Wang X, Li Y, Rugh MS (2018) A framework for integrating the history of mathematics into teaching in Shanghai. Educ Stud Math 98:135–155. https://doi.org/10.1007/s10649-018-9811-x

Wang Z, Jiang H, Jin W, Jiang J, Liu J, Guan J, Liu Y, Bin E (2024) Examining the antecedents of novice stem teachers’ job satisfaction: The roles of personality traits, perceived social support, and work engagement. Behav Sci 14(3):214. https://doi.org/10.3390/bs14030214

Wenger E, McDermott R, Snyder WM (2002) Cultivating communities of practice. Harvard Business School Press, Boston, MA

Wong JT, Bui NN, Fields DT, Hughes BS (2022) A learning experience design approach to online professional development for teaching science through the arts: Evaluation of teacher content knowledge, self-efficacy and STEAM perceptions. J Sci Teacher Educ. https://doi.org/10.1080/1046560X.2022.2112552

Wyatt M (2015) Using qualitative research methods to assess the degree of fit between teachers’ reported self-efficacy beliefs and their practical knowledge during teacher education. Aust J Teach Educ 40(1):117–145

Xenofontos C, Andrews P (2020) The discursive construction of mathematics teacher self-efficacy. Educ Stud Math 105(2):261–283. https://doi.org/10.1007/s10649-020-09990-z

Yin R (2003) Case study research: Design and methods. Sage Publications, Thousand Oaks, California

Zakariya YF (2020) Effects of school climate and teacher self-efficacy on job satisfaction of mostly STEM teachers: a structural multigroup invariance approach. Int J STEM Educ 7:10. https://doi.org/10.1186/s40594-020-00209-4

Zee M, de Jong PF, Koomen HM (2017) From externalizing student behavior to student-specific teacher self-efficacy: The role of teacher-perceived conflict and closeness in the student–teacher relationship. Contemp Educ Psychol 51:37–50. https://doi.org/10.1016/j.cedpsych.2017.06.009

Zee M, Koomen HM (2016) Teacher self-efficacy and its effects on classroom processes, student academic adjustment, and teacher well-being: A synthesis of 40 years of research. Rev Educ Res 86(4):981–1015. https://doi.org/10.3102/0034654315626801

Zhan Z, Li Y, Mei H, Lyu S (2023) Key competencies acquired from STEM education: gender-differentiated parental expectations. Humanit Soc Sci Commun 10:464. https://doi.org/10.1057/s41599-023-01946-x

Zhan Z, Niu S (2023) Subject integration and theme evolution of STEM education in K-12 and higher education research. Humanit Soc Sci Commun 10:781. https://doi.org/10.1057/s41599-023-02303-8

Zhong B, Liu X, Li X (2024) Effects of reverse engineering pedagogy on students’ learning performance in STEM education: The bridge-design project as an example. Heliyon 10(2):e24278. https://doi.org/10.1016/j.heliyon.2024.e24278

Zhong B, Liu X, Zhan Z, Ke Q, Wang F (2022) What should a Chinese top-level design in STEM Education look like? Humanit Soc Sci Commun 9:261. https://doi.org/10.1057/s41599-022-01279-1

Zhou B (2021) Cultivation of Ed. M. to bring up “famous subject teachers”: practical exploration and policy suggestions. Teach Educ Res 33(5):19–26. https://doi.org/10.13445/j.cnki.t.e.r.2021.05.003

Zhou X, Shu L, Xu Z, Padrón Y (2023) The effect of professional development on in-service STEM teachers’ self-efficacy: a meta-analysis of experimental studies. Int J STEM Educ 10:37. https://doi.org/10.1186/s40594-023-00422-x

Download references

Acknowledgements

This research is funded by 2021 National Natural Science Foundation of China (Grant No.62177042), 2024 Zhejiang Provincial Natural Science Foundation of China (Grant No. Y24F020039), and 2024 Zhejiang Educational Science Planning Project (Grant No. 2024SCG247).

Author information

Xuesong Zhai

Present address: School of Education, City University of Macau, Macau, China

Authors and Affiliations

College of Education, Zhejiang University, Hangzhou, China

Haozhe Jiang & Xuesong Zhai

School of Engineering and Technology, CML‑NET & CREATE Research Centres, Central Queensland University, North Rockhampton, QLD, Australia

Ritesh Chugh

Hangzhou International Urbanology Research Center & Zhejiang Urban Governance Studies Center, Hangzhou, China

Department of Teacher Education, Nicholls State University, Thibodaux, LA, USA

School of Mathematical Sciences, East China Normal University, Shanghai, China

Xiaoqin Wang

College of Teacher Education, Faculty of Education, East China Normal University, Shanghai, China

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization - Haozhe Jiang; methodology - Haozhe Jiang; software - Xuesong Zhai; formal analysis - Haozhe Jiang & Ke Wang; investigation - Haozhe Jiang; resources - Haozhe Jiang, Xuesong Zhai & Xiaoqin Wang; data curation - Haozhe Jiang & Ke Wang; writing—original draft preparation - Haozhe Jiang & Ritesh Chugh; writing—review and editing - Ritesh Chugh & Ke Wang; visualization - Haozhe Jiang, Ke Wang & Xiaoqin Wang; supervision - Xuesong Zhai & Xiaoqin Wang; project administration - Xuesong Zhai & Xiaoqin Wang; and funding acquisition - Xuesong Zhai & Xiaoqin Wang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xuesong Zhai .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This research was approved by the Committee for Human Research of East China Normal University (Number: HR 347-2022). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Informed consent

Written informed consent was obtained from all participants in this study before data collection.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Jiang, H., Chugh, R., Zhai, X. et al. Longitudinal analysis of teacher self-efficacy evolution during a STEAM professional development program: a qualitative case study. Humanit Soc Sci Commun 11 , 1162 (2024). https://doi.org/10.1057/s41599-024-03655-5

Download citation

Received : 27 April 2024

Accepted : 12 August 2024

Published : 08 September 2024

DOI : https://doi.org/10.1057/s41599-024-03655-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

technology evolution case study

technology evolution case study

How PwC Unlocked End-to-End Supply Chain Value for Halcor

technology evolution case study

Operating on a global scale, PwC is recognised as one of the world’s Big Four consulting firms, specialising in audit and assurance, tax and advisory. 

It’s in the latter realm that PwC Greece – part of the organisation’s global network – was primed and ready to carry out end-to-end supply chain diagnostics for Halcor, the copper and alloys extrusion division of ElvalHalcor.

Having outlined areas in which Halcor’s supply chain had potential to transform, PwC has continued to work on a variety of different projects and engagements.

Explaining the partnership’s evolution, Mata Chatzicharalampous, Director Supply Chain at PwC, says: “It started with diagnostics for a problem that Halcor couldn’t quantify. They asked us to provide some insights, data and expertise in certain domains across the supply chain spectrum. 

“Every time we touched on a specific area, there was another step to take. We’ve covered the entire supply chain: planning, production, shop floor, proliferation of the portfolio, uniqueness of the market – and there’s more to come.”

Why select PwC?

PwC competed with numerous other consulting firms in Greece to win Halcor’s business. 

What enabled the company to stand out was its deep expertise and wide range of capabilities within the supply chain domain, while offering a competitive price. 

“One concern Halcor had is that consulting firms have a tendency to strategise without going into detail,” explains Athanasios Spanos, Partner at PwC specialising in supply chain.

“The synthesis within our team meant we could be very pragmatic in our approach, offering tangible benefits with a clear roadmap as to how to achieve and unlock value.”

What also stood out from the get-go was PwC Greece’s use of data analytics, with Athanasios taking responsibility for the firm’s data analytics and AI hub. 

“It’s something that, as a supply chain capability, differentiates us – especially in Greece,” continues Eleni Papandreou, Project Manager for Supply Chain at PwC. “This was another enabler for us to deliver a high-quality service.”

She adds: “Our approach was very hands-on but holistic. We studied Halcor’s supply chain end to end, from production and logistics all the way through to commercial and customer-service departments, taking all parameters into consideration.”

Youtube Placeholder

Host of benefits for Halcor

PwC Greece’s approach when starting a supply chain consultancy project is to identify quick wins that can be implemented while more strategic recommendations are being designed. 

Among a host of immediate benefits being enjoyed by Halcor is the fostering of a continuous improvement culture, a reduction in dispatching lead times and increased readiness for future projects thanks to value stream mapping. 

In the long-term, PwC is providing recommendations aimed at enhancing operational efficiencies, such as fine-tuning changeovers within the plant operation to increase machine hours. 

“We covered the whole spectrum, from strategic thinking as to where you want to go with your supply chain and what you will gain, all the way to a tactical level – how to achieve those benefits on a day-to-day basis,” says Athanasios. 

Looking ahead, Mata concludes: “Next, we want to capitalise on our work with Halcor to make sure we see long-term value from our partnership. In that sense we will come together as one team and work towards the same goal.”

Read the full report HERE.

**************

Make sure you check out the latest edition of Technology Magazine and also sign up to our global conference series - Tech & AI LIVE 2024

Technology Magazine is a BizClik brand ​​​​​​​

Read full article here

  • How PwC Unlocked End-to-End Supply Chain Value for Halcor Vendor & Supplier Management
  • Brittany Miller

Featured Articles

Arsenal kicks off digital revolution with ntt data.

Premier League giant Arsenal FC is embracing cutting-edge technology thanks to a partnership with NTT DATA to revolutionise supporter experiences worldwide …

1 Month to Go – Tech & AI LIVE: Gen AI 0224

One month to go until Tech & AI LIVE returns with its virtual event focused on the latest trends, innovations, strategies & more surrounding generative AI …

Oracle and Google Cloud Unite in Multicloud Alliance

Oracle and Google Cloud have announced the general availability of Oracle Database@Google Cloud in a move to help customers simplify cloud migration …

Salesforce Unveils Industry-Specific AI to Boost Adoption

Intuit: how ai-driven personalisation is reshaping ecommerce, harnessing ai in education to transform student experience.

  • How AI is Boosting Big Tech Operations in India
  • How Project Silica Could Revolutionise Global Data Storage
  • SAS: Balancing Cloud & AI Innovation and Sustainability
  • How Disney Uses Digital Twin Technology with Hitachi Vantara
  • Data Masters Surge Ahead: Navigating the Gen AI Revolution

University of Arizona Logo

Understanding patterns of technology evolution: An ecosystem perspective

Research output : Chapter in Book/Report/Conference proceeding › Conference contribution

Understanding the dynamics of technology evolution - whether for the purposes of forecasting new product or technology infrastructure developments, or identifying the basis for future digital convergence in the global market - is a key challenge for innovators, senior managers, and policymakers. This research provides an overview of a new ecosystem model of technology evolution, the purpose of which is to structure these kinds of assessments and suggest reusable analysis structures to ensure that total environment of technological innovation is considered. We use examples from the end-user computing context and the electronics industry to identify five patterns of technology evolution that commonly occur. We also develop a state diagram-based approach to demonstrate the cyclical nature of technology evolution. Finally, we illustrate our findings using a case study on digital music technologies.

Original languageEnglish (US)
Title of host publicationProceedings of the 39th Annual Hawaii International Conference on System Sciences, HICSS'06
Pages189a
DOIs
StatePublished - 2006
Externally publishedYes
Event - Kauai, HI, United States
Duration: Jan 4 2006Jan 7 2006

Publication series

NameProceedings of the Annual Hawaii International Conference on System Sciences
Volume8
ISSN (Print)1530-1605
Other39th Annual Hawaii International Conference on System Sciences, HICSS'06
Country/TerritoryUnited States
CityKauai, HI
Period1/4/061/7/06
  • Business technologies
  • Digital music industry
  • Ecosystem model
  • Evolutionary patterns
  • Management of technology
  • Technology ecosystem
  • Technology evolution

ASJC Scopus subject areas

  • General Engineering

Access to Document

  • 10.1109/HICSS.2006.515

Other files and links

  • Link to publication in Scopus

Fingerprint

  • Illustrates Engineering 100%
  • End-Users Engineering 100%
  • Infrastructure Engineering 100%
  • Global Market Engineering 100%
  • Policymakers Engineering 100%
  • Electronics Industry Engineering 100%
  • Technological Innovation Engineering 100%
  • Senior Manager Engineering 100%

T1 - Understanding patterns of technology evolution

T2 - 39th Annual Hawaii International Conference on System Sciences, HICSS'06

AU - Adomavicius, Gediminas

AU - Bockstedt, Jesse

AU - Gupta, Alok

AU - Kauffman, Robert J.

N2 - Understanding the dynamics of technology evolution - whether for the purposes of forecasting new product or technology infrastructure developments, or identifying the basis for future digital convergence in the global market - is a key challenge for innovators, senior managers, and policymakers. This research provides an overview of a new ecosystem model of technology evolution, the purpose of which is to structure these kinds of assessments and suggest reusable analysis structures to ensure that total environment of technological innovation is considered. We use examples from the end-user computing context and the electronics industry to identify five patterns of technology evolution that commonly occur. We also develop a state diagram-based approach to demonstrate the cyclical nature of technology evolution. Finally, we illustrate our findings using a case study on digital music technologies.

AB - Understanding the dynamics of technology evolution - whether for the purposes of forecasting new product or technology infrastructure developments, or identifying the basis for future digital convergence in the global market - is a key challenge for innovators, senior managers, and policymakers. This research provides an overview of a new ecosystem model of technology evolution, the purpose of which is to structure these kinds of assessments and suggest reusable analysis structures to ensure that total environment of technological innovation is considered. We use examples from the end-user computing context and the electronics industry to identify five patterns of technology evolution that commonly occur. We also develop a state diagram-based approach to demonstrate the cyclical nature of technology evolution. Finally, we illustrate our findings using a case study on digital music technologies.

KW - Business technologies

KW - Digital music industry

KW - Ecosystem model

KW - Evolutionary patterns

KW - Management of technology

KW - Technology ecosystem

KW - Technology evolution

UR - http://www.scopus.com/inward/record.url?scp=33749662924&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749662924&partnerID=8YFLogxK

U2 - 10.1109/HICSS.2006.515

DO - 10.1109/HICSS.2006.515

M3 - Conference contribution

AN - SCOPUS:33749662924

SN - 0769525075

SN - 9780769525075

T3 - Proceedings of the Annual Hawaii International Conference on System Sciences

BT - Proceedings of the 39th Annual Hawaii International Conference on System Sciences, HICSS'06

Y2 - 4 January 2006 through 7 January 2006

Evolving the framework of cancer theory

Study explores challenges and opportunities for cancer research

Illustration of a collage of sketches including one of cancer molecules and one of geometric shapes on top of a dark green background.

A recent review by Carlo Maley, a researcher at Arizona State University, and Lucie Laplane from the University of Paris Pantheon-Sorbonne critiques the dominant theory of cancer evolution. The authors discuss both the practical and theoretical limitations of the clonal model of cancer evolution and suggest ways to enhance its relevance and accuracy. Graphic by Jason Drees

Cancer cells are driven by the same imperative guiding all living things: to grow, survive and reproduce. Although cancer’s evolutionary underpinnings have been recognized since the 1950s, clinicians have been slow to apply the lessons of evolution to the fight against this deadly disease, which remains the second-leading cause of death, claiming 9.7 million lives worldwide in 2022 .

Carlo Maley in a lab wearing a white coat.

A new review by Arizona State University researcher Carlo Maley and Lucie Laplane from the University of Paris Pantheon-Sorbonne examines the prevailing theory of cancer evolution. The authors highlight both practical and theoretical limitations of the clonal model of cancer evolution and propose areas for improving the model’s relevance and accuracy.

The study suggests that the model could be improved by acknowledging that cancer cells inherit not only genetic mutations but also other traits that allow them to rapidly adapt to their environment — even without genetic alterations. Cancer cells are highly responsive to their surrounding environment, which can promote or suppress their growth. Further, cancer evolution often follows complex dynamics, leading to tangled and unpredictable growth patterns.

Cancer biologists have traditionally defined a "clone" as a group of cells descending from a single ancestor cell and sharing the same genetic makeup. But cancer cells mutate so fast that no two cells have the same genetic makeup. The study proposes replacing the concept of a clone with a focus on the cell genealogies that record the history and define the structure of the cells in a tumor.

The value of an effective model lies in its ability to explain how and why cancers evolve and respond to therapy. By refining the clonal evolution model, the study paves the way for more effective cancer therapies that consider the full complexity of cancer cell evolution.

The research appears in the current issue of the journal Nature Reviews Cancer.

Portrait of Lucie Leplane.

“Evolution is such a powerful idea that when we apply it to the cells in our bodies, it explains how we get cancer and why it is so hard to cure. But, like everything in the real world, it’s complicated,” Maley says. “We set out to address the complications that people have pointed out and show how they can be integrated into our theory of how cancer works.”

Maley is a researcher in the Biodesign Center for Biocomputing, Security and Society , director of the Arizona Cancer Evolution Center and professor with ASU’s School of Life Sciences .

His collaborator, Lucie Leplane, visited ASU for the research project, thanks to the generous support of the Center for Biology and Society and a grant from the McDonnell Foundation.

Cancer beyond mutation

The clonal evolution theory of cancer suggests that cancer begins from a single cell that undergoes mutations, enabling it to grow and divide faster than normal cells. As this cell divides, some of its offspring may gain additional mutations that provide even greater advantages in survival and growth. Over time, this process leads to a population of cancer cells that are very diverse but driven by those that are most fit for survival and reproduce in their environment. This theory helps explain why cancers can be so challenging to treat — they continuously evolve, making them adaptable to various therapies and environments.

The latest research in cancer

Cancer

From diagnosis and treatment to prevention, the Biodesign Institute takes a comprehensive approach to cancer research. Learn more .

To address these issues, the researchers explore the limits of the current evolutionary cancer theory. A key challenge is expanding this theory to encompass all the ways cancer evolves, including inheritance of more than just genes when cells divide and genetic material exchange among cells, as well as developing better methods to identify and track cancer cell variations. 

Traditionally, it has been assumed that the DNA of cancer cells largely determines their behavior and progression. This includes how they grow, spread and respond to treatments. The study challenges this view, highlighting other factors such as the influence of a cell's surrounding environment and epigenetic changes — chemical modifications that alter gene expression without changing the genetic sequence.

Another assumption is that the development of cancer can be traced like a tree, from one main ancestor cell branching out into all the cancer cells found in a tumor. That model implies a neat, predictable pattern of cancer growth. However, the study suggests this is not always the case. Cancer cells can merge (through cell fusion) or acquire traits from other cells. This could make the growth pattern of cancers more complex, resembling more of a network with multiple influences and paths.

Further, while clonal evolution was initially considered a continuous, gradual process, it has been shown to occur during stasis, gradual change, or in sudden, punctuated bursts.

An evolving portrait of cancer

The clonal evolution model has already brought about a significant shift in how we view cancer, highlighting the disease’s profoundly dynamic nature. This shift in perspective has helped discredit the search for a single "magic bullet" treatment and prompted changes in both research and treatment approaches.

Although the clinical impact of evolutionary theory has been limited so far, a range of evolutionary strategies for treatment has shown encouraging results, such as adaptive therapy , which can lead to dramatic improvements in time to progression and overall survival.

Understanding the multifaceted nature of cancer evolution is critical for developing more effective treatments. The study suggests that targeting not only genetic mutations but also epigenetic changes and interactions with the surrounding cell environment could improve treatment outcomes.

By refining the clonal evolution model, the study paves the way for more effective cancer therapies that consider the full complexity of cancer cell evolution.

More Science and technology

A graphic announcing the "cool" products of TOMNET with people working in the foreground and computer screens with data in the background.

ASU travel behavior research center provides insights on the future of transportation

The Center for Teaching Old Models New Tricks, known as TOMNET, has spent the past seven years conducting research and developing tools to improve transportation systems planning methods and data.As…

Illustration of a line up with four black silhouettes and one maroon silhouette

When suspect lineups go wrong

It is one of the most famous cases of eyewitness misidentification.In 1984, Jennifer Thompson was raped at knifepoint by a man who broke into her apartment. During the assault, she tried to make a…

Adam Doupé and the Shellphish team cheer from their seats in the Las Vegas Convention Center.

Jackpot! ASU hackers win $2M at Vegas AI competition

This August, a motley assortment of approximately 30,000 attendees, including some of the best cybersecurity professionals, expert programmers and officials from top government agencies packed the…

Advertisement

Advertisement

A novel technology for unraveling the spatial risk of Natech disasters based on machine learning and GIS: a case study from the city of Changzhou, China

  • Published: 09 September 2024

Cite this article

technology evolution case study

  • Weiyi Ju 1 &
  • Zhixiang Xing 1  

In recent years, technical accidents caused by natural disasters have caused huge losses. The purpose of this study is to develop a mathematical model to predict and prevent the risk of such accidents. The model applied machine learning to predict the risk of such accidents in the hope of providing risk visualization results for local governments. The expected impact of this research will benefit residents and public welfare organizations. In this study, Random Forest (RF), the K-Nearest Neighbor (KNN), the Back Propagation (BP) neural network, Adaptive Boosting (AdaBoost), Gradient Boosting Decision Tree (GBDT), and the Extreme Gradient Boosting (XGBoost) was applied to predict the risk value. At the same time, this study applied ArcGIS to spatially interpolate the risk prediction values to generate the risk map. The results demonstrated that the RF algorithm achieved the highest classification performance among the five algorithms tested. Specifically, the RF algorithm attained an accuracy of 0.874, an F1-Score of 0.887, and an Area Under the Curve (AUC) of 0.984. The three townships with the highest risk were Xueyan, Daibu, and Shanghuang, with the proportion of risk area accounting for 48.39%, 44.34% and 79.64% respectively. This study provides a reference for the local government, which can take targeted measures to prevent and control. For disaster managers, the risks for those high-risk areas should receive sufficient attention. The government should establish a real-time updated disaster database to monitor the development of the situation. Moreover, the development and acquisition of historical disaster data is worthy of encouragement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

technology evolution case study

Explore related subjects

  • Artificial Intelligence

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

Random forest

The k-nearest neighbor

The back propagation neural network

Adaptive boosting

Gradient boosting decision tree

The extreme gradient boosting

The area under curve

The peak ground acceleration

True positive

False positive

True negative

False negative

The receiver operating characteristic

The inverse distance weighted

The natural breaks method

Abraham K, Abdelwahab M, Abo-Zahhad M (2024) Classification and detection of natural disasters using machine learning and deep learning techniques: a review. Earth Sci Inf 17(2):869–891

Article   Google Scholar  

Agboola G, Beni LH, Elbayoumi T, Thompson G (2024) Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecol Inf 81:102583

Ao YL, Li HQ, Zhu LP, Ali S, Yang ZG (2019) Identifying channel sand-body from multiple seismic attributes with an improved random forest algorithm. J Petrol Sci Eng 173:781–792

Article   CAS   Google Scholar  

Asaly S, Gottlieb LA, Inbar N, Reuveni Y (2022) Using support vector machine (SVM) with GPS ionospheric TEC estimations to potentially predict earthquake events. Remote Sens (Basel) 14(12):2822

Aydin HE, Iban MC (2023) Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with Shapley Additive explanations. Nat Hazards 116(3):2957–2991

Banerjee P (2022) MODIS-FIRMS and ground-truthing-based wildfire likelihood mapping of Sikkim Himalaya using machine learning algorithms. Nat Hazards 110(2):899–935

Cai M, Marson SM (2021) A regional Natech risk assessment based on a Natech-prone facility network for dependent events. Nat Hazards 107(3):2155–2174

Cavlak O, Ozdemir O, Erkan BB (2018) Preferences for earthquake risk mitigation mechanisms: experimental evidence. Nat Hazards Rev 19(3):04018007

Crawford MC, Bukvic A, Rijal S, Gohlke JM (2023) The exposure of vulnerable coastal populations to flood-induced natech events in Hampton Roads, Virginia. Nat Hazards 119(3):1633–1663

Erden T, Coşkun MZ (2010) Multi-criteria site selection for fire services: the interaction with analytic hierarchy process and geographic information systems. Nat Hazard Earth Sys 10(10):2127–2134

Fekete A, Neuner S (2023) Spatial industrial accident exposure and social vulnerability assessment of hazardous material sites, chemical parks, and nuclear power plants in Germany. Int J Disast Risk Sc 14(2):223–236

Gao Y, Cao G, Ni P, Tang Y, Liu Y, Bi J, Ma Z (2021) Natural hazard triggered technological risks in the Yangtze River Economic Belt, China. Sci Rep 11(1):13842

Gao Y, Cao G, Hu L, Bi J, Ma Z (2022) Spatially resolved risk assessment of Natech in the Yangtze River Economic Belt, China. Process Saf Environ 159:1039–1052

Gao Y, Hu L, Xie Y, Bi J, Ma Z (2023) Understanding the patterns and characteristics of Natech events in China. J Loss Prev Process Ind 84:105102

Girgin S, Krausmann E (2013) RAPID-N: Rapid Natech risk assessment and mapping framework. J Loss Prev Process Ind 26(6):949–960

Hashemi M, Alesheikh AA (2013) GIS: agent-based modeling and evaluation of an earthquake-stricken area with a case study in Tehran, Iran. Nat Hazards 69(3):1895–1917

Hassan EM, Mahmoud HN, Ellingwood BR (2020) Resilience of school systems following severe earthquakes. Earths Future 8(10):e2020EF001518. https://doi.org/10.1029/2020EF001518

Horiguchi T, Yoshii H, Mizuno S, Shiraishi H (2016) Decline in intertidal biota after the 2011 Great East Japan Earthquake and Tsunami and the Fukushima nuclear disaster: field observations. Sci Rep 6:20416

Hosseini KA, Izadkhah YO (2020) From earthquake and safety school drills to safe school-resilient communities: a continuous attempt for promoting community-based disaster risk management in Iran. Int J Disast Risk re 45:101512

Google Scholar  

Ju WY, Wu J, Kang QC, Jiang JC, Xing ZX (2022a) Fire risk assessment of subway stations based on combination weighting of game theory and TOPSIS method. Sustainability 14:7275

Ju WY, Wu J, Kang QC, Jiang JC, Xing ZX (2022b) A method based on the theories of game and extension cloud for risk assessment of construction safety: a case study considering disaster-inducing factors in the construction process. J Building Eng 62:105317

Ju WY, Wu J, Cao HZ, Kang QC, Ali SSS, Xing ZX (2023a) Flood risk assessment of subway stations based on projection pursuit model optimized by whale algorithm: a case study of Changzhou, China. Int J Disast Risk re 98:104068

Ju WY, Xing ZX, Wu J, Kang QC (2023b) Evaluation of forest fire risk based on multicriteria decision analysis techniques for Changzhou, China. Int J Disast Risk re 98:104082

Ju WY, Xing ZX, Shinwari M (2024) Safety risk assessment of sustainable construction based on projection pursuit model optimized by multi-intelligent algorithm: a case study of new chemical projects. Environ Sci Pollut R 31(4):5989–6009

Kabir G, Suda H, Cruz AM, Giraldo FM, Tesfamariam S (2019) Earthquake-related Natech risk assessment using a bayesian belief network model. Struct Infrastruct E 15:725–739

Kayet N, Chakrabarty A, Pathak K, Sahoo S, Dutta T, Hatai BK (2020) Comparative analysis of multi-criteria probabilistic FR and AHP models for forest fire risk (FFR) mapping in Melghat Tiger Reserve (MTR) forest. J Res (Harbin) 31:565–579

Krausmann E, Girgin S, Necci A (2019) Natural hazard impacts on industry and critical infrastructure: Natech risk drivers and risk management performance indicators. Int J Disast Risk re 40:101163

Kumasaki M, King M (2020) Three cases in Japan occurred by natural hazards and lessons for Natech disaster management. Int J Disast Risk re 51:101855

Lang C, Gao M, Wu G, Wu X (2019) The concentration of population and GDP in high earthquake risk regions in China: temporal–spatial distributions and regional comparisons from 2000 to 2010. Pure Appl Geophys 176:4161–4175

Li J, Wang Y, Chen H, Lin L (2014) Risk assessment study of fire following an earthquake: a case study of petrochemical enterprises in China. Nat Hazard Earth Sys 14:891–900

Li Y, Wang Y, Zhang Y, Zhou X, Sun H (2021) Impact of economic development levels on the mortality rates of Asian earthquakes. Int J Disast Risk re 62:102409

Li Y, Wang S, Zhang X, Lv M (2022) Estimation and reliability research of post-earthquake traffic travel time distribution based on floating car data. Appl Sci 12:9129

Lin Y, Deng H, Du K, Rafay L, Zhang G, Li J, Chen C, Wu C, Lin H, Yu W, Fan H, Ge Y (2017) Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China. Sci Total Environ 596:274–283

Luo X, Tzioutzios D, Tong Z, Cruz AM (2022) Find-Natech: a GIS-based spatial management system for natech events. Int J Disast Risk re 76:103028

Malik M, Cruickshank H (2016) Disaster management in Pakistan. P I Civil Eng-Munic 169:85–99

Misuri A, Landucci G, Cozzani V (2020) Assessment of safety barrier performance in Natech scenarios. Reliab Eng Syst Saf 193:106597

Nguyen HD (2022) GIS-based hybrid machine learning for flood susceptibility prediction in the Nhat Le-Kien Giang watershed, Vietnam. Earth Sci Inf 15(4):2369–2386

Nishino T, Miyashita T, Mori N (2024) Methodology for probabilistic tsunami-triggered oil spill fire hazard assessment based on Natech cascading disaster modeling. Reliab Eng Syst Saf 242:109789

Norallahi M, Kaboli HS (2021) Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB. Nat Hazards 106(1):119–137

Nuthammachot N, Stratoulias D (2021) Multi-criteria decision analysis for forest fire risk assessment by coupling AHP and GIS: method and case study. Environ Dev Sustain 23:17443–17458

Ozsagir M, Erden C, Bol E, Sert S, Özocak A (2022) Machine learning approaches for prediction of fine-grained soils liquefaction. Comput Geotech 152:105014

Panico A, Basco A, Lanzano G, Pirozzi F, de Magistris FS, Fabbrocino G, Salzano E (2017) Evaluating the structural priorities for the seismic vulnerability of civilian and industrial wastewater treatment plants. Saf Sci 97:51–57

Pyakurel A, Dahal BK, Gautam D (2023) Does machine learning adequately predict earthquake induced landslides. Soil Dyn Earthq Eng 171:107994

Rouet-Leduc B, Hulbert C, Lubbers N, Barros K, Humphreys CJ, Johnson PA (2017) Machine learning predicts laboratory earthquakes. Geophys Res Lett 44:9276–9282

Showalter PS, Myers MF (1994) Natural disasters in the United States as release agents of oil, chemicals, or radiological materials between 1980-1989: analysis and recommendations. Risk Anal 14:169–182

Suarez-Paba MC, Cruz AM, Muñoz F (2020) Emerging Natech risk management in Colombia: a survey of governmental organizations. Saf Sci 128:104777

Synolakis C, Kânoğlu U (2015) The Fukushima accident was preventable. Philos T R Soc A 373:20140379

Wang X, Nie W, Xie W, Zhang Y (2024) Incremental learning-random forest model-based landslide susceptibility analysis: a case of Ganzhou City, China. Earth Sci Inf 17(2):1645–1661

Wu J, Li N, Hallegatte S, Shi P, Hu A, Liu X (2012) Regional indirect economic impact evaluation of the 2008 Wenchuan Earthquake. Environ Earth Sci 65:161–172

Wu J, Saito M, Endo N (2022a) Cluster analysis and discriminant analysis for determining post-earthquake road recovery patterns. Sensors 22:2213

Wu Y, Xu Z, Liang C, Song R (2022b) Post-earthquake traffic simulation considering road traversability. Sustainability 14:11145

Yang Y, Chen G, Reniers G, Goerlandt F (2020) A bibliometric analysis of process safety research in China: understanding safety research progress as a basis for making China’s chemical industry more sustainable. J Clean Prod 263:121433

Yepes-Estrada C, Calderon A, Costa C, Crowley H, Dabbeek J, Hoyos MC, Martins L, Paul N, Rao A, Silva V (2023) Global building exposure model for earthquake risk assessment. Earthq Spectra 39:2212–2235

Yonson R, Noy I, Ivory VC, Bowie C (2020) Earthquake-induced transportation disruption and economic performance: the experience of Christchurch, New Zealand. J Transp Geogr 88:102823

Zhu D, Xie X, Xie J (2012) When do people feel more risk? The effect of ambiguity tolerance and message source on purchasing intention of earthquake insurance. J Risk Res 15:951–965

Zhu D, Song DJ, Zhu BY, Zhao JN, Li YL, Zhang CQ, Zhu D, Yu C, Han T (2024) Understanding complex interactions between neighborhood environment and personal perception in affecting walking behavior of older adults: a random forest approach combined with human-machine adversarial framework. Cities 146:104737. https://doi.org/10.1016/j.cities.2023.104737

Download references

This study was supported by the key research and development program of China (No. 2022YFB4002804), the key research and development program of China (No. 2022YFB4002803), the key research and development program of China (No.2021YFC3001203), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.KYCX23_3152).

Author information

Authors and affiliations.

School of Safety Science and Engineering, Changzhou University, 21 Gehu Middle Road, Changzhou, 213164, Jiangsu, PR China

Weiyi Ju & Zhixiang Xing

You can also search for this author in PubMed   Google Scholar

Contributions

Ju Weiyi: Writing-original draft, Methodology, Xing Zhixiang: Conceptualization, Visualization, Supervision.

Corresponding author

Correspondence to Zhixiang Xing .

Ethics declarations

Ethical approval.

We declare that this manuscript has complied with all the ethical requirements of the journal.

Consent to participate

All authors of this manuscript have agreed to participate in the writing of the manuscript.

Consent for publication

All the authors of this manuscript consented to its publication.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Hassan Babaie.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Ju, W., Xing, Z. A novel technology for unraveling the spatial risk of Natech disasters based on machine learning and GIS: a case study from the city of Changzhou, China. Earth Sci Inform (2024). https://doi.org/10.1007/s12145-024-01484-3

Download citation

Received : 11 June 2024

Accepted : 30 August 2024

Published : 09 September 2024

DOI : https://doi.org/10.1007/s12145-024-01484-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Spatial analysis
  • Machine learning
  • Geographic information system
  • Sustainable development
  • Urban study
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. How Is the Technology Evolution Going Free Essay Example

    technology evolution case study

  2. Technological evolution and future innovative and emerging technologies

    technology evolution case study

  3. Evolution of Technology by Jasmin Bermudez on Prezi

    technology evolution case study

  4. Evolution of Technology

    technology evolution case study

  5. Evolution of Technology

    technology evolution case study

  6. Evolution of Technology by Casey Odever on Prezi

    technology evolution case study

VIDEO

  1. BIOL 4330 Unit 3 6 2 Venome Evolution Case Study

  2. evolution case Fs22 #fs22 #fs22gameplay #farmingsimulator #fs25 #farmingsimulator22 #trator #agro

  3. Evolution and Impact of Tech Companies || Technology || Tech Companies || Tech Industry || SKAP ||

  4. The Evolution of Technology Over Time

  5. Europe: CASE Grader 836D Walkaround

  6. The Evolution of Technology

COMMENTS

  1. A hybrid method to trace technology evolution pathways: a case study of

    Whether it be for countries to improve the ability to undertake independent innovation or for enterprises to enhance their international competitiveness, tracing historical progression and forecasting future trends of technology evolution is essential for formulating technology strategies and policies. In this paper, we apply co-classification analysis to reveal the technical evolution process ...

  2. Identifying and visualizing technology evolution: A case study of smart

    To study technology structure and its evolution, we have borrowed from social network theory and applied bibliometric analysis to the issued patents of USPTO longitudinally. ... The smart grid technology was chosen as a case study, which is an emergent technology domain in energy issue and to be performed a series of patent citation network ...

  3. Mapping the technology evolution path: a novel model for ...

    Identifying the evolution path of a research field is essential to scientific and technological innovation. There have been many attempts to identify the technology evolution path based on the topic model or social networks analysis, but many of them had deficiencies in methodology. First, many studies have only considered a single type of information (text or citation information) in ...

  4. Mapping and comparing the technology evolution paths of scientific

    Exploring the key technology evolution paths in specific technological domains is essential to stimulate the technological innovation of enterprises. There have been many methods to identify the technology evolution path, but many of them still had some limitations. Firstly, many studies consider only a single type of data source without analyzing and comparing multiple data sources, which may ...

  5. Identifying and visualizing technology evolution: A case study of smart

    To study technology structure and its evolution, we have borrowed from social network theory and applied bibliometric analysis to the issued patents of USPTO longitudinally. ... Deep Learning technology is selected as a case study. In this case, tech mining methods are applied to analyze the Deep Learning technology evolutionary pathway and ...

  6. The Evolution of Technology

    The evolution of technology is a central theme for management theory due to the transformative effect of technological change on societies, markets, industries, organizations, and individuals. ... Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Research Policy, 31: 1257-1274 ...

  7. Identifying and visualizing technology evolution: A case study of smart

    The perovskite solar cell technology is selected as a case study. In this case, the text mining and expert judgment methods are applied to analyze the technology evolution path, and gaps analysis ...

  8. [PDF] Identifying and visualizing technology evolution: A case study of

    DOI: 10.1016/J.TECHFORE.2011.12.011 Corpus ID: 62666732; Identifying and visualizing technology evolution: A case study of smart grid technology @article{Chen2012IdentifyingAV, title={Identifying and visualizing technology evolution: A case study of smart grid technology}, author={Ssu-Han Chen and Mu-Hsuan Huang and Dar-Zen Chen}, journal={Technological Forecasting and Social Change}, year ...

  9. Understanding patterns of technology evolution: An ecosystem

    We use examples from the end-user computing context and the electronics industry to identify five patterns of technology evolution that commonly occur. We also develop a state diagram-based approach to demonstrate the cyclical nature of technology evolution. Finally, we illustrate our findings using a case study on digital music technologies.",

  10. Identifying and visualizing technology evolution: A case study of smart

    Downloadable (with restrictions)! This paper attempts to illustrate the technology evolution for describing the emergence, development, or demise of a technology field. The basic idea is to divide a technology field into tight-knit communities over time and track their inter-year continuity. Then the evolving trajectories are presented through visualizing the timeline plot where each community ...

  11. Patent Network Analysis for Identifying Technological Evolution: A Case

    Identifying technological evolution is a crucial way to assist in technology management. Since modern technology has become more and more complex and dynamic, general statistical techniques can hardly capture the underlying information of technological interconnection in the process of technology evolution. However, complex network analysis can be considered to be a powerful tool to ...

  12. Kodak's Downfall Wasn't About Technology

    Kodak's Downfall Wasn't About Technology

  13. Evolution and structure of technological systems

    The mechanisms responsible for the structure and evolution of technological systems are not fully understood. This study examines the network of supply and use of significant innovations across industries in Sweden, 1970-2013. The results suggest that at least 30% of innovation patterns can be statistically predicted by network stimulus from ...

  14. Core Technology Topic Identification and Evolution Analysis ...

    Accurate identification and evolutionary analysis of core technology topics within patent texts play a crucial role in enabling enterprises to discern the development trajectory of core technologies, optimize research and development (R&D) strategies, and foster technological innovation. Based on the perspective of time series dynamic analysis, this study uses the Latent Dirichlet Allocation ...

  15. Tesla: Business & Operating Model Evolution

    This case traces the evolution of Tesla's business and operating model over time. Students will explore how the priorities, capabilities, and challenges of the automaker changed during each stage of business model development. Students will also analyze the key innovations and strategic decisions that enabled Tesla's success.

  16. A timeline of technology transformation: How has the pace changed

    A timeline of technology transformation: How has the pace ...

  17. The Origins and Evolution of Technology

    Summary. The evolution of human technology has entailed profound yet gradual changes in our technological systems that have essentially co-evolved with changes in ancestral human biological forms. The two-and-a-half million year old Paleolithic archeological record shows a gradual increase in technological, behavioral, and presumably cognitive ...

  18. An integrated approach for detecting and quantifying the topic

    Identifying and visualizing technology evolution: A case study of smart grid technology. Technological Forecasting and Social Change, 79(6), 1099-1110. Article Google Scholar Chen, S., Huang, M., & Chen, D. Z. (2013). Exploring technology evolution and transition characteristics of leading countries: A case of fuel cell field.

  19. Understanding Patterns of Technology Evolution: An Ecosystem

    Understanding the dynamics of technology evolution — whether for the purposes of forecasting new product or technology infrastructure developments, or identifying the basis for future digital convergence in the global market— is a key challenge for innovators, senior managers, and policymakers. This research provides an overview of a new ecosystem model of technology evolution, the purpose ...

  20. Case study on adoption of new technology for innovation: Perspective of

    Case study on adoption of new technology for innovation

  21. Evolution of Technology Migrations : A Case Study of Java 17 Upgrade

    A Case of Multi-Tenant Search Index As a leading CRM platform, Capillary has always understood the importance of powerful search capabilities across various customer data… Oct 6, 2023

  22. Longitudinal analysis of teacher self-efficacy evolution ...

    Ro S, Xiao S, Zhou Z (2022) Starting up STEAM in China: A case study of technology entrepreneurship for STEAM education in China. In: Ray P, Shaw R (eds), Technology entrepreneurship and ...

  23. How PwC Unlocked End-to-End Supply Chain Value for Halcor

    Technology Magazine is the 'Digital Community' for the global technology industry. Technology Magazine covers the '7 Pillars of Digital Journey' - Digital Transformation, Cloud Computing, Cybersecurity, Digital Ecosystems, Strategic Alliances, Data & Data Analytics and AI - connecting the world's largest community of enterprise IT and technology executives.

  24. PDF Mapping and comparing the technology evolution paths of scientific

    2021). Therefore, clarifying the technology evolution paths is crucial to stimulate the tech-nological innovation of enterprises through technology forecasting. In the study of technological evolution path, discovery and linkage of technological topic information is a crucial problem. The diversied approaches have been proposed to identify ...

  25. Understanding patterns of technology evolution: An ecosystem

    We use examples from the end-user computing context and the electronics industry to identify five patterns of technology evolution that commonly occur. We also develop a state diagram-based approach to demonstrate the cyclical nature of technology evolution. Finally, we illustrate our findings using a case study on digital music technologies.",

  26. Evolving the framework of cancer theory

    Cancer cells are driven by the same imperative guiding all living things: to grow, survive and reproduce. Although cancer's evolutionary underpinnings have been recognized since the 1950s, clinicians have been slow to apply the lessons of evolution to the fight against this deadly disease, which remains the second-leading cause of death, claiming 9.7 million lives worldwide in 2022.

  27. Categories, themes and research evolution of the study of digital

    With the emerging forces of online and digital products, scholars keenly captured digital literacy and have new research dimensions. The purpose of this study is to present a bibliometric analysis of digital literacy using CiteSpace and to explore the categories, themes and research evolution in digital literacy. A total of 9042 bibliographic records were retrieved from the WoS Core Collection ...

  28. A novel technology for unraveling the spatial risk of Natech disasters

    In recent years, technical accidents caused by natural disasters have caused huge losses. The purpose of this study is to develop a mathematical model to predict and prevent the risk of such accidents. The model applied machine learning to predict the risk of such accidents in the hope of providing risk visualization results for local governments. The expected impact of this research will ...