Qualitative vs Quantitative Research Methods & Data Analysis

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

The main difference between quantitative and qualitative research is the type of data they collect and analyze.

Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.
  • Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed numerically. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.
  • Qualitative research gathers non-numerical data (words, images, sounds) to explore subjective experiences and attitudes, often via observation and interviews. It aims to produce detailed descriptions and uncover new insights about the studied phenomenon.

On This Page:

What Is Qualitative Research?

Qualitative research is the process of collecting, analyzing, and interpreting non-numerical data, such as language. Qualitative research can be used to understand how an individual subjectively perceives and gives meaning to their social reality.

Qualitative data is non-numerical data, such as text, video, photographs, or audio recordings. This type of data can be collected using diary accounts or in-depth interviews and analyzed using grounded theory or thematic analysis.

Qualitative research is multimethod in focus, involving an interpretive, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Denzin and Lincoln (1994, p. 2)

Interest in qualitative data came about as the result of the dissatisfaction of some psychologists (e.g., Carl Rogers) with the scientific study of psychologists such as behaviorists (e.g., Skinner ).

Since psychologists study people, the traditional approach to science is not seen as an appropriate way of carrying out research since it fails to capture the totality of human experience and the essence of being human.  Exploring participants’ experiences is known as a phenomenological approach (re: Humanism ).

Qualitative research is primarily concerned with meaning, subjectivity, and lived experience. The goal is to understand the quality and texture of people’s experiences, how they make sense of them, and the implications for their lives.

Qualitative research aims to understand the social reality of individuals, groups, and cultures as nearly as possible as participants feel or live it. Thus, people and groups are studied in their natural setting.

Some examples of qualitative research questions are provided, such as what an experience feels like, how people talk about something, how they make sense of an experience, and how events unfold for people.

Research following a qualitative approach is exploratory and seeks to explain ‘how’ and ‘why’ a particular phenomenon, or behavior, operates as it does in a particular context. It can be used to generate hypotheses and theories from the data.

Qualitative Methods

There are different types of qualitative research methods, including diary accounts, in-depth interviews , documents, focus groups , case study research , and ethnography .

The results of qualitative methods provide a deep understanding of how people perceive their social realities and in consequence, how they act within the social world.

The researcher has several methods for collecting empirical materials, ranging from the interview to direct observation, to the analysis of artifacts, documents, and cultural records, to the use of visual materials or personal experience. Denzin and Lincoln (1994, p. 14)

Here are some examples of qualitative data:

Interview transcripts : Verbatim records of what participants said during an interview or focus group. They allow researchers to identify common themes and patterns, and draw conclusions based on the data. Interview transcripts can also be useful in providing direct quotes and examples to support research findings.

Observations : The researcher typically takes detailed notes on what they observe, including any contextual information, nonverbal cues, or other relevant details. The resulting observational data can be analyzed to gain insights into social phenomena, such as human behavior, social interactions, and cultural practices.

Unstructured interviews : generate qualitative data through the use of open questions.  This allows the respondent to talk in some depth, choosing their own words.  This helps the researcher develop a real sense of a person’s understanding of a situation.

Diaries or journals : Written accounts of personal experiences or reflections.

Notice that qualitative data could be much more than just words or text. Photographs, videos, sound recordings, and so on, can be considered qualitative data. Visual data can be used to understand behaviors, environments, and social interactions.

Qualitative Data Analysis

Qualitative research is endlessly creative and interpretive. The researcher does not just leave the field with mountains of empirical data and then easily write up his or her findings.

Qualitative interpretations are constructed, and various techniques can be used to make sense of the data, such as content analysis, grounded theory (Glaser & Strauss, 1967), thematic analysis (Braun & Clarke, 2006), or discourse analysis .

For example, thematic analysis is a qualitative approach that involves identifying implicit or explicit ideas within the data. Themes will often emerge once the data has been coded .

RESEARCH THEMATICANALYSISMETHOD

Key Features

  • Events can be understood adequately only if they are seen in context. Therefore, a qualitative researcher immerses her/himself in the field, in natural surroundings. The contexts of inquiry are not contrived; they are natural. Nothing is predefined or taken for granted.
  • Qualitative researchers want those who are studied to speak for themselves, to provide their perspectives in words and other actions. Therefore, qualitative research is an interactive process in which the persons studied teach the researcher about their lives.
  • The qualitative researcher is an integral part of the data; without the active participation of the researcher, no data exists.
  • The study’s design evolves during the research and can be adjusted or changed as it progresses. For the qualitative researcher, there is no single reality. It is subjective and exists only in reference to the observer.
  • The theory is data-driven and emerges as part of the research process, evolving from the data as they are collected.

Limitations of Qualitative Research

  • Because of the time and costs involved, qualitative designs do not generally draw samples from large-scale data sets.
  • The problem of adequate validity or reliability is a major criticism. Because of the subjective nature of qualitative data and its origin in single contexts, it is difficult to apply conventional standards of reliability and validity. For example, because of the central role played by the researcher in the generation of data, it is not possible to replicate qualitative studies.
  • Also, contexts, situations, events, conditions, and interactions cannot be replicated to any extent, nor can generalizations be made to a wider context than the one studied with confidence.
  • The time required for data collection, analysis, and interpretation is lengthy. Analysis of qualitative data is difficult, and expert knowledge of an area is necessary to interpret qualitative data. Great care must be taken when doing so, for example, looking for mental illness symptoms.

Advantages of Qualitative Research

  • Because of close researcher involvement, the researcher gains an insider’s view of the field. This allows the researcher to find issues that are often missed (such as subtleties and complexities) by the scientific, more positivistic inquiries.
  • Qualitative descriptions can be important in suggesting possible relationships, causes, effects, and dynamic processes.
  • Qualitative analysis allows for ambiguities/contradictions in the data, which reflect social reality (Denscombe, 2010).
  • Qualitative research uses a descriptive, narrative style; this research might be of particular benefit to the practitioner as she or he could turn to qualitative reports to examine forms of knowledge that might otherwise be unavailable, thereby gaining new insight.

What Is Quantitative Research?

Quantitative research involves the process of objectively collecting and analyzing numerical data to describe, predict, or control variables of interest.

The goals of quantitative research are to test causal relationships between variables , make predictions, and generalize results to wider populations.

Quantitative researchers aim to establish general laws of behavior and phenomenon across different settings/contexts. Research is used to test a theory and ultimately support or reject it.

Quantitative Methods

Experiments typically yield quantitative data, as they are concerned with measuring things.  However, other research methods, such as controlled observations and questionnaires , can produce both quantitative information.

For example, a rating scale or closed questions on a questionnaire would generate quantitative data as these produce either numerical data or data that can be put into categories (e.g., “yes,” “no” answers).

Experimental methods limit how research participants react to and express appropriate social behavior.

Findings are, therefore, likely to be context-bound and simply a reflection of the assumptions that the researcher brings to the investigation.

There are numerous examples of quantitative data in psychological research, including mental health. Here are a few examples:

Another example is the Experience in Close Relationships Scale (ECR), a self-report questionnaire widely used to assess adult attachment styles .

The ECR provides quantitative data that can be used to assess attachment styles and predict relationship outcomes.

Neuroimaging data : Neuroimaging techniques, such as MRI and fMRI, provide quantitative data on brain structure and function.

This data can be analyzed to identify brain regions involved in specific mental processes or disorders.

For example, the Beck Depression Inventory (BDI) is a clinician-administered questionnaire widely used to assess the severity of depressive symptoms in individuals.

The BDI consists of 21 questions, each scored on a scale of 0 to 3, with higher scores indicating more severe depressive symptoms. 

Quantitative Data Analysis

Statistics help us turn quantitative data into useful information to help with decision-making. We can use statistics to summarize our data, describing patterns, relationships, and connections. Statistics can be descriptive or inferential.

Descriptive statistics help us to summarize our data. In contrast, inferential statistics are used to identify statistically significant differences between groups of data (such as intervention and control groups in a randomized control study).

  • Quantitative researchers try to control extraneous variables by conducting their studies in the lab.
  • The research aims for objectivity (i.e., without bias) and is separated from the data.
  • The design of the study is determined before it begins.
  • For the quantitative researcher, the reality is objective, exists separately from the researcher, and can be seen by anyone.
  • Research is used to test a theory and ultimately support or reject it.

Limitations of Quantitative Research

  • Context: Quantitative experiments do not take place in natural settings. In addition, they do not allow participants to explain their choices or the meaning of the questions they may have for those participants (Carr, 1994).
  • Researcher expertise: Poor knowledge of the application of statistical analysis may negatively affect analysis and subsequent interpretation (Black, 1999).
  • Variability of data quantity: Large sample sizes are needed for more accurate analysis. Small-scale quantitative studies may be less reliable because of the low quantity of data (Denscombe, 2010). This also affects the ability to generalize study findings to wider populations.
  • Confirmation bias: The researcher might miss observing phenomena because of focus on theory or hypothesis testing rather than on the theory of hypothesis generation.

Advantages of Quantitative Research

  • Scientific objectivity: Quantitative data can be interpreted with statistical analysis, and since statistics are based on the principles of mathematics, the quantitative approach is viewed as scientifically objective and rational (Carr, 1994; Denscombe, 2010).
  • Useful for testing and validating already constructed theories.
  • Rapid analysis: Sophisticated software removes much of the need for prolonged data analysis, especially with large volumes of data involved (Antonius, 2003).
  • Replication: Quantitative data is based on measured values and can be checked by others because numerical data is less open to ambiguities of interpretation.
  • Hypotheses can also be tested because of statistical analysis (Antonius, 2003).

Antonius, R. (2003). Interpreting quantitative data with SPSS . Sage.

Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated approach to research design, measurement and statistics . Sage.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology . Qualitative Research in Psychology , 3, 77–101.

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research : what method for nursing? Journal of advanced nursing, 20(4) , 716-721.

Denscombe, M. (2010). The Good Research Guide: for small-scale social research. McGraw Hill.

Denzin, N., & Lincoln. Y. (1994). Handbook of Qualitative Research. Thousand Oaks, CA, US: Sage Publications Inc.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4) , 364.

Minichiello, V. (1990). In-Depth Interviewing: Researching People. Longman Cheshire.

Punch, K. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches. London: Sage

Further Information

  • Mixed methods research
  • Designing qualitative research
  • Methods of data collection and analysis
  • Introduction to quantitative and qualitative research
  • Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?
  • Qualitative research in health care: Analysing qualitative data
  • Qualitative data analysis: the framework approach
  • Using the framework method for the analysis of
  • Qualitative data in multi-disciplinary health research
  • Content Analysis
  • Grounded Theory
  • Thematic Analysis

Print Friendly, PDF & Email

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Quantitative vs. Qualitative Research in Psychology

  • Key Differences

Quantitative Research Methods

Qualitative research methods.

  • How They Relate

In psychology and other social sciences, researchers are faced with an unresolved question: Can we measure concepts like love or racism the same way we can measure temperature or the weight of a star? Social phenomena⁠—things that happen because of and through human behavior⁠—are especially difficult to grasp with typical scientific models.

At a Glance

Psychologists rely on quantitative and quantitative research to better understand human thought and behavior.

  • Qualitative research involves collecting and evaluating non-numerical data in order to understand concepts or subjective opinions.
  • Quantitative research involves collecting and evaluating numerical data. 

This article discusses what qualitative and quantitative research are, how they are different, and how they are used in psychology research.

Qualitative Research vs. Quantitative Research

In order to understand qualitative and quantitative psychology research, it can be helpful to look at the methods that are used and when each type is most appropriate.

Psychologists rely on a few methods to measure behavior, attitudes, and feelings. These include:

  • Self-reports , like surveys or questionnaires
  • Observation (often used in experiments or fieldwork)
  • Implicit attitude tests that measure timing in responding to prompts

Most of these are quantitative methods. The result is a number that can be used to assess differences between groups.

However, most of these methods are static, inflexible (you can't change a question because a participant doesn't understand it), and provide a "what" answer rather than a "why" answer.

Sometimes, researchers are more interested in the "why" and the "how." That's where qualitative methods come in.

Qualitative research is about speaking to people directly and hearing their words. It is grounded in the philosophy that the social world is ultimately unmeasurable, that no measure is truly ever "objective," and that how humans make meaning is just as important as how much they score on a standardized test.

Used to develop theories

Takes a broad, complex approach

Answers "why" and "how" questions

Explores patterns and themes

Used to test theories

Takes a narrow, specific approach

Answers "what" questions

Explores statistical relationships

Quantitative methods have existed ever since people have been able to count things. But it is only with the positivist philosophy of Auguste Comte (which maintains that factual knowledge obtained by observation is trustworthy) that it became a "scientific method."

The scientific method follows this general process. A researcher must:

  • Generate a theory or hypothesis (i.e., predict what might happen in an experiment) and determine the variables needed to answer their question
  • Develop instruments to measure the phenomenon (such as a survey, a thermometer, etc.)
  • Develop experiments to manipulate the variables
  • Collect empirical (measured) data
  • Analyze data

Quantitative methods are about measuring phenomena, not explaining them.

Quantitative research compares two groups of people. There are all sorts of variables you could measure, and many kinds of experiments to run using quantitative methods.

These comparisons are generally explained using graphs, pie charts, and other visual representations that give the researcher a sense of how the various data points relate to one another.

Basic Assumptions

Quantitative methods assume:

  • That the world is measurable
  • That humans can observe objectively
  • That we can know things for certain about the world from observation

In some fields, these assumptions hold true. Whether you measure the size of the sun 2000 years ago or now, it will always be the same. But when it comes to human behavior, it is not so simple.

As decades of cultural and social research have shown, people behave differently (and even think differently) based on historical context, cultural context, social context, and even identity-based contexts like gender , social class, or sexual orientation .

Therefore, quantitative methods applied to human behavior (as used in psychology and some areas of sociology) should always be rooted in their particular context. In other words: there are no, or very few, human universals.

Statistical information is the primary form of quantitative data used in human and social quantitative research. Statistics provide lots of information about tendencies across large groups of people, but they can never describe every case or every experience. In other words, there are always outliers.

Correlation and Causation

A basic principle of statistics is that correlation is not causation. Researchers can only claim a cause-and-effect relationship under certain conditions:

  • The study was a true experiment.
  • The independent variable can be manipulated (for example, researchers cannot manipulate gender, but they can change the primer a study subject sees, such as a picture of nature or of a building).
  • The dependent variable can be measured through a ratio or a scale.

So when you read a report that "gender was linked to" something (like a behavior or an attitude), remember that gender is NOT a cause of the behavior or attitude. There is an apparent relationship, but the true cause of the difference is hidden.

Pitfalls of Quantitative Research

Quantitative methods are one way to approach the measurement and understanding of human and social phenomena. But what's missing from this picture?

As noted above, statistics do not tell us about personal, individual experiences and meanings. While surveys can give a general idea, respondents have to choose between only a few responses. This can make it difficult to understand the subtleties of different experiences.

Quantitative methods can be helpful when making objective comparisons between groups or when looking for relationships between variables. They can be analyzed statistically, which can be helpful when looking for patterns and relationships.

Qualitative data are not made out of numbers but rather of descriptions, metaphors, symbols, quotes, analysis, concepts, and characteristics. This approach uses interviews, written texts, art, photos, and other materials to make sense of human experiences and to understand what these experiences mean to people.

While quantitative methods ask "what" and "how much," qualitative methods ask "why" and "how."

Qualitative methods are about describing and analyzing phenomena from a human perspective. There are many different philosophical views on qualitative methods, but in general, they agree that some questions are too complex or impossible to answer with standardized instruments.

These methods also accept that it is impossible to be completely objective in observing phenomena. Researchers have their own thoughts, attitudes, experiences, and beliefs, and these always color how people interpret results.

Qualitative Approaches

There are many different approaches to qualitative research, with their own philosophical bases. Different approaches are best for different kinds of projects. For example:

  • Case studies and narrative studies are best for single individuals. These involve studying every aspect of a person's life in great depth.
  • Phenomenology aims to explain experiences. This type of work aims to describe and explore different events as they are consciously and subjectively experienced.
  • Grounded theory develops models and describes processes. This approach allows researchers to construct a theory based on data that is collected, analyzed, and compared to reach new discoveries.
  • Ethnography describes cultural groups. In this approach, researchers immerse themselves in a community or group in order to observe behavior.

Qualitative researchers must be aware of several different methods and know each thoroughly enough to produce valuable research.

Some researchers specialize in a single method, but others specialize in a topic or content area and use many different methods to explore the topic, providing different information and a variety of points of view.

There is not a single model or method that can be used for every qualitative project. Depending on the research question, the people participating, and the kind of information they want to produce, researchers will choose the appropriate approach.

Interpretation

Qualitative research does not look into causal relationships between variables, but rather into themes, values, interpretations, and meanings. As a rule, then, qualitative research is not generalizable (cannot be applied to people outside the research participants).

The insights gained from qualitative research can extend to other groups with proper attention to specific historical and social contexts.

Relationship Between Qualitative and Quantitative Research

It might sound like quantitative and qualitative research do not play well together. They have different philosophies, different data, and different outputs. However, this could not be further from the truth.

These two general methods complement each other. By using both, researchers can gain a fuller, more comprehensive understanding of a phenomenon.

For example, a psychologist wanting to develop a new survey instrument about sexuality might and ask a few dozen people questions about their sexual experiences (this is qualitative research). This gives the researcher some information to begin developing questions for their survey (which is a quantitative method).

After the survey, the same or other researchers might want to dig deeper into issues brought up by its data. Follow-up questions like "how does it feel when...?" or "what does this mean to you?" or "how did you experience this?" can only be answered by qualitative research.

By using both quantitative and qualitative data, researchers have a more holistic, well-rounded understanding of a particular topic or phenomenon.

Qualitative and quantitative methods both play an important role in psychology. Where quantitative methods can help answer questions about what is happening in a group and to what degree, qualitative methods can dig deeper into the reasons behind why it is happening. By using both strategies, psychology researchers can learn more about human thought and behavior.

Gough B, Madill A. Subjectivity in psychological science: From problem to prospect . Psychol Methods . 2012;17(3):374-384. doi:10.1037/a0029313

Pearce T. “Science organized”: Positivism and the metaphysical club, 1865–1875 . J Hist Ideas . 2015;76(3):441-465.

Adams G. Context in person, person in context: A cultural psychology approach to social-personality psychology . In: Deaux K, Snyder M, eds. The Oxford Handbook of Personality and Social Psychology . Oxford University Press; 2012:182-208.

Brady HE. Causation and explanation in social science . In: Goodin RE, ed. The Oxford Handbook of Political Science. Oxford University Press; 2011. doi:10.1093/oxfordhb/9780199604456.013.0049

Chun Tie Y, Birks M, Francis K. Grounded theory research: A design framework for novice researchers .  SAGE Open Med . 2019;7:2050312118822927. doi:10.1177/2050312118822927

Reeves S, Peller J, Goldman J, Kitto S. Ethnography in qualitative educational research: AMEE Guide No. 80 . Medical Teacher . 2013;35(8):e1365-e1379. doi:10.3109/0142159X.2013.804977

Salkind NJ, ed. Encyclopedia of Research Design . Sage Publishing.

Shaughnessy JJ, Zechmeister EB, Zechmeister JS.  Research Methods in Psychology . McGraw Hill Education.

By Anabelle Bernard Fournier Anabelle Bernard Fournier is a researcher of sexual and reproductive health at the University of Victoria as well as a freelance writer on various health topics.

Educational resources and simple solutions for your research journey

qualitative vs quantitative research

Qualitative vs Quantitative Research: Differences, Examples, and Methods

There are two broad kinds of research approaches: qualitative and quantitative research that are used to study and analyze phenomena in various fields such as natural sciences, social sciences, and humanities. Whether you have realized it or not, your research must have followed either or both research types. In this article we will discuss what qualitative vs quantitative research is, their applications, pros and cons, and when to use qualitative vs quantitative research . Before we get into the details, it is important to understand the differences between the qualitative and quantitative research.     

Table of Contents

Qualitative v s Quantitative Research  

Quantitative research deals with quantity, hence, this research type is concerned with numbers and statistics to prove or disapprove theories or hypothesis. In contrast, qualitative research is all about quality – characteristics, unquantifiable features, and meanings to seek deeper understanding of behavior and phenomenon. These two methodologies serve complementary roles in the research process, each offering unique insights and methods suited to different research questions and objectives.    

Qualitative and quantitative research approaches have their own unique characteristics, drawbacks, advantages, and uses. Where quantitative research is mostly employed to validate theories or assumptions with the goal of generalizing facts to the larger population, qualitative research is used to study concepts, thoughts, or experiences for the purpose of gaining the underlying reasons, motivations, and meanings behind human behavior .   

What Are the Differences Between Qualitative and Quantitative Research  

Qualitative and quantitative research differs in terms of the methods they employ to conduct, collect, and analyze data. For example, qualitative research usually relies on interviews, observations, and textual analysis to explore subjective experiences and diverse perspectives. While quantitative data collection methods include surveys, experiments, and statistical analysis to gather and analyze numerical data. The differences between the two research approaches across various aspects are listed in the table below.    

     
  Understanding meanings, exploring ideas, behaviors, and contexts, and formulating theories  Generating and analyzing numerical data, quantifying variables by using logical, statistical, and mathematical techniques to test or prove hypothesis  
  Limited sample size, typically not representative  Large sample size to draw conclusions about the population  
  Expressed using words. Non-numeric, textual, and visual narrative  Expressed using numerical data in the form of graphs or values. Statistical, measurable, and numerical 
  Interviews, focus groups, observations, ethnography, literature review, and surveys  Surveys, experiments, and structured observations 
  Inductive, thematic, and narrative in nature  Deductive, statistical, and numerical in nature 
  Subjective  Objective 
  Open-ended questions  Close-ended (Yes or No) or multiple-choice questions 
  Descriptive and contextual   Quantifiable and generalizable 
  Limited, only context-dependent findings  High, results applicable to a larger population 
  Exploratory research method  Conclusive research method 
  To delve deeper into the topic to understand the underlying theme, patterns, and concepts  To analyze the cause-and-effect relation between the variables to understand a complex phenomenon 
  Case studies, ethnography, and content analysis  Surveys, experiments, and correlation studies 

research methods quantitative and qualitative

Data Collection Methods  

There are differences between qualitative and quantitative research when it comes to data collection as they deal with different types of data. Qualitative research is concerned with personal or descriptive accounts to understand human behavior within society. Quantitative research deals with numerical or measurable data to delineate relations among variables. Hence, the qualitative data collection methods differ significantly from quantitative data collection methods due to the nature of data being collected and the research objectives. Below is the list of data collection methods for each research approach:    

Qualitative Research Data Collection  

  • Interviews  
  • Focus g roups  
  • Content a nalysis  
  • Literature review  
  • Observation  
  • Ethnography  

Qualitative research data collection can involve one-on-one group interviews to capture in-depth perspectives of participants using open-ended questions. These interviews could be structured, semi-structured or unstructured depending upon the nature of the study. Focus groups can be used to explore specific topics and generate rich data through discussions among participants. Another qualitative data collection method is content analysis, which involves systematically analyzing text documents, audio, and video files or visual content to uncover patterns, themes, and meanings. This can be done through coding and categorization of raw data to draw meaningful insights. Data can be collected through observation studies where the goal is to simply observe and document behaviors, interaction, and phenomena in natural settings without interference. Lastly, ethnography allows one to immerse themselves in the culture or environment under study for a prolonged period to gain a deep understanding of the social phenomena.   

Quantitative Research Data Collection  

  • Surveys/ q uestionnaires  
  • Experiments
  • Secondary data analysis  
  • Structured o bservations  
  • Case studies   
  • Tests and a ssessments  

Quantitative research data collection approaches comprise of fundamental methods for generating numerical data that can be analyzed using statistical or mathematical tools. The most common quantitative data collection approach is the usage of structured surveys with close-ended questions to collect quantifiable data from a large sample of participants. These can be conducted online, over the phone, or in person.   

Performing experiments is another important data collection approach, in which variables are manipulated under controlled conditions to observe their effects on dependent variables. This often involves random assignment of participants to different conditions or groups. Such experimental settings are employed to gauge cause-and-effect relationships and understand a complex phenomenon. At times, instead of acquiring original data, researchers may deal with secondary data, which is the dataset curated by others, such as government agencies, research organizations, or academic institute. With structured observations, subjects in a natural environment can be studied by controlling the variables which aids in understanding the relationship among various variables. The secondary data is then analyzed to identify patterns and relationships among variables. Observational studies provide a means to systematically observe and record behaviors or phenomena as they occur in controlled environments. Case studies form an interesting study methodology in which a researcher studies a single entity or a small number of entities (individuals or organizations) in detail to understand complex phenomena within a specific context.   

Qualitative vs Quantitative Research Outcomes  

Qualitative research and quantitative research lead to varied research outcomes, each with its own strengths and limitations. For example, qualitative research outcomes provide deep descriptive accounts of human experiences, motivations, and perspectives that allow us to identify themes or narratives and context in which behavior, attitudes, or phenomena occurs.  Quantitative research outcomes on the other hand produce numerical data that is analyzed statistically to establish patterns and relationships objectively, to form generalizations about the larger population and make predictions. This numerical data can be presented in the form of graphs, tables, or charts. Both approaches offer valuable perspectives on complex phenomena, with qualitative research focusing on depth and interpretation, while quantitative research emphasizes numerical analysis and objectivity.  

research methods quantitative and qualitative

When to Use Qualitative vs Quantitative Research Approach  

The decision to choose between qualitative and quantitative research depends on various factors, such as the research question, objectives, whether you are taking an inductive or deductive approach, available resources, practical considerations such as time and money, and the nature of the phenomenon under investigation. To simplify, quantitative research can be used if the aim of the research is to prove or test a hypothesis, while qualitative research should be used if the research question is more exploratory and an in-depth understanding of the concepts, behavior, or experiences is needed.     

Qualitative research approach  

Qualitative research approach is used under following scenarios:   

  • To study complex phenomena: When the research requires understanding the depth, complexity, and context of a phenomenon.  
  • Collecting participant perspectives: When the goal is to understand the why behind a certain behavior, and a need to capture subjective experiences and perceptions of participants.  
  • Generating hypotheses or theories: When generating hypotheses, theories, or conceptual frameworks based on exploratory research.  

Example: If you have a research question “What obstacles do expatriate students encounter when acquiring a new language in their host country?”  

This research question can be addressed using the qualitative research approach by conducting in-depth interviews with 15-25 expatriate university students. Ask open-ended questions such as “What are the major challenges you face while attempting to learn the new language?”, “Do you find it difficult to learn the language as an adult?”, and “Do you feel practicing with a native friend or colleague helps the learning process”?  

Based on the findings of these answers, a follow-up questionnaire can be planned to clarify things. Next step will be to transcribe all interviews using transcription software and identify themes and patterns.   

Quantitative research approach  

Quantitative research approach is used under following scenarios:   

  • Testing hypotheses or proving theories: When aiming to test hypotheses, establish relationships, or examine cause-and-effect relationships.   
  • Generalizability: When needing findings that can be generalized to broader populations using large, representative samples.  
  • Statistical analysis: When requiring rigorous statistical analysis to quantify relationships, patterns, or trends in data.   

Example : Considering the above example, you can conduct a survey of 200-300 expatriate university students and ask them specific questions such as: “On a scale of 1-10 how difficult is it to learn a new language?”  

Next, statistical analysis can be performed on the responses to draw conclusions like, on an average expatriate students rated the difficulty of learning a language 6.5 on the scale of 10.    

Mixed methods approach  

In many cases, researchers may opt for a mixed methods approach , combining qualitative and quantitative methods to leverage the strengths of both approaches. Researchers may use qualitative data to explore phenomena in-depth and generate hypotheses, while quantitative data can be used to test these hypotheses and generalize findings to broader populations.  

Example: Both qualitative and quantitative research methods can be used in combination to address the above research question. Through open-ended questions you can gain insights about different perspectives and experiences while quantitative research allows you to test that knowledge and prove/disprove your hypothesis.   

How to Analyze Qualitative and Quantitative Data  

When it comes to analyzing qualitative and quantitative data, the focus is on identifying patterns in the data to highlight the relationship between elements. The best research method for any given study should be chosen based on the study aim. A few methods to analyze qualitative and quantitative data are listed below.  

Analyzing qualitative data  

Qualitative data analysis is challenging as it is not expressed in numbers and consists majorly of texts, images, or videos. Hence, care must be taken while using any analytical approach. Some common approaches to analyze qualitative data include:  

  • Organization: The first step is data (transcripts or notes) organization into different categories with similar concepts, themes, and patterns to find inter-relationships.  
  • Coding: Data can be arranged in categories based on themes/concepts using coding.  
  • Theme development: Utilize higher-level organization to group related codes into broader themes.  
  • Interpretation: Explore the meaning behind different emerging themes to understand connections. Use different perspectives like culture, environment, and status to evaluate emerging themes.  
  • Reporting: Present findings with quotes or excerpts to illustrate key themes.   

Analyzing quantitative data  

Quantitative data analysis is more direct compared to qualitative data as it primarily deals with numbers. Data can be evaluated using simple math or advanced statistics (descriptive or inferential). Some common approaches to analyze quantitative data include:  

  • Processing raw data: Check missing values, outliers, or inconsistencies in raw data.  
  • Descriptive statistics: Summarize data with means, standard deviations, or standard error using programs such as Excel, SPSS, or R language.  
  • Exploratory data analysis: Usage of visuals to deduce patterns and trends.  
  • Hypothesis testing: Apply statistical tests to find significance and test hypothesis (Student’s t-test or ANOVA).  
  • Interpretation: Analyze results considering significance and practical implications.  
  • Validation: Data validation through replication or literature review.  
  • Reporting: Present findings by means of tables, figures, or graphs.   

research methods quantitative and qualitative

Benefits and limitations of qualitative vs quantitative research  

There are significant differences between qualitative and quantitative research; we have listed the benefits and limitations of both methods below:  

Benefits of qualitative research  

  • Rich insights: As qualitative research often produces information-rich data, it aids in gaining in-depth insights into complex phenomena, allowing researchers to explore nuances and meanings of the topic of study.  
  • Flexibility: One of the most important benefits of qualitative research is flexibility in acquiring and analyzing data that allows researchers to adapt to the context and explore more unconventional aspects.  
  • Contextual understanding: With descriptive and comprehensive data, understanding the context in which behaviors or phenomena occur becomes accessible.   
  • Capturing different perspectives: Qualitative research allows for capturing different participant perspectives with open-ended question formats that further enrich data.   
  • Hypothesis/theory generation: Qualitative research is often the first step in generating theory/hypothesis, which leads to future investigation thereby contributing to the field of research.

Limitations of qualitative research  

  • Subjectivity: It is difficult to have objective interpretation with qualitative research, as research findings might be influenced by the expertise of researchers. The risk of researcher bias or interpretations affects the reliability and validity of the results.   
  • Limited generalizability: Due to the presence of small, non-representative samples, the qualitative data cannot be used to make generalizations to a broader population.  
  • Cost and time intensive: Qualitative data collection can be time-consuming and resource-intensive, therefore, it requires strategic planning and commitment.   
  • Complex analysis: Analyzing qualitative data needs specialized skills and techniques, hence, it’s challenging for researchers without sufficient training or experience.   
  • Potential misinterpretation: There is a risk of sampling bias and misinterpretation in data collection and analysis if researchers lack cultural or contextual understanding.   

Benefits of quantitative research  

  • Objectivity: A key benefit of quantitative research approach, this objectivity reduces researcher bias and subjectivity, enhancing the reliability and validity of findings.   
  • Generalizability: For quantitative research, the sample size must be large and representative enough to allow for generalization to broader populations.   
  • Statistical analysis: Quantitative research enables rigorous statistical analysis (increasing power of the analysis), aiding hypothesis testing and finding patterns or relationship among variables.   
  • Efficiency: Quantitative data collection and analysis is usually more efficient compared to the qualitative methods, especially when dealing with large datasets.   
  • Clarity and Precision: The findings are usually clear and precise, making it easier to present them as graphs, tables, and figures to convey them to a larger audience.  

Limitations of quantitative research  

  • Lacks depth and details: Due to its objective nature, quantitative research might lack the depth and richness of qualitative approaches, potentially overlooking important contextual factors or nuances.   
  • Limited exploration: By not considering the subjective experiences of participants in depth , there’s a limited chance to study complex phenomenon in detail.   
  • Potential oversimplification: Quantitative research may oversimplify complex phenomena by boiling them down to numbers, which might ignore key nuances.   
  • Inflexibility: Quantitative research deals with predecided varibales and measures , which limits the ability of researchers to explore unexpected findings or adjust the research design as new findings become available .  
  • Ethical consideration: Quantitative research may raise ethical concerns especially regarding privacy, informed consent, and the potential for harm, when dealing with sensitive topics or vulnerable populations.   

Frequently asked questions  

  • What is the difference between qualitative and quantitative research? 

Quantitative methods use numerical data and statistical analysis for objective measurement and hypothesis testing, emphasizing generalizability. Qualitative methods gather non-numerical data to explore subjective experiences and contexts, providing rich, nuanced insights.  

  • What are the types of qualitative research? 

Qualitative research methods include interviews, observations, focus groups, and case studies. They provide rich insights into participants’ perspectives and behaviors within their contexts, enabling exploration of complex phenomena.  

  • What are the types of quantitative research? 

Quantitative research methods include surveys, experiments, observations, correlational studies, and longitudinal research. They gather numerical data for statistical analysis, aiming for objectivity and generalizability.  

  • Can you give me examples for qualitative and quantitative research? 

Qualitative Research Example: 

Research Question: What are the experiences of parents with autistic children in accessing support services?  

Method: Conducting in-depth interviews with parents to explore their perspectives, challenges, and needs.  

Quantitative Research Example: 

Research Question: What is the correlation between sleep duration and academic performance in college students?  

Method: Distributing surveys to a large sample of college students to collect data on their sleep habits and academic performance, then analyzing the data statistically to determine any correlations.  

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Back to school 2024 sale

Back to School – Lock-in All Access Pack for a Year at the Best Price

journal turnaround time

Journal Turnaround Time: Researcher.Life and Scholarly Intelligence Join Hands to Empower Researchers with Publication Time Insights 

Service update: Some parts of the Library’s website will be down for maintenance on August 11.

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Research methods--quantitative, qualitative, and more: overview.

  • Quantitative Research
  • Qualitative Research
  • Data Science Methods (Machine Learning, AI, Big Data)
  • Text Mining and Computational Text Analysis
  • Evidence Synthesis/Systematic Reviews
  • Get Data, Get Help!

About Research Methods

This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. 

As Patten and Newhart note in the book Understanding Research Methods , "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge. The accumulation of knowledge through research is by its nature a collective endeavor. Each well-designed study provides evidence that may support, amend, refute, or deepen the understanding of existing knowledge...Decisions are important throughout the practice of research and are designed to help researchers collect evidence that includes the full spectrum of the phenomenon under study, to maintain logical rules, and to mitigate or account for possible sources of bias. In many ways, learning research methods is learning how to see and make these decisions."

The choice of methods varies by discipline, by the kind of phenomenon being studied and the data being used to study it, by the technology available, and more.  This guide is an introduction, but if you don't see what you need here, always contact your subject librarian, and/or take a look to see if there's a library research guide that will answer your question. 

Suggestions for changes and additions to this guide are welcome! 

START HERE: SAGE Research Methods

Without question, the most comprehensive resource available from the library is SAGE Research Methods.  HERE IS THE ONLINE GUIDE  to this one-stop shopping collection, and some helpful links are below:

  • SAGE Research Methods
  • Little Green Books  (Quantitative Methods)
  • Little Blue Books  (Qualitative Methods)
  • Dictionaries and Encyclopedias  
  • Case studies of real research projects
  • Sample datasets for hands-on practice
  • Streaming video--see methods come to life
  • Methodspace- -a community for researchers
  • SAGE Research Methods Course Mapping

Library Data Services at UC Berkeley

Library Data Services Program and Digital Scholarship Services

The LDSP offers a variety of services and tools !  From this link, check out pages for each of the following topics:  discovering data, managing data, collecting data, GIS data, text data mining, publishing data, digital scholarship, open science, and the Research Data Management Program.

Be sure also to check out the visual guide to where to seek assistance on campus with any research question you may have!

Library GIS Services

Other Data Services at Berkeley

D-Lab Supports Berkeley faculty, staff, and graduate students with research in data intensive social science, including a wide range of training and workshop offerings Dryad Dryad is a simple self-service tool for researchers to use in publishing their datasets. It provides tools for the effective publication of and access to research data. Geospatial Innovation Facility (GIF) Provides leadership and training across a broad array of integrated mapping technologies on campu Research Data Management A UC Berkeley guide and consulting service for research data management issues

General Research Methods Resources

Here are some general resources for assistance:

  • Assistance from ICPSR (must create an account to access): Getting Help with Data , and Resources for Students
  • Wiley Stats Ref for background information on statistics topics
  • Survey Documentation and Analysis (SDA) .  Program for easy web-based analysis of survey data.

Consultants

  • D-Lab/Data Science Discovery Consultants Request help with your research project from peer consultants.
  • Research data (RDM) consulting Meet with RDM consultants before designing the data security, storage, and sharing aspects of your qualitative project.
  • Statistics Department Consulting Services A service in which advanced graduate students, under faculty supervision, are available to consult during specified hours in the Fall and Spring semesters.

Related Resourcex

  • IRB / CPHS Qualitative research projects with human subjects often require that you go through an ethics review.
  • OURS (Office of Undergraduate Research and Scholarships) OURS supports undergraduates who want to embark on research projects and assistantships. In particular, check out their "Getting Started in Research" workshops
  • Sponsored Projects Sponsored projects works with researchers applying for major external grants.
  • Next: Quantitative Research >>
  • Last Updated: Aug 6, 2024 3:06 PM
  • URL: https://guides.lib.berkeley.edu/researchmethods

research methods quantitative and qualitative

Quantitative and Qualitative Research

  • Quantitative vs. Qualitative Research
  • Find quantitative or qualitative research in CINAHL
  • Find quantitative or qualitative research in PsycINFO
  • Relevant book titles

Mixed Methods Research

As its name suggests, mixed methods research involves using elements of both quantitative and qualitative research methods. Using mixed methods, a researcher can more fully explore a research question and provide greater insight. 

What is Empirical Research?

Empirical research is based on observed  and measured phenomena. Knowledge is extracted from real lived experience rather than from theory or belief. 

IMRaD: Scholarly journals sometimes use the "IMRaD" format to communicate empirical research findings.

Introduction:  explains why this research is important or necessary. Provides context ("literature review").

Methodology:  explains how the research was conducted ("research design").

Results: presents what was learned through the study ("findings").

Discussion:  explains or comments upon the findings including why the study is important and connecting to other research ("conclusion").

What is Quantitative Research?

Quantitative research gathers data that can be measured numerically and analyzed mathematically. Quantitative research attempts to answer research questions through the quantification of data. 

Indicators of quantitative research include:

contains statistical analysis 

large sample size 

objective - little room to argue with the numbers 

types of research: descriptive studies, exploratory studies, experimental studies, explanatory studies, predictive studies, clinical trials 

What is Qualitative Research?

Qualitative research is based upon data that is gathered by observation. Qualitative research articles will attempt to answer questions that cannot be measured by numbers but rather by perceived meaning. Qualitative research will likely include interviews, case studies, ethnography, or focus groups. 

Indicators of qualitative research include:

interviews or focus groups 

small sample size 

subjective - researchers are often interpreting meaning 

methods used: phenomenology, ethnography, grounded theory, historical method, case study 

Video: Empirical Studies: Qualitative vs. Quantitative

This video from usu libraries walks you through the differences between quantitative and qualitative research methods. (5:51 minutes) creative commons attribution license (reuse allowed)  https://youtu.be/rzcfma1l6ce.

  • << Previous: Home
  • Next: Find quantitative or qualitative research in CINAHL >>
  • Last Updated: Mar 25, 2024 12:23 PM
  • URL: https://libguides.hofstra.edu/quantitative-and-qualitative-research

This site is compliant with the W3C-WAI Web Content Accessibility Guidelines HOFSTRA UNIVERSITY Hempstead, NY 11549-1000 (516) 463-6600 © 2000-2009 Hofstra University

The differences between qualitative and quantitative research methods

Last updated

15 January 2023

Reviewed by

Two approaches to this systematic information gathering are qualitative and quantitative research. Each of these has its place in data collection, but each one approaches from a different direction. Here's what you need to know about qualitative and quantitative research.

All your data in one place

Analyze your qualitative and quantitative data together in Dovetail and uncover deeper insights

  • The differences between quantitative and qualitative research

The main difference between these two approaches is the type of data you collect and how you interpret it. Qualitative research focuses on word-based data, aiming to define and understand ideas. This study allows researchers to collect information in an open-ended way through interviews, ethnography, and observation. You’ll study this information to determine patterns and the interplay of variables.

On the other hand, quantitative research focuses on numerical data and using it to determine relationships between variables. Researchers use easily quantifiable forms of data collection, such as experiments that measure the effect of one or several variables on one another.

  • Qualitative vs. quantitative data collection

Focusing on different types of data means that the data collection methods vary. 

Quantitative data collection methods

As previously stated, quantitative data collection focuses on numbers. You gather information through experiments, database reports, or surveys with multiple-choice answers. The goal is to have data you can use in numerical analysis to determine relationships.

Qualitative data collection methods

On the other hand, the data collected for qualitative research is an exploration of a subject's attributes, thoughts, actions, or viewpoints. Researchers will typically conduct interviews , hold focus groups, or observe behavior in a natural setting to assemble this information. Other options include studying personal accounts or cultural records. 

  • Qualitative vs. quantitative outcomes

The two approaches naturally produce different types of outcomes. Qualitative research gains a better understanding of the reason something happens. For example, researchers may comb through feedback and statements to ascertain the reasoning behind certain behaviors or actions.

On the other hand, quantitative research focuses on the numerical analysis of data, which may show cause-and-effect relationships. Put another way, qualitative research investigates why something happens, while quantitative research looks at what happens.

  • How to analyze qualitative and quantitative data

Because the two research methods focus on different types of information, analyzing the data you've collected will look different, depending on your approach.

Analyzing quantitative data

As this data is often numerical, you’ll likely use statistical analysis to identify patterns. Researchers may use computer programs to generate data such as averages or rate changes, illustrating the results in tables or graphs.

Analyzing qualitative data

Qualitative data is more complex and time-consuming to process as it may include written texts, videos, or images to study. Finding patterns in thinking, actions, and beliefs is more nuanced and subject to interpretation. 

Researchers may use techniques such as thematic analysis , combing through the data to identify core themes or patterns. Another tool is discourse analysis , which studies how communication functions in different contexts.

  • When to use qualitative vs. quantitative research

Choosing between the two approaches comes down to understanding what your goal is with the research.

Qualitative research approach

Qualitative research is useful for understanding a concept, such as what people think about certain experiences or how cultural beliefs affect perceptions of events. It can help you formulate a hypothesis or clarify general questions about the topic.

Quantitative research approach

On the other hand, quantitative research verifies or tests a hypothesis you've developed, or you can use it to find answers to those questions. 

Mixed methods approach

Often, researchers use elements of both types of research to provide complex and targeted information. This may look like a survey with multiple-choice and open-ended questions.

  • Benefits and limitations

Of course, each type of research has drawbacks and strengths. It's essential to be aware of the pros and cons.

Qualitative studies: Pros and cons

This approach lets you consider your subject creatively and examine big-picture questions. It can advance your global understanding of topics that are challenging to quantify.

On the other hand, the wide-open possibilities of qualitative research can make it tricky to focus effectively on your subject of inquiry. It makes it easier for researchers to skew the data with social biases and personal assumptions. There’s also the tendency for people to behave differently under observation.

It can also be more difficult to get a large sample size because it's generally more complex and expensive to conduct qualitative research. The process usually takes longer, as well. 

Quantitative studies: Pros and cons

The quantitative methodology produces data you can communicate and present without bias. The methods are direct and generally easier to reproduce on a larger scale, enabling researchers to get accurate results. It can be instrumental in pinning down precise facts about a topic. 

It is also a restrictive form of inquiry. Researchers cannot add context to this type of data collection or expand their focus in a different direction within a single study. They must be alert for biases. Quantitative research is more susceptible to selection bias and omitting or incorrectly measuring variables.

  • How to balance qualitative and quantitative research

Although people tend to gravitate to one form of inquiry over another, each has its place in studying a subject. Both approaches can identify patterns illustrating the connection between multiple elements, and they can each advance your understanding of subjects in important ways. 

Understanding how each option will serve you will help you decide how and when to use each. Generally, qualitative research can help you develop and refine questions, while quantitative research helps you get targeted answers to those questions. Which element do you need to advance your study of the subject? Can both of them hone your knowledge?

Open-ended vs. close-ended questions

One way to use techniques from both approaches is with open-ended and close-ended questions in surveys. Because quantitative analysis requires defined sets of data that you can represent numerically, the questions must be close-ended. On the other hand, qualitative inquiry is naturally open-ended, allowing room for complex ideas.

An example of this is a survey on the impact of inflation. You could include both multiple-choice questions and open-response questions:

1. How do you compensate for higher prices at the grocery store? (Select all that apply)

A. Purchase fewer items

B. Opt for less expensive choices

C. Take money from other parts of the budget

D. Use a food bank or other charity to fill the gaps

E. Make more food from scratch

2. How do rising prices affect your grocery shopping habits? (Write your answer)

We need qualitative and quantitative forms of research to advance our understanding of the world. Neither is the "right" way to go, but one may be better for you depending on your needs. 

research methods quantitative and qualitative

Learn more about qualitative research data analysis software

Should you be using a customer insights hub.

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Reference management. Clean and simple.

Qualitative vs. quantitative research - what’s the difference?

Qualitative vs. quantitative research - what’s the difference

What is quantitative research?

What is quantitative research used for, how to collect data for quantitative research, what is qualitative research, what is qualitative research used for, how to collect data for qualitative research, when to use which approach, how to analyze qualitative and quantitative research, analyzing quantitative data, analyzing qualitative data, differences between qualitative and quantitative research, frequently asked questions about qualitative vs. quantitative research, related articles.

Both qualitative and quantitative research are valid and effective approaches to study a particular subject. However, it is important to know that these research approaches serve different purposes and provide different results. This guide will help illustrate quantitative and qualitative research, what they are used for, and the difference between them.

Quantitative research focuses on collecting numerical data and using it to measure variables. As such, quantitative research and data are typically expressed in numbers and graphs. Moreover, this type of research is structured and statistical and the returned results are objective.

The simplest way to describe quantitative research is that it answers the questions " what " or " how much ".

To illustrate what quantitative research is used for, let’s look at a simple example. Let’s assume you want to research the reading habits of a specific part of a population.

With this research, you would like to establish what they read. In other words, do they read fiction, non-fiction, magazines, blogs, and so on? Also, you want to establish what they read about. For example, if they read fiction, is it thrillers, romance novels, or period dramas?

With quantitative research, you can gather concrete data about these reading habits. Your research will then, for example, show that 40% of the audience reads fiction and, of that 40%, 60% prefer romance novels.

In other studies and research projects, quantitative research will work in much the same way. That is, you use it to quantify variables, opinions, behaviors, and more.

Now that we've seen what quantitative research is and what it's used for, let's look at how you'll collect data for it. Because quantitative research is structured and statistical, its data collection methods focus on collecting numerical data.

Some methods to collect this data include:

  • Surveys . Surveys are one of the most popular and easiest ways to collect quantitative data. These can include anything from online surveys to paper surveys. It’s important to remember that, to collect quantitative data, you won’t be able to ask open-ended questions.
  • Interviews . As is the case with qualitative data, you’ll be able to use interviews to collect quantitative data with the proviso that the data will not be based on open-ended questions.
  • Observations . You’ll also be able to use observations to collect quantitative data. However, here you’ll need to make observations in an environment where variables can’t be controlled.
  • Website interceptors . With website interceptors, you’ll be able to get real-time insights into a specific product, service, or subject. In most cases, these interceptors take the form of surveys displayed on websites or invitations on the website to complete the survey.
  • Longitudinal studies . With these studies, you’ll gather data on the same variables over specified time periods. Longitudinal studies are often used in medical sciences and include, for instance, diet studies. It’s important to remember that, for the results to be reliable, you’ll have to collect data from the same subjects.
  • Online polls . Similar to website interceptors, online polls allow you to gather data from websites or social media platforms. These polls are short with only a few options and can give you valuable insights into a very specific question or topic.
  • Experiments . With experiments, you’ll manipulate some variables (your independent variables) and gather data on causal relationships between others (your dependent variables). You’ll then measure what effect the manipulation of the independent variables has on the dependent variables.

Qualitative research focuses on collecting and analyzing non-numerical data. As such, it's typically unstructured and non-statistical. The main aim of qualitative research is to get a better understanding and insights into concepts, topics, and subjects.

The easiest way to describe qualitative research is that it answers the question " why ".

Considering that qualitative research aims to provide more profound insights and understanding into specific subjects, we’ll use our example mentioned earlier to explain what qualitative research is used for.

Based on this example, you’ve now established that 40% of the population reads fiction. You’ve probably also discovered in what proportion the population consumes other reading materials.

Qualitative research will now enable you to learn the reasons for these reading habits. For example, it will show you why 40% of the readers prefer fiction, while, for instance, only 10% prefer thrillers. It thus gives you an understanding of your participants’ behaviors and actions.

We've now recapped what qualitative research is and what it's used for. Let's now consider some methods to collect data for this type of research.

Some of these data collection methods include:

  • Interviews . These include one-on-one interviews with respondents where you ask open-ended questions. You’ll then record the answers from every respondent and analyze these answers later.
  • Open-ended survey questions . Open-ended survey questions give you insights into why respondents feel the way they do about a particular aspect.
  • Focus groups . Focus groups allow you to have conversations with small groups of people and record their opinions and views about a specific topic.
  • Observations . Observations like ethnography require that you participate in a specific organization or group in order to record their routines and interactions. This will, for instance, be the case where you want to establish how customers use a product in real-life scenarios.
  • Literature reviews . With literature reviews, you’ll analyze the published works of other authors to analyze the prevailing view regarding a specific subject.
  • Diary studies . Diary studies allow you to collect data about peoples’ habits, activities, and experiences over time. This will, for example, show you how customers use a product, when they use it, and what motivates them.

Now, the immediate question is: When should you use qualitative research, and when should you use quantitative research? As mentioned earlier, in its simplest form:

  • Quantitative research allows you to confirm or test a hypothesis or theory or quantify a specific problem or quality.
  • Qualitative research allows you to understand concepts or experiences.

Let's look at how you'll use these approaches in a research project a bit closer:

  • Formulating a hypothesis . As mentioned earlier, qualitative research gives you a deeper understanding of a topic. Apart from learning more profound insights about your research findings, you can also use it to formulate a hypothesis when you start your research.
  • Confirming a hypothesis . Once you’ve formulated a hypothesis, you can test it with quantitative research. As mentioned, you can also use it to quantify trends and behavior.
  • Finding general answers . Quantitative research can help you answer broad questions. This is because it uses a larger sample size and thus makes it easier to gather simple binary or numeric data on a specific subject.
  • Getting a deeper understanding . Once you have the broad answers mentioned above, qualitative research will help you find reasons for these answers. In other words, quantitative research shows you the motives behind actions or behaviors.

Considering the above, why not consider a mixed approach ? You certainly can because these approaches are not mutually exclusive. In other words, using one does not necessarily exclude the other. Moreover, both these approaches are useful for different reasons.

This means you could use both approaches in one project to achieve different goals. For example, you could use qualitative to formulate a hypothesis. Once formulated, quantitative research will allow you to confirm the hypothesis.

So, to answer the initial question, the approach you use is up to you.  However, when deciding on the right approach, you should consider the specific research project, the data you'll gather, and what you want to achieve.

No matter what approach you choose, you should design your research in such a way that it delivers results that are objective, reliable, and valid.

Both these research approaches are based on data. Once you have this data, however, you need to analyze it to answer your research questions. The method to do this depends on the research approach you use.

To analyze quantitative data, you'll need to use mathematical or statistical analysis. This can involve anything from calculating simple averages to applying complex and advanced methods to calculate the statistical significance of the results. No matter what analysis methods you use, it will enable you to spot trends and patterns in your data.

Considering the above, you can use tools, applications, and programming languages like R to calculate:

  • The average of a set of numbers . This could, for instance, be the case where you calculate the average scores students obtained in a test or the average time people spend on a website.
  • The frequency of a specific response . This will be the case where you, for example, use open-ended survey questions during qualitative analysis. You could then calculate the frequency of a specific response for deeper insights.
  • Any correlation between different variables . Through mathematical analysis, you can calculate whether two or more variables are directly or indirectly correlated. In turn, this could help you identify trends in the data.
  • The statistical significance of your results . By analyzing the data and calculating the statistical significance of the results, you'll be able to see whether certain occurrences happen randomly or because of specific factors.

Analyzing qualitative data is more complex than quantitative data. This is simply because it's not based on numerical values but rather text, images, video, and the like. As such, you won't be able to use mathematical analysis to analyze and interpret your results.

Because of this, it relies on a more interpretive analysis style and a strict analytical framework to analyze data and extract insights from it.

Some of the most common ways to analyze qualitative data include:

  • Qualitative content analysis . In a content analysis, you'll analyze the language used in a specific piece of text. This allows you to understand the intentions of the author, who the audience is, and find patterns and correlations in how different concepts are communicated. A major benefit of this approach is that it follows a systematic and transparent process that other researchers will be able to replicate. As such, your research will produce highly reliable results. Keep in mind, however, that content analysis can be time-intensive and difficult to automate. ➡️  Learn how to do a content analysis in the guide.
  • Thematic analysis . In a thematic analysis, you'll analyze data with a view of extracting themes, topics, and patterns in the data. Although thematic analysis can encompass a range of diverse approaches, it's usually used to analyze a collection of texts like survey responses, focus group discussions, or transcriptions of interviews. One of the main benefits of thematic analysis is that it's flexible in its approach. However, in some cases, thematic analysis can be highly subjective, which, in turn, impacts the reliability of the results. ➡️  Learn how to do a thematic analysis in this guide.
  • Discourse analysis . In a discourse analysis, you'll analyze written or spoken language to understand how language is used in real-life social situations. As such, you'll be able to determine how meaning is given to language in different contexts. This is an especially effective approach if you want to gain a deeper understanding of different social groups and how they communicate with each other. As such, it's commonly used in humanities and social science disciplines.

We’ve now given a broad overview of both qualitative and quantitative research. Based on this, we can summarize the differences between these two approaches as follows:

Focuses on testing hypotheses. Can also be used to determine general facts about a topic.

Focuses on developing an idea or hypotheses. Can also be used to gain a deeper understanding into specific topics.

Analysis is mainly done through mathematical or statistical analytics.

Analysis is more interpretive and involves summarizing and categorizing topics or themes and interpreting data.

Data is typically expressed in numbers, graphs, tables, or other numerical formats.

Data is generally expressed in words or text.

Requires a reasonably large sample size to be reliable.

Requires smaller sample sizes with only a few respondents.

Data collection is focused on closed-ended questions.

Data collection is focused on open-ended questions to extract the opinions and views on a particular subject.

Qualitative research focuses on collecting and analyzing non-numerical data. As such, it's typically unstructured and non-statistical. The main aim of qualitative research is to get a better understanding and insights into concepts, topics, and subjects. Quantitative research focuses on collecting numerical data and using it to measure variables. As such, quantitative research and data are typically expressed in numbers and graphs. Moreover, this type of research is structured and statistical and the returned results are objective.

3 examples of qualitative research would be:

  • Interviews . These include one-on-one interviews with respondents with open-ended questions. You’ll then record the answers and analyze them later.
  • Observations . Observations require that you participate in a specific organization or group in order to record their routines and interactions.

3 examples of quantitative research include:

  • Surveys . Surveys are one of the most popular and easiest ways to collect quantitative data. To collect quantitative data, you won’t be able to ask open-ended questions.
  • Longitudinal studies . With these studies, you’ll gather data on the same variables over specified time periods. Longitudinal studies are often used in medical sciences.

The main purpose of qualitative research is to get a better understanding and insights into concepts, topics, and subjects. The easiest way to describe qualitative research is that it answers the question " why ".

The purpose of quantitative research is to collect numerical data and use it to measure variables. As such, quantitative research and data are typically expressed in numbers and graphs. The simplest way to describe quantitative research is that it answers the questions " what " or " how much ".

research methods quantitative and qualitative

SkillsYouNeed

  • LEARNING SKILLS
  • Research Methods

Quantitative and Qualitative Research Methods

Search SkillsYouNeed:

Learning Skills:

  • A - Z List of Learning Skills
  • What is Learning?
  • Learning Approaches
  • Learning Styles
  • 8 Types of Learning Styles
  • Understanding Your Preferences to Aid Learning
  • Lifelong Learning
  • Decisions to Make Before Applying to University
  • Top Tips for Surviving Student Life
  • Living Online: Education and Learning
  • 8 Ways to Embrace Technology-Based Learning Approaches
  • Critical Thinking Skills
  • Critical Thinking and Fake News
  • Understanding and Addressing Conspiracy Theories
  • Critical Analysis
  • Study Skills
  • Exam Skills
  • Writing a Dissertation or Thesis
  • Introduction to Research Methods
  • Designing Research
  • Qualitative Research Designs
  • Interviews for Research
  • Focus Groups
  • Qualitative Data from Interactions
  • Quantitative Research Designs
  • Sampling and Sample Design
  • Surveys and Survey Design
  • Observational Research and Secondary Data
  • Analysing Research Data

Analysing Qualitative Data

  • Simple Statistical Analysis
  • Statistical Analysis: Types of Data
  • Understanding Correlations
  • Understanding Statistical Distributions
  • Significance and Confidence Intervals
  • Developing and Testing Hypotheses
  • Multivariate Analysis

Get the SkillsYouNeed Research Methods eBook

Research Methods

Part of the Skills You Need Guide for Students .

  • Teaching, Coaching, Mentoring and Counselling
  • Employability Skills for Graduates

Subscribe to our FREE newsletter and start improving your life in just 5 minutes a day.

You'll get our 5 free 'One Minute Life Skills' and our weekly newsletter.

We'll never share your email address and you can unsubscribe at any time.

Research methods are split broadly into quantitative and qualitative methods.

Which you choose will depend on your research questions, your underlying philosophy of research, and your preferences and skills.

Our pages Introduction to Research Methods and Designing Research set out some of the issues about the underlying philosophy.

This page provides an introduction to the broad principles of qualitative and quantitative research methods, and the advantages and disadvantages of each in particular situations.

Some definitions

Quantitative research is “ explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particular statistics). ”*

Qualitative research seeks to answer questions about why and how people behave in the way that they do. It provides in-depth information about human behaviour.

* Taken from: Aliaga and Gunderson ‘Interactive Statistics ‘3rd Edition (2005)

Quantitative Research

Quantitative research is perhaps the simpler to define and identify..

The data produced are always numerical, and they are analysed using mathematical and statistical methods. If there are no numbers involved, then it’s not quantitative research.

Some phenomena obviously lend themselves to quantitative analysis because they are already available as numbers. Examples include changes in achievement at various stages of education, or the increase in number of senior managers holding management degrees. However, even phenomena that are not obviously numerical in nature can be examined using quantitative methods.

Example: turning opinions into numbers

If you wish to carry out statistical analysis of the opinions of a group of people about a particular issue or element of their lives, you can ask them to express their relative agreement with statements and answer on a five- or seven-point scale, where 1 is strongly disagree, 2 is disagree, 3 is neutral, 4 is agree and 5 is strongly agree (the seven-point scale also has slightly agree/disagree).

Such scales are called Likert scales , and enable statements of opinion to be directly translated into numerical data.

The development of Likert scales and similar techniques mean that most phenomena can be studied using quantitative techniques.

This is particularly useful if you are in an environment where numbers are highly valued and numerical data is considered the ‘gold standard’.

However, it is important to note that quantitative methods are not necessarily the most suitable methods for investigation. They are unlikely to be very helpful when you want to understand the detailed reasons for particular behaviour in depth. It is also possible that assigning numbers to fairly abstract constructs such as personal opinions risks making them spuriously precise.

Sources of Quantitative Data

The most common sources of quantitative data include:

Surveys , whether conducted online, by phone or in person. These rely on the same questions being asked in the same way to a large number of people;

Observations , which may either involve counting the number of times that a particular phenomenon occurs, such as how often a particular word is used in interviews, or coding observational data to translate it into numbers; and

Secondary data , such as company accounts.

Our pages on Survey Design and Observational Research provide more information about these techniques.

Analysing Quantitative Data

There are a wide range of statistical techniques available to analyse quantitative data, from simple graphs to show the data through tests of correlations between two or more items, to statistical significance. Other techniques include cluster analysis, useful for identifying relationships between groups of subjects where there is no obvious hypothesis, and hypothesis testing, to identify whether there are genuine differences between groups.

Our page Statistical Analysis provides more information about some of the simpler statistical techniques.

Qualitative Research

Qualitative research is any which does not involve numbers or numerical data..

It often involves words or language, but may also use pictures or photographs and observations.

Almost any phenomenon can be examined in a qualitative way, and it is often the preferred method of investigation in the UK and the rest of Europe; US studies tend to use quantitative methods, although this distinction is by no means absolute.

Qualitative analysis results in rich data that gives an in-depth picture and it is particularly useful for exploring how and why things have happened.

However, there are some pitfalls to qualitative research, such as:

If respondents do not see a value for them in the research, they may provide inaccurate or false information. They may also say what they think the researcher wishes to hear. Qualitative researchers therefore need to take the time to build relationships with their research subjects and always be aware of this potential.

Although ethics are an issue for any type of research, there may be particular difficulties with qualitative research because the researcher may be party to confidential information. It is important always to bear in mind that you must do no harm to your research subjects.

It is generally harder for qualitative researchers to remain apart from their work. By the nature of their study, they are involved with people. It is therefore helpful to develop habits of reflecting on your part in the work and how this may affect the research. See our page on Reflective Practice for more.

Sources of Qualitative Data

Although qualitative data is much more general than quantitative, there are still a number of common techniques for gathering it. These include:

Interviews , which may be structured, semi-structured or unstructured;

Focus groups , which involve multiple participants discussing an issue;

‘Postcards’ , or small-scale written questionnaires that ask, for example, three or four focused questions of participants but allow them space to write in their own words;

Secondary data , including diaries, written accounts of past events, and company reports; and

Observations , which may be on site, or under ‘laboratory conditions’, for example, where participants are asked to role-play a situation to show what they might do.

Our pages on Interviews for Research , Focus Groups and Observational Research provide more information about these techniques.

Because qualitative data are drawn from a wide variety of sources, they can be radically different in scope.

There are, therefore, a wide variety of methods for analysing them, many of which involve structuring and coding the data into groups and themes. There are also a variety of computer packages to support qualitative data analysis. The best way to work out which ones are right for your research is to discuss it with academic colleagues and your supervisor.

Our page Analysing Qualitative Data provides more information about some of the most common methods.

It’s your research…

Finally, it is important to say that there is no right and wrong answer to which methods you choose.

Sometimes you may wish to use one single method, whether quantitative or qualitative, and sometimes you may want to use several, whether all one type or a mixture. It is your research and only you can decide which methods will suit both your research questions and your skills, even though you may wish to seek advice from others.

Continue to: Sampling and Sample Design Interviews for Research

See also: Writing a Research Proposal | Writing a Methodology Analysing Qualitative Data | Simple Statistical Analysis

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO
  • Experience Management
  • Qualitative Vs Quantitative Research

Try Qualtrics for free

Qualitative vs quantitative research.

13 min read You’ll use both quantitative and qualitative research methods to gather data in your research projects. So what do qualitative and quantitative mean exactly, and how can you best use them to gain the most accurate insights?

What is qualitative research?

Qualitative research is all about language, expression, body language and other forms of human communication. That covers words, meanings and understanding. Qualitative research is used to describe WHY. Why do people feel the way they do, why do they act in a certain way, what opinions do they have and what motivates them?

Qualitative data is used to understand phenomena – things that happen, situations that exist, and most importantly the meanings associated with them. It can help add a ‘why’ element to factual, objective data.

Qualitative research gives breadth, depth and context to questions, although its linguistic subtleties and subjectivity can mean that results are trickier to analyze than quantitative data.

This qualitative data is called unstructured data by researchers. This is because it has not traditionally had the type of structure that can be processed by computers, until today. It has, until recently at least, been exclusively accessible to human brains. And although our brains are highly sophisticated, they have limited processing power. What can help analyze this structured data to assist computers and the human brain?

Free eBook: Quantitative and qualitative research design

What is quantitative research?

Quantitative data refers to numerical information. Quantitative research gathers information that can be counted, measured, or rated numerically – AKA quantitative data. Scores, measurements, financial records, temperature charts and receipts or ledgers are all examples of quantitative data.

Quantitative data is often structured data, because it follows a consistent, predictable pattern that computers and calculating devices are able to process with ease. Humans can process it too, although we are now able to pass it over to machines to process on our behalf. This is partly what has made quantitative data so important historically, and why quantitative data – sometimes called ‘hard data’ – has dominated over qualitative data in fields like business, finance and economics.

It’s easy to ‘crunch the numbers’ of quantitative data and produce results visually in graphs, tables and on data analysis dashboards. Thanks to today’s abundance and accessibility of processing power, combined with our ability to store huge amounts of information, quantitative data has fuelled the Big Data phenomenon, putting quantitative methods and vast amounts of quantitative data at our fingertips.

As we’ve indicated, quantitative and qualitative data are entirely different and mutually exclusive categories. Here are a few of the differences between them.

1. Data collection

Data collection methods for quantitative data and qualitative data vary, but there are also some places where they overlap.

Qualitative data collection methods Quantitative data collection methods
Gathered from focus groups, in-depth interviews, case studies, expert opinion, observation, audio recordings, and can also be collected using surveys. Gathered from surveys, questionnaires, polls, or from secondary sources like census data, reports, records and historical business data.
Uses and open text survey questions Intended to be as close to objective as possible. Understands the ‘human touch’ only through quantifying the OE data that only this type of research can code.

2. Data analysis

Quantitative data suits statistical analysis techniques like linear regression, T-tests and ANOVA. These are quite easy to automate, and large quantities of quantitative data can be analyzed quickly.

Analyzing qualitative data needs a higher degree of human judgement, since unlike quantitative data, non numerical data of a subjective nature has certain characteristics that inferential statistics can’t perceive. Working at a human scale has historically meant that qualitative data is lower in volume – although it can be richer in insights.

Qualitative data analysis Quantitative data analysis
Results are categorized, summarized and interpreted using human language and perception, as well as logical reasoning Results are analyzed mathematically and statistically, without recourse to intuition or personal experience.
Fewer respondents needed, each providing more detail Many respondents needed to achieve a representative result

3. Strengths and weaknesses

When weighing up qualitative vs quantitative research, it’s largely a matter of choosing the method appropriate to your research goals. If you’re in the position of having to choose one method over another, it’s worth knowing the strengths and limitations of each, so that you know what to expect from your results.

Qualitative approach Quantitative approach
Can be used to help formulate a theory to be researched by describing a present phenomenon Can be used to test and confirm a formulated theory
Results typically expressed as text, in a report, presentation or journal article Results expressed as numbers, tables and graphs, relying on numerical data to tell a story.
Less suitable for scientific research More suitable for scientific research and compatible with most standard statistical analysis methods
Harder to replicate, since no two people are the same Easy to replicate, since what is countable can be counted again
Less suitable for sensitive data: respondents may be biased or too familiar with the pro Ideal for sensitive data as it can be anonymized and secured

Qualitative vs quantitative – the role of research questions

How do you know whether you need qualitative or quantitative research techniques? By finding out what kind of data you’re going to be collecting.

You’ll do this as you develop your research question, one of the first steps to any research program. It’s a single sentence that sums up the purpose of your research, who you’re going to gather data from, and what results you’re looking for.

As you formulate your question, you’ll get a sense of the sort of answer you’re working towards, and whether it will be expressed in numerical data or qualitative data.

For example, your research question might be “How often does a poor customer experience cause shoppers to abandon their shopping carts?” – this is a quantitative topic, as you’re looking for numerical values.

Or it might be “What is the emotional impact of a poor customer experience on regular customers in our supermarket?” This is a qualitative topic, concerned with thoughts and feelings and answered in personal, subjective ways that vary between respondents.

Here’s how to evaluate your research question and decide which method to use:

  • Qualitative research:

Use this if your goal is to understand something – experiences, problems, ideas.

For example, you may want to understand how poor experiences in a supermarket make your customers feel. You might carry out this research through focus groups or in depth interviews (IDI’s). For a larger scale research method you could start  by surveying supermarket loyalty card holders, asking open text questions, like “How would you describe your experience today?” or “What could be improved about your experience?” This research will provide context and understanding that quantitative research will not.

  • Quantitative research:

Use this if your goal is to test or confirm a hypothesis, or to study cause and effect relationships. For example, you want to find out what percentage of your returning customers are happy with the customer experience at your store. You can collect data to answer this via a survey.

For example, you could recruit 1,000 loyalty card holders as participants, asking them, “On a scale of 1-5, how happy are you with our store?” You can then make simple mathematical calculations to find the average score. The larger sample size will help make sure your results aren’t skewed by anomalous data or outliers, so you can draw conclusions with confidence.

Qualitative and quantitative research combined?

Do you always have to choose between qualitative or quantitative data?

Qualitative vs quantitative cluster chart

In some cases you can get the best of both worlds by combining both quantitative and qualitative data.You could use pre quantitative data to understand the landscape of your research. Here you can gain insights around a topic and propose a hypothesis. Then adopt a quantitative research method to test it out. Here you’ll discover where to focus your survey appropriately or to pre-test your survey, to ensure your questions are understood as you intended. Finally, using a round of qualitative research methods to bring your insights and story to life. This mixed methods approach is becoming increasingly popular with businesses who are looking for in depth insights.

For example, in the supermarket scenario we’ve described, you could start out with a qualitative data collection phase where you use focus groups and conduct interviews with customers. You might find suggestions in your qualitative data that customers would like to be able to buy children’s clothes in the store.

In response, the supermarket might pilot a children’s clothing range. Targeted quantitative research could then reveal whether or not those stores selling children’s clothes achieve higher customer satisfaction scores and a rise in profits for clothing.

Together, qualitative and quantitative data, combined with statistical analysis, have provided important insights about customer experience, and have proven the effectiveness of a solution to business problems.

Qualitative vs quantitative question types

As we’ve noted, surveys are one of the data collection methods suitable for both quantitative and qualitative research. Depending on the types of questions you choose to include, you can generate qualitative and quantitative data. Here we have summarized some of the survey question types you can use for each purpose.

Qualitative data survey questions

There are fewer survey question options for collecting qualitative data, since they all essentially do the same thing – provide the respondent with space to enter information in their own words. Qualitative research is not typically done with surveys alone, and researchers may use a mix of qualitative methods. As well as a survey, they might conduct in depth interviews, use observational studies or hold focus groups.

Open text ‘Other’ box (can be used with multiple choice questions)

Other text field

Text box (space for short written answer)

What is your favourite item on our drinks menu

Essay box (space for longer, more detailed written answers)

Tell us about your last visit to the café

Quantitative data survey questions

These questions will yield quantitative data – i.e. a numerical value.

Net Promoter Score (NPS)

On a scale of 1-10, how likely are you to recommend our café to other people?

Likert Scale

How would you rate the service in our café? Very dissatisfied to Very satisfied

Radio buttons (respondents choose just one option)

Which drink do you buy most often? Coffee, Tea, Hot Chocolate, Cola, Squash

Check boxes (respondents can choose multiple options)

On which days do you visit the cafe? Mon-Saturday

Sliding scale

Using the sliding scale, how much do you agree that we offer excellent service?

Star rating

Please rate the following aspects of our café: Service, Quality of food, Seating comfort, Location

Analyzing data (quantitative or qualitative) using technology

We are currently at an exciting point in the history of qualitative analysis. Digital analysis and other methods that were formerly exclusively used for quantitative data are now used for interpreting non numerical data too.

A rtificial intelligence programs can now be used to analyze open text, and turn qualitative data into structured and semi structured quantitative data that relates to qualitative data topics such as emotion and sentiment, opinion and experience.

Research that in the past would have meant qualitative researchers conducting time-intensive studies using analysis methods like thematic analysis can now be done in a very short space of time. This not only saves time and money, but opens up qualitative data analysis to a much wider range of businesses and organizations.

The most advanced tools can even be used for real-time statistical analysis, forecasting and prediction, making them a powerful asset for businesses.

Qualitative or quantitative – which is better for data analysis?

Historically, quantitative data was much easier to analyze than qualitative data. But as we’ve seen, modern technology is helping qualitative analysis to catch up, making it quicker and less labor-intensive than before.

That means the choice between qualitative and quantitative studies no longer needs to factor in ease of analysis, provided you have the right tools at your disposal. With an integrated platform like Qualtrics, which incorporates data collection, data cleaning, data coding and a powerful suite of analysis tools for both qualitative and quantitative data, you have a wide range of options at your fingertips.

Related resources

Qualitative research questions 11 min read, qualitative research design 12 min read, primary vs secondary research 14 min read, business research methods 12 min read, qualitative research interviews 11 min read, market intelligence 10 min read, marketing insights 11 min read, request demo.

Ready to learn more about Qualtrics?

Quantitative and Qualitative Research Methods

  • First Online: 03 January 2022

Cite this chapter

research methods quantitative and qualitative

  • Andrew England 5  

774 Accesses

2 Citations

Quantitative research uses methods that seek to explain phenomena by collecting numerical data, which are then analysed mathematically, typically by statistics. With quantitative approaches, the data produced are always numerical; if there are no numbers, then the methods are not quantitative. Many phenomena lend themselves to quantitative methods because the relevant information is already available numerically. Qualitative methods provide a mechanism to provide answers based on the collection of non-numerical data ‘i.e words, actions, behaviours’. Both quantitative and qualitative methodologies are important in medical imaging and radiation therapy.   In some instances, both quantitative and qualitative approaches can be combined into a mixed-methods approach. This chapter discusses all methodological approaches to research from both medical imaging and radiation therapy perspectives.  

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

research methods quantitative and qualitative

Types of Information

Health technology assessment.

research methods quantitative and qualitative

How to avoid describing your radiological research study incorrectly

Alzyoud, K., Hogg, P., Snaith, B., Flintham, K., & England, A. (2019). Impact of body part thickness on AP pelvis radiographic image quality and effective dose. Radiography, 25 (1), e11–e17. https://doi.org/10.1016/j.radi.2018.09.001

Article   CAS   PubMed   Google Scholar  

Banks, E., Beral, V., Cmeron, R., et al. (2001). Comparison of various characteristics of women who do and do not attend for breast cancer screening. Breast Cancer Research, 4 , R1. https://doi.org/10.1186/br418

Article   PubMed   PubMed Central   Google Scholar  

Benfield, S., Hewis, J. D., & Hayre, C. M. (2021). Investigating perceptions of ‘dose creep’ amongst student radiographers: A grounded theory study. Radiography, 27 (2), 605–610. https://doi.org/10.1016/j.radi.2020.11.023

Booth, L., Henwood, S., & Millker, P. K. (2017). Leadership and the everyday practice of Consultant Radiographers in the UK: Transformational ideals and the generation of self-efficacy. Radiography, 23 (2), 125–129. https://doi.org/10.1016/j.radi.2016.12.003

Bristowe, K., Selman, L., & Murtagh, F. E. M. (2015). Qualitative research methods in renal medicine: An introduction. Nephrology, Dialysis, Transplantation, 30 (9), 1424–1431. https://doi.org/10.1093/ndt/gfu410

Article   PubMed   Google Scholar  

Cuthbertson, L. M. (2019). The journey to radiographer advanced practice: A methodological reflection on the use of interpretative phenomenological analysis to explore perceptions and experiences. Journal of Radiotherapy in Practice, 19 , 116–121. https://doi.org/10.1017/S1460396919000621

Article   Google Scholar  

Decker, S. (2009). The lived experience of newly qualified radiographers (1950–1985): An oral history of radiography. Radiography, 15 (1), e72–e77. https://doi.org/10.1016/j.radi.2009.09.009

Dillman, J. R., Ellis, J. H., Cohan, R. H., Strouse, P. J., & Jan, S. C. (2007). Frequency and severity of acute allergic-like reactions to gadolinium-containing IV contrast media in children and adults. American Journal of Roentgenology, 189 (6), 1533–1538. https://doi.org/10.2214/AJR.078.2554

Hart, D., Hillier, M. C., & Wall, B. F. (2009). National reference doses for common radiographic, fluoroscopic and dental X-ray examinations in the UK. The British Journal of Radiology, 82 , 1–12. https://doi.org/10.1259/bjr/12568539

Hayre, C. M., Blackman, S., Carlton, K., & Eyden, A. (2018). Attitudes and perceptions of radioigraphers applying lead (Pb) in general radiography: An ethnographic study. Radiography, 24 (1), e13–e18. https://doi.org/10.1016/j.radi.2017.07.010

Mercer, C. E., Hogg, P., Lawson, R., Diffey, J., & Denton, E. R. E. (2013). Practitioner compression force variability in mammography: A preliminary study. The British Journal of Radiology, 86 (1022), 20110596. https://doi.org/10.1259/bjr.20110596

Article   CAS   PubMed   PubMed Central   Google Scholar  

Nijssen, E. C., Rennenberg, R. J., Nelemans, P. J., Essers, B. A., Jannseen, M. M., Vermeeren, M. A., et al. (2017). Prophylactic hydration to protect renal function from intravascular iodinated contrast materials in patients at high risk of contrast-induced nephropathy (AMACING): A prospective, randomised, phase 3, controlled trial, open-label, non-inferiority trail. Lancet, 389 (10076), 1312–1322. https://doi.org/10.1016/S0140-6736(17):30057-0

Rosenkrantz, A. B., & Pysarenko, K. (2016). The patient experience in radiology: Observations from over 3,500 patient feedback reports in a single institution. Journal of the American College of Radiology, 13 (11), 1371–1377. https://doi.org/10.1016/j.jacr.2016.04.034

Sternberg, C. N., Hawkins, R. E., Wagstaff, J., Salman, P., Mardiak, J., Barrios, C. H., et al. (2013). A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: Final overall survival results and safety update. European Journal of Cancer, 49 (6), 1287–1296. https://doi.org/10.1016/j.ejca.2012.12.010

Download references

Author information

Authors and affiliations.

Discipline of Medical Imaging, School of Medicine, University College Cork, Cork, Ireland

Andrew England

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Andrew England .

Editor information

Editors and affiliations.

Medical Imaging, Faculty of Health, University of Canberra, Burnaby, BC, Canada

Euclid Seeram

Faculty of Health, University of Canberra, Canberra, ACT, Australia

Robert Davidson

Brookfield Health Sciences, University College Cork, Cork, Ireland

Mark F. McEntee

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

England, A. (2021). Quantitative and Qualitative Research Methods. In: Seeram, E., Davidson, R., England, A., McEntee, M.F. (eds) Research for Medical Imaging and Radiation Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-79956-4_5

Download citation

DOI : https://doi.org/10.1007/978-3-030-79956-4_5

Published : 03 January 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-79955-7

Online ISBN : 978-3-030-79956-4

eBook Packages : Biomedical and Life Sciences Biomedical and Life Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Qualitative vs. Quantitative Research: Comparing the Methods and Strategies for Education Research

A woman sits at a library table with stacks of books and a laptop.

No matter the field of study, all research can be divided into two distinct methodologies: qualitative and quantitative research. Both methodologies offer education researchers important insights.

Education research assesses problems in policy, practices, and curriculum design, and it helps administrators identify solutions. Researchers can conduct small-scale studies to learn more about topics related to instruction or larger-scale ones to gain insight into school systems and investigate how to improve student outcomes.

Education research often relies on the quantitative methodology. Quantitative research in education provides numerical data that can prove or disprove a theory, and administrators can easily share the number-based results with other schools and districts. And while the research may speak to a relatively small sample size, educators and researchers can scale the results from quantifiable data to predict outcomes in larger student populations and groups.

Qualitative vs. Quantitative Research in Education: Definitions

Although there are many overlaps in the objectives of qualitative and quantitative research in education, researchers must understand the fundamental functions of each methodology in order to design and carry out an impactful research study. In addition, they must understand the differences that set qualitative and quantitative research apart in order to determine which methodology is better suited to specific education research topics.

Generate Hypotheses with Qualitative Research

Qualitative research focuses on thoughts, concepts, or experiences. The data collected often comes in narrative form and concentrates on unearthing insights that can lead to testable hypotheses. Educators use qualitative research in a study’s exploratory stages to uncover patterns or new angles.

Form Strong Conclusions with Quantitative Research

Quantitative research in education and other fields of inquiry is expressed in numbers and measurements. This type of research aims to find data to confirm or test a hypothesis.

Differences in Data Collection Methods

Keeping in mind the main distinction in qualitative vs. quantitative research—gathering descriptive information as opposed to numerical data—it stands to reason that there are different ways to acquire data for each research methodology. While certain approaches do overlap, the way researchers apply these collection techniques depends on their goal.

Interviews, for example, are common in both modes of research. An interview with students that features open-ended questions intended to reveal ideas and beliefs around attendance will provide qualitative data. This data may reveal a problem among students, such as a lack of access to transportation, that schools can help address.

An interview can also include questions posed to receive numerical answers. A case in point: how many days a week do students have trouble getting to school, and of those days, how often is a transportation-related issue the cause? In this example, qualitative and quantitative methodologies can lead to similar conclusions, but the research will differ in intent, design, and form.

Taking a look at behavioral observation, another common method used for both qualitative and quantitative research, qualitative data may consider a variety of factors, such as facial expressions, verbal responses, and body language.

On the other hand, a quantitative approach will create a coding scheme for certain predetermined behaviors and observe these in a quantifiable manner.

Qualitative Research Methods

  • Case Studies : Researchers conduct in-depth investigations into an individual, group, event, or community, typically gathering data through observation and interviews.
  • Focus Groups : A moderator (or researcher) guides conversation around a specific topic among a group of participants.
  • Ethnography : Researchers interact with and observe a specific societal or ethnic group in their real-life environment.
  • Interviews : Researchers ask participants questions to learn about their perspectives on a particular subject.

Quantitative Research Methods

  • Questionnaires and Surveys : Participants receive a list of questions, either closed-ended or multiple choice, which are directed around a particular topic.
  • Experiments : Researchers control and test variables to demonstrate cause-and-effect relationships.
  • Observations : Researchers look at quantifiable patterns and behavior.
  • Structured Interviews : Using a predetermined structure, researchers ask participants a fixed set of questions to acquire numerical data.

Choosing a Research Strategy

When choosing which research strategy to employ for a project or study, a number of considerations apply. One key piece of information to help determine whether to use a qualitative vs. quantitative research method is which phase of development the study is in.

For example, if a project is in its early stages and requires more research to find a testable hypothesis, qualitative research methods might prove most helpful. On the other hand, if the research team has already established a hypothesis or theory, quantitative research methods will provide data that can validate the theory or refine it for further testing.

It’s also important to understand a project’s research goals. For instance, do researchers aim to produce findings that reveal how to best encourage student engagement in math? Or is the goal to determine how many students are passing geometry? These two scenarios require distinct sets of data, which will determine the best methodology to employ.

In some situations, studies will benefit from a mixed-methods approach. Using the goals in the above example, one set of data could find the percentage of students passing geometry, which would be quantitative. The research team could also lead a focus group with the students achieving success to discuss which techniques and teaching practices they find most helpful, which would produce qualitative data.

Learn How to Put Education Research into Action

Those with an interest in learning how to harness research to develop innovative ideas to improve education systems may want to consider pursuing a doctoral degree. American University’s School of Education online offers a Doctor of Education (EdD) in Education Policy and Leadership that prepares future educators, school administrators, and other education professionals to become leaders who effect positive changes in schools. Courses such as Applied Research Methods I: Enacting Critical Research provides students with the techniques and research skills needed to begin conducting research exploring new ways to enhance education. Learn more about American’ University’s EdD in Education Policy and Leadership .

What’s the Difference Between Educational Equity and Equality?

EdD vs. PhD in Education: Requirements, Career Outlook, and Salary

Top Education Technology Jobs for Doctorate in Education Graduates

American University, EdD in Education Policy and Leadership

Edutopia, “2019 Education Research Highlights”

Formplus, “Qualitative vs. Quantitative Data: 15 Key Differences and Similarities”

iMotion, “Qualitative vs. Quantitative Research: What Is What?”

Scribbr, “Qualitative vs. Quantitative Research”

Simply Psychology, “What’s the Difference Between Quantitative and Qualitative Research?”

Typeform, “A Simple Guide to Qualitative and Quantitative Research”

Request Information

Chatbot avatar

AU Program Helper

This AI chatbot provides automated responses, which may not always be accurate. By continuing with this conversation, you agree that the contents of this chat session may be transcribed and retained. You also consent that this chat session and your interactions, including cookie usage, are subject to our  privacy policy .

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

Qualitative and Quantitative Research — Explore the differences

Sumalatha G

In the research arena, there are two main approaches that researchers can take —  qualitative and quantitative research. Understanding the fundamentals of these two methods is crucial for conducting effective research and obtaining accurate results.

This article provides insights into the differences between qualitative and quantitative research and we also discuss how to develop research questions for qualitative and quantitative studies, and how to gather and analyze data using these research approaches. Furthermore, we will examine how to interpret findings from qualitative and quantitative research, as well as identify ethical considerations.

By the end of this comprehensive article, readers will be equipped with the knowledge and tools to apply qualitative and quantitative research to advance knowledge in their respective fields.

What is Qualitative and Quantitative Research?

Qualitative research aims to understand complex phenomena by exploring the subjective experiences and perspectives of individuals. It focuses on gathering in-depth data through techniques such as interviews, observations, and open-ended surveys. This approach allows researchers to delve into the intricacies of the topic, uncovering unique insights that may not be captured through quantitative methods alone.

For example, imagine a study on the impact of social media on mental health. Qualitative research would involve conducting interviews with individuals who have experienced negative effects from excessive social media use. Through these interviews, researchers can gain a deep understanding of the participants' experiences, emotions, and thoughts. They can explore the nuances of how social media affects different aspects of mental health, such as self-esteem, body image, and social comparison.

Conversely, quantitative research involves collecting numerical data and analyzing it using statistical methods to identify patterns, trends, and relationships. This approach allows researchers to generalize their findings to a larger population and calculate statistically significant results. It relies on structured surveys, experiments, and other data collection methods that provide standardized data for analysis.

Continuing with the example of social media and mental health, quantitative research would involve administering surveys to a large sample of individuals. The surveys would include questions that measure various aspects of mental health, such as anxiety, depression, and life satisfaction. By collecting numerical data from a large and diverse sample, researchers can identify trends and relationships between social media use and mental health outcomes.

Both qualitative and quantitative research have their strengths and weaknesses. Qualitative research allows for a deep understanding of the topic, providing rich insights and capturing the context of the participants' experiences. It allows researchers to uncover unique perspectives and shed light on subjective experiences.

On the other hand, quantitative research entails a structured and systematic approach to data collection and analysis, allowing for comparisons and generalizations across different groups and contexts.

However, it is crucial to emphasize that qualitative and quantitative research are not mutually exclusive. They frequently serve as a complement to one another within the realm of research studies. Researchers may use qualitative methods to explore a topic in-depth and generate hypotheses, which can then be tested using quantitative methods. This combination of approaches, known as mixed methods research, allows for a more comprehensive understanding of complex phenomena.

Advantages and Disadvantages of Each Research Method

Qualitative research offers the advantage of generating detailed and nuanced data. It allows researchers to explore complex issues and gain a deeper understanding of participants' thoughts, emotions, and behaviors. However, qualitative research can be time-consuming, and data analysis may be subjective.

In contrast, quantitative research provides objective and quantifiable data, making it easier to draw conclusions and establish causation. It enables researchers to collect data from large samples, increasing the generalizability of findings. Nevertheless, quantitative research may overlook important contextual information and fail to capture the complexities of human experiences. Additionally, it requires a solid understanding of statistical techniques for accurate analysis.

When to Use Qualitative or Quantitative Research?

The choice between qualitative and quantitative research depends on the research questions and objectives. Qualitative research is appropriate when exploring new or complex phenomena, seeking in-depth insights, or generating hypotheses for further investigation. It is particularly useful in social sciences and humanities. On the other hand, quantitative research is suitable when aiming to establish causal relationships, generalize findings to a larger population, or measure phenomena systematically and objectively. It is commonly employed in sciences such as psychology, economics, and medicine.

By considering the nature of the research question, the available resources, and the desired outcomes, researchers can make an informed decision on the appropriate research approach.

How to develop research Questions for Qualitative and Quantitative Studies?

A well-defined research question is essential for conducting meaningful research. In qualitative studies, research questions are exploratory and aim to understand the experiences, perceptions, and meanings of participants. These questions should be open-ended and allow for in-depth exploration of the phenomenon under investigation.

In quantitative research, research questions are often formulated to test hypotheses or examine relationships between variables. These questions should be clear, specific, and measurable to guide data collection and analysis.

Regardless of the research approach, it is crucial to develop research questions that align with the research objectives, is feasible to investigate and contribute to existing knowledge in the field.

Gathering and Analyzing Data

Qualitative research involves collecting data through various techniques, such as interviews, focus groups, and observations. Researchers must establish rapport with participants to encourage open and honest responses. The data collected is then analyzed using methods like thematic analysis and constant comparison to identify patterns, themes, and categories. In quantitative research, data is collected using surveys, experiments, or other structured methods. Researchers aim to obtain a representative sample and ensure the reliability and validity of the data. Statistical analysis techniques, such as descriptive statistics, correlation, and regression, are then applied to conclude.

Regardless of the research approach, it is essential to document the data collection and analysis process thoroughly to ensure transparency and reproducibility.

Interpreting Findings

Interpreting findings from qualitative research involves carefully analyzing the patterns, themes, and categories identified during data analysis. Researchers aim to understand the overarching meaning of the data and draw conclusions based on the participants' experiences and perspectives. The findings are often supported by direct quotes or examples from the data. In quantitative research, findings are interpreted by analyzing statistical results and examining the significance of relationships or differences. Researchers must carefully consider the limitations of the study and the generalizability of the findings. The results are often presented using tables, charts, and graphs for clarity.

Irrespective of the research approach, it is crucial to avoid generalizing beyond the scope of the data and to consider alternative interpretations.

Identifying Ethical Considerations in Qualitative and Quantitative Research

Both qualitative and quantitative research must adhere to ethical guidelines to protect the rights and well-being of participants. Researchers should obtain informed consent, ensure confidentiality, and prevent harm. In qualitative research, building trust and maintaining participant anonymity is crucial. In quantitative research, privacy and data protection are paramount.

Additionally, researchers must consider the potential biases, power dynamics, and conflicts of interest that may influence the research process and findings. Being aware of these ethical considerations helps ensure the integrity and reliability of the research.

How to Write a Research Report Based on Qualitative or Quantitative Data

When writing a research report, it is essential to structure it clearly and concisely. In qualitative research, the report typically includes an introduction, literature review, methodology, findings, discussion, and conclusion. The findings section focuses on the themes and patterns identified during analysis and is supported by quotes or examples from the data.

In quantitative research, the report generally consists of an introduction, literature review, methodology, results, discussion, and conclusion. The results section presents the statistical analysis and findings in a clear and organized manner, often using tables, charts, and graphs.

The report should be written in a scholarly tone, provide sufficient details, and communicate the research findings and implications.

Assessing Reliability and Validity of Qualitative and Quantitative Results

Reliability and validity are crucial considerations in research. In qualitative research, researchers can enhance reliability by using multiple researchers to analyze the data and compare their interpretations. Validity can be strengthened by employing rigorous data collection methods, establishing trustworthiness, and including participant validation.

In quantitative research, reliability can be assessed through test-retest reliability or inter-rater reliability. Validity can be evaluated by examining internal validity, external validity, and construct validity. Additionally, researchers should carefully consider potential confounding variables and ensure proper control measures are in place.

By assessing reliability and validity, researchers can enhance the credibility and trustworthiness of their research findings.

Qualitative and quantitative research are distinct yet complementary approaches to conducting research. Understanding when to use each method, developing appropriate research questions, gathering and analyzing data, interpreting findings, and addressing ethical considerations are all critical aspects of conducting valuable research. By embracing these methodologies and applying them appropriately, researchers can contribute to the advancement of knowledge and make meaningful contributions to their respective fields.

You might also like

This ChatGPT Alternative Will Change How You Read PDFs Forever!

This ChatGPT Alternative Will Change How You Read PDFs Forever!

Sumalatha G

Smallpdf vs SciSpace: Which ChatPDF is Right for You?

Adobe PDF Reader vs. SciSpace ChatPDF — ChatPDF Showdown

Adobe PDF Reader vs. SciSpace ChatPDF — ChatPDF Showdown

  • 1-800-NAT-UNIV (628-8648)
  • Bachelor of Arts Degree in Early Childhood Education (BAECE)
  • Bachelor of Arts in Early Childhood Development with an Inspired Teaching and Learning Preliminary Multiple Subject Teaching Credential (California)
  • Bachelor of Arts in English
  • Bachelor of Arts in History
  • Master of Arts in Social Emotional Learning
  • Master of Education in Inspired Teaching and Learning with a Preliminary Multiple and Single Subject Teaching Credential and Intern Option (CA)
  • Master of Arts in Education
  • Master of Early Childhood Education
  • Education Specialist
  • Doctor of Education
  • Doctor of Philosophy in Education
  • Doctor of Education in Educational Leadership
  • Ed.D. in Organizational Innovation
  • Certificate in Online Teaching (COT) Program
  • Online Medical Coding Program
  • Building Our Team Through Community Policing
  • Inspired Teaching and Learning with a Preliminary Single Subject Teaching Credential
  • Inspired Teaching and Learning with a Preliminary Multiple Subject Teaching Credential and Internship Option (California)
  • Preliminary Administrative Services Credential (CA Option)
  • Preliminary Education Specialist Credential: Mild/Moderate with Internship Option (CA)
  • All Teaching & Education
  • Associate of Science in Business
  • Bachelor of Business Administration
  • Bachelor of Science in Healthcare Administration
  • Bachelor of Arts in Management
  • Master of Business Administration (MBA)
  • Master of Public Health (MPH)
  • Master of Science in Data Science
  • Master of Public Administration
  • Doctor of Criminal Justice
  • Doctor of Philosophy in Organizational Leadership
  • Doctor of Business Administration
  • Doctor of Philosophy in Business Administration
  • Post-Baccalaureate Certificate in Business
  • Post-Master's Certificate in Business
  • Graduate Certificate in Banking
  • Certificate in Agile Project Management
  • All Business & Marketing
  • Bachelor of Science in Nursing (BSN) (California)
  • Bachelor of Science in Nursing (BSN) Second Bachelor Degree (California)
  • Bachelor of Science in Clinical Laboratory Science
  • Bachelor of Science in Public Health
  • Master of Science in Nursing
  • Master of Science in Health Informatics
  • Master of Healthcare Administration
  • Doctor of Nurse Anesthesia Practice (DNAP)
  • Doctor of Health Administration
  • Doctor of Nursing Practice in Executive Leadership
  • LVN to RN 30 Unit Option Certificate
  • Psychiatric Mental Health Nurse Practitioner Certificate
  • Family Nurse Practitioner Certificate
  • Emergency Medical Technician Certificate
  • All Healthcare & Nursing
  • Bachelor of Arts in Psychology
  • Bachelor of Arts in Integrative Psychology
  • Bachelor of Science in Criminal Justice Administration
  • Bachelor of Arts in Sociology
  • Master of Science in Applied Behavioral Analysis Degree
  • Master of Arts Degree in Counseling Psychology
  • Master of Arts in Consciousness, Psychology, and Transformation
  • Doctor of Clinical Psychology (PsyD) Program
  • Doctor of Philosophy in Marriage and Family Therapy
  • Doctor of Philosophy in Psychology
  • Doctorate of Marriage and Family Therapy
  • Graduate Certificate in Trauma Studies
  • Post-Master's Certificate in Psychology
  • Post-Baccalaureate Certificate in Applied Behavior Analysis
  • Pupil Personnel Services Credential School Counseling (PPSC)
  • University Internship Credential Program for Pupil Personnel Services School Counseling (California Only)
  • All Social Sciences & Psychology
  • Bachelor of Science in Cybersecurity
  • Bachelor of Science in Electrical and Computer Engineering
  • Bachelor of Science in Computer Science
  • Bachelor of Science in Construction Management
  • Master of Science in Cybersecurity
  • Master of Science in Computer Science
  • Master of Science in Engineering Management
  • Doctor of Philosophy in Data Science
  • Doctor of Philosophy in Computer Science
  • Doctor of Philosophy in Technology Management
  • Doctor of Philosophy in Cybersecurity
  • All Engineering & Technology
  • Associate of Arts in General Education
  • Bachelor of Arts in Digital Media Design
  • Bachelor of Arts in General Studies
  • Master of Arts in English
  • Master of Arts in Strategic Communication
  • Foreign Credential Bridge Program
  • All Arts & Humanities
  • Graduate Certificate in Forensic and Crime Scene Investigations
  • Bachelor of Public Administration
  • Bachelor of Science in Homeland Security and Emergency Management
  • Minor in Business Law
  • Master of Criminal Justice Leadership
  • Master of Forensic Sciences
  • Master of Science in Homeland Security and Emergency Management
  • Doctor of Public Administration
  • College of Law and Public Service
  • All Criminal Justice & Public Service
  • Paralegal Specialist Certificate Corporations
  • Paralegal Specialist Certificate Criminal Law
  • Paralegal Specialist Certificate Litigation
  • Associate of Science in Paralegal Studies
  • Bachelor of Arts in Pre-Law Studies
  • Bachelor of Science in Paralegal Studies
  • Juris Doctor
  • Associate of Science in Human Biology
  • Associate of Science in General Education
  • Bachelor of Science in Biology
  • Bachelor of Science in Mathematics
  • All Science & Math
  • Program Finder
  • Undergraduate Admissions
  • Graduate Program Admissions
  • Military Admissions
  • Early College
  • Credential & Certificate Programs
  • Transfer Information
  • Speak to an Advisor
  • How to Pay for College
  • Financial Aid
  • Scholarships
  • Tuition & Fees
  • NU offers a variety of scholarships to help students reduce their financial burden while focusing on achieving their goals. Explore Scholarships
  • Colleges/Schools
  • University Leadership
  • Office of the President
  • Academies at NU
  • Course Catalog
  • Accreditation
  • Workforce and Community Education
  • President’s Circle
  • Board of Trustees
  • NU Foundation
  • Military & Veterans
  • Coast Guard
  • Space Force
  • National Guard & Reservist
  • Military Spouses & Dependents
  • Military Resources
  • NU proudly serves active duty and Veteran students from all branches of the military — at home, on base, and abroad. Military Admissions
  • Online Degrees & Programs
  • Consumer Information
  • Student Login
  • Graduation Events
  • Student Portal
  • Student Bookstore
  • Student Resources
  • Dissertation Boot Camp
  • Show your NU pride and shop our online store for the latest and greatest NU apparel and accessories! Shop Now
  • Request Info
  • Our Programs

What Is Qualitative vs. Quantitative Study?

Bachelor of Science in Clinical Laboratory Science Program Page

Qualitative research focuses on understanding phenomena through detailed, narrative data. It explores the “how” and “why” of human behavior, using methods like interviews, observations, and content analysis. In contrast, quantitative research is numeric and objective, aiming to quantify variables and analyze statistical relationships. It addresses the “when” and “where,” utilizing tools like surveys, experiments, and statistical models to collect and analyze numerical data.

In This Article:

What is qualitative research, what is quantitative research.

  • How Do Qualitative and Quantitative Research Differ?

What’s the Difference Between a Qualitative and Quantitative Study?

Analyzing qualitative and quantitative data, when to use qualitative or quantitative research, develop your research skills at national university.

Qualitative and quantitative data are broad categories covering many research approaches and methods. While both share the primary aim of knowledge acquisition, quantitative research is numeric and objective, seeking to answer questions like when or where. On the other hand, qualitative research is concerned with subjective phenomena that can’t be numerically measured, like how different people experience grief.

Having a firm grounding in qualitative and quantitative research methodologies will become especially important once you begin work on your dissertation or thesis toward the end of your academic program. At that point, you’ll need to decide which approach best aligns with your research question, a process that involves working closely with your Dissertation Chair.

Keep reading to learn more about the difference between quantitative vs. qualitative research, including what research techniques they involve, how they approach the task of data analysis, and some strengths — and limitations — of each approach. We’ll also briefly examine mixed-method research, which incorporates elements of both methodologies.

Qualitative research differs from quantitative research in its objectives, techniques, and design. Qualitative research aims to gain insights into phenomena, groups, or experiences that cannot be objectively measured or quantified using mathematics. Instead of seeking to uncover precise answers or statistics in a controlled environment like quantitative research, qualitative research is more exploratory, drawing upon data sources such as photographs, journal entries, video footage, and interviews.

These features stand in stark contrast to quantitative research, as we’ll see throughout the remainder of this article.

Quantitative research tackles questions from different angles compared to qualitative research. Instead of probing for subjective meaning by asking exploratory “how?” and “why?” questions, quantitative research provides precise causal explanations that can be measured and communicated mathematically. While qualitative researchers might visit subjects in their homes or otherwise in the field, quantitative research is usually conducted in a controlled environment. Instead of gaining insight or understanding into a subjective, context-dependent issue, as is the case with qualitative research, the goal is instead to obtain objective information, such as determining the best time to undergo a specific medical procedure.

research methods quantitative and qualitative

How Does Qualitative and Quantitative Research Differ?

How are the approaches of quantitative and qualitative research different?

In qualitative studies, data is usually gathered in the field from smaller sample sizes, which means researchers might personally visit participants in their own homes or other environments. Once the research is completed, the researcher must evaluate and make sense of the data in its context, looking for trends or patterns from which new theories, concepts, narratives, or hypotheses can be generated.

Quantitative research is typically carried out via tools (such as questionnaires) instead of by people (such as a researcher asking interview questions). Another significant difference is that, in qualitative studies, researchers must interpret the data to build hypotheses. In a quantitative analysis, the researcher sets out to test a hypothesis.

Bachelor of Science in Allied Health Program Page

Both qualitative and quantitative studies are subject to rigorous quality standards. However, the research techniques utilized in each type of study differ, as do the questions and issues they hope to address or resolve. In quantitative studies, researchers tend to follow more rigid structures to test the links or relationships between different variables, ideally based on a random sample. On the other hand, in a qualitative study, not only are the samples typically smaller and narrower (such as using convenience samples), the study’s design is generally more flexible and less structured to accommodate the open-ended nature of the research.

Below are a few examples of qualitative and quantitative research techniques to help illustrate these differences further.

Sources of Quantitative Research

Some example methods of quantitative research methods or sources include, but are not limited to, the following:

  • Conducting polls, surveys, and experiments
  • Compiling databases of records and information
  • Observing the topic of the research, such as a specific reaction
  • Performing a meta-analysis, which involves analyzing multiple prior studies in order to identify statistical trends or patterns
  • Supplying online or paper questionnaires to participants

The following section will cover some examples of qualitative research methods for comparison, followed by an overview of mixed research methods that blend components of both approaches.

Sources of Qualitative Research

Researchers can use numerous qualitative methods to explore a topic or gain insight into an issue. Some sources of, or approaches to, qualitative research include the following examples:

  • Conducting ethnographic studies, which are studies that seek to explore different phenomena through a cultural or group-specific lens
  • Conducting focus groups
  • Examining various types of records, including but not limited to diary entries, personal letters, official documents, medical or hospital records, photographs, video or audio recordings, and even minutes from meetings
  • Holding one-on-one interviews
  • Obtaining personal accounts and recollections of events or experiences

Examples of Research Questions Best Suited for Qualitative vs. Quantitative Methods

Qualitative research questions:.

  • How do patients experience the process of recovering from surgery?
  • Why do some employees feel more motivated in remote work environments?
  • What are the cultural influences on dietary habits among teenagers?

Quantitative Research Questions:

  • What is the average recovery time for patients after surgery?
  • How does remote work impact employee productivity levels?
  • What percentage of teenagers adhere to recommended dietary guidelines?

These examples illustrate how qualitative research delves into the depth and context of human experiences, while quantitative research focuses on measurable data and statistical analysis.

Mixed Methods Research

In addition to the purely qualitative and quantitative research methods outlined above, such as conducting focus groups or performing meta-analyses, it’s also possible to take a hybrid approach that merges qualitative and quantitative research aspects. According to an article published by LinkedIn , “Mixed methods research avoids many [of the] criticisms” that have historically been directed at qualitative and quantitative research, such as the former’s vulnerability to bias, by “canceling the effects of one methodology by including the other methodology.” In other words, this mixed approach provides the best of both worlds. “Mixed methods research also triangulates results that offer higher validity and reliability.”

If you’re enrolled as a National University student, you can watch a video introduction to mixed-method research by logging in with your student ID. Our resource library also covers qualitative and quantitative research methodologies and a video breakdown of when to use which approach.

When it comes to quantitative and qualitative research, methods of collecting data differ, as do the methods of organizing and analyzing it. So what are some best practices for analyzing qualitative and quantitative data sets, and how do they call for different approaches by researchers?

How to Analyze Qualitative Data

Below is a step-by-step overview of how to analyze qualitative data.

  • Make sure all of your data is finished being compiled before you begin any analysis.
  • Organize and connect your data for consistency using computer-assisted qualitative data analysis software (CAQDAS).
  • Code your data, which can be partially automated using a feedback analytics platform.
  • Start digging deep into analysis, potentially using augmented intelligence to get more accurate results.
  • Report on your findings, ideally using engaging aids to help tell the story.

How to Analyze Quantitative Data

There are numerous approaches to analyzing quantitative data. Some examples include cross-tabulation, conjoint analysis, gap analysis, trend analysis, and SWOT analysis, which refers to Strengths, Weaknesses, Opportunities, and Threats.

Whichever system or systems you use, there are specific steps you should take to ensure that you’ve organized your data and analyzed it as accurately as possible. Here’s a brief four-step overview.

  • Connect measurement scales to study variables, which helps ensure that your data will be organized in the appropriate order before you proceed.
  • Link data with descriptive statistics, such as mean, median, mode, or frequency.
  • Determine what measurement scale you’ll use for your analysis.
  • Organize the data into tables and conduct an analysis using methods like cross-tabulation or Total Unduplicated Reach and Frequency (TURF) analysis.

people talking in front of whiteboard with notes written on it

Simply knowing the difference between quantitative and qualitative research isn’t enough — you also need an understanding of when each approach should be used and under what circumstances. For that, you’ll need to consider all of the comparisons we’ve made throughout this article and weigh some potential pros and cons of each methodology.

Pros and Cons of Qualitative Research

Qualitative research has numerous strengths, but the research methodology is only more appropriate for some projects or dissertations. Here are some strengths and weaknesses of qualitative research to help guide your decision:

  • Pro — More flex room for creativity and interpretation of results
  • Pro — Greater freedom to utilize different research techniques as the study evolves
  • Con — Potentially more vulnerable to bias due to their subjective nature
  • Con — Sample sizes tend to be smaller and non-randomized

Pros and Cons of Quantitative Research

Quantitative research also comes with drawbacks and benefits, depending on what information you aim to uncover. Here are a few pros and cons to consider when designing your study.

  • Pro — Large, random samples help ensure that the broader population is more realistically reflected
  • Pro — Specific, precise results can be easily communicated using numbers
  • Con — Data can suffer from a lack of context or personal detail around participant answers
  • Con — Numerous participants are needed, driving up costs while posing logistical challenges

If you dream of making a scientific breakthrough and contributing new knowledge that revolutionizes your field, you’ll need a strong foundation in research, from how it’s conducted and analyzed to a clear understanding of professional ethics and standards. By pursuing your degree at National University, you build stronger research skills and countless other in-demand job skills.

With flexible course schedules, convenient online classes , scholarships and financial aid , and an inclusive military-friendly culture, higher education has never been more achievable or accessible. At National University, you’ll find opportunities to challenge and hone your research skills in more than 75 accredited graduate and undergraduate programs and fast-paced credential and certificate programs in healthcare, business, engineering, computer science, criminal justice, sociology, accounting, and more.

Contact our admissions office to request program information, or apply to National University online today .

Learn More About Our University and Scholarships

Join our email list!

  • First Name *
  • Form Email Field
  • Consent * I agree to the terms and conditions below. *

Recent Resources

  • National University’s Online Ph.D. of Business Administration in Strategic Marketing Named One of the Best in the Nation August 20, 2024
  • How to Become an Investment Banker July 26, 2024
  • What Can You Do With an Economics Degree? July 19, 2024

Your passion. Our Programs.

Choose an area of study, select a degree level.

Search the site

Modal window with site-search and helpful links

Featured Programs

  • Business and Management
  • Computer Science
  • Teaching and Credentials

Helpful Links

  • Admissions & Application Information
  • Online College Degrees & Programs
  • Student Services
  • Request Your Transcripts

Terms & Conditions

By submitting your information to National University as my electronic signature and submitting this form by clicking the Request Info button above, I provide my express written consent to representatives of National University and National University affiliates (including City University of Seattle) to contact me about educational opportunities. This includes the use of automated technology, such as an automatic dialing system and pre-recorded or artificial voice messages, text messages, and mail, both electronic and physical, to the phone numbers (including cellular) and e-mail address(es) I have provided. I confirm that the information provided on this form is accurate and complete. I also understand that certain degree programs may not be available in all states. Message and data rates may apply. Message frequency may vary.

I understand that consent is not a condition to purchase any goods, services or property, and that I may withdraw my consent at any time by sending an email to [email protected] . I understand that if I am submitting my personal data from outside of the United States, I am consenting to the transfer of my personal data to, and its storage in, the United States, and I understand that my personal data will be subject to processing in accordance with U.S. laws, unless stated otherwise in our privacy policy . Please review our privacy policy for more details or contact us at [email protected] .

By submitting my information, I acknowledge that I have read and reviewed the Accessibility Statement . 

By submitting my information, I acknowledge that I have read and reviewed the Student Code of Conduct located in the Catalog .

National University

Chat Options

Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .
  • What is Quantitative Research?
  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window
Qualitative vs Quantitative Research
QUALITATIVE QUANTITATIVE
Methods include focus groups, unstructured or in-depth interviews, and reviews of documents for types of themes Surveys, structured interviews, measurements & observations, and reviews of records or documents for numeric or quantifiable information
A primarily inductive process used to formulate theory or hypotheses A primarily deductive process used to test pre-specified concepts, constructs, and hypotheses that make up a theory
More subjective: describes a problem or condition from the point of view of those experiencing it More objective: provides observed effects (interpreted by researchers) of a program on a problem or condition
Text-based Number-based
More in-depth information on a few cases Less in-depth but more breadth of information across a large number of cases
Unstructured or semi-structured response options Fixed response options, measurements, or observations
No statistical tests Statistical tests are used for analysis
Less generalizable More generalizable

Adapted from  https://www.orau.gov/cdcynergy/soc2web/Content/phase05/phase05_step03_deeper_qualitative_and_quantitative.htm

  • << Previous: What is Qualitative Research?
  • Next: Find Quantitative Articles in CINAHL >>
  • Last Updated: Aug 19, 2024 2:09 PM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.

research methods quantitative and qualitative

  • Politics & Social Sciences
  • Social Sciences

Sorry, there was a problem.

Kindle app logo image

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required .

Read instantly on your browser with Kindle for Web.

Using your mobile phone camera - scan the code below and download the Kindle app.

QR code to download the Kindle App

Image Unavailable

Research Design: Qualitative, Quantitative, and Mixed Methods Approaches

  • To view this video download Flash Player

Follow the author

John W. Creswell

Research Design: Qualitative, Quantitative, and Mixed Methods Approaches 5th Edition

This bestselling text pioneered the comparison of qualitative, quantitative, and mixed methods research design. For all three approaches, John W. Creswell and new co author J. David Creswell include a preliminary consideration of philosophical assumptions; key elements of the research process; a review of the literature; an assessment of the use of theory in research applications, and reflections about the importance of writing and ethics in scholarly inquiry. New to this Edition

  • Updated discussion on designing a proposal for a research project and on the steps in designing a research study.  
  • Additional content on epistemological and ontological positioning in relation to the research question and chosen methodology and method. 
  • Additional updates on the transformative worldview. 
  • Expanded coverage on specific approaches such as case studies, participatory action research, and visual methods. 
  • Additional information about social media, online qualitative methods, and mentoring and reflexivity in qualitative methods. 
  • Incorporation of action research and program evaluation in mixed methods and coverage of the latest advances in the mixed methods field
  • Additional coverage on qualitative and quantitative data analysis software in the respective methods chapters. 
  • Additional information about causality and its relationship to statistics in quantitative methods. 
  • Incorporation of writing discussion sections into each of the three methodologies. 
  • Current references and additional readings are included in this new edition.
  • ISBN-10 1506386709
  • ISBN-13 978-1506386706
  • Edition 5th
  • Publication date January 2, 2018
  • Language English
  • Dimensions 7 x 0.75 x 10 inches
  • Print length 304 pages
  • See all details

Customers who bought this item also bought

Upstream: The Quest to Solve Problems Before They Happen

Editorial Reviews

About the author.

John W. Creswell, PhD, is a Professor of Family Medicine and Senior Research Scientist of

the Michigan Mixed Methods Program. He has authored numerous articles and 34 books on

mixed methods research, qualitative research, and research design. While at the University of

Nebraska–Lincoln, he held the Clifton Endowed Professor Chair, served as Director of the

Mixed Methods Research Office, co-founded SAGE’s Journal of Mixed Methods Research , and

was an Adjunct Professor of Family Medicine at the University of Michigan and a consultant to

the Veterans Administration Health Services Research Center in Ann Arbor, Michigan. He was

a Senior Fulbright Scholar to South Africa in 2008 and to Thailand in 2012. In 2011, he co-led

a National Institutes of Health working group on the “best practices of mixed methods research

in the health sciences,” served as a Visiting Professor at Harvard’s School of Public Health and

received an honorary doctorate from the University of Pretoria, South Africa. In 2014, he was

the founding President of the Mixed Methods International Research Association. In 2015, he

joined the staff of Family Medicine at the University of Michigan to Co-Direct the Michigan

Mixed Methods Program. In 2017, he coauthored the American Psychological Association

“standards” on qualitative and mixed methods research. The fourth edition of this book on

Qualitative Inquiry & Research Design won the 2018 McGuffey Longevity Award from the U.S.

Textbook & Academic Authors Association. During the COVID-19 pandemic, he gave virtual

keynote presentations to many countries from his office in Osaka, Japan. Updates on his work

can be found on his website at johnwcreswell.com.

Product details

  • Publisher ‏ : ‎ SAGE Publications, Inc; 5th edition (January 2, 2018)
  • Language ‏ : ‎ English
  • Paperback ‏ : ‎ 304 pages
  • ISBN-10 ‏ : ‎ 1506386709
  • ISBN-13 ‏ : ‎ 978-1506386706
  • Item Weight ‏ : ‎ 1.2 pounds
  • Dimensions ‏ : ‎ 7 x 0.75 x 10 inches
  • #8 in Social Sciences Methodology
  • #18 in Social Sciences Research
  • #38 in Core

About the author

John w. creswell.

John W. Creswell is a Professor of Educational Psychology at Teachers College, University of Nebraska-Lincoln. He is affiliated with a graduate program in educational psychology that specializes in quantitative and qualitative methods in education. In this program, he specializes in qualitative and quantitative research designs and methods, multimethod research, and faculty and academic leadership issues in colleges and universities.

Customer reviews

  • 5 star 4 star 3 star 2 star 1 star 5 star 76% 14% 6% 1% 3% 76%
  • 5 star 4 star 3 star 2 star 1 star 4 star 76% 14% 6% 1% 3% 14%
  • 5 star 4 star 3 star 2 star 1 star 3 star 76% 14% 6% 1% 3% 6%
  • 5 star 4 star 3 star 2 star 1 star 2 star 76% 14% 6% 1% 3% 1%
  • 5 star 4 star 3 star 2 star 1 star 1 star 76% 14% 6% 1% 3% 3%

Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.

To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.

Customers say

Customers find the reference book great and clear, making everything clear. However, opinions are mixed on readability, with some finding it well-written, easy to read, and detailed, while others say it's nearly impossible to read in some sections and some concepts are not thoroughly explained.

AI-generated from the text of customer reviews

Customers find the reference book great, excellent, and straightforward. They also say it's appropriate for graduate students, teachers, and researchers of many stripes.

"...term clarifications in textbooks, but this title just makes everything so clear that my confusion around commonly synonymously-used terminology..." Read more

"This book gives an excellent overview of quantitative , qualitative, and mixed methods research...." Read more

"...It is appropriate for graduate students , teachers, and researchers of many stripes – especially in medicine, education, psychology, and the social..." Read more

"An excellent resource on the research process , stepping through the entire sequence step by step, including selection an approach, literature review..." Read more

Customers are mixed about the readability of the book. Some mention it's well written, easy to read, and simple. They also say the authors are well known in the field of social research design. However, some find the language overcomplicated, some concepts are not thoroughly explained, and the green colored text doesn't align properly with the black and white text.

"...cover the practical nuances of thesis writing in such a clean, simple , and thorough way that I actually couldn't put the book down and read it cover..." Read more

"This book gives an excellent overview of quantitative, qualitative , and mixed methods research...." Read more

"... Some concepts are not thoroughly explained in one particular section, so readers should be patient in going back and forth to firmly grasp those..." Read more

"...It is accessible and readable enough that anyone engaged in critical inquiry can gain from this work...." Read more

Reviews with images

Customer Image

An exception resource for the design and implementation of research.

Customer Image

  • Sort reviews by Top reviews Most recent Top reviews

Top reviews from the United States

There was a problem filtering reviews right now. please try again later..

research methods quantitative and qualitative

Top reviews from other countries

research methods quantitative and qualitative

  • About Amazon
  • Investor Relations
  • Amazon Devices
  • Amazon Science
  • Sell products on Amazon
  • Sell on Amazon Business
  • Sell apps on Amazon
  • Become an Affiliate
  • Advertise Your Products
  • Self-Publish with Us
  • Host an Amazon Hub
  • › See More Make Money with Us
  • Amazon Business Card
  • Shop with Points
  • Reload Your Balance
  • Amazon Currency Converter
  • Amazon and COVID-19
  • Your Account
  • Your Orders
  • Shipping Rates & Policies
  • Returns & Replacements
  • Manage Your Content and Devices
 
 
 
 
  • Conditions of Use
  • Privacy Notice
  • Consumer Health Data Privacy Disclosure
  • Your Ads Privacy Choices

research methods quantitative and qualitative

Frequently asked questions

What’s the difference between quantitative and qualitative methods.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a “cross-section”) in the population
Follows in participants over time Provides of society at a given point

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

IMAGES

  1. Qualitative vs Quantitative Research: Differences and Examples

    research methods quantitative and qualitative

  2. Qualitative Vs. Quantitative Research

    research methods quantitative and qualitative

  3. Qualitative vs Quantitative Research

    research methods quantitative and qualitative

  4. Qualitative V/S Quantitative Research Method: Which One Is Better?

    research methods quantitative and qualitative

  5. Difference-Between-Quantitative-and-Qualitative-Research-infographic

    research methods quantitative and qualitative

  6. Qualitative vs. Quantitative Research

    research methods quantitative and qualitative

VIDEO

  1. How To Write Research Paper For Beginners

  2. Quantitative, Qualitative, and Mixed Methods Research: What's the difference?

  3. Quantitative Research Methods

  4. Exploring Qualitative and Quantitative Research Methods and why you should use them

  5. Research Design vs. Research Methods: Understanding the Key Differences #dataanalysis #thesis

  6. Quantitative & Qualitative Research Methods (Science)

COMMENTS

  1. Qualitative vs Quantitative Research: What's the Difference?

    The main difference between quantitative and qualitative research is the type of data they collect and analyze. Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language. Quantitative research collects numerical ...

  2. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

  3. A Practical Guide to Writing Quantitative and Qualitative Research

    Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed ...

  4. Difference Between Qualitative and Qualitative Research

    Quantitative research in psychology and social sciences answers "how much" questions. Qualitative research answers the "how" and "why" of a phenomenon. Learn more.

  5. Qualitative vs Quantitative Research

    For example, qualitative research usually relies on interviews, observations, and textual analysis to explore subjective experiences and diverse perspectives. While quantitative data collection methods include surveys, experiments, and statistical analysis to gather and analyze numerical data. The differences between the two research approaches ...

  6. Research Methods--Quantitative, Qualitative, and More: Overview

    About Research Methods. This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. As Patten and Newhart note in the book Understanding Research Methods, "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge.

  7. Quantitative and Qualitative Research

    What is Qualitative Research? Qualitative research is based upon data that is gathered by observation. Qualitative research articles will attempt to answer questions that cannot be measured by numbers but rather by perceived meaning. Qualitative research will likely include interviews, case studies, ethnography, or focus groups.

  8. Qualitative and Quantitive Research: What's the Difference?

    Qualitative research focuses on word-based data, aiming to define and understand ideas. This study allows researchers to collect information in an open-ended way through interviews, ethnography, and observation. You'll study this information to determine patterns and the interplay of variables. On the other hand, quantitative research focuses ...

  9. Qualitative vs. quantitative research

    Qualitative and quantitative research are effective but very different approaches to study a subject. Learn the difference between them, what they are used for, and how to analyze qualitative and quantitative research in this guide.

  10. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which involves collecting and ...

  11. Quantitative and Qualitative Research Methods

    Quantitative research is " explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particular statistics). "*. Qualitative research seeks to answer questions about why and how people behave in the way that they do. It provides in-depth information about human behaviour.

  12. Qualitative Vs Quantitative Research

    You'll use quantitative and qualitative research methods to gather survey data. What are they, and how can you use them to gain the most accurate insights?

  13. Quantitative and Qualitative Research Methods

    Qualitative research can be undertaken as a standalone study or when combined with quantitative research as a mixed methods study . Typically, methodologies within qualitative research focus around observations, interviews, focus groups and case studies.

  14. Qualitative vs. Quantitative Research: Comparing the Methods and

    Qualitative vs. quantitative research: what's the difference? Find out how quantitative research in education can lead to solutions to problems in the field.

  15. Quantitative and Qualitative Research

    Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

  16. Qualitative vs. Quantitative Research

    This article provides insights into the differences between qualitative and quantitative research and we also discuss how to develop research questions for qualitative and quantitative studies.

  17. What Is Quantitative Research?

    Quantitative research is the opposite of qualitative research, which involves collecting and analyzing non-numerical data (e.g., text, video, or audio).

  18. Qualitative vs. Quantitative Research: What's the Difference?

    What Is the Difference Between Qualitative vs. Quantitative Research? Because qualitative and quantitative studies collect different types of data, their data collection methods differ considerably. Quantitative studies rely on numerical or measurable data. In contrast, qualitative studies rely on personal accounts or documents that illustrate in detail how people think or respond within society.

  19. What Is Qualitative vs. Quantitative Study?

    What Is Qualitative vs. Quantitative Study? Qualitative research focuses on understanding phenomena through detailed, narrative data. It explores the "how" and "why" of human behavior, using methods like interviews, observations, and content analysis. In contrast, quantitative research is numeric and objective, aiming to quantify ...

  20. Understanding quantitative and qualitative research methods: A

    Learn how to choose and apply quantitative and qualitative methods for evidence-based outcomes. A comprehensive guide for young researchers.

  21. Quantitative and Qualitative Research

    This guide will help you understand quantitative and qualitative research methods.

  22. Balancing Qualitative and Quantitative Research Methods: Insights and

    This article examines several methodological issues associated with combining qualitative and quantitative methods by comparing the increasing interest in this topic with the earlier renewal of ...

  23. (PDF) Key disparities between quantitative and qualitative research

    This comprehensive review explores the key disparities between quantitative and qualitative research methodologies, aiming to enhance researchers' comprehension and facilitate informed decision ...

  24. Research Design: Qualitative, Quantitative, and Mixed Methods

    This bestselling text pioneered the comparison of qualitative, quantitative, and mixed methods research design. For all three approaches, John W. Creswell and new co author J. David Creswell include a preliminary consideration of philosophical assumptions; key elements of the research process; a review of the literature; an assessment of the use of theory in research applications, and ...

  25. What's the difference between quantitative and qualitative methods?

    Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Quantitative methods allow you to systematically measure variables and test hypotheses. Qualitative methods allow you to explore concepts and experiences in more detail.

  26. Media Review: The Sage Handbook of Mixed Methods Research Design

    Finally, this Section also focuses on intersecting quantitative and qualitative designs in mixed methods research. Section 4: Designing Innovative Integrations With Technology. ... a reader could review the different qualitative and quantitative results and meta-inferences by participant type). Indeed, these possibilities are exciting to the ...

  27. Exploring Research Design: Qualitative, Quantitative, and Mixed

    The article discusses blended techniques as well as qualitative and quantitative research methodologies. Both non-experimental methods like surveys and experimental methods are used in qualitative research. Narrative research, phenomenology, case studies, and grounded theory are examples of qualitative research.