- Privacy Policy
Home » What is a Hypothesis – Types, Examples and Writing Guide
What is a Hypothesis – Types, Examples and Writing Guide
Table of Contents
In research, a hypothesis is a clear, testable statement predicting the relationship between variables or the outcome of a study. Hypotheses form the foundation of scientific inquiry, providing a direction for investigation and guiding the data collection and analysis process. Hypotheses are typically used in quantitative research but can also inform some qualitative studies by offering a preliminary assumption about the subject being explored.
A hypothesis is a specific, testable prediction or statement that suggests an expected relationship between variables in a study. It acts as a starting point, guiding researchers to examine whether their predictions hold true based on collected data. For a hypothesis to be useful, it must be clear, concise, and based on prior knowledge or theoretical frameworks.
Key Characteristics of a Hypothesis :
- Testable : Must be possible to evaluate or observe the outcome through experimentation or analysis.
- Specific : Clearly defines variables and the expected relationship or outcome.
- Predictive : States an anticipated effect or association that can be confirmed or refuted.
Example : “Increasing the amount of daily physical exercise will lead to a reduction in stress levels among college students.”
Types of Hypotheses
Hypotheses can be categorized into several types, depending on their structure, purpose, and the type of relationship they suggest. The most common types include null hypothesis , alternative hypothesis , directional hypothesis , and non-directional hypothesis .
1. Null Hypothesis (H₀)
Definition : The null hypothesis states that there is no relationship between the variables being studied or that any observed effect is due to chance. It serves as the default position, which researchers aim to test against to determine if a significant effect or association exists.
Purpose : To provide a baseline that can be statistically tested to verify if a relationship or difference exists.
Example : “There is no difference in academic performance between students who receive additional tutoring and those who do not.”
2. Alternative Hypothesis (H₁ or Hₐ)
Definition : The alternative hypothesis proposes that there is a relationship or effect between variables. This hypothesis contradicts the null hypothesis and suggests that any observed result is not due to chance.
Purpose : To present an expected outcome that researchers aim to support with data.
Example : “Students who receive additional tutoring will perform better academically than those who do not.”
3. Directional Hypothesis
Definition : A directional hypothesis specifies the direction of the expected relationship between variables, predicting either an increase, decrease, positive, or negative effect.
Purpose : To provide a more precise prediction by indicating the expected direction of the relationship.
Example : “Increasing the duration of daily exercise will lead to a decrease in stress levels among adults.”
4. Non-Directional Hypothesis
Definition : A non-directional hypothesis states that there is a relationship between variables but does not specify the direction of the effect.
Purpose : To allow for exploration of the relationship without committing to a particular direction.
Example : “There is a difference in stress levels between adults who exercise regularly and those who do not.”
Examples of Hypotheses in Different Fields
- Null Hypothesis : “There is no difference in anxiety levels between individuals who practice mindfulness and those who do not.”
- Alternative Hypothesis : “Individuals who practice mindfulness will report lower anxiety levels than those who do not.”
- Directional Hypothesis : “Providing feedback will improve students’ motivation to learn.”
- Non-Directional Hypothesis : “There is a difference in motivation levels between students who receive feedback and those who do not.”
- Null Hypothesis : “There is no association between diet and energy levels among teenagers.”
- Alternative Hypothesis : “A balanced diet is associated with higher energy levels among teenagers.”
- Directional Hypothesis : “An increase in employee engagement activities will lead to improved job satisfaction.”
- Non-Directional Hypothesis : “There is a relationship between employee engagement activities and job satisfaction.”
- Null Hypothesis : “The introduction of green spaces does not affect urban air quality.”
- Alternative Hypothesis : “Green spaces improve urban air quality.”
Writing Guide for Hypotheses
Writing a clear, testable hypothesis involves several steps, starting with understanding the research question and selecting variables. Here’s a step-by-step guide to writing an effective hypothesis.
Step 1: Identify the Research Question
Start by defining the primary research question you aim to investigate. This question should be focused, researchable, and specific enough to allow for hypothesis formation.
Example : “Does regular physical exercise improve mental well-being in college students?”
Step 2: Conduct Background Research
Review relevant literature to gain insight into existing theories, studies, and gaps in knowledge. This helps you understand prior findings and guides you in forming a logical hypothesis based on evidence.
Example : Research shows a positive correlation between exercise and mental well-being, which supports forming a hypothesis in this area.
Step 3: Define the Variables
Identify the independent and dependent variables. The independent variable is the factor you manipulate or consider as the cause, while the dependent variable is the outcome or effect you are measuring.
- Independent Variable : Amount of physical exercise
- Dependent Variable : Mental well-being (measured through self-reported stress levels)
Step 4: Choose the Hypothesis Type
Select the hypothesis type based on the research question. If you predict a specific outcome or direction, use a directional hypothesis. If not, a non-directional hypothesis may be suitable.
Example : “Increasing the frequency of physical exercise will reduce stress levels among college students” (directional hypothesis).
Step 5: Write the Hypothesis
Formulate the hypothesis as a clear, concise statement. Ensure it is specific, testable, and focuses on the relationship between the variables.
Example : “College students who exercise at least three times per week will report lower stress levels than those who do not exercise regularly.”
Step 6: Test and Refine (Optional)
In some cases, it may be necessary to refine the hypothesis after conducting a preliminary test or pilot study. This ensures that your hypothesis is realistic and feasible within the study parameters.
Tips for Writing an Effective Hypothesis
- Use Clear Language : Avoid jargon or ambiguous terms to ensure your hypothesis is easily understandable.
- Be Specific : Specify the expected relationship between the variables, and, if possible, include the direction of the effect.
- Ensure Testability : Frame the hypothesis in a way that allows for empirical testing or observation.
- Focus on One Relationship : Avoid complexity by focusing on a single, clear relationship between variables.
- Make It Measurable : Choose variables that can be quantified or observed to simplify data collection and analysis.
Common Mistakes to Avoid
- Vague Statements : Avoid vague hypotheses that don’t specify a clear relationship or outcome.
- Unmeasurable Variables : Ensure that the variables in your hypothesis can be observed, measured, or quantified.
- Overly Complex Hypotheses : Keep the hypothesis simple and focused, especially for beginner researchers.
- Using Personal Opinions : Avoid subjective or biased language that could impact the neutrality of the hypothesis.
Examples of Well-Written Hypotheses
- Psychology : “Adolescents who spend more than two hours on social media per day will report higher levels of anxiety than those who spend less than one hour.”
- Business : “Increasing customer service training will improve customer satisfaction ratings among retail employees.”
- Health : “Consuming a diet rich in fruits and vegetables is associated with lower cholesterol levels in adults.”
- Education : “Students who participate in active learning techniques will have higher retention rates compared to those in traditional lecture-based classrooms.”
- Environmental Science : “Urban areas with more green spaces will report lower average temperatures than those with minimal green coverage.”
A well-formulated hypothesis is essential to the research process, providing a clear and testable prediction about the relationship between variables. Understanding the different types of hypotheses, following a structured writing approach, and avoiding common pitfalls help researchers create hypotheses that effectively guide data collection, analysis, and conclusions. Whether working in psychology, education, health sciences, or any other field, an effective hypothesis sharpens the focus of a study and enhances the rigor of research.
- Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.). SAGE Publications.
- Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (4th ed.). SAGE Publications.
- Trochim, W. M. K. (2006). The Research Methods Knowledge Base (3rd ed.). Atomic Dog Publishing.
- McLeod, S. A. (2019). What is a Hypothesis? Retrieved from https://www.simplypsychology.org/what-is-a-hypotheses.html
- Walliman, N. (2017). Research Methods: The Basics (2nd ed.). Routledge.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Research Recommendations – Examples and Writing...
Research Problem – Examples, Types and Guide
Data Verification – Process, Types and Examples
Research Summary – Structure, Examples and...
Research Paper – Structure, Examples and Writing...
Chapter Summary & Overview – Writing Guide...
Educational resources and simple solutions for your research journey
What is a Research Hypothesis: How to Write it, Types, and Examples
Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.
It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .
Table of Contents
What is a hypothesis ?
A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.
What is a research hypothesis ?
Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”
A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.
Characteristics of a good hypothesis
Here are the characteristics of a good hypothesis :
- Clearly formulated and free of language errors and ambiguity
- Concise and not unnecessarily verbose
- Has clearly defined variables
- Testable and stated in a way that allows for it to be disproven
- Can be tested using a research design that is feasible, ethical, and practical
- Specific and relevant to the research problem
- Rooted in a thorough literature search
- Can generate new knowledge or understanding
How to create an effective research hypothesis
A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.
Let’s look at each step for creating an effective, testable, and good research hypothesis :
- Identify a research problem or question: Start by identifying a specific research problem.
- Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.
- Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.
- State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.
- Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.
- Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .
Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.
How to write a research hypothesis
When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.
An example of a research hypothesis in this format is as follows:
“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”
Population: athletes
Independent variable: daily cold water showers
Dependent variable: endurance
You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.
Research hypothesis checklist
Following from above, here is a 10-point checklist for a good research hypothesis :
- Testable: A research hypothesis should be able to be tested via experimentation or observation.
- Specific: A research hypothesis should clearly state the relationship between the variables being studied.
- Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.
- Falsifiable: A research hypothesis should be able to be disproven through testing.
- Clear and concise: A research hypothesis should be stated in a clear and concise manner.
- Logical: A research hypothesis should be logical and consistent with current understanding of the subject.
- Relevant: A research hypothesis should be relevant to the research question and objectives.
- Feasible: A research hypothesis should be feasible to test within the scope of the study.
- Reflects the population: A research hypothesis should consider the population or sample being studied.
- Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.
By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.
Types of research hypothesis
Different types of research hypothesis are used in scientific research:
1. Null hypothesis:
A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.
Example: “ The newly identified virus is not zoonotic .”
2. Alternative hypothesis:
This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.
Example: “ The newly identified virus is zoonotic .”
3. Directional hypothesis :
This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.
Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”
4. Non-directional hypothesis:
While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.
Example, “ Cats and dogs differ in the amount of affection they express .”
5. Simple hypothesis :
A simple hypothesis only predicts the relationship between one independent and another independent variable.
Example: “ Applying sunscreen every day slows skin aging .”
6 . Complex hypothesis :
A complex hypothesis states the relationship or difference between two or more independent and dependent variables.
Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)
7. Associative hypothesis:
An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.
Example: “ There is a positive association between physical activity levels and overall health .”
8 . Causal hypothesis:
A causal hypothesis proposes a cause-and-effect interaction between variables.
Example: “ Long-term alcohol use causes liver damage .”
Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.
Research hypothesis examples
Here are some good research hypothesis examples :
“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”
“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”
“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”
“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”
Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.
Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:
“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)
“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)
“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)
Importance of testable hypothesis
If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.
To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.
Frequently Asked Questions (FAQs) on research hypothesis
1. What is the difference between research question and research hypothesis ?
A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.
2. When to reject null hypothesis ?
A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.
3. How can I be sure my hypothesis is testable?
A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:
- Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.
- The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.
- You should be able to collect the necessary data within the constraints of your study.
- It should be possible for other researchers to replicate your study, using the same methods and variables.
- Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.
- The hypothesis should be able to be disproven or rejected through the collection of data.
4. How do I revise my research hypothesis if my data does not support it?
If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.
5. I am performing exploratory research. Do I need to formulate a research hypothesis?
As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.
6. How is a research hypothesis different from a research question?
A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.
7. Can a research hypothesis change during the research process?
Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.
8. How many hypotheses should be included in a research study?
The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.
9. Can research hypotheses be used in qualitative research?
Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.
Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.
Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place – Get All Access now starting at just $14 a month !
IMAGES
VIDEO