Independent and Dependent Variables

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, Ph.D., is a qualified psychology teacher with over 18 years experience of working in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In research, a variable is any characteristic, number, or quantity that can be measured or counted in experimental investigations . One is called the dependent variable, and the other is the independent variable.

In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect.

Variables provide the foundation for examining relationships, drawing conclusions, and making predictions in research studies.

variables2

Independent Variable

In psychology, the independent variable is the variable the experimenter manipulates or changes and is assumed to directly affect the dependent variable.

It’s considered the cause or factor that drives change, allowing psychologists to observe how it influences behavior, emotions, or other dependent variables in an experimental setting. Essentially, it’s the presumed cause in cause-and-effect relationships being studied.

For example, allocating participants to drug or placebo conditions (independent variable) to measure any changes in the intensity of their anxiety (dependent variable).

In a well-designed experimental study , the independent variable is the only important difference between the experimental (e.g., treatment) and control (e.g., placebo) groups.

By changing the independent variable and holding other factors constant, psychologists aim to determine if it causes a change in another variable, called the dependent variable.

For example, in a study investigating the effects of sleep on memory, the amount of sleep (e.g., 4 hours, 8 hours, 12 hours) would be the independent variable, as the researcher might manipulate or categorize it to see its impact on memory recall, which would be the dependent variable.

Dependent Variable

In psychology, the dependent variable is the variable being tested and measured in an experiment and is “dependent” on the independent variable.

In psychology, a dependent variable represents the outcome or results and can change based on the manipulations of the independent variable. Essentially, it’s the presumed effect in a cause-and-effect relationship being studied.

An example of a dependent variable is depression symptoms, which depend on the independent variable (type of therapy).

In an experiment, the researcher looks for the possible effect on the dependent variable that might be caused by changing the independent variable.

For instance, in a study examining the effects of a new study technique on exam performance, the technique would be the independent variable (as it is being introduced or manipulated), while the exam scores would be the dependent variable (as they represent the outcome of interest that’s being measured).

Examples in Research Studies

For example, we might change the type of information (e.g., organized or random) given to participants to see how this might affect the amount of information remembered.

In this example, the type of information is the independent variable (because it changes), and the amount of information remembered is the dependent variable (because this is being measured).

Independent and Dependent Variables Examples

For the following hypotheses, name the IV and the DV.

1. Lack of sleep significantly affects learning in 10-year-old boys.

IV……………………………………………………

DV…………………………………………………..

2. Social class has a significant effect on IQ scores.

DV……………………………………………….…

3. Stressful experiences significantly increase the likelihood of headaches.

4. Time of day has a significant effect on alertness.

Operationalizing Variables

To ensure cause and effect are established, it is important that we identify exactly how the independent and dependent variables will be measured; this is known as operationalizing the variables.

Operational variables (or operationalizing definitions) refer to how you will define and measure a specific variable as it is used in your study. This enables another psychologist to replicate your research and is essential in establishing reliability (achieving consistency in the results).

For example, if we are concerned with the effect of media violence on aggression, then we need to be very clear about what we mean by the different terms. In this case, we must state what we mean by the terms “media violence” and “aggression” as we will study them.

Therefore, you could state that “media violence” is operationally defined (in your experiment) as ‘exposure to a 15-minute film showing scenes of physical assault’; “aggression” is operationally defined as ‘levels of electrical shocks administered to a second ‘participant’ in another room.

In another example, the hypothesis “Young participants will have significantly better memories than older participants” is not operationalized. How do we define “young,” “old,” or “memory”? “Participants aged between 16 – 30 will recall significantly more nouns from a list of twenty than participants aged between 55 – 70” is operationalized.

The key point here is that we have clarified what we mean by the terms as they were studied and measured in our experiment.

If we didn’t do this, it would be very difficult (if not impossible) to compare the findings of different studies to the same behavior.

Operationalization has the advantage of generally providing a clear and objective definition of even complex variables. It also makes it easier for other researchers to replicate a study and check for reliability .

For the following hypotheses, name the IV and the DV and operationalize both variables.

1. Women are more attracted to men without earrings than men with earrings.

I.V._____________________________________________________________

D.V. ____________________________________________________________

Operational definitions:

I.V. ____________________________________________________________

2. People learn more when they study in a quiet versus noisy place.

I.V. _________________________________________________________

D.V. ___________________________________________________________

3. People who exercise regularly sleep better at night.

Can there be more than one independent or dependent variable in a study?

Yes, it is possible to have more than one independent or dependent variable in a study.

In some studies, researchers may want to explore how multiple factors affect the outcome, so they include more than one independent variable.

Similarly, they may measure multiple things to see how they are influenced, resulting in multiple dependent variables. This allows for a more comprehensive understanding of the topic being studied.

What are some ethical considerations related to independent and dependent variables?

Ethical considerations related to independent and dependent variables involve treating participants fairly and protecting their rights.

Researchers must ensure that participants provide informed consent and that their privacy and confidentiality are respected. Additionally, it is important to avoid manipulating independent variables in ways that could cause harm or discomfort to participants.

Researchers should also consider the potential impact of their study on vulnerable populations and ensure that their methods are unbiased and free from discrimination.

Ethical guidelines help ensure that research is conducted responsibly and with respect for the well-being of the participants involved.

Can qualitative data have independent and dependent variables?

Yes, both quantitative and qualitative data can have independent and dependent variables.

In quantitative research, independent variables are usually measured numerically and manipulated to understand their impact on the dependent variable. In qualitative research, independent variables can be qualitative in nature, such as individual experiences, cultural factors, or social contexts, influencing the phenomenon of interest.

The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable.

So, regardless of the type of data, researchers analyze the relationship between independent and dependent variables to gain insights into their research questions.

Can the same variable be independent in one study and dependent in another?

Yes, the same variable can be independent in one study and dependent in another.

The classification of a variable as independent or dependent depends on how it is used within a specific study. In one study, a variable might be manipulated or controlled to see its effect on another variable, making it independent.

However, in a different study, that same variable might be the one being measured or observed to understand its relationship with another variable, making it dependent.

The role of a variable as independent or dependent can vary depending on the research question and study design.

Print Friendly, PDF & Email

Grad Coach

Research Variables 101

Independent variables, dependent variables, control variables and more

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to the world of research, especially scientific research, you’re bound to run into the concept of variables , sooner or later. If you’re feeling a little confused, don’t worry – you’re not the only one! Independent variables, dependent variables, confounding variables – it’s a lot of jargon. In this post, we’ll unpack the terminology surrounding research variables using straightforward language and loads of examples .

Overview: Variables In Research

What (exactly) is a variable.

The simplest way to understand a variable is as any characteristic or attribute that can experience change or vary over time or context – hence the name “variable”. For example, the dosage of a particular medicine could be classified as a variable, as the amount can vary (i.e., a higher dose or a lower dose). Similarly, gender, age or ethnicity could be considered demographic variables, because each person varies in these respects.

Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, and the relationships between different variables. For example:

  • How someone’s age impacts their sleep quality
  • How different teaching methods impact learning outcomes
  • How diet impacts weight (gain or loss)

As you can see, variables are often used to explain relationships between different elements and phenomena. In scientific studies, especially experimental studies, the objective is often to understand the causal relationships between variables. In other words, the role of cause and effect between variables. This is achieved by manipulating certain variables while controlling others – and then observing the outcome. But, we’ll get into that a little later…

The “Big 3” Variables

Variables can be a little intimidating for new researchers because there are a wide variety of variables, and oftentimes, there are multiple labels for the same thing. To lay a firm foundation, we’ll first look at the three main types of variables, namely:

  • Independent variables (IV)
  • Dependant variables (DV)
  • Control variables

What is an independent variable?

Simply put, the independent variable is the “ cause ” in the relationship between two (or more) variables. In other words, when the independent variable changes, it has an impact on another variable.

For example:

  • Increasing the dosage of a medication (Variable A) could result in better (or worse) health outcomes for a patient (Variable B)
  • Changing a teaching method (Variable A) could impact the test scores that students earn in a standardised test (Variable B)
  • Varying one’s diet (Variable A) could result in weight loss or gain (Variable B).

It’s useful to know that independent variables can go by a few different names, including, explanatory variables (because they explain an event or outcome) and predictor variables (because they predict the value of another variable). Terminology aside though, the most important takeaway is that independent variables are assumed to be the “cause” in any cause-effect relationship. As you can imagine, these types of variables are of major interest to researchers, as many studies seek to understand the causal factors behind a phenomenon.

Need a helping hand?

psychology research topics with independent and dependent variables

What is a dependent variable?

While the independent variable is the “ cause ”, the dependent variable is the “ effect ” – or rather, the affected variable . In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable.

Keeping with the previous example, let’s look at some dependent variables in action:

  • Health outcomes (DV) could be impacted by dosage changes of a medication (IV)
  • Students’ scores (DV) could be impacted by teaching methods (IV)
  • Weight gain or loss (DV) could be impacted by diet (IV)

In scientific studies, researchers will typically pay very close attention to the dependent variable (or variables), carefully measuring any changes in response to hypothesised independent variables. This can be tricky in practice, as it’s not always easy to reliably measure specific phenomena or outcomes – or to be certain that the actual cause of the change is in fact the independent variable.

As the adage goes, correlation is not causation . In other words, just because two variables have a relationship doesn’t mean that it’s a causal relationship – they may just happen to vary together. For example, you could find a correlation between the number of people who own a certain brand of car and the number of people who have a certain type of job. Just because the number of people who own that brand of car and the number of people who have that type of job is correlated, it doesn’t mean that owning that brand of car causes someone to have that type of job or vice versa. The correlation could, for example, be caused by another factor such as income level or age group, which would affect both car ownership and job type.

To confidently establish a causal relationship between an independent variable and a dependent variable (i.e., X causes Y), you’ll typically need an experimental design , where you have complete control over the environmen t and the variables of interest. But even so, this doesn’t always translate into the “real world”. Simply put, what happens in the lab sometimes stays in the lab!

As an alternative to pure experimental research, correlational or “ quasi-experimental ” research (where the researcher cannot manipulate or change variables) can be done on a much larger scale more easily, allowing one to understand specific relationships in the real world. These types of studies also assume some causality between independent and dependent variables, but it’s not always clear. So, if you go this route, you need to be cautious in terms of how you describe the impact and causality between variables and be sure to acknowledge any limitations in your own research.

Free Webinar: Research Methodology 101

What is a control variable?

In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn’t have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it’s a variable that’s not allowed to vary – tough life 🙂

As we mentioned earlier, one of the major challenges in identifying and measuring causal relationships is that it’s difficult to isolate the impact of variables other than the independent variable. Simply put, there’s always a risk that there are factors beyond the ones you’re specifically looking at that might be impacting the results of your study. So, to minimise the risk of this, researchers will attempt (as best possible) to hold other variables constant . These factors are then considered control variables.

Some examples of variables that you may need to control include:

  • Temperature
  • Time of day
  • Noise or distractions

Which specific variables need to be controlled for will vary tremendously depending on the research project at hand, so there’s no generic list of control variables to consult. As a researcher, you’ll need to think carefully about all the factors that could vary within your research context and then consider how you’ll go about controlling them. A good starting point is to look at previous studies similar to yours and pay close attention to which variables they controlled for.

Of course, you won’t always be able to control every possible variable, and so, in many cases, you’ll just have to acknowledge their potential impact and account for them in the conclusions you draw. Every study has its limitations, so don’t get fixated or discouraged by troublesome variables. Nevertheless, always think carefully about the factors beyond what you’re focusing on – don’t make assumptions!

 A control variable is intentionally held constant (it doesn't vary) to ensure it doesn’t have an influence on any other variables.

Other types of variables

As we mentioned, independent, dependent and control variables are the most common variables you’ll come across in your research, but they’re certainly not the only ones you need to be aware of. Next, we’ll look at a few “secondary” variables that you need to keep in mind as you design your research.

  • Moderating variables
  • Mediating variables
  • Confounding variables
  • Latent variables

Let’s jump into it…

What is a moderating variable?

A moderating variable is a variable that influences the strength or direction of the relationship between an independent variable and a dependent variable. In other words, moderating variables affect how much (or how little) the IV affects the DV, or whether the IV has a positive or negative relationship with the DV (i.e., moves in the same or opposite direction).

For example, in a study about the effects of sleep deprivation on academic performance, gender could be used as a moderating variable to see if there are any differences in how men and women respond to a lack of sleep. In such a case, one may find that gender has an influence on how much students’ scores suffer when they’re deprived of sleep.

It’s important to note that while moderators can have an influence on outcomes , they don’t necessarily cause them ; rather they modify or “moderate” existing relationships between other variables. This means that it’s possible for two different groups with similar characteristics, but different levels of moderation, to experience very different results from the same experiment or study design.

What is a mediating variable?

Mediating variables are often used to explain the relationship between the independent and dependent variable (s). For example, if you were researching the effects of age on job satisfaction, then education level could be considered a mediating variable, as it may explain why older people have higher job satisfaction than younger people – they may have more experience or better qualifications, which lead to greater job satisfaction.

Mediating variables also help researchers understand how different factors interact with each other to influence outcomes. For instance, if you wanted to study the effect of stress on academic performance, then coping strategies might act as a mediating factor by influencing both stress levels and academic performance simultaneously. For example, students who use effective coping strategies might be less stressed but also perform better academically due to their improved mental state.

In addition, mediating variables can provide insight into causal relationships between two variables by helping researchers determine whether changes in one factor directly cause changes in another – or whether there is an indirect relationship between them mediated by some third factor(s). For instance, if you wanted to investigate the impact of parental involvement on student achievement, you would need to consider family dynamics as a potential mediator, since it could influence both parental involvement and student achievement simultaneously.

Mediating variables can explain the relationship between the independent and dependent variable, including whether it's causal or not.

What is a confounding variable?

A confounding variable (also known as a third variable or lurking variable ) is an extraneous factor that can influence the relationship between two variables being studied. Specifically, for a variable to be considered a confounding variable, it needs to meet two criteria:

  • It must be correlated with the independent variable (this can be causal or not)
  • It must have a causal impact on the dependent variable (i.e., influence the DV)

Some common examples of confounding variables include demographic factors such as gender, ethnicity, socioeconomic status, age, education level, and health status. In addition to these, there are also environmental factors to consider. For example, air pollution could confound the impact of the variables of interest in a study investigating health outcomes.

Naturally, it’s important to identify as many confounding variables as possible when conducting your research, as they can heavily distort the results and lead you to draw incorrect conclusions . So, always think carefully about what factors may have a confounding effect on your variables of interest and try to manage these as best you can.

What is a latent variable?

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study. They’re also known as hidden or underlying variables , and what makes them rather tricky is that they can’t be directly observed or measured . Instead, latent variables must be inferred from other observable data points such as responses to surveys or experiments.

For example, in a study of mental health, the variable “resilience” could be considered a latent variable. It can’t be directly measured , but it can be inferred from measures of mental health symptoms, stress, and coping mechanisms. The same applies to a lot of concepts we encounter every day – for example:

  • Emotional intelligence
  • Quality of life
  • Business confidence
  • Ease of use

One way in which we overcome the challenge of measuring the immeasurable is latent variable models (LVMs). An LVM is a type of statistical model that describes a relationship between observed variables and one or more unobserved (latent) variables. These models allow researchers to uncover patterns in their data which may not have been visible before, thanks to their complexity and interrelatedness with other variables. Those patterns can then inform hypotheses about cause-and-effect relationships among those same variables which were previously unknown prior to running the LVM. Powerful stuff, we say!

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study.

Let’s recap

In the world of scientific research, there’s no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, we’ve covered some of the popular ones, but remember that this is not an exhaustive list .

To recap, we’ve explored:

  • Independent variables (the “cause”)
  • Dependent variables (the “effect”)
  • Control variables (the variable that’s not allowed to vary)

If you’re still feeling a bit lost and need a helping hand with your research project, check out our 1-on-1 coaching service , where we guide you through each step of the research journey. Also, be sure to check out our free dissertation writing course and our collection of free, fully-editable chapter templates .

psychology research topics with independent and dependent variables

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Survey Design 101: The Basics

Very informative, concise and helpful. Thank you

Ige Samuel Babatunde

Helping information.Thanks

Ancel George

practical and well-demonstrated

Michael

Very helpful and insightful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Independent vs. Dependent Variables | Definition & Examples

Independent vs. Dependent Variables | Definition & Examples

Published on February 3, 2022 by Pritha Bhandari . Revised on June 22, 2023.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs. dependent variables, independent and dependent variables in research, visualizing independent and dependent variables, other interesting articles, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group (to research a possible placebo effect )

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment. Note that any research methods that use non-random assignment are at risk for research biases like selection bias and sampling bias .

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it “depends” on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic research paper .

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design .

Here are some tips for identifying each variable type.

Recognizing independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognizing dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

psychology research topics with independent and dependent variables

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

For experimental data, you analyze your results by generating descriptive statistics and visualizing your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • your variable types
  • level of measurement
  • number of independent variable levels.

You’ll often use t tests or ANOVAs to analyze your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualize the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualization you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatter plot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Independent vs. Dependent Variables | Definition & Examples. Scribbr. Retrieved March 17, 2024, from https://www.scribbr.com/methodology/independent-and-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, explanatory and response variables | definitions & examples, confounding variables | definition, examples & controls, what is your plagiarism score.

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Anxiety, Affect, Self-Esteem, and Stress: Mediation and Moderation Effects on Depression

Affiliations Department of Psychology, University of Gothenburg, Gothenburg, Sweden, Network for Empowerment and Well-Being, University of Gothenburg, Gothenburg, Sweden

Affiliation Network for Empowerment and Well-Being, University of Gothenburg, Gothenburg, Sweden

Affiliations Department of Psychology, University of Gothenburg, Gothenburg, Sweden, Network for Empowerment and Well-Being, University of Gothenburg, Gothenburg, Sweden, Department of Psychology, Education and Sport Science, Linneaus University, Kalmar, Sweden

* E-mail: [email protected]

Affiliations Network for Empowerment and Well-Being, University of Gothenburg, Gothenburg, Sweden, Center for Ethics, Law, and Mental Health (CELAM), University of Gothenburg, Gothenburg, Sweden, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

  • Ali Al Nima, 
  • Patricia Rosenberg, 
  • Trevor Archer, 
  • Danilo Garcia

PLOS

  • Published: September 9, 2013
  • https://doi.org/10.1371/journal.pone.0073265
  • Reader Comments

23 Sep 2013: Nima AA, Rosenberg P, Archer T, Garcia D (2013) Correction: Anxiety, Affect, Self-Esteem, and Stress: Mediation and Moderation Effects on Depression. PLOS ONE 8(9): 10.1371/annotation/49e2c5c8-e8a8-4011-80fc-02c6724b2acc. https://doi.org/10.1371/annotation/49e2c5c8-e8a8-4011-80fc-02c6724b2acc View correction

Table 1

Mediation analysis investigates whether a variable (i.e., mediator) changes in regard to an independent variable, in turn, affecting a dependent variable. Moderation analysis, on the other hand, investigates whether the statistical interaction between independent variables predict a dependent variable. Although this difference between these two types of analysis is explicit in current literature, there is still confusion with regard to the mediating and moderating effects of different variables on depression. The purpose of this study was to assess the mediating and moderating effects of anxiety, stress, positive affect, and negative affect on depression.

Two hundred and two university students (males  = 93, females  = 113) completed questionnaires assessing anxiety, stress, self-esteem, positive and negative affect, and depression. Mediation and moderation analyses were conducted using techniques based on standard multiple regression and hierarchical regression analyses.

Main Findings

The results indicated that (i) anxiety partially mediated the effects of both stress and self-esteem upon depression, (ii) that stress partially mediated the effects of anxiety and positive affect upon depression, (iii) that stress completely mediated the effects of self-esteem on depression, and (iv) that there was a significant interaction between stress and negative affect, and between positive affect and negative affect upon depression.

The study highlights different research questions that can be investigated depending on whether researchers decide to use the same variables as mediators and/or moderators.

Citation: Nima AA, Rosenberg P, Archer T, Garcia D (2013) Anxiety, Affect, Self-Esteem, and Stress: Mediation and Moderation Effects on Depression. PLoS ONE 8(9): e73265. https://doi.org/10.1371/journal.pone.0073265

Editor: Ben J. Harrison, The University of Melbourne, Australia

Received: February 21, 2013; Accepted: July 22, 2013; Published: September 9, 2013

Copyright: © 2013 Nima et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Mediation refers to the covariance relationships among three variables: an independent variable (1), an assumed mediating variable (2), and a dependent variable (3). Mediation analysis investigates whether the mediating variable accounts for a significant amount of the shared variance between the independent and the dependent variables–the mediator changes in regard to the independent variable, in turn, affecting the dependent one [1] , [2] . On the other hand, moderation refers to the examination of the statistical interaction between independent variables in predicting a dependent variable [1] , [3] . In contrast to the mediator, the moderator is not expected to be correlated with both the independent and the dependent variable–Baron and Kenny [1] actually recommend that it is best if the moderator is not correlated with the independent variable and if the moderator is relatively stable, like a demographic variable (e.g., gender, socio-economic status) or a personality trait (e.g., affectivity).

Although both types of analysis lead to different conclusions [3] and the distinction between statistical procedures is part of the current literature [2] , there is still confusion about the use of moderation and mediation analyses using data pertaining to the prediction of depression. There are, for example, contradictions among studies that investigate mediating and moderating effects of anxiety, stress, self-esteem, and affect on depression. Depression, anxiety and stress are suggested to influence individuals' social relations and activities, work, and studies, as well as compromising decision-making and coping strategies [4] , [5] , [6] . Successfully coping with anxiety, depressiveness, and stressful situations may contribute to high levels of self-esteem and self-confidence, in addition increasing well-being, and psychological and physical health [6] . Thus, it is important to disentangle how these variables are related to each other. However, while some researchers perform mediation analysis with some of the variables mentioned here, other researchers conduct moderation analysis with the same variables. Seldom are both moderation and mediation performed on the same dataset. Before disentangling mediation and moderation effects on depression in the current literature, we briefly present the methodology behind the analysis performed in this study.

Mediation and moderation

Baron and Kenny [1] postulated several criteria for the analysis of a mediating effect: a significant correlation between the independent and the dependent variable, the independent variable must be significantly associated with the mediator, the mediator predicts the dependent variable even when the independent variable is controlled for, and the correlation between the independent and the dependent variable must be eliminated or reduced when the mediator is controlled for. All the criteria is then tested using the Sobel test which shows whether indirect effects are significant or not [1] , [7] . A complete mediating effect occurs when the correlation between the independent and the dependent variable are eliminated when the mediator is controlled for [8] . Analyses of mediation can, for example, help researchers to move beyond answering if high levels of stress lead to high levels of depression. With mediation analysis researchers might instead answer how stress is related to depression.

In contrast to mediation, moderation investigates the unique conditions under which two variables are related [3] . The third variable here, the moderator, is not an intermediate variable in the causal sequence from the independent to the dependent variable. For the analysis of moderation effects, the relation between the independent and dependent variable must be different at different levels of the moderator [3] . Moderators are included in the statistical analysis as an interaction term [1] . When analyzing moderating effects the variables should first be centered (i.e., calculating the mean to become 0 and the standard deviation to become 1) in order to avoid problems with multi-colinearity [8] . Moderating effects can be calculated using multiple hierarchical linear regressions whereby main effects are presented in the first step and interactions in the second step [1] . Analysis of moderation, for example, helps researchers to answer when or under which conditions stress is related to depression.

Mediation and moderation effects on depression

Cognitive vulnerability models suggest that maladaptive self-schema mirroring helplessness and low self-esteem explain the development and maintenance of depression (for a review see [9] ). These cognitive vulnerability factors become activated by negative life events or negative moods [10] and are suggested to interact with environmental stressors to increase risk for depression and other emotional disorders [11] , [10] . In this line of thinking, the experience of stress, low self-esteem, and negative emotions can cause depression, but also be used to explain how (i.e., mediation) and under which conditions (i.e., moderation) specific variables influence depression.

Using mediational analyses to investigate how cognitive therapy intervations reduced depression, researchers have showed that the intervention reduced anxiety, which in turn was responsible for 91% of the reduction in depression [12] . In the same study, reductions in depression, by the intervention, accounted only for 6% of the reduction in anxiety. Thus, anxiety seems to affect depression more than depression affects anxiety and, together with stress, is both a cause of and a powerful mediator influencing depression (See also [13] ). Indeed, there are positive relationships between depression, anxiety and stress in different cultures [14] . Moreover, while some studies show that stress (independent variable) increases anxiety (mediator), which in turn increased depression (dependent variable) [14] , other studies show that stress (moderator) interacts with maladaptive self-schemata (dependent variable) to increase depression (independent variable) [15] , [16] .

The present study

In order to illustrate how mediation and moderation can be used to address different research questions we first focus our attention to anxiety and stress as mediators of different variables that earlier have been shown to be related to depression. Secondly, we use all variables to find which of these variables moderate the effects on depression.

The specific aims of the present study were:

  • To investigate if anxiety mediated the effect of stress, self-esteem, and affect on depression.
  • To investigate if stress mediated the effects of anxiety, self-esteem, and affect on depression.
  • To examine moderation effects between anxiety, stress, self-esteem, and affect on depression.

Ethics statement

This research protocol was approved by the Ethics Committee of the University of Gothenburg and written informed consent was obtained from all the study participants.

Participants

The present study was based upon a sample of 206 participants (males  = 93, females  = 113). All the participants were first year students in different disciplines at two universities in South Sweden. The mean age for the male students was 25.93 years ( SD  = 6.66), and 25.30 years ( SD  = 5.83) for the female students.

In total, 206 questionnaires were distributed to the students. Together 202 questionnaires were responded to leaving a total dropout of 1.94%. This dropout concerned three sections that the participants chose not to respond to at all, and one section that was completed incorrectly. None of these four questionnaires was included in the analyses.

Instruments

Hospital anxiety and depression scale [17] ..

The Swedish translation of this instrument [18] was used to measure anxiety and depression. The instrument consists of 14 statements (7 of which measure depression and 7 measure anxiety) to which participants are asked to respond grade of agreement on a Likert scale (0 to 3). The utility, reliability and validity of the instrument has been shown in multiple studies (e.g., [19] ).

Perceived Stress Scale [20] .

The Swedish version [21] of this instrument was used to measures individuals' experience of stress. The instrument consist of 14 statements to which participants rate on a Likert scale (0 =  never , 4 =  very often ). High values indicate that the individual expresses a high degree of stress.

Rosenberg's Self-Esteem Scale [22] .

The Rosenberg's Self-Esteem Scale (Swedish version by Lindwall [23] ) consists of 10 statements focusing on general feelings toward the self. Participants are asked to report grade of agreement in a four-point Likert scale (1 =  agree not at all, 4 =  agree completely ). This is the most widely used instrument for estimation of self-esteem with high levels of reliability and validity (e.g., [24] , [25] ).

Positive Affect and Negative Affect Schedule [26] .

This is a widely applied instrument for measuring individuals' self-reported mood and feelings. The Swedish version has been used among participants of different ages and occupations (e.g., [27] , [28] , [29] ). The instrument consists of 20 adjectives, 10 positive affect (e.g., proud, strong) and 10 negative affect (e.g., afraid, irritable). The adjectives are rated on a five-point Likert scale (1 =  not at all , 5 =  very much ). The instrument is a reliable, valid, and effective self-report instrument for estimating these two important and independent aspects of mood [26] .

Questionnaires were distributed to the participants on several different locations within the university, including the library and lecture halls. Participants were asked to complete the questionnaire after being informed about the purpose and duration (10–15 minutes) of the study. Participants were also ensured complete anonymity and informed that they could end their participation whenever they liked.

Correlational analysis

Depression showed positive, significant relationships with anxiety, stress and negative affect. Table 1 presents the correlation coefficients, mean values and standard deviations ( sd ), as well as Cronbach ' s α for all the variables in the study.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0073265.t001

Mediation analysis

Regression analyses were performed in order to investigate if anxiety mediated the effect of stress, self-esteem, and affect on depression (aim 1). The first regression showed that stress ( B  = .03, 95% CI [.02,.05], β = .36, t  = 4.32, p <.001), self-esteem ( B  = −.03, 95% CI [−.05, −.01], β = −.24, t  = −3.20, p <.001), and positive affect ( B  = −.02, 95% CI [−.05, −.01], β = −.19, t  = −2.93, p  = .004) had each an unique effect on depression. Surprisingly, negative affect did not predict depression ( p  = 0.77) and was therefore removed from the mediation model, thus not included in further analysis.

The second regression tested whether stress, self-esteem and positive affect uniquely predicted the mediator (i.e., anxiety). Stress was found to be positively associated ( B  = .21, 95% CI [.15,.27], β = .47, t  = 7.35, p <.001), whereas self-esteem was negatively associated ( B  = −.29, 95% CI [−.38, −.21], β = −.42, t  = −6.48, p <.001) to anxiety. Positive affect, however, was not associated to anxiety ( p  = .50) and was therefore removed from further analysis.

A hierarchical regression analysis using depression as the outcome variable was performed using stress and self-esteem as predictors in the first step, and anxiety as predictor in the second step. This analysis allows the examination of whether stress and self-esteem predict depression and if this relation is weaken in the presence of anxiety as the mediator. The result indicated that, in the first step, both stress ( B  = .04, 95% CI [.03,.05], β = .45, t  = 6.43, p <.001) and self-esteem ( B  = .04, 95% CI [.03,.05], β = .45, t  = 6.43, p <.001) predicted depression. When anxiety (i.e., the mediator) was controlled for predictability was reduced somewhat but was still significant for stress ( B  = .03, 95% CI [.02,.04], β = .33, t  = 4.29, p <.001) and for self-esteem ( B  = −.03, 95% CI [−.05, −.01], β = −.20, t  = −2.62, p  = .009). Anxiety, as a mediator, predicted depression even when both stress and self-esteem were controlled for ( B  = .05, 95% CI [.02,.08], β = .26, t  = 3.17, p  = .002). Anxiety improved the prediction of depression over-and-above the independent variables (i.e., stress and self-esteem) (Δ R 2  = .03, F (1, 198) = 10.06, p  = .002). See Table 2 for the details.

thumbnail

https://doi.org/10.1371/journal.pone.0073265.t002

A Sobel test was conducted to test the mediating criteria and to assess whether indirect effects were significant or not. The result showed that the complete pathway from stress (independent variable) to anxiety (mediator) to depression (dependent variable) was significant ( z  = 2.89, p  = .003). The complete pathway from self-esteem (independent variable) to anxiety (mediator) to depression (dependent variable) was also significant ( z  = 2.82, p  = .004). Thus, indicating that anxiety partially mediates the effects of both stress and self-esteem on depression. This result may indicate also that both stress and self-esteem contribute directly to explain the variation in depression and indirectly via experienced level of anxiety (see Figure 1 ).

thumbnail

Changes in Beta weights when the mediator is present are highlighted in red.

https://doi.org/10.1371/journal.pone.0073265.g001

For the second aim, regression analyses were performed in order to test if stress mediated the effect of anxiety, self-esteem, and affect on depression. The first regression showed that anxiety ( B  = .07, 95% CI [.04,.10], β = .37, t  = 4.57, p <.001), self-esteem ( B  = −.02, 95% CI [−.05, −.01], β = −.18, t  = −2.23, p  = .03), and positive affect ( B  = −.03, 95% CI [−.04, −.02], β = −.27, t  = −4.35, p <.001) predicted depression independently of each other. Negative affect did not predict depression ( p  = 0.74) and was therefore removed from further analysis.

The second regression investigated if anxiety, self-esteem and positive affect uniquely predicted the mediator (i.e., stress). Stress was positively associated to anxiety ( B  = 1.01, 95% CI [.75, 1.30], β = .46, t  = 7.35, p <.001), negatively associated to self-esteem ( B  = −.30, 95% CI [−.50, −.01], β = −.19, t  = −2.90, p  = .004), and a negatively associated to positive affect ( B  = −.33, 95% CI [−.46, −.20], β = −.27, t  = −5.02, p <.001).

A hierarchical regression analysis using depression as the outcome and anxiety, self-esteem, and positive affect as the predictors in the first step, and stress as the predictor in the second step, allowed the examination of whether anxiety, self-esteem and positive affect predicted depression and if this association would weaken when stress (i.e., the mediator) was present. In the first step of the regression anxiety ( B  = .07, 95% CI [.05,.10], β = .38, t  = 5.31, p  = .02), self-esteem ( B  = −.03, 95% CI [−.05, −.01], β = −.18, t  = −2.41, p  = .02), and positive affect ( B  = −.03, 95% CI [−.04, −.02], β = −.27, t  = −4.36, p <.001) significantly explained depression. When stress (i.e., the mediator) was controlled for, predictability was reduced somewhat but was still significant for anxiety ( B  = .05, 95% CI [.02,.08], β = .05, t  = 4.29, p <.001) and for positive affect ( B  = −.02, 95% CI [−.04, −.01], β = −.20, t  = −3.16, p  = .002), whereas self-esteem did not reach significance ( p < = .08). In the second step, the mediator (i.e., stress) predicted depression even when anxiety, self-esteem, and positive affect were controlled for ( B  = .02, 95% CI [.08,.04], β = .25, t  = 3.07, p  = .002). Stress improved the prediction of depression over-and-above the independent variables (i.e., anxiety, self-esteem and positive affect) (Δ R 2  = .02, F (1, 197)  = 9.40, p  = .002). See Table 3 for the details.

thumbnail

https://doi.org/10.1371/journal.pone.0073265.t003

Furthermore, the Sobel test indicated that the complete pathways from the independent variables (anxiety: z  = 2.81, p  = .004; self-esteem: z  =  2.05, p  = .04; positive affect: z  = 2.58, p <.01) to the mediator (i.e., stress), to the outcome (i.e., depression) were significant. These specific results might be explained on the basis that stress partially mediated the effects of both anxiety and positive affect on depression while stress completely mediated the effects of self-esteem on depression. In other words, anxiety and positive affect contributed directly to explain the variation in depression and indirectly via the experienced level of stress. Self-esteem contributed only indirectly via the experienced level of stress to explain the variation in depression. In other words, stress effects on depression originate from “its own power” and explained more of the variation in depression than self-esteem (see Figure 2 ).

thumbnail

https://doi.org/10.1371/journal.pone.0073265.g002

Moderation analysis

Multiple linear regression analyses were used in order to examine moderation effects between anxiety, stress, self-esteem and affect on depression. The analysis indicated that about 52% of the variation in the dependent variable (i.e., depression) could be explained by the main effects and the interaction effects ( R 2  = .55, adjusted R 2  = .51, F (55, 186)  = 14.87, p <.001). When the variables (dependent and independent) were standardized, both the standardized regression coefficients beta (β) and the unstandardized regression coefficients beta (B) became the same value with regard to the main effects. Three of the main effects were significant and contributed uniquely to high levels of depression: anxiety ( B  = .26, t  = 3.12, p  = .002), stress ( B  = .25, t  = 2.86, p  = .005), and self-esteem ( B  = −.17, t  = −2.17, p  = .03). The main effect of positive affect was also significant and contributed to low levels of depression ( B  = −.16, t  = −2.027, p  = .02) (see Figure 3 ). Furthermore, the results indicated that two moderator effects were significant. These were the interaction between stress and negative affect ( B  = −.28, β = −.39, t  = −2.36, p  = .02) (see Figure 4 ) and the interaction between positive affect and negative affect ( B  = −.21, β = −.29, t  = −2.30, p  = .02) ( Figure 5 ).

thumbnail

https://doi.org/10.1371/journal.pone.0073265.g003

thumbnail

Low stress and low negative affect leads to lower levels of depression compared to high stress and high negative affect.

https://doi.org/10.1371/journal.pone.0073265.g004

thumbnail

High positive affect and low negative affect lead to lower levels of depression compared to low positive affect and high negative affect.

https://doi.org/10.1371/journal.pone.0073265.g005

The results in the present study show that (i) anxiety partially mediated the effects of both stress and self-esteem on depression, (ii) that stress partially mediated the effects of anxiety and positive affect on depression, (iii) that stress completely mediated the effects of self-esteem on depression, and (iv) that there was a significant interaction between stress and negative affect, and positive affect and negative affect on depression.

Mediating effects

The study suggests that anxiety contributes directly to explaining the variance in depression while stress and self-esteem might contribute directly to explaining the variance in depression and indirectly by increasing feelings of anxiety. Indeed, individuals who experience stress over a long period of time are susceptible to increased anxiety and depression [30] , [31] and previous research shows that high self-esteem seems to buffer against anxiety and depression [32] , [33] . The study also showed that stress partially mediated the effects of both anxiety and positive affect on depression and that stress completely mediated the effects of self-esteem on depression. Anxiety and positive affect contributed directly to explain the variation in depression and indirectly to the experienced level of stress. Self-esteem contributed only indirectly via the experienced level of stress to explain the variation in depression, i.e. stress affects depression on the basis of ‘its own power’ and explains much more of the variation in depressive experiences than self-esteem. In general, individuals who experience low anxiety and frequently experience positive affect seem to experience low stress, which might reduce their levels of depression. Academic stress, for instance, may increase the risk for experiencing depression among students [34] . Although self-esteem did not emerged as an important variable here, under circumstances in which difficulties in life become chronic, some researchers suggest that low self-esteem facilitates the experience of stress [35] .

Moderator effects/interaction effects

The present study showed that the interaction between stress and negative affect and between positive and negative affect influenced self-reported depression symptoms. Moderation effects between stress and negative affect imply that the students experiencing low levels of stress and low negative affect reported lower levels of depression than those who experience high levels of stress and high negative affect. This result confirms earlier findings that underline the strong positive association between negative affect and both stress and depression [36] , [37] . Nevertheless, negative affect by itself did not predicted depression. In this regard, it is important to point out that the absence of positive emotions is a better predictor of morbidity than the presence of negative emotions [38] , [39] . A modification to this statement, as illustrated by the results discussed next, could be that the presence of negative emotions in conjunction with the absence of positive emotions increases morbidity.

The moderating effects between positive and negative affect on the experience of depression imply that the students experiencing high levels of positive affect and low levels of negative affect reported lower levels of depression than those who experience low levels of positive affect and high levels of negative affect. This result fits previous observations indicating that different combinations of these affect dimensions are related to different measures of physical and mental health and well-being, such as, blood pressure, depression, quality of sleep, anxiety, life satisfaction, psychological well-being, and self-regulation [40] – [51] .

Limitations

The result indicated a relatively low mean value for depression ( M  = 3.69), perhaps because the studied population was university students. These might limit the generalization power of the results and might also explain why negative affect, commonly associated to depression, was not related to depression in the present study. Moreover, there is a potential influence of single source/single method variance on the findings, especially given the high correlation between all the variables under examination.

Conclusions

The present study highlights different results that could be arrived depending on whether researchers decide to use variables as mediators or moderators. For example, when using meditational analyses, anxiety and stress seem to be important factors that explain how the different variables used here influence depression–increases in anxiety and stress by any other factor seem to lead to increases in depression. In contrast, when moderation analyses were used, the interaction of stress and affect predicted depression and the interaction of both affectivity dimensions (i.e., positive and negative affect) also predicted depression–stress might increase depression under the condition that the individual is high in negative affectivity, in turn, negative affectivity might increase depression under the condition that the individual experiences low positive affectivity.

Acknowledgments

The authors would like to thank the reviewers for their openness and suggestions, which significantly improved the article.

Author Contributions

Conceived and designed the experiments: AAN TA. Performed the experiments: AAN. Analyzed the data: AAN DG. Contributed reagents/materials/analysis tools: AAN TA DG. Wrote the paper: AAN PR TA DG.

  • View Article
  • Google Scholar
  • 3. MacKinnon DP, Luecken LJ (2008) How and for Whom? Mediation and Moderation in Health Psychology. Health Psychol 27 (2 Suppl.): s99–s102.
  • 4. Aaroe R (2006) Vinn över din depression [Defeat depression]. Stockholm: Liber.
  • 5. Agerberg M (1998) Ut ur mörkret [Out from the Darkness]. Stockholm: Nordstedt.
  • 6. Gilbert P (2005) Hantera din depression [Cope with your Depression]. Stockholm: Bokförlaget Prisma.
  • 8. Tabachnick BG, Fidell LS (2007) Using Multivariate Statistics, Fifth Edition. Boston: Pearson Education, Inc.
  • 10. Beck AT (1967) Depression: Causes and treatment. Philadelphia: University of Pennsylvania Press.
  • 21. Eskin M, Parr D (1996) Introducing a Swedish version of an instrument measuring mental stress. Stockholm: Psykologiska institutionen Stockholms Universitet.
  • 22. Rosenberg M (1965) Society and the Adolescent Self-Image. Princeton, NJ: Princeton University Press.
  • 23. Lindwall M (2011) Självkänsla – Bortom populärpsykologi & enkla sanningar [Self-Esteem – Beyond Popular Psychology and Simple Truths]. Lund:Studentlitteratur.
  • 25. Blascovich J, Tomaka J (1991) Measures of self-esteem. In: Robinson JP, Shaver PR, Wrightsman LS (Red.) Measures of personality and social psychological attitudes San Diego: Academic Press. 161–194.
  • 30. Eysenck M (Ed.) (2000) Psychology: an integrated approach. New York: Oxford University Press.
  • 31. Lazarus RS, Folkman S (1984) Stress, Appraisal, and Coping. New York: Springer.
  • 32. Johnson M (2003) Självkänsla och anpassning [Self-esteem and Adaptation]. Lund: Studentlitteratur.
  • 33. Cullberg Weston M (2005) Ditt inre centrum – Om självkänsla, självbild och konturen av ditt själv [Your Inner Centre – About Self-esteem, Self-image and the Contours of Yourself]. Stockholm: Natur och Kultur.
  • 34. Lindén M (1997) Studentens livssituation. Frihet, sårbarhet, kris och utveckling [Students' Life Situation. Freedom, Vulnerability, Crisis and Development]. Uppsala: Studenthälsan.
  • 35. Williams S (1995) Press utan stress ger maximal prestation [Pressure without Stress gives Maximal Performance]. Malmö: Richters förlag.
  • 37. Garcia D, Kerekes N, Andersson-Arntén A–C, Archer T (2012) Temperament, Character, and Adolescents' Depressive Symptoms: Focusing on Affect. Depress Res Treat. DOI:10.1155/2012/925372.
  • 40. Garcia D, Ghiabi B, Moradi S, Siddiqui A, Archer T (2013) The Happy Personality: A Tale of Two Philosophies. In Morris EF, Jackson M-A editors. Psychology of Personality. New York: Nova Science Publishers. 41–59.
  • 41. Schütz E, Nima AA, Sailer U, Andersson-Arntén A–C, Archer T, Garcia D (2013) The affective profiles in the USA: Happiness, depression, life satisfaction, and happiness-increasing strategies. In press.
  • 43. Garcia D, Nima AA, Archer T (2013) Temperament and Character's Relationship to Subjective Well- Being in Salvadorian Adolescents and Young Adults. In press.
  • 44. Garcia D (2013) La vie en Rose: High Levels of Well-Being and Events Inside and Outside Autobiographical Memory. J Happiness Stud. DOI: 10.1007/s10902-013-9443-x.
  • 48. Adrianson L, Djumaludin A, Neila R, Archer T (2013) Cultural influences upon health, affect, self-esteem and impulsiveness: An Indonesian-Swedish comparison. Int J Res Stud Psychol. DOI: 10.5861/ijrsp.2013.228.

2.3 Analyzing Findings

Learning objectives.

By the end of this section, you will be able to:

  • Explain what a correlation coefficient tells us about the relationship between variables
  • Recognize that correlation does not indicate a cause-and-effect relationship between variables
  • Discuss our tendency to look for relationships between variables that do not really exist
  • Explain random sampling and assignment of participants into experimental and control groups
  • Discuss how experimenter or participant bias could affect the results of an experiment
  • Identify independent and dependent variables

Did you know that as sales in ice cream increase, so does the overall rate of crime? Is it possible that indulging in your favorite flavor of ice cream could send you on a crime spree? Or, after committing crime do you think you might decide to treat yourself to a cone? There is no question that a relationship exists between ice cream and crime (e.g., Harper, 2013), but it would be pretty foolish to decide that one thing actually caused the other to occur.

It is much more likely that both ice cream sales and crime rates are related to the temperature outside. When the temperature is warm, there are lots of people out of their houses, interacting with each other, getting annoyed with one another, and sometimes committing crimes. Also, when it is warm outside, we are more likely to seek a cool treat like ice cream. How do we determine if there is indeed a relationship between two things? And when there is a relationship, how can we discern whether it is attributable to coincidence or causation?

Correlational Research

Correlation means that there is a relationship between two or more variables (such as ice cream consumption and crime), but this relationship does not necessarily imply cause and effect. When two variables are correlated, it simply means that as one variable changes, so does the other. We can measure correlation by calculating a statistic known as a correlation coefficient. A correlation coefficient is a number from -1 to +1 that indicates the strength and direction of the relationship between variables. The correlation coefficient is usually represented by the letter r .

The number portion of the correlation coefficient indicates the strength of the relationship. The closer the number is to 1 (be it negative or positive), the more strongly related the variables are, and the more predictable changes in one variable will be as the other variable changes. The closer the number is to zero, the weaker the relationship, and the less predictable the relationship between the variables becomes. For instance, a correlation coefficient of 0.9 indicates a far stronger relationship than a correlation coefficient of 0.3. If the variables are not related to one another at all, the correlation coefficient is 0. The example above about ice cream and crime is an example of two variables that we might expect to have no relationship to each other.

The sign—positive or negative—of the correlation coefficient indicates the direction of the relationship ( Figure 2.12 ). A positive correlation means that the variables move in the same direction. Put another way, it means that as one variable increases so does the other, and conversely, when one variable decreases so does the other. A negative correlation means that the variables move in opposite directions. If two variables are negatively correlated, a decrease in one variable is associated with an increase in the other and vice versa.

The example of ice cream and crime rates is a positive correlation because both variables increase when temperatures are warmer. Other examples of positive correlations are the relationship between an individual’s height and weight or the relationship between a person’s age and number of wrinkles. One might expect a negative correlation to exist between someone’s tiredness during the day and the number of hours they slept the previous night: the amount of sleep decreases as the feelings of tiredness increase. In a real-world example of negative correlation, student researchers at the University of Minnesota found a weak negative correlation ( r = -0.29) between the average number of days per week that students got fewer than 5 hours of sleep and their GPA (Lowry, Dean, & Manders, 2010). Keep in mind that a negative correlation is not the same as no correlation. For example, we would probably find no correlation between hours of sleep and shoe size.

As mentioned earlier, correlations have predictive value. Imagine that you are on the admissions committee of a major university. You are faced with a huge number of applications, but you are able to accommodate only a small percentage of the applicant pool. How might you decide who should be admitted? You might try to correlate your current students’ college GPA with their scores on standardized tests like the SAT or ACT. By observing which correlations were strongest for your current students, you could use this information to predict relative success of those students who have applied for admission into the university.

Link to Learning

Manipulate this interactive scatterplot to practice your understanding of positive and negative correlation.

Correlation Does Not Indicate Causation

Correlational research is useful because it allows us to discover the strength and direction of relationships that exist between two variables. However, correlation is limited because establishing the existence of a relationship tells us little about cause and effect . While variables are sometimes correlated because one does cause the other, it could also be that some other factor, a confounding variable , is actually causing the systematic movement in our variables of interest. In the ice cream/crime rate example mentioned earlier, temperature is a confounding variable that could account for the relationship between the two variables.

Even when we cannot point to clear confounding variables, we should not assume that a correlation between two variables implies that one variable causes changes in another. This can be frustrating when a cause-and-effect relationship seems clear and intuitive. Think back to our discussion of the research done by the American Cancer Society and how their research projects were some of the first demonstrations of the link between smoking and cancer. It seems reasonable to assume that smoking causes cancer, but if we were limited to correlational research , we would be overstepping our bounds by making this assumption.

Unfortunately, people mistakenly make claims of causation as a function of correlations all the time. Such claims are especially common in advertisements and news stories. For example, research found that people who eat certain breakfast cereal may have a reduced risk of heart disease (Anderson, Hanna, Peng, & Kryscio, 2000). Cereal companies are likely to share this information in a way that maximizes and perhaps overstates the positive aspects of eating cereal. But does cereal really cause better health, or are there other possible explanations for the health of those who eat cereal? While correlational research is invaluable in identifying relationships among variables, a major limitation is the inability to establish causality. Psychologists want to make statements about cause and effect, but the only way to do that is to conduct an experiment to answer a research question. The next section describes how scientific experiments incorporate methods that eliminate, or control for, alternative explanations, which allow researchers to explore how changes in one variable cause changes in another variable.

Illusory Correlations

The temptation to make erroneous cause-and-effect statements based on correlational research is not the only way we tend to misinterpret data. We also tend to make the mistake of illusory correlations, especially with unsystematic observations. Illusory correlations , or false correlations, occur when people believe that relationships exist between two things when no such relationship exists. One well-known illusory correlation is the supposed effect that the moon’s phases have on human behavior. Many people passionately assert that human behavior is affected by the phase of the moon, and specifically, that people act strangely when the moon is full ( Figure 2.14 ).

There is no denying that the moon exerts a powerful influence on our planet. The ebb and flow of the ocean’s tides are tightly tied to the gravitational forces of the moon. Many people believe, therefore, that it is logical that we are affected by the moon as well. After all, our bodies are largely made up of water. A meta-analysis of nearly 40 studies consistently demonstrated, however, that the relationship between the moon and our behavior does not exist (Rotton & Kelly, 1985). While we may pay more attention to odd behavior during the full phase of the moon, the rates of odd behavior remain constant throughout the lunar cycle.

Why are we so apt to believe in illusory correlations like this? Often we read or hear about them and simply accept the information as valid. Or, we have a hunch about how something works and then look for evidence to support that hunch, ignoring evidence that would tell us our hunch is false; this is known as confirmation bias . Other times, we find illusory correlations based on the information that comes most easily to mind, even if that information is severely limited. And while we may feel confident that we can use these relationships to better understand and predict the world around us, illusory correlations can have significant drawbacks. For example, research suggests that illusory correlations—in which certain behaviors are inaccurately attributed to certain groups—are involved in the formation of prejudicial attitudes that can ultimately lead to discriminatory behavior (Fiedler, 2004).

Causality: Conducting Experiments and Using the Data

As you’ve learned, the only way to establish that there is a cause-and-effect relationship between two variables is to conduct a scientific experiment . Experiment has a different meaning in the scientific context than in everyday life. In everyday conversation, we often use it to describe trying something for the first time, such as experimenting with a new hair style or a new food. However, in the scientific context, an experiment has precise requirements for design and implementation.

The Experimental Hypothesis

In order to conduct an experiment, a researcher must have a specific hypothesis to be tested. As you’ve learned, hypotheses can be formulated either through direct observation of the real world or after careful review of previous research. For example, if you think that the use of technology in the classroom has negative impacts on learning, then you have basically formulated a hypothesis—namely, that the use of technology in the classroom should be limited because it decreases learning. How might you have arrived at this particular hypothesis? You may have noticed that your classmates who take notes on their laptops perform at lower levels on class exams than those who take notes by hand, or those who receive a lesson via a computer program versus via an in-person teacher have different levels of performance when tested ( Figure 2.15 ).

These sorts of personal observations are what often lead us to formulate a specific hypothesis, but we cannot use limited personal observations and anecdotal evidence to rigorously test our hypothesis. Instead, to find out if real-world data supports our hypothesis, we have to conduct an experiment.

Designing an Experiment

The most basic experimental design involves two groups: the experimental group and the control group. The two groups are designed to be the same except for one difference— experimental manipulation. The experimental group gets the experimental manipulation—that is, the treatment or variable being tested (in this case, the use of technology)—and the control group does not. Since experimental manipulation is the only difference between the experimental and control groups, we can be sure that any differences between the two are due to experimental manipulation rather than chance.

In our example of how the use of technology should be limited in the classroom, we have the experimental group learn algebra using a computer program and then test their learning. We measure the learning in our control group after they are taught algebra by a teacher in a traditional classroom. It is important for the control group to be treated similarly to the experimental group, with the exception that the control group does not receive the experimental manipulation.

We also need to precisely define, or operationalize, how we measure learning of algebra. An operational definition is a precise description of our variables, and it is important in allowing others to understand exactly how and what a researcher measures in a particular experiment. In operationalizing learning, we might choose to look at performance on a test covering the material on which the individuals were taught by the teacher or the computer program. We might also ask our participants to summarize the information that was just presented in some way. Whatever we determine, it is important that we operationalize learning in such a way that anyone who hears about our study for the first time knows exactly what we mean by learning. This aids peoples’ ability to interpret our data as well as their capacity to repeat our experiment should they choose to do so.

Once we have operationalized what is considered use of technology and what is considered learning in our experiment participants, we need to establish how we will run our experiment. In this case, we might have participants spend 45 minutes learning algebra (either through a computer program or with an in-person math teacher) and then give them a test on the material covered during the 45 minutes.

Ideally, the people who score the tests are unaware of who was assigned to the experimental or control group, in order to control for experimenter bias. Experimenter bias refers to the possibility that a researcher’s expectations might skew the results of the study. Remember, conducting an experiment requires a lot of planning, and the people involved in the research project have a vested interest in supporting their hypotheses. If the observers knew which child was in which group, it might influence how they interpret ambiguous responses, such as sloppy handwriting or minor computational mistakes. By being blind to which child is in which group, we protect against those biases. This situation is a single-blind study , meaning that one of the groups (participants) are unaware as to which group they are in (experiment or control group) while the researcher who developed the experiment knows which participants are in each group.

In a double-blind study , both the researchers and the participants are blind to group assignments. Why would a researcher want to run a study where no one knows who is in which group? Because by doing so, we can control for both experimenter and participant expectations. If you are familiar with the phrase placebo effect , you already have some idea as to why this is an important consideration. The placebo effect occurs when people's expectations or beliefs influence or determine their experience in a given situation. In other words, simply expecting something to happen can actually make it happen.

The placebo effect is commonly described in terms of testing the effectiveness of a new medication. Imagine that you work in a pharmaceutical company, and you think you have a new drug that is effective in treating depression. To demonstrate that your medication is effective, you run an experiment with two groups: The experimental group receives the medication, and the control group does not. But you don’t want participants to know whether they received the drug or not.

Why is that? Imagine that you are a participant in this study, and you have just taken a pill that you think will improve your mood. Because you expect the pill to have an effect, you might feel better simply because you took the pill and not because of any drug actually contained in the pill—this is the placebo effect.

To make sure that any effects on mood are due to the drug and not due to expectations, the control group receives a placebo (in this case a sugar pill). Now everyone gets a pill, and once again neither the researcher nor the experimental participants know who got the drug and who got the sugar pill. Any differences in mood between the experimental and control groups can now be attributed to the drug itself rather than to experimenter bias or participant expectations ( Figure 2.16 ).

Independent and Dependent Variables

In a research experiment, we strive to study whether changes in one thing cause changes in another. To achieve this, we must pay attention to two important variables, or things that can be changed, in any experimental study: the independent variable and the dependent variable. An independent variable is manipulated or controlled by the experimenter. In a well-designed experimental study, the independent variable is the only important difference between the experimental and control groups. In our example of how technology use in the classroom affects learning, the independent variable is the type of learning by participants in the study ( Figure 2.17 ). A dependent variable is what the researcher measures to see how much effect the independent variable had. In our example, the dependent variable is the learning exhibited by our participants.

We expect that the dependent variable will change as a function of the independent variable. In other words, the dependent variable depends on the independent variable. A good way to think about the relationship between the independent and dependent variables is with this question: What effect does the independent variable have on the dependent variable? Returning to our example, what is the effect of being taught a lesson through a computer program versus through an in-person instructor?

Selecting and Assigning Experimental Participants

Now that our study is designed, we need to obtain a sample of individuals to include in our experiment. Our study involves human participants so we need to determine whom to include. Participants are the subjects of psychological research, and as the name implies, individuals who are involved in psychological research actively participate in the process. Often, psychological research projects rely on college students to serve as participants. In fact, the vast majority of research in psychology subfields has historically involved students as research participants (Sears, 1986; Arnett, 2008). But are college students truly representative of the general population? College students tend to be younger, more educated, more liberal, and less diverse than the general population. Although using students as test subjects is an accepted practice, relying on such a limited pool of research participants can be problematic because it is difficult to generalize findings to the larger population.

Our hypothetical experiment involves high school students, and we must first generate a sample of students. Samples are used because populations are usually too large to reasonably involve every member in our particular experiment ( Figure 2.18 ). If possible, we should use a random sample (there are other types of samples, but for the purposes of this chapter, we will focus on random samples). A random sample is a subset of a larger population in which every member of the population has an equal chance of being selected. Random samples are preferred because if the sample is large enough we can be reasonably sure that the participating individuals are representative of the larger population. This means that the percentages of characteristics in the sample—sex, ethnicity, socioeconomic level, and any other characteristics that might affect the results—are close to those percentages in the larger population.

In our example, let’s say we decide our population of interest is algebra students. But all algebra students is a very large population, so we need to be more specific; instead we might say our population of interest is all algebra students in a particular city. We should include students from various income brackets, family situations, races, ethnicities, religions, and geographic areas of town. With this more manageable population, we can work with the local schools in selecting a random sample of around 200 algebra students who we want to participate in our experiment.

In summary, because we cannot test all of the algebra students in a city, we want to find a group of about 200 that reflects the composition of that city. With a representative group, we can generalize our findings to the larger population without fear of our sample being biased in some way.

Now that we have a sample, the next step of the experimental process is to split the participants into experimental and control groups through random assignment. With random assignment , all participants have an equal chance of being assigned to either group. There is statistical software that will randomly assign each of the algebra students in the sample to either the experimental or the control group.

Random assignment is critical for sound experimental design . With sufficiently large samples, random assignment makes it unlikely that there are systematic differences between the groups. So, for instance, it would be very unlikely that we would get one group composed entirely of males, a given ethnic identity, or a given religious ideology. This is important because if the groups were systematically different before the experiment began, we would not know the origin of any differences we find between the groups: Were the differences preexisting, or were they caused by manipulation of the independent variable? Random assignment allows us to assume that any differences observed between experimental and control groups result from the manipulation of the independent variable.

Use this online random number generator to learn more about random sampling and assignments.

Issues to Consider

While experiments allow scientists to make cause-and-effect claims, they are not without problems. True experiments require the experimenter to manipulate an independent variable, and that can complicate many questions that psychologists might want to address. For instance, imagine that you want to know what effect sex (the independent variable) has on spatial memory (the dependent variable). Although you can certainly look for differences between males and females on a task that taps into spatial memory, you cannot directly control a person’s sex. We categorize this type of research approach as quasi-experimental and recognize that we cannot make cause-and-effect claims in these circumstances.

Experimenters are also limited by ethical constraints. For instance, you would not be able to conduct an experiment designed to determine if experiencing abuse as a child leads to lower levels of self-esteem among adults. To conduct such an experiment, you would need to randomly assign some experimental participants to a group that receives abuse, and that experiment would be unethical.

Interpreting Experimental Findings

Once data is collected from both the experimental and the control groups, a statistical analysis is conducted to find out if there are meaningful differences between the two groups. A statistical analysis determines how likely it is that any difference found is due to chance (and thus not meaningful). For example, if an experiment is done on the effectiveness of a nutritional supplement, and those taking a placebo pill (and not the supplement) have the same result as those taking the supplement, then the experiment has shown that the nutritional supplement is not effective. Generally, psychologists consider differences to be statistically significant if there is less than a five percent chance of observing them if the groups did not actually differ from one another. Stated another way, psychologists want to limit the chances of making “false positive” claims to five percent or less.

The greatest strength of experiments is the ability to assert that any significant differences in the findings are caused by the independent variable. This occurs because random selection, random assignment, and a design that limits the effects of both experimenter bias and participant expectancy should create groups that are similar in composition and treatment. Therefore, any difference between the groups is attributable to the independent variable, and now we can finally make a causal statement. If we find that watching a violent television program results in more violent behavior than watching a nonviolent program, we can safely say that watching violent television programs causes an increase in the display of violent behavior.

Reporting Research

When psychologists complete a research project, they generally want to share their findings with other scientists. The American Psychological Association (APA) publishes a manual detailing how to write a paper for submission to scientific journals. Unlike an article that might be published in a magazine like Psychology Today, which targets a general audience with an interest in psychology, scientific journals generally publish peer-reviewed journal articles aimed at an audience of professionals and scholars who are actively involved in research themselves.

The Online Writing Lab (OWL) at Purdue University can walk you through the APA writing guidelines.

A peer-reviewed journal article is read by several other scientists (generally anonymously) with expertise in the subject matter. These peer reviewers provide feedback—to both the author and the journal editor—regarding the quality of the draft. Peer reviewers look for a strong rationale for the research being described, a clear description of how the research was conducted, and evidence that the research was conducted in an ethical manner. They also look for flaws in the study's design, methods, and statistical analyses. They check that the conclusions drawn by the authors seem reasonable given the observations made during the research. Peer reviewers also comment on how valuable the research is in advancing the discipline’s knowledge. This helps prevent unnecessary duplication of research findings in the scientific literature and, to some extent, ensures that each research article provides new information. Ultimately, the journal editor will compile all of the peer reviewer feedback and determine whether the article will be published in its current state (a rare occurrence), published with revisions, or not accepted for publication.

Peer review provides some degree of quality control for psychological research. Poorly conceived or executed studies can be weeded out, and even well-designed research can be improved by the revisions suggested. Peer review also ensures that the research is described clearly enough to allow other scientists to replicate it, meaning they can repeat the experiment using different samples to determine reliability. Sometimes replications involve additional measures that expand on the original finding. In any case, each replication serves to provide more evidence to support the original research findings. Successful replications of published research make scientists more apt to adopt those findings, while repeated failures tend to cast doubt on the legitimacy of the original article and lead scientists to look elsewhere. For example, it would be a major advancement in the medical field if a published study indicated that taking a new drug helped individuals achieve better health without changing their behavior. But if other scientists could not replicate the results, the original study’s claims would be questioned.

In recent years, there has been increasing concern about a “replication crisis” that has affected a number of scientific fields, including psychology. Some of the most well-known studies and scientists have produced research that has failed to be replicated by others (as discussed in Shrout & Rodgers, 2018). In fact, even a famous Nobel Prize-winning scientist has recently retracted a published paper because she had difficulty replicating her results (Nobel Prize-winning scientist Frances Arnold retracts paper, 2020 January 3). These kinds of outcomes have prompted some scientists to begin to work together and more openly, and some would argue that the current “crisis” is actually improving the ways in which science is conducted and in how its results are shared with others (Aschwanden, 2018).

The Vaccine-Autism Myth and Retraction of Published Studies

Some scientists have claimed that routine childhood vaccines cause some children to develop autism, and, in fact, several peer-reviewed publications published research making these claims. Since the initial reports, large-scale epidemiological research has indicated that vaccinations are not responsible for causing autism and that it is much safer to have your child vaccinated than not. Furthermore, several of the original studies making this claim have since been retracted.

A published piece of work can be rescinded when data is called into question because of falsification, fabrication, or serious research design problems. Once rescinded, the scientific community is informed that there are serious problems with the original publication. Retractions can be initiated by the researcher who led the study, by research collaborators, by the institution that employed the researcher, or by the editorial board of the journal in which the article was originally published. In the vaccine-autism case, the retraction was made because of a significant conflict of interest in which the leading researcher had a financial interest in establishing a link between childhood vaccines and autism (Offit, 2008). Unfortunately, the initial studies received so much media attention that many parents around the world became hesitant to have their children vaccinated ( Figure 2.19 ). Continued reliance on such debunked studies has significant consequences. For instance, between January and October of 2019, there were 22 measles outbreaks across the United States and more than a thousand cases of individuals contracting measles (Patel et al., 2019). This is likely due to the anti-vaccination movements that have risen from the debunked research. For more information about how the vaccine/autism story unfolded, as well as the repercussions of this story, take a look at Paul Offit’s book, Autism’s False Prophets: Bad Science, Risky Medicine, and the Search for a Cure.

Reliability and Validity

Reliability and validity are two important considerations that must be made with any type of data collection. Reliability refers to the ability to consistently produce a given result. In the context of psychological research, this would mean that any instruments or tools used to collect data do so in consistent, reproducible ways. There are a number of different types of reliability. Some of these include inter-rater reliability (the degree to which two or more different observers agree on what has been observed), internal consistency (the degree to which different items on a survey that measure the same thing correlate with one another), and test-retest reliability (the degree to which the outcomes of a particular measure remain consistent over multiple administrations).

Unfortunately, being consistent in measurement does not necessarily mean that you have measured something correctly. To illustrate this concept, consider a kitchen scale that would be used to measure the weight of cereal that you eat in the morning. If the scale is not properly calibrated, it may consistently under- or overestimate the amount of cereal that’s being measured. While the scale is highly reliable in producing consistent results (e.g., the same amount of cereal poured onto the scale produces the same reading each time), those results are incorrect. This is where validity comes into play. Validity refers to the extent to which a given instrument or tool accurately measures what it’s supposed to measure, and once again, there are a number of ways in which validity can be expressed. Ecological validity (the degree to which research results generalize to real-world applications), construct validity (the degree to which a given variable actually captures or measures what it is intended to measure), and face validity (the degree to which a given variable seems valid on the surface) are just a few types that researchers consider. While any valid measure is by necessity reliable, the reverse is not necessarily true. Researchers strive to use instruments that are both highly reliable and valid.

Everyday Connection

How valid are the sat and act.

Standardized tests like the SAT and ACT are supposed to measure an individual’s aptitude for a college education, but how reliable and valid are such tests? Research conducted by the College Board suggests that scores on the SAT have high predictive validity for first-year college students’ GPA (Kobrin, Patterson, Shaw, Mattern, & Barbuti, 2008). In this context, predictive validity refers to the test’s ability to effectively predict the GPA of college freshmen. Given that many institutions of higher education require the SAT or ACT for admission, this high degree of predictive validity might be comforting.

However, the emphasis placed on SAT or ACT scores in college admissions is changing based on a number of factors. For one, some researchers assert that these tests are biased, and students from historically marginalized populations are at a disadvantage that unfairly reduces the likelihood of being admitted into a college (Santelices & Wilson, 2010). Additionally, some research has suggested that the predictive validity of these tests is grossly exaggerated in how well they are able to predict the GPA of first-year college students. In fact, it has been suggested that the SAT’s predictive validity may be overestimated by as much as 150% (Rothstein, 2004). Many institutions of higher education are beginning to consider de-emphasizing the significance of SAT scores in making admission decisions (Rimer, 2008).

Recent examples of high profile cheating scandals both domestically and abroad have only increased the scrutiny being placed on these types of tests, and as of March 2019, more than 1000 institutions of higher education have either relaxed or eliminated the requirements for SAT or ACT testing for admissions (Strauss, 2019, March 19).

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-3-analyzing-findings

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Providing a study guide and revision resources for students and psychology teaching resources for teachers.

Variables In Psychological Research

March 7, 2021 - paper 2 psychology in context | research methods.

  • Back to Paper 2 - Research Methods

Variables: Independent And Dependent Variable

There are  two main  variables when it comes to psychological research, these are;

(1)  The Independent Variable (IV)    the variable that is manipulated/changed

(2)  The Dependent Variable (DV)  the variable that is measured (e.g. it measures whether or not the IV has influence human behaviour).

When carrying out a piece of research, a psychologists main concern is looking at the effects of  just  the IV on the DV, in order to do this, all other extraneous variables (EVs) need to be controlled.

Between the control condition and the experimental condition the only thing that should change is the IV   for example,  when looking at the effects of music on memory, in the control condition the participants should complete a memory test with  no music playing,  in the experimental condition, the participants should complete a memory test   with music playing.  The only thing that should change across these conditions is whether the participants complete the memory test with or without music. All other variables the memory test difficulty, age of participant, gender of participant, background noise, temperature of the room etc should remain consistent.

If a researcher controls for extraneous variables and the only variable to change across the control and experimental condition is the IV it can be seen that the research has been carried out successfully. This means that the researcher has observed the effects of  just  the  IV on the DV,  which also means that the researcher can establish a  cause and effect relationship ( they can be confident that the IV has been the only variable to effect the DV)  and therefore can say that their experiment has  high internal validity .  High internal validity is when the researcher is confident that they have measured what they intended to measure (i.e. the effects of just the IV on the DV) and that all extraneous variables (EVs) have been controlled and that there are no confounding variables (CVs) in their study.

Extraneous Variables

Extraneous Variables (EVs):  These are variables that researchers do not want in their research. It is important that before a researcher conducts a study they carry out a  pilot study  to ensure that there are no EVs that could ruin their results. There are four main extraneous variables that you need to know in your exam. It is important that you are able to describe what is meant by these four EVs and that you are able to give examples of each of the four EVs.

The four extraneous variables are:

(1) Participant Variables:   This refers to anything specific to the participant that could affect the results of the research,   for example,  a participant’s age, gender, intelligence, personality etc

(2) Demand Characteristics:  This refers to environmental clues and cues in an investigation that cause participants to behave unnaturally. Participants respond in one of the following ways:

a. Attempt to please the experimenter                                                                       b. Attempt to ruin the results (‘screw you’ effect)                                                    c. Become more self-conscious

(3) Situational Variables:   Refers to the experimental setting and surrounding environment must be controlled between conditions to avoid them impacting on the results,  for example,  the temperature of the room in which the experiment is taking place, the time of day, the weather etc

(4) Experimenter Effects:  This refers to anything specific to the experimenter that could affect the results of the research,  for example,  the gender of the experimenter (e.g. if an experiment was taking place investigating the social life of university students a 50+ researcher may not be the best person to obtain this information from the participants as the participants may feel this person would judge their behaviours this could lead to the participants not being honest). The mood and personality of the researcher could also be experimenter effects that could impact on the results of the study. 

It is important that the researcher plans their research carefully in order to remove any potential extraneous variables (EV). If an EV isn’t controlled and interferes with a study this would prevent the researcher from establishing a  cause and effect relationship  and would lead the study to having  low internal validity   the researcher will not be able to conclude that the IV is the only variable to effect the DV as an EV has been present in the study.

When a study is carried out with an extraneous variable (EV) present, this EV becomes a  confounding variable (CV)  due to the fact that it’s presence confounds the results of the study.

Operationalising Independent Variables (IVs) and Dependent Variables (DVs):

In experiments, the researcher manipulates the IV to find the effect it has on the DV. To preserve the internal validity of an experiment, the IV and DV must be operationalised.

Operationalising The IV And DV

Operationalisation  means defining the variables (both the independent variable (IV) and the dependent variable (DV)) in such a way that they can be precisely tested and measured. More simply, operationalising variables means  stating  how the IV and the DV  have been measured.  The process of operationalising variables allows other researchers to  replicate  previous research studies precisely.

For example,  if a researcher was looking at the effects of hunger on memory, they would have to consider how they are going to measure the IV ‘hunger’ and how they are going to measure the DV ‘memory.’

There are a number of ways in which  hunger can be operationaised/measured:

(1) a questionnaire assessing hunger, the higher the score on the questionnaire could indicate a high level of hunger                                                                                                                    

(2) the amount of ghrelin present in the participant’s stomach a high amount of ghrelin indicates that the participant is hungry                                                                                                    

(3) the amount of time passed since the person last ate (assuming that the more time that has passed since a persons last meal the more hungry they are).

There are a number of ways in which  memory  can be operationaised/measured  the most popular method would be giving the participants a memory tests and observing the score that the participants obtain on this test.

Variable Topic Summary

Why not use the summary infographic below as a revision cue card for this topic?

psychology research topics with independent and dependent variables

  • Psychopathology
  • Social Psychology
  • Approaches To Human Behaviour
  • Biopsychology
  • Research Methods
  • Issues & Debates
  • Teacher Hub
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • [email protected]
  • www.psychologyhub.co.uk

captcha txt

We're not around right now. But you can send us an email and we'll get back to you, asap.

Start typing and press Enter to search

Cookie Policy - Terms and Conditions - Privacy Policy

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

50+ Research Topics for Psychology Papers

How to Find Psychology Research Topics for Your Student Paper

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

psychology research topics with independent and dependent variables

Steven Gans, MD is board-certified in psychiatry and is an active supervisor, teacher, and mentor at Massachusetts General Hospital.

psychology research topics with independent and dependent variables

  • Specific Branches of Psychology
  • Topics Involving a Disorder or Type of Therapy
  • Human Cognition
  • Human Development
  • Critique of Publications
  • Famous Experiments
  • Historical Figures
  • Specific Careers
  • Case Studies
  • Literature Reviews
  • Your Own Study/Experiment

Are you searching for a great topic for your psychology paper ? Sometimes it seems like coming up with topics of psychology research is more challenging than the actual research and writing. Fortunately, there are plenty of great places to find inspiration and the following list contains just a few ideas to help get you started.

Finding a solid topic is one of the most important steps when writing any type of paper. It can be particularly important when you are writing a psychology research paper or essay. Psychology is such a broad topic, so you want to find a topic that allows you to adequately cover the subject without becoming overwhelmed with information.

In some cases, such as in a general psychology class, you might have the option to select any topic from within psychology's broad reach. Other instances, such as in an  abnormal psychology  course, might require you to write your paper on a specific subject such as a psychological disorder.

As you begin your search for a topic for your psychology paper, it is first important to consider the guidelines established by your instructor.

Research Topics Within Specific Branches of Psychology

The key to selecting a good topic for your psychology paper is to select something that is narrow enough to allow you to really focus on the subject, but not so narrow that it is difficult to find sources or information to write about.

One approach is to narrow your focus down to a subject within a specific branch of psychology. For example, you might start by deciding that you want to write a paper on some sort of social psychology topic. Next, you might narrow your focus down to how persuasion can be used to influence behavior .

Other social psychology topics you might consider include:

  • Prejudice and discrimination (i.e., homophobia, sexism, racism)
  • Social cognition
  • Person perception
  • Social control and cults
  • Persuasion, propaganda, and marketing
  • Attraction, romance, and love
  • Nonverbal communication
  • Prosocial behavior

Psychology Research Topics Involving a Disorder or Type of Therapy

Exploring a psychological disorder or a specific treatment modality can also be a good topic for a psychology paper. Some potential abnormal psychology topics include specific psychological disorders or particular treatment modalities, including:

  • Eating disorders
  • Borderline personality disorder
  • Seasonal affective disorder
  • Schizophrenia
  • Antisocial personality disorder
  • Profile a  type of therapy  (i.e., cognitive-behavioral therapy, group therapy, psychoanalytic therapy)

Topics of Psychology Research Related to Human Cognition

Some of the possible topics you might explore in this area include thinking, language, intelligence, and decision-making. Other ideas might include:

  • False memories
  • Speech disorders
  • Problem-solving

Topics of Psychology Research Related to Human Development

In this area, you might opt to focus on issues pertinent to  early childhood  such as language development, social learning, or childhood attachment or you might instead opt to concentrate on issues that affect older adults such as dementia or Alzheimer's disease.

Some other topics you might consider include:

  • Language acquisition
  • Media violence and children
  • Learning disabilities
  • Gender roles
  • Child abuse
  • Prenatal development
  • Parenting styles
  • Aspects of the aging process

Do a Critique of Publications Involving Psychology Research Topics

One option is to consider writing a critique paper of a published psychology book or academic journal article. For example, you might write a critical analysis of Sigmund Freud's Interpretation of Dreams or you might evaluate a more recent book such as Philip Zimbardo's  The Lucifer Effect: Understanding How Good People Turn Evil .

Professional and academic journals are also great places to find materials for a critique paper. Browse through the collection at your university library to find titles devoted to the subject that you are most interested in, then look through recent articles until you find one that grabs your attention.

Topics of Psychology Research Related to Famous Experiments

There have been many fascinating and groundbreaking experiments throughout the history of psychology, providing ample material for students looking for an interesting term paper topic. In your paper, you might choose to summarize the experiment, analyze the ethics of the research, or evaluate the implications of the study. Possible experiments that you might consider include:

  • The Milgram Obedience Experiment
  • The Stanford Prison Experiment
  • The Little Albert Experiment
  • Pavlov's Conditioning Experiments
  • The Asch Conformity Experiment
  • Harlow's Rhesus Monkey Experiments

Topics of Psychology Research About Historical Figures

One of the simplest ways to find a great topic is to choose an interesting person in the  history of psychology  and write a paper about them. Your paper might focus on many different elements of the individual's life, such as their biography, professional history, theories, or influence on psychology.

While this type of paper may be historical in nature, there is no need for this assignment to be dry or boring. Psychology is full of fascinating figures rife with intriguing stories and anecdotes. Consider such famous individuals as Sigmund Freud, B.F. Skinner, Harry Harlow, or one of the many other  eminent psychologists .

Psychology Research Topics About a Specific Career

​Another possible topic, depending on the course in which you are enrolled, is to write about specific career paths within the  field of psychology . This type of paper is especially appropriate if you are exploring different subtopics or considering which area interests you the most.

In your paper, you might opt to explore the typical duties of a psychologist, how much people working in these fields typically earn, and the different employment options that are available.

Topics of Psychology Research Involving Case Studies

One potentially interesting idea is to write a  psychology case study  of a particular individual or group of people. In this type of paper, you will provide an in-depth analysis of your subject, including a thorough biography.

Generally, you will also assess the person, often using a major psychological theory such as  Piaget's stages of cognitive development  or  Erikson's eight-stage theory of human development . It is also important to note that your paper doesn't necessarily have to be about someone you know personally.

In fact, many professors encourage students to write case studies on historical figures or fictional characters from books, television programs, or films.

Psychology Research Topics Involving Literature Reviews

Another possibility that would work well for a number of psychology courses is to do a literature review of a specific topic within psychology. A literature review involves finding a variety of sources on a particular subject, then summarizing and reporting on what these sources have to say about the topic.

Literature reviews are generally found in the  introduction  of journal articles and other  psychology papers , but this type of analysis also works well for a full-scale psychology term paper.

Topics of Psychology Research Based on Your Own Study or Experiment

Many psychology courses require students to design an actual psychological study or perform some type of experiment. In some cases, students simply devise the study and then imagine the possible results that might occur. In other situations, you may actually have the opportunity to collect data, analyze your findings, and write up your results.

Finding a topic for your study can be difficult, but there are plenty of great ways to come up with intriguing ideas. Start by considering your own interests as well as subjects you have studied in the past.

Online sources, newspaper articles, books , journal articles, and even your own class textbook are all great places to start searching for topics for your experiments and psychology term papers. Before you begin, learn more about  how to conduct a psychology experiment .

What This Means For You

After looking at this brief list of possible topics for psychology papers, it is easy to see that psychology is a very broad and diverse subject. While this variety makes it possible to find a topic that really catches your interest, it can sometimes make it very difficult for some students to select a good topic.

If you are still stumped by your assignment, ask your instructor for suggestions and consider a few from this list for inspiration.

  • Hockenbury, SE & Nolan, SA. Psychology. New York: Worth Publishers; 2014.
  • Santrock, JW. A Topical Approach to Lifespan Development. New York: McGraw-Hill Education; 2016.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

psychology research topics with independent and dependent variables

Final dates! Join the tutor2u subject teams in London for a day of exam technique and revision at the cinema. Learn more →

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

Study Notes

Independent and Dependent Variables

Last updated 22 Mar 2021

  • Share on Facebook
  • Share on Twitter
  • Share by Email

An independent variable (IV) is a variable that is manipulated by a researcher to investigate whether it consequently brings change in another variable. This other variable, which is measured and predicted to be dependent upon the IV, is therefore named the dependent variable (DV).

For example, in an experiment examining the effect of fatigue on short term memory, there are two groups ‘fatigued’ and ‘non-fatigued’. The fatigued group run for 10 minutes without stopping prior to being tested. Both groups are given a list of words to recall immediately after reading the list.

The independent variable in this example would be fatigued/non-fatigued as it has been manipulated by the experimenter.

The dependent variable would be the number of words recalled off the list because that is how the participants’ performance is measured.

IVs and DVs only occur in experiments, as a cause and effect is predicted between the two (i.e. that changes in the IV will directly lead to changes in the DV).

IVs and DVs do not feature in correlation studies, as correlation studies look for a relationship between co-variables, cause and effect is therefore not established as the variables are predicted to change in response to each other.

  • Independent Variable
  • Situational variables
  • Dependent Variable
  • Control of extraneous variables

You might also like

Control of extraneous variables, research methods - variables.

Quizzes & Activities

A Level Psychology Topic Quiz - Research Methods

Model answer for question 11 paper 2: as psychology, june 2016 (aqa).

Exam Support

​Duration of Short-term Memory

Conformity to social roles as investigated by zimbardo, types of experiment: overview, research control, our subjects.

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8.2 Multiple Independent Variables

Learning objectives.

  • Explain why researchers often include multiple independent variables in their studies.
  • Define factorial design, and use a factorial design table to represent and interpret simple factorial designs.
  • Distinguish between main effects and interactions, and recognize and give examples of each.
  • Sketch and interpret bar graphs and line graphs showing the results of studies with simple factorial designs.

Just as it is common for studies in psychology to include multiple dependent variables, it is also common for them to include multiple independent variables. Schnall and her colleagues studied the effect of both disgust and private body consciousness in the same study. Researchers’ inclusion of multiple independent variables in one experiment is further illustrated by the following actual titles from various professional journals:

  • The Effects of Temporal Delay and Orientation on Haptic Object Recognition
  • Opening Closed Minds: The Combined Effects of Intergroup Contact and Need for Closure on Prejudice
  • Effects of Expectancies and Coping on Pain-Induced Intentions to Smoke
  • The Effect of Age and Divided Attention on Spontaneous Recognition
  • The Effects of Reduced Food Size and Package Size on the Consumption Behavior of Restrained and Unrestrained Eaters

Just as including multiple dependent variables in the same experiment allows one to answer more research questions, so too does including multiple independent variables in the same experiment. For example, instead of conducting one study on the effect of disgust on moral judgment and another on the effect of private body consciousness on moral judgment, Schnall and colleagues were able to conduct one study that addressed both questions. But including multiple independent variables also allows the researcher to answer questions about whether the effect of one independent variable depends on the level of another. This is referred to as an interaction between the independent variables. Schnall and her colleagues, for example, observed an interaction between disgust and private body consciousness because the effect of disgust depended on whether participants were high or low in private body consciousness. As we will see, interactions are often among the most interesting results in psychological research.

Factorial Designs

By far the most common approach to including multiple independent variables in an experiment is the factorial design. In a factorial design , each level of one independent variable (which can also be called a factor ) is combined with each level of the others to produce all possible combinations. Each combination, then, becomes a condition in the experiment. Imagine, for example, an experiment on the effect of cell phone use (yes vs. no) and time of day (day vs. night) on driving ability. This is shown in the factorial design table in Figure 8.2 “Factorial Design Table Representing a 2 × 2 Factorial Design” . The columns of the table represent cell phone use, and the rows represent time of day. The four cells of the table represent the four possible combinations or conditions: using a cell phone during the day, not using a cell phone during the day, using a cell phone at night, and not using a cell phone at night. This particular design is a 2 × 2 (read “two-by-two”) factorial design because it combines two variables, each of which has two levels. If one of the independent variables had a third level (e.g., using a handheld cell phone, using a hands-free cell phone, and not using a cell phone), then it would be a 3 × 2 factorial design, and there would be six distinct conditions. Notice that the number of possible conditions is the product of the numbers of levels. A 2 × 2 factorial design has four conditions, a 3 × 2 factorial design has six conditions, a 4 × 5 factorial design would have 20 conditions, and so on.

Figure 8.2 Factorial Design Table Representing a 2 × 2 Factorial Design

Factorial Design Table Representing a 2x2 Factorial Design

In principle, factorial designs can include any number of independent variables with any number of levels. For example, an experiment could include the type of psychotherapy (cognitive vs. behavioral), the length of the psychotherapy (2 weeks vs. 2 months), and the sex of the psychotherapist (female vs. male). This would be a 2 × 2 × 2 factorial design and would have eight conditions. Figure 8.3 “Factorial Design Table Representing a 2 × 2 × 2 Factorial Design” shows one way to represent this design. In practice, it is unusual for there to be more than three independent variables with more than two or three levels each because the number of conditions can quickly become unmanageable. For example, adding a fourth independent variable with three levels (e.g., therapist experience: low vs. medium vs. high) to the current example would make it a 2 × 2 × 2 × 3 factorial design with 24 distinct conditions. In the rest of this section, we will focus on designs with two independent variables. The general principles discussed here extend in a straightforward way to more complex factorial designs.

Figure 8.3 Factorial Design Table Representing a 2 × 2 × 2 Factorial Design

Factorial Design Table Representing a 2x2x2 Factorial Design

Assigning Participants to Conditions

Recall that in a simple between-subjects design, each participant is tested in only one condition. In a simple within-subjects design, each participant is tested in all conditions. In a factorial experiment, the decision to take the between-subjects or within-subjects approach must be made separately for each independent variable. In a between-subjects factorial design , all of the independent variables are manipulated between subjects. For example, all participants could be tested either while using a cell phone or while not using a cell phone and either during the day or during the night. This would mean that each participant was tested in one and only one condition. In a within-subjects factorial design , all of the independent variables are manipulated within subjects. All participants could be tested both while using a cell phone and while not using a cell phone and both during the day and during the night. This would mean that each participant was tested in all conditions. The advantages and disadvantages of these two approaches are the same as those discussed in Chapter 6 “Experimental Research” . The between-subjects design is conceptually simpler, avoids carryover effects, and minimizes the time and effort of each participant. The within-subjects design is more efficient for the researcher and controls extraneous participant variables.

It is also possible to manipulate one independent variable between subjects and another within subjects. This is called a mixed factorial design . For example, a researcher might choose to treat cell phone use as a within-subjects factor by testing the same participants both while using a cell phone and while not using a cell phone (while counterbalancing the order of these two conditions). But he or she might choose to treat time of day as a between-subjects factor by testing each participant either during the day or during the night (perhaps because this only requires them to come in for testing once). Thus each participant in this mixed design would be tested in two of the four conditions.

Regardless of whether the design is between subjects, within subjects, or mixed, the actual assignment of participants to conditions or orders of conditions is typically done randomly.

Nonmanipulated Independent Variables

In many factorial designs, one of the independent variables is a nonmanipulated independent variable . The researcher measures it but does not manipulate it. The study by Schnall and colleagues is a good example. One independent variable was disgust, which the researchers manipulated by testing participants in a clean room or a messy room. The other was private body consciousness, which the researchers simply measured. Another example is a study by Halle Brown and colleagues in which participants were exposed to several words that they were later asked to recall (Brown, Kosslyn, Delamater, Fama, & Barsky, 1999). The manipulated independent variable was the type of word. Some were negative health-related words (e.g., tumor , coronary ), and others were not health related (e.g., election , geometry ). The nonmanipulated independent variable was whether participants were high or low in hypochondriasis (excessive concern with ordinary bodily symptoms). The result of this study was that the participants high in hypochondriasis were better than those low in hypochondriasis at recalling the health-related words, but they were no better at recalling the non-health-related words.

Such studies are extremely common, and there are several points worth making about them. First, nonmanipulated independent variables are usually participant variables (private body consciousness, hypochondriasis, self-esteem, and so on), and as such they are by definition between-subjects factors. For example, people are either low in hypochondriasis or high in hypochondriasis; they cannot be tested in both of these conditions. Second, such studies are generally considered to be experiments as long as at least one independent variable is manipulated, regardless of how many nonmanipulated independent variables are included. Third, it is important to remember that causal conclusions can only be drawn about the manipulated independent variable. For example, Schnall and her colleagues were justified in concluding that disgust affected the harshness of their participants’ moral judgments because they manipulated that variable and randomly assigned participants to the clean or messy room. But they would not have been justified in concluding that participants’ private body consciousness affected the harshness of their participants’ moral judgments because they did not manipulate that variable. It could be, for example, that having a strict moral code and a heightened awareness of one’s body are both caused by some third variable (e.g., neuroticism). Thus it is important to be aware of which variables in a study are manipulated and which are not.

Graphing the Results of Factorial Experiments

The results of factorial experiments with two independent variables can be graphed by representing one independent variable on the x- axis and representing the other by using different kinds of bars or lines. (The y- axis is always reserved for the dependent variable.) Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” shows results for two hypothetical factorial experiments. The top panel shows the results of a 2 × 2 design. Time of day (day vs. night) is represented by different locations on the x- axis, and cell phone use (no vs. yes) is represented by different-colored bars. (It would also be possible to represent cell phone use on the x- axis and time of day as different-colored bars. The choice comes down to which way seems to communicate the results most clearly.) The bottom panel of Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” shows the results of a 4 × 2 design in which one of the variables is quantitative. This variable, psychotherapy length, is represented along the x- axis, and the other variable (psychotherapy type) is represented by differently formatted lines. This is a line graph rather than a bar graph because the variable on the x- axis is quantitative with a small number of distinct levels.

Figure 8.4 Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables

Two Ways to PLot the Results of a Factorial Experiment With Two Independent Variables

Main Effects and Interactions

In factorial designs, there are two kinds of results that are of interest: main effects and interaction effects (which are also called just “interactions”). A main effect is the statistical relationship between one independent variable and a dependent variable—averaging across the levels of the other independent variable. Thus there is one main effect to consider for each independent variable in the study. The top panel of Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” shows a main effect of cell phone use because driving performance was better, on average, when participants were not using cell phones than when they were. The blue bars are, on average, higher than the red bars. It also shows a main effect of time of day because driving performance was better during the day than during the night—both when participants were using cell phones and when they were not. Main effects are independent of each other in the sense that whether or not there is a main effect of one independent variable says nothing about whether or not there is a main effect of the other. The bottom panel of Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” , for example, shows a clear main effect of psychotherapy length. The longer the psychotherapy, the better it worked. But it also shows no overall advantage of one type of psychotherapy over the other.

There is an interaction effect (or just “interaction”) when the effect of one independent variable depends on the level of another. Although this might seem complicated, you have an intuitive understanding of interactions already. It probably would not surprise you, for example, to hear that the effect of receiving psychotherapy is stronger among people who are highly motivated to change than among people who are not motivated to change. This is an interaction because the effect of one independent variable (whether or not one receives psychotherapy) depends on the level of another (motivation to change). Schnall and her colleagues also demonstrated an interaction because the effect of whether the room was clean or messy on participants’ moral judgments depended on whether the participants were low or high in private body consciousness. If they were high in private body consciousness, then those in the messy room made harsher judgments. If they were low in private body consciousness, then whether the room was clean or messy did not matter.

The effect of one independent variable can depend on the level of the other in different ways. This is shown in Figure 8.5 “Bar Graphs Showing Three Types of Interactions” . In the top panel, one independent variable has an effect at one level of the second independent variable but no effect at the others. (This is much like the study of Schnall and her colleagues where there was an effect of disgust for those high in private body consciousness but not for those low in private body consciousness.) In the middle panel, one independent variable has a stronger effect at one level of the second independent variable than at the other level. This is like the hypothetical driving example where there was a stronger effect of using a cell phone at night than during the day. In the bottom panel, one independent variable again has an effect at both levels of the second independent variable, but the effects are in opposite directions. Figure 8.5 “Bar Graphs Showing Three Types of Interactions” shows the strongest form of this kind of interaction, called a crossover interaction . One example of a crossover interaction comes from a study by Kathy Gilliland on the effect of caffeine on the verbal test scores of introverts and extroverts (Gilliland, 1980). Introverts perform better than extroverts when they have not ingested any caffeine. But extroverts perform better than introverts when they have ingested 4 mg of caffeine per kilogram of body weight. Figure 8.6 “Line Graphs Showing Three Types of Interactions” shows examples of these same kinds of interactions when one of the independent variables is quantitative and the results are plotted in a line graph. Note that in a crossover interaction, the two lines literally “cross over” each other.

Figure 8.5 Bar Graphs Showing Three Types of Interactions

Bar Graphs Showing Three Types of Interactions

In the top panel, one independent variable has an effect at one level of the second independent variable but not at the other. In the middle panel, one independent variable has a stronger effect at one level of the second independent variable than at the other. In the bottom panel, one independent variable has the opposite effect at one level of the second independent variable than at the other.

Figure 8.6 Line Graphs Showing Three Types of Interactions

Line Graphs Showing Three Types of Interactions

In many studies, the primary research question is about an interaction. The study by Brown and her colleagues was inspired by the idea that people with hypochondriasis are especially attentive to any negative health-related information. This led to the hypothesis that people high in hypochondriasis would recall negative health-related words more accurately than people low in hypochondriasis but recall non-health-related words about the same as people low in hypochondriasis. And of course this is exactly what happened in this study.

Key Takeaways

  • Researchers often include multiple independent variables in their experiments. The most common approach is the factorial design, in which each level of one independent variable is combined with each level of the others to create all possible conditions.
  • In a factorial design, the main effect of an independent variable is its overall effect averaged across all other independent variables. There is one main effect for each independent variable.
  • There is an interaction between two independent variables when the effect of one depends on the level of the other. Some of the most interesting research questions and results in psychology are specifically about interactions.
  • Practice: Return to the five article titles presented at the beginning of this section. For each one, identify the independent variables and the dependent variable.
  • Practice: Create a factorial design table for an experiment on the effects of room temperature and noise level on performance on the SAT. Be sure to indicate whether each independent variable will be manipulated between subjects or within subjects and explain why.

Brown, H. D., Kosslyn, S. M., Delamater, B., Fama, A., & Barsky, A. J. (1999). Perceptual and memory biases for health-related information in hypochondriacal individuals. Journal of Psychosomatic Research , 47 , 67–78.

Gilliland, K. (1980). The interactive effect of introversion-extroversion with caffeine induced arousal on verbal performance. Journal of Research in Personality , 14 , 482–492.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Glenn Geher Ph.D.

Independent and Dependent Variables Reconsidered and Renamed

Making experimental research in psychology more transparent.

Posted October 22, 2015

Glenn Geher

Research Methods in Psychology is a standard required course in pretty much any psychology major. In our department at SUNY New Paltz, this is a four-credit class with a large laboratory component. And students often dread the class before they walk into the door.

Getting students to understand the nature of research in the behavioral sciences is critical in cultivating alumni who can conduct their own research and who can critically understand and evaluate the research of others. The concepts in the behavioral sciences are based on empirical research – our students must understand this stuff well in order to warrant their degrees!

Based on having taught research methods since about 1998, I can tell you that teaching this class can be truly fun and rewarding. I’m genuinely excited about designing and implementing research, so I just describe the process (and the different kinds of research) and encourage my students to follow suit on this exciting path to discovery. I really enjoy teaching this one - in spite of students' preconceived notions!

This said, as with any class, there are some eternal issues that come up each time I teach it. One of the most frustrating issues that emerges in teaching this class pertains to the concepts of “independent” and “dependent” variables. These concepts are foundational in understanding experimental research – and a good deal of the content in the class builds on this foundation. Students have to get this stuff. This said, students so often don’t understand these concepts – even after they have graduated! I’ve seen this time and time again and I can tell you that it can be a little disappointing!

What are the “Independent” and “Dependent Variables?”

In short, independent and dependent variables are conceptual variables that exist in any true experimental design – with an experimental design being one in which the researcher hopes to infer that changes in levels of one variable cause changes in scores on some other variable. For instance, you might want to see if the amount of coffee that someone has (based on randomly assigning people to drink either no coffee or to drink five cups in an hour) relates to how jittery a person is on some graded (continuous) measure of jitteriness.

In this study, as in any experiment, you have the variable that you think is causing changes in the other variable. This “potentially causal variable” is called, traditionally, the “independent variable.” With the current example, that would be the coffee. The other variable, which you think is affected by the independent variable (in this case, someone’s score on the jitteriness scale), is traditionally called the “dependent variable.”

This said, when you describe all this as simple as day to a group of bright students and then test them on how well they understand these concepts, it’s always shocking how many of them don’t get it!

Why Do Students Find It Hard To Understand the Concepts of “Independent” and “Dependent Variables?”

Part of the problem here is this: These terms have lost their intuitive meaning! Students don’t necessarily see how the term “independent variable” corresponds to a variable that potentially causes changes in another variable. And they don’t inherently see how the term “dependent variable” means the variable that is potentially affected by that first variable.

We should change what we call these things!

Proposed New Terms for the concepts of “Independent” and “Dependent Variable”

If I may … how about we label these concepts with terms that students can better understand! In the above example, the amount of coffee that each participant gets is a potentially causal variable – as this variable potentially causes changes in the other variable (of jitteriness). So let’s call this first variable the “Potentially Causal Variable!”

The “dependent variable,” in this case the amount of jitteriness that one demonstrates, is the outcome in the study. Sometimes researchers, thus, will refer to this variable as the “outcome variable.” Let’s always do that and let’s do that formally!

Bottom Line

I love teaching about the research process to bright young students of the behavioral sciences – and I often find myself thinking about ways to do it better. After seeing hundreds of students across my years and years of teaching Research Methods struggle with the concepts of “independent” and “dependent variable,” from where I stand, I think we may well do everyone a favor by changing the names of these terms.

Potentially Causal Variable and Outcome Variable mean what they say – I say we go with that! One day when I check “write Research Methods textbook” off my bucket list, you can bet that I’m going this path!

Glenn Geher Ph.D.

Glenn Geher, Ph.D. , is professor of psychology at the State University of New York at New Paltz. He is founding director of the campus’ Evolutionary Studies (EvoS) program.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Independent and Dependent Variables
  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Definitions

Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect.

Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure. It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause.

Cramer, Duncan and Dennis Howitt. The SAGE Dictionary of Statistics . London: SAGE, 2004; Penslar, Robin Levin and Joan P. Porter. Institutional Review Board Guidebook: Introduction . Washington, DC: United States Department of Health and Human Services, 2010; "What are Dependent and Independent Variables?" Graphic Tutorial.

Identifying Dependent and Independent Variables

Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research . However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order to discover relevant and meaningful results. Specifically, it is important for these two reasons:

  • You need to understand and be able to evaluate their application in other people's research.
  • You need to apply them correctly in your own research.

A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. The best way to understand the difference between a dependent and independent variable is that the meaning of each is implied by what the words tell us about the variable you are using. You can do this with a simple exercise from the website, Graphic Tutorial. Take the sentence, "The [independent variable] causes a change in [dependent variable] and it is not possible that [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help you identify each type of variable. If you're still not sure, consult with your professor before you begin to write.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349;

Structure and Writing Style

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables . Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section . There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables . State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each . In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

  • << Previous: Design Flaws to Avoid
  • Next: Glossary of Research Terms >>
  • Last Updated: Mar 8, 2024 1:02 PM
  • URL: https://libguides.usc.edu/writingguide

If you could change one thing about college, what would it be?

Graduate faster

Better quality online classes

Flexible schedule

Access to top-rated instructors

man holding up hand to wave and sees his shadow. This represents a handwave experiment with independent and dependent variables

What Are Independent and Dependent Variables?

03.17.2022 • 6 min read

Zuriel van Belle

Subject Matter Expert

This article describes what a variable is, what dependent and independent variables are, a list of examples, how they are used in psychology studies, and more.

In This Article

What Is a Variable?

Dependent variables, independent variables, examples of experiments with variables, how are dependent and independent variables used in psychology research, don't overpay for college statistics.

Take Intro to Statistics Online with Outlier.org

From the co-founder of MasterClass, earn transferable college credits from the University of Pittsburgh (a top 50 global school). The world's best online college courses for 50% less than a traditional college.

Outlier Stats 1628x960 (1)

In an experiment, researchers strive to understand if (and how) one thing affects another. The elements of an experiment that might affect one another are called variables. Variables are attributes that can change.

For example, imagine you design an experiment to test whether a self-reported mood is affected by ambient noise. Your hypothesis (i.e., testable prediction) is that nature sounds will improve a self-reported mood. Your research design is relatively simple: you survey people about their mood before the experiment, then you ask them to spend 30 minutes reading a psychology textbook in a room with no added noise (just the standard whirring of fans and background noises); or you ask them to spend 30 minutes reading a psychology textbook in a room with a bird song and a babbling brook (the experimental condition).

In this case, your variables are mood and ambient noise. Both factors can be changed. Mood can stay the same, be improved, or be worsened. While ambient noise could be altered in many ways (nature sounds, white noise, talking, etc.).

Understanding what the variables are in an experiment is critical to understanding how the experiment is designed. Broadly, there are two types of variables: independent variables and dependent variables.

The dependent variable is the variable that a researcher measures to determine the effect of the independent variable. The dependent variable depends on the independent variable. In our experiment, the dependent variable would be the change in self-reported mood.

The independent variable is the variable that the researcher or experimenter manipulates to affect the dependent variable. It is independent of the other variables in an experiment. In other words, the independent variable causes some kind of change in the dependent variable. In our experiment, the independent variable would be the noise in the room (unaltered ambient noise, or nature sounds). If you know the independent variable definition and dependent variable definition, it’ll be easier to understand how experiments work. When designing an experiment, the goal is to ensure that the only difference between the two conditions is the independent variable.

Understanding what the variables are in an experiment is critical to understanding how the experiment is designed.

Now that we understand that the dependent variable is the variable being measured to determine the effect of the independent variable (the variable causing the effect), let’s work through a few more examples.

Graphic showing Independent And Dependent Variables Definitions

In this example, let’s consider the effect of an act of kindness on charitable donations. In this experiment, imagine you want to test whether being helped by someone else impacts how much money a person donates. You set up your experiment as follows: participants come to a lab. In the control condition (the baseline), the participant arrives at the lab, opens the door, and you give them $20. Then you ask them if they would like to donate any portion of their $20 before leaving the room. In the experimental condition, as the participant heads to the door of the lab, a person walking by (a confederate, or accomplice, in the experiment) goes out of their way to open the door for them. The experiment proceeds exactly as the control; the participant is given $20 and asked if they would like to donate any portion of the money.

Let’s pause for a moment. Can you identify the dependent and independent variables in this experiment?

We should begin by identifying the variables. In this experiment, the variables are:

Being helped with the door or not

How much money a participant allocates to charity

Since the dependent variable is the variable we measure, we know that, in this case, it is the amount of money allocated to charity. The dependent variable could be anywhere from $0 to $20. The independent variable, the variable that we manipulate, is whether or not we help the participant with the door.

Imagine that participants who are helped with the door, on average, donate $10 to charity, and participants who are not helped with the door on average donate $5 to charity. It might be the case that being helped with the door (the independent variable) increases the likelihood someone will donate to charity (the dependent variable). Of course, this is just an example.

To feel more confident about these results, we would need to know how many people were in the study (the sample size), and we would need to analyze the results for statistical significance.

Let’s consider another example. Imagine you hypothesize that people will wave back more to you when you are wearing casual clothes than to when you are wearing ragged clothes. In this case, the variables are the number of hand waves and clothing type. Since we will be counting the number of waves, this gives us a clue that the number of waves is the dependent variable. Since we think the type of clothing will affect how many waves are given, we can determine that the type of clothing is the independent variable.

The number of waves depends on the type of clothing. If more people wave back to you when you are wearing casual clothes than when you are wearing ragged clothes, you have evidence that suggests that what you are wearing affects how people respond to you. Of course, as in the previous example, you will need to conduct a careful study with a large sample and statistical analysis to feel confident in your results.

The examples above help us understand why independent and dependent variables are so important to psychological research. In psychology, researchers often want to understand how and why people think, feel, and behave in certain ways. In order to answer questions about people’s motivation, cognition, emotions, and behavior, we often use experiments.

Whether you’re doing qualitative or quantitative research , independent and dependent variables are critical to the experimental process. Independent and dependent variables help determine cause and effect. A good hypothesis asks what effect an independent variable has on a dependent variable. Without experimental research, we would not be able to determine (with any confidence) how one variable may or may not impact another; we would not be able to determine cause and effect.

A good hypothesis asks what effect an independent variable has on a dependent variable.

Can a variable be both independent and dependent?

No, a variable cannot be both independent and dependent at the same time. You can think of the independent variable as the cause and the dependent variable as the effect. You cannot have something in an experiment that is both the cause and the effect. In other words, the independent variable must be independent of other variables and the dependent variable depends on the independent variable.

Can you include more than one independent or dependent variable in a study?

Yes, you can include more than one independent or dependent variable in a study. For example, you might have one independent variable that affects multiple dependent variables or a couple of independent variables that affect one dependent variable. Keep in mind that, generally, the more variables you have in a study, the more difficult it will be to determine cause and effect. It is generally better to have more dependent variables than independent variables in a study because, with many independent variables, it can be difficult to determine which one caused a particular effect.

What are other names for both independent and dependent variables?

We might also refer to an independent variable as a predictor variable, explanatory variable, control variable, manipulated variable, or regressor. Then we might also refer to a dependent variable as a predicted variable, response variable, responding variable, or outcome variable.

Explore Outlier's Award-Winning For-Credit Courses

Outlier (from the co-founder of MasterClass) has brought together some of the world's best instructors, game designers, and filmmakers to create the future of online college.

Check out these related courses:

Intro to Psychology

Intro to Psychology

The science of the mind.

Intro to Philosophy

Intro to Philosophy

The big questions, examined.

Calculus I

The mathematics of change.

Related Articles

Outlier Blog Piagets Theory HighRes

A Deeper Look into Piaget’s Theory of Cognitive Development

This article should provide a comprehensive view and explanation of Jean Piaget’s theory of cognitive development.

Qualitative vs Quantitative Research - red green fibers

Understanding the Difference between Qualitative and Quantitative Research

When conducting research, we can use both qualitative and quantitative methods. In this article, we’ll examine the definition of both of these approaches and look at how and when to use each of them.

Jennifer Valentine

Sigmund Freud Theories Header

What Are Sigmund Freud's Theories? An Explainer

As the founder and leading proponent of psychoanalysis, Sigmund Freud was a central figure in 20th-century psychology. In this article, we’ll look at a number of his ideas about the human mind's inner workings, and then survey both his work’s enduring influence and the criticism it has received.

Further Reading

What is standard error statistics calculation and overview, understanding variables in statistics: types & examples, what do subsets mean in statistics, test statistics: definition, formulas & examples, what is a residual in stats, understanding sampling distributions: what are they and how do they work.

Independent Variables (Definition + 43 Examples)

practical psychology logo

Have you ever wondered how scientists make discoveries and how researchers come to understand the world around us? A crucial tool in their kit is the concept of the independent variable, which helps them delve into the mysteries of science and everyday life.

An independent variable is a condition or factor that researchers manipulate to observe its effect on another variable, known as the dependent variable. In simpler terms, it’s like adjusting the dials and watching what happens! By changing the independent variable, scientists can see if and how it causes changes in what they are measuring or observing, helping them make connections and draw conclusions.

In this article, we’ll explore the fascinating world of independent variables, journey through their history, examine theories, and look at a variety of examples from different fields.

History of the Independent Variable

pill bottles

Once upon a time, in a world thirsty for understanding, people observed the stars, the seas, and everything in between, seeking to unlock the mysteries of the universe.

The story of the independent variable begins with a quest for knowledge, a journey taken by thinkers and tinkerers who wanted to explain the wonders and strangeness of the world.

Origins of the Concept

The seeds of the idea of independent variables were sown by Sir Francis Galton , an English polymath, in the 19th century. Galton wore many hats—he was a psychologist, anthropologist, meteorologist, and a statistician!

It was his diverse interests that led him to explore the relationships between different factors and their effects. Galton was curious—how did one thing lead to another, and what could be learned from these connections?

As Galton delved into the world of statistical theories , the concept of independent variables started taking shape.

He was interested in understanding how characteristics, like height and intelligence, were passed down through generations.

Galton’s work laid the foundation for later thinkers to refine and expand the concept, turning it into an invaluable tool for scientific research.

Evolution over Time

After Galton’s pioneering work, the concept of the independent variable continued to evolve and grow. Scientists and researchers from various fields adopted and adapted it, finding new ways to use it to make sense of the world.

They discovered that by manipulating one factor (the independent variable), they could observe changes in another (the dependent variable), leading to groundbreaking insights and discoveries.

Through the years, the independent variable became a cornerstone in experimental design . Researchers in fields like physics, biology, psychology, and sociology used it to test hypotheses, develop theories, and uncover the laws that govern our universe.

The idea that originated from Galton’s curiosity had bloomed into a universal key, unlocking doors to knowledge across disciplines.

Importance in Scientific Research

Today, the independent variable stands tall as a pillar of scientific research. It helps scientists and researchers ask critical questions, test their ideas, and find answers. Without independent variables, we wouldn’t have many of the advancements and understandings that we take for granted today.

The independent variable plays a starring role in experiments, helping us learn about everything from the smallest particles to the vastness of space. It helps researchers create vaccines, understand social behaviors, explore ecological systems, and even develop new technologies.

In the upcoming sections, we’ll dive deeper into what independent variables are, how they work, and how they’re used in various fields.

Together, we’ll uncover the magic of this scientific concept and see how it continues to shape our understanding of the world around us.

What is an Independent Variable?

Embarking on the captivating journey of scientific exploration requires us to grasp the essential terms and ideas. It's akin to a treasure hunter mastering the use of a map and compass.

In our adventure through the realm of independent variables, we’ll delve deeper into some fundamental concepts and definitions to help us navigate this exciting world.

Variables in Research

In the grand tapestry of research, variables are the gems that researchers seek. They’re elements, characteristics, or behaviors that can shift or vary in different circumstances.

Picture them as the myriad of ingredients in a chef’s kitchen—each variable can be adjusted or modified to create a myriad of dishes, each with a unique flavor!

Understanding variables is essential as they form the core of every scientific experiment and observational study.

Types of Variables

Independent Variable The star of our story, the independent variable, is the one that researchers change or control to study its effects. It’s like a chef experimenting with different spices to see how each one alters the taste of the soup. The independent variable is the catalyst, the initial spark that sets the wheels of research in motion.

Dependent Variable The dependent variable is the outcome we observe and measure . It’s the altered flavor of the soup that results from the chef’s culinary experiments. This variable depends on the changes made to the independent variable, hence the name!

Observing how the dependent variable reacts to changes helps scientists draw conclusions and make discoveries.

Control Variable Control variables are the unsung heroes of scientific research. They’re the constants, the elements that researchers keep the same to ensure the integrity of the experiment.

Imagine if our chef used a different type of broth each time he experimented with spices—the results would be all over the place! Control variables keep the experiment grounded and help researchers be confident in their findings.

Confounding Variables Imagine a hidden rock in a stream, changing the water’s flow in unexpected ways. Confounding variables are similar—they are external factors that can sneak into experiments and influence the outcome , adding twists to our scientific story.

These variables can blur the relationship between the independent and dependent variables, making the results of the study a bit puzzly. Detecting and controlling these hidden elements helps researchers ensure the accuracy of their findings and reach true conclusions.

There are of course other types of variables, and different ways to manipulate them called " schedules of reinforcement ," but we won't get into that too much here.

Role of the Independent Variable

Manipulation When researchers manipulate the independent variable, they are orchestrating a symphony of cause and effect. They’re adjusting the strings, the brass, the percussion, observing how each change influences the melody—the dependent variable.

This manipulation is at the heart of experimental research. It allows scientists to explore relationships, unravel patterns, and unearth the secrets hidden within the fabric of our universe.

Observation With every tweak and adjustment made to the independent variable, researchers are like seasoned detectives, observing the dependent variable for changes, collecting clues, and piecing together the puzzle.

Observing the effects and changes that occur helps them deduce relationships, formulate theories, and expand our understanding of the world. Every observation is a step towards solving the mysteries of nature and human behavior.

Identifying Independent Variables

Characteristics Identifying an independent variable in the vast landscape of research can seem daunting, but fear not! Independent variables have distinctive characteristics that make them stand out.

They’re the elements that are deliberately changed or controlled in an experiment to study their effects on the dependent variable. Recognizing these characteristics is like learning to spot footprints in the sand—it leads us to the heart of the discovery!

In Different Types of Research The world of research is diverse and varied, and the independent variable dons many guises! In the field of medicine, it might manifest as the dosage of a drug administered to patients.

In psychology, it could take the form of different learning methods applied to study memory retention. In each field, identifying the independent variable correctly is the golden key that unlocks the treasure trove of knowledge and insights.

As we forge ahead on our enlightening journey, equipped with a deeper understanding of independent variables and their roles, we’re ready to delve into the intricate theories and diverse examples that underscore their significance.

Independent Variables in Research

researcher doing research

Now that we’re acquainted with the basic concepts and have the tools to identify independent variables, let’s dive into the fascinating ocean of theories and frameworks.

These theories are like ancient scrolls, providing guidelines and blueprints that help scientists use independent variables to uncover the secrets of the universe.

Scientific Method

What is it and How Does it Work? The scientific method is like a super-helpful treasure map that scientists use to make discoveries. It has steps we follow: asking a question, researching, guessing what will happen (that's a hypothesis!), experimenting, checking the results, figuring out what they mean, and telling everyone about it.

Our hero, the independent variable, is the compass that helps this adventure go the right way!

How Independent Variables Lead the Way In the scientific method, the independent variable is like the captain of a ship, leading everyone through unknown waters.

Scientists change this variable to see what happens and to learn new things. It’s like having a compass that points us towards uncharted lands full of knowledge!

Experimental Design

The Basics of Building Constructing an experiment is like building a castle, and the independent variable is the cornerstone. It’s carefully chosen and manipulated to see how it affects the dependent variable. Researchers also identify control and confounding variables, ensuring the castle stands strong, and the results are reliable.

Keeping Everything in Check In every experiment, maintaining control is key to finding the treasure. Scientists use control variables to keep the conditions consistent, ensuring that any changes observed are truly due to the independent variable. It’s like ensuring the castle’s foundation is solid, supporting the structure as it reaches for the sky.

Hypothesis Testing

Making Educated Guesses Before they start experimenting, scientists make educated guesses called hypotheses . It’s like predicting which X marks the spot of the treasure! It often includes the independent variable and the expected effect on the dependent variable, guiding researchers as they navigate through the experiment.

Independent Variables in the Spotlight When testing these guesses, the independent variable is the star of the show! Scientists change and watch this variable to see if their guesses were right. It helps them figure out new stuff and learn more about the world around us!

Statistical Analysis

Figuring Out Relationships After the experimenting is done, it’s time for scientists to crack the code! They use statistics to understand how the independent and dependent variables are related and to uncover the hidden stories in the data.

Experimenters have to be careful about how they determine the validity of their findings, which is why they use statistics. Something called "experimenter bias" can get in the way of having true (valid) results, because it's basically when the experimenter influences the outcome based on what they believe to be true (or what they want to be true!).

How Important are the Discoveries? Through statistical analysis, scientists determine the significance of their findings. It’s like discovering if the treasure found is made of gold or just shiny rocks. The analysis helps researchers know if the independent variable truly had an effect, contributing to the rich tapestry of scientific knowledge.

As we uncover more about how theories and frameworks use independent variables, we start to see how awesome they are in helping us learn more about the world. But we’re not done yet!

Up next, we’ll look at tons of examples to see how independent variables work their magic in different areas.

Examples of Independent Variables

Independent variables take on many forms, showcasing their versatility in a range of experiments and studies. Let’s uncover how they act as the protagonists in numerous investigations and learning quests!

Science Experiments

1) plant growth.

Consider an experiment aiming to observe the effect of varying water amounts on plant height. In this scenario, the amount of water given to the plants is the independent variable!

2) Freezing Water

Suppose we are curious about the time it takes for water to freeze at different temperatures. The temperature of the freezer becomes the independent variable as we adjust it to observe the results!

3) Light and Shadow

Have you ever observed how shadows change? In an experiment, adjusting the light angle to observe its effect on an object’s shadow makes the angle of light the independent variable!

4) Medicine Dosage

In medical studies, determining how varying medicine dosages influence a patient’s recovery is essential. Here, the dosage of the medicine administered is the independent variable!

5) Exercise and Health

Researchers might examine the impact of different exercise forms on individuals’ health. The various exercise forms constitute the independent variable in this study!

6) Sleep and Wellness

Have you pondered how the sleep duration affects your well-being the following day? In such research, the hours of sleep serve as the independent variable!

calm blue room

7) Learning Methods

Psychologists might investigate how diverse study methods influence test outcomes. Here, the different study methods adopted by students are the independent variable!

8) Mood and Music

Have you experienced varied emotions with different music genres? The genre of music played becomes the independent variable when researching its influence on emotions!

9) Color and Feelings

Suppose researchers are exploring how room colors affect individuals’ emotions. In this case, the room colors act as the independent variable!

Environment

10) rainfall and plant life.

Environmental scientists may study the influence of varying rainfall levels on vegetation. In this instance, the amount of rainfall is the independent variable!

11) Temperature and Animal Behavior

Examining how temperature variations affect animal behavior is fascinating. Here, the varying temperatures serve as the independent variable!

12) Pollution and Air Quality

Investigating the effects of different pollution levels on air quality is crucial. In such studies, the pollution level is the independent variable!

13) Internet Speed and Productivity

Researchers might explore how varying internet speeds impact work productivity. In this exploration, the internet speed is the independent variable!

14) Device Type and User Experience

Examining how different devices affect user experience is interesting. Here, the type of device used is the independent variable!

15) Software Version and Performance

Suppose a study aims to determine how different software versions influence system performance. The software version becomes the independent variable!

16) Teaching Style and Student Engagement

Educators might investigate the effect of varied teaching styles on student engagement. In such a study, the teaching style is the independent variable!

17) Class Size and Learning Outcome

Researchers could explore how different class sizes influence students’ learning. Here, the class size is the independent variable!

18) Homework Frequency and Academic Achievement

Examining the relationship between the frequency of homework assignments and academic success is essential. The frequency of homework becomes the independent variable!

19) Telescope Type and Celestial Observation

Astronomers might study how different telescopes affect celestial observation. In this scenario, the telescope type is the independent variable!

20) Light Pollution and Star Visibility

Investigating the influence of varying light pollution levels on star visibility is intriguing. Here, the level of light pollution is the independent variable!

21) Observation Time and Astronomical Detail

Suppose a study explores how observation duration affects the detail captured in astronomical images. The duration of observation serves as the independent variable!

22) Community Size and Social Interaction

Sociologists may examine how the size of a community influences social interactions. In this research, the community size is the independent variable!

23) Cultural Exposure and Social Tolerance

Investigating the effect of diverse cultural exposure on social tolerance is vital. Here, the level of cultural exposure is the independent variable!

24) Economic Status and Educational Attainment

Researchers could explore how different economic statuses impact educational achievements. In such studies, economic status is the independent variable!

25) Training Intensity and Athletic Performance

Sports scientists might study how varying training intensities affect athletes’ performance. In this case, the training intensity is the independent variable!

26) Equipment Type and Player Safety

Examining the relationship between different sports equipment and player safety is crucial. Here, the type of equipment used is the independent variable!

27) Team Size and Game Strategy

Suppose researchers are investigating how the size of a sports team influences game strategy. The team size becomes the independent variable!

28) Diet Type and Health Outcome

Nutritionists may explore the impact of various diets on individuals’ health. In this exploration, the type of diet followed is the independent variable!

29) Caloric Intake and Weight Change

Investigating how different caloric intakes influence weight change is essential. In such a study, the caloric intake is the independent variable!

30) Food Variety and Nutrient Absorption

Researchers could examine how consuming a variety of foods affects nutrient absorption. Here, the variety of foods consumed is the independent variable!

Real-World Examples of Independent Variables

wind turbine

Isn't it fantastic how independent variables play such an essential part in so many studies? But the excitement doesn't stop there!

Now, let’s explore how findings from these studies, led by independent variables, make a big splash in the real world and improve our daily lives!

Healthcare Advancements

31) treatment optimization.

By studying different medicine dosages and treatment methods as independent variables, doctors can figure out the best ways to help patients recover quicker and feel better. This leads to more effective medicines and treatment plans!

32) Lifestyle Recommendations

Researching the effects of sleep, exercise, and diet helps health experts give us advice on living healthier lives. By changing these independent variables, scientists uncover the secrets to feeling good and staying well!

Technological Innovations

33) speeding up the internet.

When scientists explore how different internet speeds affect our online activities, they’re able to develop technologies to make the internet faster and more reliable. This means smoother video calls and quicker downloads!

34) Improving User Experience

By examining how we interact with various devices and software, researchers can design technology that’s easier and more enjoyable to use. This leads to cooler gadgets and more user-friendly apps!

Educational Strategies

35) enhancing learning.

Investigating different teaching styles, class sizes, and study methods helps educators discover what makes learning fun and effective. This research shapes classrooms, teaching methods, and even homework!

36) Tailoring Student Support

By studying how students with diverse needs respond to different support strategies, educators can create personalized learning experiences. This means every student gets the help they need to succeed!

Environmental Protection

37) conserving nature.

Researching how rainfall, temperature, and pollution affect the environment helps scientists suggest ways to protect our planet. By studying these independent variables, we learn how to keep nature healthy and thriving!

38) Combating Climate Change

Scientists studying the effects of pollution and human activities on climate change are leading the way in finding solutions. By exploring these independent variables, we can develop strategies to combat climate change and protect the Earth!

Social Development

39) building stronger communities.

Sociologists studying community size, cultural exposure, and economic status help us understand what makes communities happy and united. This knowledge guides the development of policies and programs for stronger societies!

40) Promoting Equality and Tolerance

By exploring how exposure to diverse cultures affects social tolerance, researchers contribute to fostering more inclusive and harmonious societies. This helps build a world where everyone is respected and valued!

Enhancing Sports Performance

41) optimizing athlete training.

Sports scientists studying training intensity, equipment type, and team size help athletes reach their full potential. This research leads to better training programs, safer equipment, and more exciting games!

42) Innovating Sports Strategies

By investigating how different game strategies are influenced by various team compositions, researchers contribute to the evolution of sports. This means more thrilling competitions and matches for us to enjoy!

Nutritional Well-Being

43) guiding healthy eating.

Nutritionists researching diet types, caloric intake, and food variety help us understand what foods are best for our bodies. This knowledge shapes dietary guidelines and helps us make tasty, yet nutritious, meal choices!

44) Promoting Nutritional Awareness

By studying the effects of different nutrients and diets, researchers educate us on maintaining a balanced diet. This fosters a greater awareness of nutritional well-being and encourages healthier eating habits!

As we journey through these real-world applications, we witness the incredible impact of studies featuring independent variables. The exploration doesn’t end here, though!

Let’s continue our adventure and see how we can identify independent variables in our own observations and inquiries! Keep your curiosity alive, and let’s delve deeper into the exciting realm of independent variables!

Identifying Independent Variables in Everyday Scenarios

So, we’ve seen how independent variables star in many studies, but how about spotting them in our everyday life?

Recognizing independent variables can be like a treasure hunt – you never know where you might find one! Let’s uncover some tips and tricks to identify these hidden gems in various situations.

1) Asking Questions

One of the best ways to spot an independent variable is by asking questions! If you’re curious about something, ask yourself, “What am I changing or manipulating in this situation?” The thing you’re changing is likely the independent variable!

For example, if you’re wondering whether the amount of sunlight affects how quickly your laundry dries, the sunlight amount is your independent variable!

2) Making Observations

Keep your eyes peeled and observe the world around you! By watching how changes in one thing (like the amount of rain) affect something else (like the height of grass), you can identify the independent variable.

In this case, the amount of rain is the independent variable because it’s what’s changing!

3) Conducting Experiments

Get hands-on and conduct your own experiments! By changing one thing and observing the results, you’re identifying the independent variable.

If you’re growing plants and decide to water each one differently to see the effects, the amount of water is your independent variable!

4) Everyday Scenarios

In everyday scenarios, independent variables are all around!

When you adjust the temperature of your oven to bake cookies, the oven temperature is the independent variable.

Or if you’re deciding how much time to spend studying for a test, the study time is your independent variable!

5) Being Curious

Keep being curious and asking “What if?” questions! By exploring different possibilities and wondering how changing one thing could affect another, you’re on your way to identifying independent variables.

If you’re curious about how the color of a room affects your mood, the room color is the independent variable!

6) Reviewing Past Studies

Don’t forget about the treasure trove of past studies and experiments! By reviewing what scientists and researchers have done before, you can learn how they identified independent variables in their work.

This can give you ideas and help you recognize independent variables in your own explorations!

Exercises for Identifying Independent Variables

Ready for some practice? Let’s put on our thinking caps and try to identify the independent variables in a few scenarios.

Remember, the independent variable is what’s being changed or manipulated to observe the effect on something else! (You can see the answers below)

Scenario One: Cooking Time

You’re cooking pasta for dinner and want to find out how the cooking time affects its texture. What is the independent variable?

Scenario Two: Exercise Routine

You decide to try different exercise routines each week to see which one makes you feel the most energetic. What is the independent variable?

Scenario Three: Plant Fertilizer

You’re growing tomatoes in your garden and decide to use different types of fertilizer to see which one helps them grow the best. What is the independent variable?

Scenario Four: Study Environment

You’re preparing for an important test and try studying in different environments (quiet room, coffee shop, library) to see where you concentrate best. What is the independent variable?

Scenario Five: Sleep Duration

You’re curious to see how the number of hours you sleep each night affects your mood the next day. What is the independent variable?

By practicing identifying independent variables in different scenarios, you’re becoming a true independent variable detective. Keep practicing, stay curious, and you’ll soon be spotting independent variables everywhere you go.

Independent Variable: The cooking time is the independent variable. You are changing the cooking time to observe its effect on the texture of the pasta.

Independent Variable: The type of exercise routine is the independent variable. You are trying out different exercise routines each week to see which one makes you feel the most energetic.

Independent Variable: The type of fertilizer is the independent variable. You are using different types of fertilizer to observe their effects on the growth of the tomatoes.

Independent Variable: The study environment is the independent variable. You are studying in different environments to see where you concentrate best.

Independent Variable: The number of hours you sleep is the independent variable. You are changing your sleep duration to see how it affects your mood the next day.

Whew, what a journey we’ve had exploring the world of independent variables! From understanding their definition and role to diving into a myriad of examples and real-world impacts, we’ve uncovered the treasures hidden in the realm of independent variables.

The beauty of independent variables lies in their ability to unlock new knowledge and insights, guiding us to discoveries that improve our lives and the world around us.

By identifying and studying these variables, we embark on exciting learning adventures, solving mysteries and answering questions about the universe we live in.

Remember, the joy of discovery doesn’t end here. The world is brimming with questions waiting to be answered and mysteries waiting to be solved.

Keep your curiosity alive, continue exploring, and who knows what incredible discoveries lie ahead.

Related posts:

  • Confounding Variable in Psychology (Examples + Definition)
  • 19+ Experimental Design Examples (Methods + Types)
  • Variable Interval Reinforcement Schedule (Examples)
  • Variable Ratio Reinforcement Schedule (Examples)
  • State Dependent Memory + Learning (Definition and Examples)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

  • Digital Offerings
  • Biochemistry
  • College Success
  • Communication
  • Electrical Engineering
  • Environmental Science
  • Mathematics
  • Nutrition and Health
  • Philosophy and Religion
  • Our Mission
  • Our Leadership
  • Accessibility
  • Diversity, Equity, Inclusion
  • Learning Science
  • Sustainability
  • Affordable Solutions
  • Curriculum Solutions
  • Inclusive Access
  • Lab Solutions
  • LMS Integration
  • Instructor Resources
  • iClicker and Your Content
  • Badging and Credidation
  • Press Release
  • Learning Stories Blog
  • Discussions
  • The Discussion Board
  • Webinars on Demand
  • Digital Community
  • Macmillan Learning Peer Consultants
  • Macmillan Learning Digital Blog
  • Learning Science Research
  • Macmillan Learning Peer Consultant Forum
  • English Community
  • Achieve Adopters Forum
  • Hub Adopters Group
  • Psychology Community
  • Psychology Blog
  • Talk Psych Blog
  • History Community
  • History Blog
  • Communication Community
  • Communication Blog
  • College Success Community
  • College Success Blog
  • Economics Community
  • Economics Blog
  • Institutional Solutions Community
  • Institutional Solutions Blog
  • Handbook for iClicker Administrators
  • Nutrition Community
  • Nutrition Blog
  • Lab Solutions Community
  • Lab Solutions Blog
  • STEM Community
  • STEM Achieve Adopters Forum
  • Contact Us & FAQs
  • Find Your Rep
  • Training & Demos
  • First Day of Class
  • For Booksellers
  • International Translation Rights
  • Permissions
  • Report Piracy

Digital Products

Instructor catalog, our solutions.

  • Macmillan Community
  • Experiments: Practice identifying independent and ...

Experiments: Practice identifying independent and dependent variables

sue_frantz

  • Subscribe to RSS Feed
  • Mark as New
  • Mark as Read
  • Printer Friendly Page
  • Report Inappropriate Content
  • Consciousness
  • Developmental Psychology
  • Research Methods and Statistics
  • Sensation and Perception
  • experiments

You must be a registered user to add a comment. If you've already registered, sign in. Otherwise, register and sign in.

Experiments: Practice identifying independent and dependent variables (Part 2)

sue_frantz

  • Abnormal Psychology 19
  • Achievement 3
  • Affiliation 1
  • Behavior Genetics 2
  • Cognition 40
  • Consciousness 35
  • Current Events 28
  • Development Psychology 16
  • Developmental Psychology 34
  • Evolution 3
  • Evolutionary Psychology 5
  • Gender and Sexuality 5
  • Genetics 12
  • History and System of Psychology 5
  • History and Systems of Psychology 7
  • Industrial and Organizational Psychology 50
  • Intelligence 8
  • Learning 68
  • Motivation 14
  • Motivation: Hunger 1
  • Nature-Nurture 7
  • Neuroscience 42
  • Personality 29
  • Psychological Disorders and Their Treatment 21
  • Research Methods and Statistics 95
  • Sensation and Perception 43
  • Social Psychology 127
  • Stress and Health 55
  • Teaching and Learning Best Practices 54
  • Thinking and Language 16
  • Virtual Learning 26
  • « Previous
  • Next »

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Independent vs Dependent Variables | Definition & Examples

Independent vs Dependent Variables | Definition & Examples

Published on 4 May 2022 by Pritha Bhandari . Revised on 17 October 2022.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs dependent variables, independent and dependent variables in research, visualising independent and dependent variables, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Prevent plagiarism, run a free check.

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment.

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women, and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic paper.

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design.

Here are some tips for identifying each variable type.

Recognising independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognising dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

For experimental data, you analyse your results by generating descriptive statistics and visualising your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • Your variable types
  • Level of measurement
  • Number of independent variable levels

You’ll often use t tests or ANOVAs to analyse your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualise the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualisation you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatterplot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

  • Right-hand-side variables (they appear on the right-hand side of a regression equation)

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet cola and regular cola, so you conduct an experiment .

  • The type of cola – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of cola.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 17). Independent vs Dependent Variables | Definition & Examples. Scribbr. Retrieved 12 March 2024, from https://www.scribbr.co.uk/research-methods/independent-vs-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, types of variables in research | definitions & examples.

Chapter 8: Complex Research Designs

8.1 multiple dependent variables, learning objectives.

  • Explain why researchers often include multiple dependent variables in their studies.
  • Explain what a manipulation check is and when it would be included in an experiment.

Imagine that you have made the effort to find a research topic, review the research literature, formulate a question, design an experiment, obtain institutional review board (IRB) approval, recruit research participants, and manipulate an independent variable. It would seem almost wasteful to measure a single dependent variable. Even if you are primarily interested in the relationship between an independent variable and one primary dependent variable, there are usually several more questions that you can answer easily by including multiple dependent variables .

Measures of Different Constructs

Often a researcher wants to know how an independent variable affects several distinct dependent variables. For example, Schnall and her colleagues were interested in how feeling disgusted affects the harshness of people’s moral judgments, but they were also curious about how disgust affects other variables, such as people’s willingness to eat in a restaurant. As another example, researcher Susan Knasko was interested in how different odors affect people’s behavior (Knasko, 1992). She conducted an experiment in which the independent variable was whether participants were tested in a room with no odor or in one scented with lemon, lavender, or dimethyl sulfide (which has a cabbagelike smell). Although she was primarily interested in how the odors affected people’s creativity, she was also curious about how they affected people’s moods and perceived health—and it was a simple enough matter to measure these dependent variables too. Although she found that creativity was unaffected by the ambient odor, she found that people’s moods were lower in the dimethyl sulfide condition, and that their perceived health was greater in the lemon condition.

When an experiment includes multiple dependent variables, there is again a possibility of carryover effects. For example, it is possible that measuring participants’ moods before measuring their perceived health could affect their perceived health or that measuring their perceived health before their moods could affect their moods. So the order in which multiple dependent variables are measured becomes an issue. One approach is to measure them in the same order for all participants—usually with the most important one first so that it cannot be affected by measuring the others. Another approach is to counterbalance, or systematically vary, the order in which the dependent variables are measured.

Manipulation Checks

When the independent variable is a construct that can only be manipulated indirectly—such as emotions and other internal states—an additional measure of that independent variable is often included as a manipulation check . This is done to confirm that the independent variable was, in fact, successfully manipulated. For example, Schnall and her colleagues had their participants rate their level of disgust to be sure that those in the messy room actually felt more disgusted than those in the clean room. Manipulation checks are usually done at the end of the procedure to be sure that the effect of the manipulation lasted throughout the entire procedure and to avoid calling unnecessary attention to the manipulation.

Manipulation checks become especially important when the manipulation of the independent variable turns out to have no effect on the dependent variable. Imagine, for example, that you exposed participants to happy or sad movie music—intending to put them in happy or sad moods—but you found that this had no effect on the number of happy or sad childhood events they recalled. This could be because being in a happy or sad mood has no effect on memories for childhood events. But it could also be that the music was ineffective at putting participants in happy or sad moods. A manipulation check—in this case, a measure of participants’ moods—would help resolve this uncertainty. If it showed that you had successfully manipulated participants’ moods, then it would appear that there is indeed no effect of mood on memory for childhood events. But if it showed that you did not successfully manipulate participants’ moods, then it would appear that you need a more effective manipulation to answer your research question.

Measures of the Same Construct

Another common approach to including multiple dependent variables is to operationally define and measure the same construct, or closely related ones, in different ways. Imagine, for example, that a researcher conducts an experiment on the effect of daily exercise on stress. The dependent variable, stress, is a construct that can be operationally defined in different ways. For this reason, the researcher might have participants complete the paper-and-pencil Perceived Stress Scale and measure their levels of the stress hormone cortisol. This is an example of the use of converging operations. If the researcher finds that the different measures are affected by exercise in the same way, then he or she can be confident in the conclusion that exercise affects the more general construct of stress.

When multiple dependent variables are different measures of the same construct—especially if they are measured on the same scale—researchers have the option of combining them into a single measure of that construct. Recall that Schnall and her colleagues were interested in the harshness of people’s moral judgments. To measure this construct, they presented their participants with seven different scenarios describing morally questionable behaviors and asked them to rate the moral acceptability of each one. Although they could have treated each of the seven ratings as a separate dependent variable, these researchers combined them into a single dependent variable by computing their mean.

When researchers combine dependent variables in this way, they are treating them collectively as a multiple-response measure of a single construct. The advantage of this is that multiple-response measures are generally more reliable than single-response measures. However, it is important to make sure the individual dependent variables are correlated with each other by computing an internal consistency measure such as Cronbach’s α. If they are not correlated with each other, then it does not make sense to combine them into a measure of a single construct. If they have poor internal consistency, then they should be treated as separate dependent variables.

Key Takeaways

  • Researchers in psychology often include multiple dependent variables in their studies. The primary reason is that this easily allows them to answer more research questions with minimal additional effort.
  • When an independent variable is a construct that is manipulated indirectly, it is a good idea to include a manipulation check. This is a measure of the independent variable typically given at the end of the procedure to confirm that it was successfully manipulated.
  • Multiple measures of the same construct can be analyzed separately or combined to produce a single multiple-item measure of that construct. The latter approach requires that the measures taken together have good internal consistency.
  • Practice: List three independent variables for which it would be good to include a manipulation check. List three others for which a manipulation check would be unnecessary.
  • Practice: Imagine a study in which the independent variable is whether the room where participants are tested is warm (80°) or cool (65°). List three dependent variables that you might treat as measures of separate variables. List three more that you might combine and treat as measures of the same underlying construct.

Knasko, S. C. (1992). Ambient odor’s effect on creativity, mood, and perceived health. Chemical Senses , 17 , 27–35.

  • Research Methods in Psychology. Provided by : University of Minnesota Libraries Publishing. Located at : http://open.lib.umn.edu/psychologyresearchmethods . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Footer Logo Lumen Candela

Privacy Policy

helpful professor logo

15 Independent and Dependent Variable Examples

independent and dependent variables, explained below

An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV).

By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.

This can provide very valuable information when studying just about any subject.

Because the researcher controls the level of the independent variable, it can be determined if the independent variable has a causal effect on the dependent variable.

The term causation is vitally important. Scientists want to know what causes changes in the dependent variable. The only way to do that is to manipulate the independent variable and observe any changes in the dependent variable.

Definition of Independent and Dependent Variables

The independent variable and dependent variable are used in a very specific type of scientific study called the experiment .

Although there are many variations of the experiment, generally speaking, it involves either the presence or absence of the independent variable and the observation of what happens to the dependent variable.

The research participants are randomly assigned to either receive the independent variable (called the treatment condition), or not receive the independent variable (called the control condition).

Other variations of an experiment might include having multiple levels of the independent variable.

If the independent variable affects the dependent variable, then it should be possible to observe changes in the dependent variable based on the presence or absence of the independent variable.  

Of course, there are a lot of issues to consider when conducting an experiment, but these are the basic principles.

These concepts should not be confused with predictor and outcome variables .

Examples of Independent and Dependent Variables

1. gatorade and improved athletic performance.

A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.

If they can back up that claim with hard scientific data, that would be great for sales.

So, the researcher goes to a nearby university and randomly selects both male and female athletes from several sports: track and field, volleyball, basketball, and football. Each athlete will run on a treadmill for one hour while their heart rate is tracked.

All of the athletes are given the exact same amount of liquid to consume 30-minutes before and during their run. Half are given Gatorade, and the other half are given water, but no one knows what they are given because both liquids have been colored.

In this example, the independent variable is Gatorade, and the dependent variable is heart rate.  

2. Chemotherapy and Cancer

A hospital is investigating the effectiveness of a new type of chemotherapy on cancer. The researchers identified 120 patients with relatively similar types of cancerous tumors in both size and stage of progression.

The patients are randomly assigned to one of three groups: one group receives no chemotherapy, one group receives a low dose of chemotherapy, and one group receives a high dose of chemotherapy.

Each group receives chemotherapy treatment three times a week for two months, except for the no-treatment group. At the end of two months, the doctors measure the size of each patient’s tumor.

In this study, despite the ethical issues (remember this is just a hypothetical example), the independent variable is chemotherapy, and the dependent variable is tumor size.

3. Interior Design Color and Eating Rate

A well-known fast-food corporation wants to know if the color of the interior of their restaurants will affect how fast people eat. Of course, they would prefer that consumers enter and exit quickly to increase sales volume and profit.

So, they rent space in a large shopping mall and create three different simulated restaurant interiors of different colors. One room is painted mostly white with red trim and seats; one room is painted mostly white with blue trim and seats; and one room is painted mostly white with off-white trim and seats.

Next, they randomly select shoppers on Saturdays and Sundays to eat for free in one of the three rooms. Each shopper is given a box of the same food and drink items and sent to one of the rooms. The researchers record how much time elapses from the moment they enter the room to the moment they leave.

The independent variable is the color of the room, and the dependent variable is the amount of time spent in the room eating.

4. Hair Color and Attraction

A large multinational cosmetics company wants to know if the color of a woman’s hair affects the level of perceived attractiveness in males. So, they use Photoshop to manipulate the same image of a female by altering the color of her hair: blonde, brunette, red, and brown.

Next, they randomly select university males to enter their testing facilities. Each participant sits in front of a computer screen and responds to questions on a survey. At the end of the survey, the screen shows one of the photos of the female.

At the same time, software on the computer that utilizes the computer’s camera is measuring each male’s pupil dilation. The researchers believe that larger dilation indicates greater perceived attractiveness.

The independent variable is hair color, and the dependent variable is pupil dilation.

5. Mozart and Math

After many claims that listening to Mozart will make you smarter, a group of education specialists decides to put it to the test. So, first, they go to a nearby school in a middle-class neighborhood.

During the first three months of the academic year, they randomly select some 5th-grade classrooms to listen to Mozart during their lessons and exams. Other 5 th grade classrooms will not listen to any music during their lessons and exams.

The researchers then compare the scores of the exams between the two groups of classrooms.

Although there are a lot of obvious limitations to this hypothetical, it is the first step.

The independent variable is Mozart, and the dependent variable is exam scores.

6. Essential Oils and Sleep

A company that specializes in essential oils wants to examine the effects of lavender on sleep quality. They hire a sleep research lab to conduct the study. The researchers at the lab have their usual test volunteers sleep in individual rooms every night for one week.

The conditions of each room are all exactly the same, except that half of the rooms have lavender released into the rooms and half do not. While the study participants are sleeping, their heart rates and amount of time spent in deep sleep are recorded with high-tech equipment.

At the end of the study, the researchers compare the total amount of time spent in deep sleep of the lavender-room participants with the no lavender-room participants.

The independent variable in this sleep study is lavender, and the dependent variable is the total amount of time spent in deep sleep.

7. Teaching Style and Learning

A group of teachers is interested in which teaching method will work best for developing critical thinking skills.

So, they train a group of teachers in three different teaching styles : teacher-centered, where the teacher tells the students all about critical thinking; student-centered, where the students practice critical thinking and receive teacher feedback; and AI-assisted teaching, where the teacher uses a special software program to teach critical thinking.

At the end of three months, all the students take the same test that assesses critical thinking skills. The teachers then compare the scores of each of the three groups of students.

The independent variable is the teaching method, and the dependent variable is performance on the critical thinking test.

8. Concrete Mix and Bridge Strength

A chemicals company has developed three different versions of their concrete mix. Each version contains a different blend of specially developed chemicals. The company wants to know which version is the strongest.

So, they create three bridge molds that are identical in every way. They fill each mold with one of the different concrete mixtures. Next, they test the strength of each bridge by placing progressively more weight on its center until the bridge collapses.

In this study, the independent variable is the concrete mixture, and the dependent variable is the amount of weight at collapse.

9. Recipe and Consumer Preferences

People in the pizza business know that the crust is key. Many companies, large and small, will keep their recipe a top secret. Before rolling out a new type of crust, the company decides to conduct some research on consumer preferences.

The company has prepared three versions of their crust that vary in crunchiness, they are: a little crunchy, very crunchy, and super crunchy. They already have a pool of consumers that fit their customer profile and they often use them for testing.

Each participant sits in a booth and takes a bite of one version of the crust. They then indicate how much they liked it by pressing one of 5 buttons: didn’t like at all, liked, somewhat liked, liked very much, loved it.

The independent variable is the level of crust crunchiness, and the dependent variable is how much it was liked.

10. Protein Supplements and Muscle Mass

A large food company is considering entering the health and nutrition sector. Their R&D food scientists have developed a protein supplement that is designed to help build muscle mass for people that work out regularly.

The company approaches several gyms near its headquarters. They enlist the cooperation of over 120 gym rats that work out 5 days a week. Their muscle mass is measured, and only those with a lower level are selected for the study, leaving a total of 80 study participants.

They randomly assign half of the participants to take the recommended dosage of their supplement every day for three months after each workout. The other half takes the same amount of something that looks the same but actually does nothing to the body.

At the end of three months, the muscle mass of all participants is measured.

The independent variable is the supplement, and the dependent variable is muscle mass.  

11. Air Bags and Skull Fractures

In the early days of airbags , automobile companies conducted a great deal of testing. At first, many people in the industry didn’t think airbags would be effective at all. Fortunately, there was a way to test this theory objectively.

In a representative example: Several crash cars were outfitted with an airbag, and an equal number were not. All crash cars were of the same make, year, and model. Then the crash experts rammed each car into a crash wall at the same speed. Sensors on the crash dummy skulls allowed for a scientific analysis of how much damage a human skull would incur.

The amount of skull damage of dummies in cars with airbags was then compared with those without airbags.

The independent variable was the airbag and the dependent variable was the amount of skull damage.

12. Vitamins and Health

Some people take vitamins every day. A group of health scientists decides to conduct a study to determine if taking vitamins improves health.

They randomly select 1,000 people that are relatively similar in terms of their physical health. The key word here is “similar.”

Because the scientists have an unlimited budget (and because this is a hypothetical example, all of the participants have the same meals delivered to their homes (breakfast, lunch, and dinner), every day for one year.

In addition, the scientists randomly assign half of the participants to take a set of vitamins, supplied by the researchers every day for 1 year. The other half do not take the vitamins.

At the end of one year, the health of all participants is assessed, using blood pressure and cholesterol level as the key measurements.

In this highly unrealistic study, the independent variable is vitamins, and the dependent variable is health, as measured by blood pressure and cholesterol levels.

13. Meditation and Stress

Does practicing meditation reduce stress? If you have ever wondered if this is true or not, then you are in luck because there is a way to know one way or the other.

All we have to do is find 90 people that are similar in age, stress levels, diet and exercise, and as many other factors as we can think of.

Next, we randomly assign each person to either practice meditation every day, three days a week, or not at all. After three months, we measure the stress levels of each person and compare the groups.

How should we measure stress? Well, there are a lot of ways. We could measure blood pressure, or the amount of the stress hormone cortisol in their blood, or by using a paper and pencil measure such as a questionnaire that asks them how much stress they feel.

In this study, the independent variable is meditation and the dependent variable is the amount of stress (however it is measured).

14. Video Games and Aggression

When video games started to become increasingly graphic, it was a huge concern in many countries in the world. Educators, social scientists, and parents were shocked at how graphic games were becoming.

Since then, there have been hundreds of studies conducted by psychologists and other researchers. A lot of those studies used an experimental design that involved males of various ages randomly assigned to play a graphic or non-graphic video game.

Afterward, their level of aggression was measured via a wide range of methods, including direct observations of their behavior, their actions when given the opportunity to be aggressive, or a variety of other measures.

So many studies have used so many different ways of measuring aggression.

In these experimental studies, the independent variable was graphic video games, and the dependent variable was observed level of aggression.

15. Vehicle Exhaust and Cognitive Performance

Car pollution is a concern for a lot of reasons. In addition to being bad for the environment, car exhaust may cause damage to the brain and impair cognitive performance.

One way to examine this possibility would be to conduct an animal study. The research would look something like this: laboratory rats would be raised in three different rooms that varied in the degree of car exhaust circulating in the room: no exhaust, little exhaust, or a lot of exhaust.

After a certain period of time, perhaps several months, the effects on cognitive performance could be measured.

One common way of assessing cognitive performance in laboratory rats is by measuring the amount of time it takes to run a maze successfully. It would also be possible to examine the physical effects of car exhaust on the brain by conducting an autopsy.

In this animal study, the independent variable would be car exhaust and the dependent variable would be amount of time to run a maze.

Read Next: Extraneous Variables Examples

The experiment is an incredibly valuable way to answer scientific questions regarding the cause and effect of certain variables. By manipulating the level of an independent variable and observing corresponding changes in a dependent variable, scientists can gain an understanding of many phenomena.

For example, scientists can learn if graphic video games make people more aggressive, if mediation reduces stress, if Gatorade improves athletic performance, and even if certain medical treatments can cure cancer.

The determination of causality is the key benefit of manipulating the independent variable and them observing changes in the dependent variable. Other research methodologies can reveal factors that are related to the dependent variable or associated with the dependent variable, but only when the independent variable is controlled by the researcher can causality be determined.

Ferguson, C. J. (2010). Blazing Angels or Resident Evil? Can graphic video games be a force for good? Review of General Psychology, 14 (2), 68-81. https://doi.org/10.1037/a0018941

Flannelly, L. T., Flannelly, K. J., & Jankowski, K. R. (2014). Independent, dependent, and other variables in healthcare and chaplaincy research. Journal of Health Care Chaplaincy , 20 (4), 161–170. https://doi.org/10.1080/08854726.2014.959374

Manocha, R., Black, D., Sarris, J., & Stough, C.(2011). A randomized, controlled trial of meditation for work stress, anxiety and depressed mood in full-time workers. Evidence-Based Complementary and Alternative Medicine , vol. 2011, Article ID 960583. https://doi.org/10.1155/2011/960583

Rumrill, P. D., Jr. (2004). Non-manipulation quantitative designs. Work (Reading, Mass.) , 22 (3), 255–260.

Taylor, J. M., & Rowe, B. J. (2012). The “Mozart Effect” and the mathematical connection, Journal of College Reading and Learning, 42 (2), 51-66.  https://doi.org/10.1080/10790195.2012.10850354

Dave

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Positive Punishment Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Dissociation Examples (Psychology)
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Zone of Proximal Development Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ Perception Checking: 15 Examples and Definition

Chris

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

  • Chris Drew (PhD) #molongui-disabled-link 25 Positive Punishment Examples
  • Chris Drew (PhD) #molongui-disabled-link 25 Dissociation Examples (Psychology)
  • Chris Drew (PhD) #molongui-disabled-link 15 Zone of Proximal Development Examples
  • Chris Drew (PhD) #molongui-disabled-link Perception Checking: 15 Examples and Definition

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

IMAGES

  1. Independent and Dependent Variables

    psychology research topics with independent and dependent variables

  2. Independent and Dependent Variable Examples

    psychology research topics with independent and dependent variables

  3. How to identify independent and dependent research variables

    psychology research topics with independent and dependent variables

  4. Difference Between Independent and Dependent Variables

    psychology research topics with independent and dependent variables

  5. Easy Way to Explain Dependent and Independent Variables

    psychology research topics with independent and dependent variables

  6. Variables in Psychological Research

    psychology research topics with independent and dependent variables

VIDEO

  1. Chapter 7, Importance of Statistics in Psychology and Education

  2. #psychology rule

  3. Probability Topics: Independent and Dependent Events

  4. Independent & Dependent Variables

  5. 8.4 Big Ideas Math Lesson Independent & Dependent Variables

  6. Dependent variable for high fives

COMMENTS

  1. Independent and Dependent Variables

    In research, a variable is any characteristic, number, or quantity that can be measured or counted in experimental investigations. One is called the dependent variable, and the other is the independent variable. In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome.

  2. Types of Variables in Psychology Research

    The two main types of variables in psychology are the independent variable and the dependent variable. Both variables are important in the process of collecting data about psychological phenomena. This article discusses different types of variables that are used in psychology research. It also covers how to operationalize these variables when ...

  3. Independent & Dependent Variables (With Examples)

    While the independent variable is the " cause ", the dependent variable is the " effect " - or rather, the affected variable. In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable. Keeping with the previous example, let's look at some dependent variables ...

  4. Independent vs. Dependent Variables

    Independent vs. Dependent Variables | Definition & Examples. Published on February 3, 2022 by Pritha Bhandari.Revised on June 22, 2023. In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores. Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  5. Independent Variable in Psychology: Examples and Importance

    The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment. For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable. Researchers are trying to determine if changes to ...

  6. Anxiety, Affect, Self-Esteem, and Stress: Mediation and ...

    Background Mediation analysis investigates whether a variable (i.e., mediator) changes in regard to an independent variable, in turn, affecting a dependent variable. Moderation analysis, on the other hand, investigates whether the statistical interaction between independent variables predict a dependent variable. Although this difference between these two types of analysis is explicit in ...

  7. 2.3 Analyzing Findings

    Independent and Dependent Variables. In a research experiment, we strive to study whether changes in one thing cause changes in another. To achieve this, we must pay attention to two important variables, or things that can be changed, in any experimental study: the independent variable and the dependent variable. An independent variable is ...

  8. Variables In Psychological Research

    There are two main variables when it comes to psychological research, these are; (1) The Independent Variable (IV) the variable that is manipulated/changed. (2) The Dependent Variable (DV) the variable that is measured (e.g. it measures whether or not the IV has influence human behaviour). When carrying out a piece of research, a psychologists ...

  9. 50+ Research Topics for Psychology Papers

    Exploring a psychological disorder or a specific treatment modality can also be a good topic for a psychology paper. Some potential abnormal psychology topics include specific psychological disorders or particular treatment modalities, including: Eating disorders. Depression. Phobias. Borderline personality disorder. Seasonal affective disorder.

  10. Independent and Dependent Variables

    An independent variable (IV) is a variable that is manipulated by a researcher to investigate whether it consequently brings change in another variable. This other variable, which is measured and predicted to be dependent upon the IV, is therefore named the dependent variable (DV).. For example, in an experiment examining the effect of fatigue on short term memory, there are two groups ...

  11. Dependent Variables (Definition + 30 Examples)

    The concept of dependent variables finds its roots in the early foundations of scientific thought. The ancient Greeks, notably Aristotle, laid down the groundwork for systematic observation and the study of cause and effect.Aristotle's ideas on causality, although different from today's understanding, were pivotal in shaping the way we approach scientific inquiry.

  12. 8.2 Multiple Independent Variables

    In principle, factorial designs can include any number of independent variables with any number of levels. For example, an experiment could include the type of psychotherapy (cognitive vs. behavioral), the length of the psychotherapy (2 weeks vs. 2 months), and the sex of the psychotherapist (female vs. male).

  13. Independent and Dependent Variables Reconsidered and ...

    This "potentially causal variable" is called, traditionally, the "independent variable.". With the current example, that would be the coffee. The other variable, which you think is ...

  14. Independent and Dependent Variables

    A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. ... Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent ...

  15. What Are Independent and Dependent Variables?

    Independent Variables. The independent variable is the variable that the researcher or experimenter manipulates to affect the dependent variable. It is independent of the other variables in an experiment. In other words, the independent variable causes some kind of change in the dependent variable. In our experiment, the independent variable ...

  16. Independent Variables (Definition + 43 Examples)

    The independent variable is the catalyst, the initial spark that sets the wheels of research in motion. Dependent Variable. The dependent variable is the outcome we observe and measure. It's the altered flavor of the soup that results from the chef's culinary experiments.

  17. Experiments: Practice identifying independent and dependent variables

    Psychology students often struggle with the difference between the independent and dependent variables. After covering these concepts, ask students to work in pairs or small groups to identify both the independent variable(s) and the dependent variable(s) in each example. Hypothesis: Creating concrete examples will improve recall.

  18. Independent vs Dependent Variables

    Independent vs Dependent Variables | Definition & Examples. Published on 4 May 2022 by Pritha Bhandari.Revised on 17 October 2022. In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores. Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  19. 8.1 Multiple Dependent Variables

    Key Takeaways. Researchers in psychology often include multiple dependent variables in their studies. The primary reason is that this easily allows them to answer more research questions with minimal additional effort. When an independent variable is a construct that is manipulated indirectly, it is a good idea to include a manipulation check.

  20. Research Paper Topics With Independent And Dependent Variables

    Therefore during research. the variables are manipulated by the experimenters. In an experiment. the independent variable is the variable that is varied or manipulated by the researcher. and the dependent variable is the response that is measured. An independent variable is the presumed cause. whereas the dependent variable is the presumed effect.

  21. 15 Independent and Dependent Variable Examples (2024)

    Examples of Independent and Dependent Variables. 1. Gatorade and Improved Athletic Performance. A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.