Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • Operationalisation | A Guide with Examples, Pros & Cons

Operationalisation | A Guide with Examples, Pros & Cons

Published on 6 May 2022 by Pritha Bhandari . Revised on 10 October 2022.

Operationalisation means turning abstract concepts into measurable observations. Although some concepts, like height or age, are easily measured, others, like spirituality or anxiety, are not.

Through operationalisation, you can systematically collect data on processes and phenomena that aren’t directly observable.

  • Self-rating scores on a social anxiety scale
  • Number of recent behavioural incidents of avoidance of crowded places
  • Intensity of physical anxiety symptoms in social situations

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

Why operationalisation matters, how to operationalise concepts, strengths of operationalisation, limitations of operationalisation, frequently asked questions about operationalisation.

In quantitative research , it’s important to precisely define the variables that you want to study.

Without transparent and specific operational definitions, researchers may measure irrelevant concepts or inconsistently apply methods. Operationalisation reduces subjectivity and increases the reliability  of your study.

Your choice of operational definition can sometimes affect your results. For example, an experimental intervention for social anxiety may reduce self-rating anxiety scores but not behavioural avoidance of crowded places. This means that your results are context-specific and may not generalise to different real-life settings.

Generally, abstract concepts can be operationalised in many different ways. These differences mean that you may actually measure slightly different aspects of a concept, so it’s important to be specific about what you are measuring.

Concept Examples of operationalisation
Overconfidence and ( ) and ( )
Creativity for an object (e.g., a paperclip) that participants can come up with in 3 minutes of an object that participants come up with in 3 minutes
Perception of threat of higher sweat gland activity and increased heart rate when presented with threatening images after being presented with threatening images
Customer loyalty on a questionnaire assessing satisfaction and intention to purchase again of products purchased by repeat customers in a three-month period

If you test a hypothesis using multiple operationalisations of a concept, you can check whether your results depend on the type of measure that you use. If your results don’t vary when you use different measures, then they are said to be ‘robust’.

Prevent plagiarism, run a free check.

There are three main steps for operationalisation:

  • Identify the main concepts you are interested in studying.
  • Choose a variable to represent each of the concepts.
  • Select indicators for each of your variables.

Step 1: Identify the main concepts you are interested in studying

Based on your research interests and goals, define your topic and come up with an initial research question .

There are two main concepts in your research question:

  • Social media behaviour

Step 2: Choose a variable to represent each of the concepts

Your main concepts may each have many variables , or properties, that you can measure.

For instance, are you going to measure the  amount of sleep or the  quality of sleep? And are you going to measure  how often teenagers use social media,  which social media they use, or when they use it?

Concept Variables
Sleep
Social media behaviour
  • Alternate hypothesis: Lower quality of sleep is related to higher night-time social media use in teenagers.
  • Null hypothesis: There is no relation between quality of sleep and night-time social media use in teenagers.

Step 3: Select indicators for each of your variables

To measure your variables, decide on indicators that can represent them numerically.

Sometimes these indicators will be obvious: for example, the amount of sleep is represented by the number of hours per night. But a variable like sleep quality is harder to measure.

You can come up with practical ideas for how to measure variables based on previously published studies. These may include established scales or questionnaires that you can distribute to your participants. If none are available that are appropriate for your sample, you can develop your own scales or questionnaires.

Concept Variable Indicator
Sleep
Social media behaviour
  • To measure sleep quality, you give participants wristbands that track sleep phases.
  • To measure night-time social media use, you create a questionnaire that asks participants to track how much time they spend using social media in bed.

After operationalising your concepts, it’s important to report your study variables and indicators when writing up your methodology section. You can evaluate how your choice of operationalisation may have affected your results or interpretations in the discussion section.

Operationalisation makes it possible to consistently measure variables across different contexts.

Scientific research is based on observable and measurable findings. Operational definitions break down intangible concepts into recordable characteristics.

Objectivity

A standardised approach for collecting data leaves little room for subjective or biased personal interpretations of observations.

Reliability

A good operationalisation can be used consistently by other researchers. If other people measure the same thing using your operational definition, they should all get the same results.

Operational definitions of concepts can sometimes be problematic.

Underdetermination

Many concepts vary across different time periods and social settings.

For example, poverty is a worldwide phenomenon, but the exact income level that determines poverty can differ significantly across countries.

Reductiveness

Operational definitions can easily miss meaningful and subjective perceptions of concepts by trying to reduce complex concepts to numbers.

For example, asking consumers to rate their satisfaction with a service on a 5-point scale will tell you nothing about why they felt that way.

Lack of universality

Context-specific operationalisations help preserve real-life experiences, but make it hard to compare studies if the measures differ significantly.

For example, corruption can be operationalised in a wide range of ways (e.g., perceptions of corrupt business practices, or frequency of bribe requests from public officials), but the measures may not consistently reflect the same concept.

The only proofreading tool specialized in correcting academic writing

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

how to write operationalised hypothesis

Correct my document today

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalisation .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). Operationalisation | A Guide with Examples, Pros & Cons. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/thesis-dissertation/operationalisation/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

Operationalize a Variable: A Step-by-Step Guide to Quantifying Your Research Constructs

Operationalize a Variable: A Step-by-Step Guide to Quantifying Your Research Constructs

Operationalizing a variable is a fundamental step in transforming abstract research constructs into measurable entities. This process allows researchers to quantify variables, enabling the empirical testing of hypotheses within quantitative research. The guide provided here aims to demystify the operationalization process with a structured approach, equipping scholars with the tools to translate theoretical concepts into practical, quantifiable measures.

Key Takeaways

  • Operationalization is crucial for converting theoretical constructs into measurable variables, forming the backbone of empirical research.
  • Identifying the right variables involves distinguishing between constructs and variables, and selecting those that align with the research objectives.
  • The validity and reliability of measurements are ensured by choosing appropriate measurement instruments and calibrating them for consistency.
  • Quantitative analysis of qualitative data requires careful operationalization to maintain the integrity and applicability of research findings.
  • Operationalization impacts research outcomes by influencing study validity, generalizability, and contributing to the academic field's advancement.

Understanding the Concept of Operationalization in Research

Defining operationalization.

Operationalization is the cornerstone of quantitative research, transforming abstract concepts into measurable entities. It is the process by which you translate theoretical constructs into variables that can be empirically measured. This crucial step allows you to quantify the phenomena of interest, paving the way for systematic investigation and analysis.

To operationalize a variable effectively, you must first clearly define the construct and then determine the specific ways in which it can be observed and quantified. For instance, if you're studying the concept of 'anxiety,' you might operationalize it by measuring heart rate, self-reported stress levels, or the frequency of anxiety-related behaviors.

Consider the following aspects when operationalizing your variables:

  • The type of variable (e.g., binary, continuous, categorical)
  • The units of measurement (e.g., dollars, frequency, Likert scale)
  • The method of data collection (e.g., surveys, observations, physiological measures)

By meticulously defining and measuring your variables, you ensure that your research can be rigorously tested and validated, contributing to the robustness and credibility of your findings.

The Role of Operationalization in Quantitative Research

In quantitative research, operationalization is the cornerstone that bridges the gap between abstract concepts and measurable outcomes. It involves defining your research variables in practical, quantifiable terms, allowing for precise data collection and analysis. Operationalization transforms theoretical constructs into indicators that can be empirically tested , ensuring that your study can be objectively evaluated against your hypotheses.

Operationalization is not just about measurement, but about the meaning behind the numbers. It requires careful consideration to select the most appropriate indicators for your variables. For instance, if you're studying educational achievement, you might operationalize this as GPA, standardized test scores, or graduation rates. Each choice has implications for what aspect of 'achievement' you're measuring:

  • GPA reflects consistent performance across a variety of subjects.
  • Standardized test scores may indicate aptitude in specific areas.
  • Graduation rates can signify the completion of an educational milestone.

By operationalizing variables effectively, you lay the groundwork for a robust quantitative study. This process ensures that your research can be replicated and that your findings contribute meaningfully to the existing body of knowledge.

Differences Between Endogenous and Exogenous Variables

In the realm of research, understanding the distinction between endogenous and exogenous variables is crucial for designing robust experiments and drawing accurate conclusions. Endogenous variables are those that are influenced within the context of the study, often affected by other variables in the system. In contrast, exogenous variables are external factors that are not influenced by the system under study but can affect endogenous variables.

When operationalizing variables, it is essential to identify which are endogenous and which are exogenous to establish clear causal relationships. Exogenous variables are typically manipulated to observe their effect on endogenous variables, thereby testing hypotheses about causal links. For example, in a study on education outcomes, student motivation might be an endogenous variable, while teaching methods could be an exogenous variable manipulated by the researcher.

Consider the following points to differentiate between these two types of variables:

  • Endogenous variables are outcomes within the system, subject to influence by other variables.
  • Exogenous variables serve as inputs or causes that can be controlled or manipulated.
  • The operationalization of endogenous variables requires careful consideration of how they are measured and how they interact with other variables.
  • Exogenous variables, while not requiring operationalization, must be selected with an understanding of their potential impact on the system.

Identifying Variables for Operationalization

Distinguishing between variables and constructs.

In the realm of research, it's crucial to differentiate between variables and constructs. A variable is a specific, measurable characteristic that can vary among participants or over time. Constructs, on the other hand, are abstract concepts that are not directly observable and must be operationalized into measurable variables. For example, intelligence is a construct that can be operationalized by measuring IQ scores, which are variables.

Variables can be classified into different types , each with its own method of measurement. Here's a brief overview of these types:

  • Continuous: Can take on any value within a range (e.g., height, weight).
  • Ordinal: Represent order without specifying the magnitude of difference (e.g., socioeconomic status levels).
  • Nominal: Categories without a specific order (e.g., types of fruit).
  • Binary: Two categories, often representing presence or absence (e.g., employed/unemployed).
  • Count: The number of occurrences (e.g., number of visits to a website).

When you embark on your research journey, ensure that you clearly identify each construct and the corresponding variable that will represent it in your study. This clarity is the foundation for a robust and credible research design.

Criteria for Selecting Variables

When you embark on the journey of operationalizing variables for your research, it is crucial to apply a systematic approach to variable selection. Variables should be chosen based on their relevance to your research questions and hypotheses , ensuring that they directly contribute to the investigation of your theoretical constructs.

Consider the type of variable you are dealing with—whether it is continuous, ordinal, nominal, binary, or count. Each type has its own implications for how data will be collected and analyzed. For instance, continuous variables allow for a wide range of values, while binary variables are restricted to two possible outcomes. Here is a brief overview of variable types and their characteristics:

  • Continuous : Can take on any value within a range
  • Ordinal : Values have a meaningful order but intervals are not necessarily equal
  • Nominal : Categories without a meaningful order
  • Binary : Only two possible outcomes
  • Count : Integer values that represent the number of occurrences

Additionally, ensure that the levels of the variable encompass all possible values and that these levels are clearly defined. For binary and ordinal variables, this means specifying the two outcomes or the order of values, respectively. For continuous variables, define the range and consider using categories like 'above X' or 'below Y' if there are no natural bounds to the values.

Lastly, the proxy attribute of the variable should be considered. This refers to the induced variations or treatment conditions in your experiment. For example, if you are studying the effect of a buyer's budget on purchasing decisions, the proxy attribute might include different budget levels such as $5, $10, $20, and $40.

Developing Hypotheses and Research Questions

After grasping the fundamentals of your research domain, the next pivotal step is to develop a clear and concise hypothesis. This hypothesis will serve as the foundation for your experimental design and guide the direction of your study. Formulating a hypothesis requires a deep understanding of the variables at play and their potential interrelations . It's essential to ensure that your hypothesis is testable and that you have a structured plan for how to test it.

Once your hypothesis is established, you'll need to craft research questions that are both specific and measurable. These questions should stem directly from your hypothesis and aim to dissect the larger inquiry into more manageable segments. Here's how to find research question: start by identifying key outcomes and potential causes that might affect these outcomes. Then, design an experiment to induce variation in the causes and measure the outcomes. Remember, the clarity of your research questions will significantly impact the effectiveness of your data analysis later on.

To aid in this process, consider the following steps:

  • Synthesize the existing literature to identify gaps and opportunities for further investigation.
  • Define a clear problem statement that your research will address.
  • Establish a purpose statement that guides your inquiry without advocating for a specific outcome.
  • Develop a conceptual and theoretical framework to underpin your research.
  • Formulate quantitative and qualitative research questions that align with your hypothesis and frameworks.

Effective experimental design involves identifying variables, establishing hypotheses, choosing sample size, and implementing randomization and control groups to ensure reliable and meaningful research results.

Choosing the Right Measurement Instruments

Types of measurement instruments.

When you embark on the journey of operationalizing your variables, selecting the right measurement instruments is crucial. These instruments are the tools that will translate your theoretical constructs into observable and measurable data. Understanding the different types of measurement instruments is essential for ensuring that your data accurately reflects the constructs you are studying.

Measurement instruments can be broadly categorized into five types: continuous, ordinal, nominal, binary, and count. Each type is suited to different kinds of data and research questions. For instance, a continuous variable, like height, can take on any value within a range, while an ordinal variable represents ordered categories, such as a satisfaction scale.

Here is a brief overview of the types of measurement instruments:

  • Continuous : Can take on any value within a range; e.g., temperature, weight.
  • Ordinal : Represents ordered categories; e.g., Likert scales for surveys.
  • Nominal : Categorizes data without a natural order; e.g., types of fruit, gender.
  • Binary : Has only two categories; e.g., yes/no questions, presence/absence.
  • Count : Represents the number of occurrences; e.g., the number of visits to a website.

Choosing the appropriate instrument involves considering the nature of your variable, the level of detail required, and the context of your research. For example, if you are measuring satisfaction levels, you might use a Likert scale, which is an ordinal type of instrument. On the other hand, if you are counting the number of times a behavior occurs, a count instrument would be more appropriate.

Ensuring Validity and Reliability

To ensure the integrity of your research, it is crucial to select measurement instruments that are both valid and reliable. Validity refers to the degree to which an instrument accurately measures what it is intended to measure. Reliability, on the other hand, denotes the consistency of the instrument across different instances of measurement.

When choosing your instruments, consider the psychometric properties that have been documented in large cohort studies or previous validations. For instance, scales should have demonstrated internal consistency reliability, which can be assessed using statistical measures such as Cronbach's alpha. It is also important to calibrate your instruments to maintain consistency over time and across various contexts.

Here is a simplified checklist to guide you through the process:

  • Review literature for previously validated instruments
  • Check for cultural and linguistic validation if applicable
  • Assess internal consistency reliability (e.g., Cronbach's alpha)
  • Perform pilot testing and calibration
  • Plan for ongoing assessment of instrument performance

Calibrating Instruments for Consistency

Calibration is a critical step in ensuring that your measurement instruments yield reliable and consistent results. It involves adjusting the instrument to align with a known standard or set of standards. Calibration must be performed periodically to maintain the integrity of data collection over time.

When calibrating instruments, you should follow a systematic approach. Here is a simple list to guide you through the process:

  • Identify the standard against which the instrument will be calibrated.
  • Compare the instrument's output with the standard.
  • Adjust the instrument to minimize any discrepancies.
  • Document the calibration process and results for future reference.

It's essential to recognize that different instruments may require unique calibration methods. For instance, a scale used for measuring weight will be calibrated differently than a thermometer used for temperature. Below is an example of how calibration data might be recorded in a table format:

Instrument Standard Used Pre-Calibration Reading Post-Calibration Adjustment Date of Calibration
Scale 1 kg Weight 1.02 kg -0.02 kg 2023-04-15
Thermometer 0°C Ice Bath 0.5°C -0.5°C 2023-04-15

Remember, the goal of calibration is not just to adjust the instrument but to understand its behavior and limitations. This understanding is crucial for interpreting the data accurately and ensuring that your research findings are robust and reliable.

Quantifying Variables: From Theory to Practice

Translating theoretical constructs into measurable variables.

Operationalizing a variable is the cornerstone of empirical research, transforming abstract concepts into quantifiable measures. Your ability to effectively operationalize variables is crucial for testing hypotheses and advancing knowledge within your field. Begin by identifying the key constructs of your study and consider how they can be observed in the real world.

For instance, if your research involves the construct of 'anxiety,' you must decide on a method to measure it. Will you use a self-reported questionnaire, physiological indicators, or a combination of both? Each method has implications for the type of data you will collect and how you will interpret it. Below is an example of how you might structure this information:

  • Construct: Anxiety
  • Measurement Method: Self-reported questionnaire
  • Instrument: Beck Anxiety Inventory
  • Scale: 0 (no anxiety) to 63 (severe anxiety)

Once you have chosen an appropriate measurement method, ensure that it aligns with your research objectives and provides valid and reliable data. This process may involve adapting existing instruments or developing new ones to suit the specific needs of your study. Remember, the operationalization of your variables sets the stage for the empirical testing of your theoretical framework.

Assigning Units and Scales of Measurement

Once you have translated your theoretical constructs into measurable variables, the next critical step is to assign appropriate units and scales of measurement. Units are the standards used to quantify the value of your variables, ensuring consistency and robustness in your data. For instance, if you are measuring time spent on a task, your unit might be minutes or seconds.

Variables can be categorized into types such as continuous, ordinal, nominal, binary, or count. This classification aids in selecting the right scale of measurement and is crucial for the subsequent statistical analysis. For example, a continuous variable like height would be measured in units such as centimeters or inches, while an ordinal variable like satisfaction level might be measured on a Likert scale ranging from 'Very Dissatisfied' to 'Very Satisfied'.

Here is a simple table illustrating different variable types and their potential units or scales:

Variable Type Example Unit/Scale
Continuous Height Centimeters (cm)
Ordinal Satisfaction Level Likert Scale (1-5)
Nominal Blood Type A, B, AB, O
Binary Gender Male (1), Female (0)
Count Number of Visits Count (number of visits)

Remember, the choice of units and scales will directly impact the validity of your research findings. It is essential to align them with your research objectives and the nature of the data you intend to collect.

Handling Qualitative Data in Quantitative Analysis

When you embark on the journey of operationalizing variables, you may encounter the challenge of incorporating qualitative data into a quantitative framework. Operationalization is the process of translating abstract concepts into measurable variables in research, which is crucial for ensuring the study's validity and reliability. However, qualitative data, with its rich, descriptive nature, does not lend itself easily to numerical representation.

To effectively handle qualitative data, you must first systematically categorize the information. This can be done through coding, where themes, patterns, and categories are identified. Once coded, these qualitative elements can be quantified. For example, the frequency of certain themes can be counted, or the presence of specific categories can be used as binary variables (0 for absence, 1 for presence).

Consider the following table that illustrates a simple coding scheme for qualitative responses:

Theme Code Frequency
Satisfaction 1 45
Improvement Needed 2 30
No Opinion 3 25

This table represents a basic way to transform qualitative feedback into quantifiable data, which can then be analyzed using statistical methods. It is essential to ensure that the coding process is consistent and that the interpretation of qualitative data remains faithful to the original context. By doing so, you can enrich your quantitative analysis with the depth that qualitative insights provide, while maintaining the rigor of a quantitative approach.

Designing the Experimental Framework

Creating a structured causal model (scm).

In your research, constructing a Structured Causal Model (SCM) is a pivotal step that translates your theoretical understanding into a practical framework. SCMs articulate the causal relationships between variables through a set of equations or functions, allowing you to make clear and testable hypotheses about the phenomena under study. By defining these relationships explicitly, SCMs facilitate the prediction and manipulation of outcomes in a controlled experimental setting.

When developing an SCM, consider the following steps:

  • Identify the key variables and their hypothesized causal connections.
  • Choose the appropriate mathematical representation for each relationship (e.g., linear, logistic).
  • Determine the directionality of the causal effects.
  • Specify any interaction terms or non-linear dynamics that may be present.
  • Validate the SCM by ensuring it aligns with existing theoretical and empirical evidence.

Remember, the SCM is not merely a statistical tool; it embodies your hypotheses about the causal structure of your research question. As such, it should be grounded in theory and prior research, while also being amenable to empirical testing. The SCM approach circumvents the need to search for causal structures post hoc, as it requires you to specify the causal framework a priori, thus avoiding common pitfalls such as 'bad controls' and ensuring that exogenous variation is properly accounted for.

Determining the Directionality of Variables

In the process of operationalizing variables, understanding the directionality is crucial. Directed acyclic graphs (DAGs) serve as a fundamental tool in delineating causal relationships between variables. The direction of the arrow in a DAG explicitly indicates the causal flow, which is essential for constructing a valid Structural Causal Model (SCM).

When you classify variables, you must consider their types —continuous, ordinal, nominal, binary, or count. This classification not only aids in understanding the variables' nature but also in selecting the appropriate statistical methods for analysis. Here is a simple representation of variable types and their characteristics:

Variable Type Description
Continuous Can take any value within a range
Ordinal Ranked order without fixed intervals
Nominal Categories without a natural order
Binary Two categories, often 0 and 1
Count Non-negative integer values

By integrating the directionality and type of variables into your research design, you ensure that the operationalization is aligned with the underlying theoretical framework. This alignment is pivotal for the subsequent phases of data collection and analysis, ultimately impacting the robustness of your research findings.

Pre-Analysis Planning and Experimental Design

As you embark on the journey of experimental design, it's crucial to have a clear pre-analysis plan. This plan will guide you through the data collection process and ensure that your analysis is aligned with your research objectives. Developing a pre-analysis plan is akin to creating a roadmap for your research , providing direction and structure to the analytical phase of your study.

To mitigate thesis anxiety , a structured approach to experimental design is essential. Begin by identifying your main research questions and hypotheses. Then, delineate the methods you'll use to test these hypotheses, including the statistical models and the criteria for interpreting results. Here's a simplified checklist to help you organize your pre-analysis planning:

  • Define the research questions and hypotheses
  • Select the statistical methods for analysis
  • Establish criteria for interpreting the results
  • Plan for potential contingencies and alternative scenarios

Remember, the robustness of your findings hinges on the meticulousness of your experimental design. By adhering to a well-thought-out pre-analysis plan, you not only enhance the credibility of your research but also pave the way for a smoother, more confident research experience.

Data Collection Strategies

Selecting appropriate data collection methods.

When you embark on the journey of research, selecting the right data collection methods is pivotal to the integrity of your study. It's essential to identify the research method as qualitative, quantitative, or mixed, and provide a clear overview of how the study will be conducted. This includes detailing the instruments or methods you will use, the subjects involved, and the setting of your research.

To ensure that your findings are reliable and valid, it is crucial to modify the data collection process , refine variables, and implement controls. This is where understanding how to find literature on existing methods can be invaluable. Literature reviews help you evaluate scientific literature for measures with strong psychometric properties and use cases relevant to your study. Consider the following steps to guide your selection process:

  • Review criteria and priorities for construct selection.
  • Evaluate relevant scientific literature for established measures.
  • Examine measures used in large epidemiologic studies for alignment opportunities.
  • Coordinate internally to avoid duplication and ensure comprehensive coverage.

By meticulously selecting data collection methods that align with your research objectives and hypotheses, you lay the groundwork for insightful and impactful research findings.

Sampling Techniques and Population Considerations

When you embark on the journey of research, selecting the appropriate sampling techniques is crucial to the integrity of your study. Sampling enables you to focus on a smaller subset of participants, which is a practical approach to studying larger populations. It's essential to consider the balance between a sample that is both representative of the population and manageable in size.

To ensure that your sample accurately reflects the population, you must be meticulous in your selection process. Various sampling methods are available, each with its own advantages and disadvantages. For instance, random sampling can help eliminate bias, whereas stratified sampling ensures specific subgroups are represented. Below is a list of common sampling techniques and their primary characteristics:

  • Random Sampling : Each member of the population has an equal chance of being selected.
  • Stratified Sampling : The population is divided into subgroups, and random samples are taken from each.
  • Cluster Sampling : The population is divided into clusters, and a random sample of clusters is studied.
  • Convenience Sampling : Participants are selected based on their availability and willingness to take part.
  • Snowball Sampling : Existing study subjects recruit future subjects from among their acquaintances.

Remember, the choice of sampling method will impact the generalizability of your findings. It's imperative to align your sampling strategy with your research questions and the practical constraints of your study.

Ethical Considerations in Data Collection

When you embark on data collection, ethical considerations must be at the forefront of your planning. Ensuring the privacy and confidentiality of participants is paramount. You must obtain informed consent, which involves clearly communicating the purpose of your research, the procedures involved, and any potential risks or benefits to the participants.

Consider the following points to uphold ethical standards:

  • Respect for anonymity and confidentiality
  • Voluntary participation with the right to withdraw at any time
  • Minimization of any potential harm or discomfort
  • Equitable selection of participants

It is also essential to consider the sensitivity of the information you are collecting and the context in which it is gathered. For instance, when dealing with vulnerable populations or sensitive topics, additional safeguards should be in place to protect participant welfare. Lastly, ensure that your data collection methods comply with all relevant laws and institutional guidelines.

Analyzing and Interpreting Quantified Data

Statistical analysis techniques.

Once you have collected your data, it's time to analyze it using appropriate statistical techniques. The choice of analysis method depends on the nature of your data and the research questions you aim to answer. For instance, if you're looking to understand relationships between variables, regression analysis might be the method of choice. Choosing the right statistical method is crucial as it influences the validity of your research findings.

Several software packages can aid in this process, such as SPSS, R, or Python libraries like 'pandas' and 'numpy' for data manipulation, and 'pingouin' or 'stats' for statistical testing. Each package has its strengths, and your selection should align with your research needs and proficiency level.

To illustrate, consider the following table summarizing different statistical tests and their typical applications:

Statistical Test Application Scenario
T-test Comparing means between two groups
ANOVA Comparing means across multiple groups
Chi-square test Testing relationships between categorical variables
Regression analysis Exploring relationships between and independent variables

After conducting the appropriate analyses, interpreting the results is your next step. This involves understanding the statistical significance, effect sizes, and confidence intervals to draw meaningful conclusions about your research hypotheses.

Understanding the Implications of Data

Once you have quantified your research variables, the next critical step is to understand the implications of the data you've collected. Interpreting the data correctly is crucial for drawing meaningful conclusions that align with your research objectives. It's essential to recognize that data does not exist in a vacuum; it is influenced by the context in which it was gathered. For instance, quantitative data in the form of surveys, polls, and questionnaires can yield precise results, but these must be considered within the broader social and environmental context to avoid misleading interpretations.

The process of data analysis often reveals patterns and relationships that were not initially apparent. However, caution is advised when inferring causality from these findings. The presence of a correlation does not imply causation, and additional analysis is required to establish causal links. Below is a simplified example of how data might be presented and the initial observations that could be drawn:

Variable A Variable B Correlation Coefficient
5 20 0.85
15 35 0.75
25 50 0.65

In this table, a strong positive correlation is observed between Variable A and Variable B, suggesting a potential relationship worth further investigation. Finally, the interpretation of data should always be done with an awareness of its limitations and the potential for different conclusions when analyzing it independently. This understanding is vital for ensuring that your research findings are robust, reliable, and ultimately, valuable to the field of study.

Reporting Findings with Precision

When you report the findings of your research, precision is paramount. Ensure that your data is presented clearly , with all necessary details to support your conclusions. This includes specifying the statistical methods used, such as regression analysis, and the outcomes derived from these methods. For example, when reporting statistical results, it's common to include measures like mean, standard deviation (SD), range, median, and interquartile range (IQR).

Consider the following table as a succinct way to present your data:

Measure Value
Mean X
SD Y
Range Z
Median A
IQR B

In addition to numerical data, provide a narrative that contextualizes your findings within the broader scope of your research. Discuss any potential biases, such as item non-response, and how they were addressed. The use of Cronbach's alpha coefficients to assess the reliability of scales is an example of adding depth to your analysis. By combining quantitative data with qualitative insights, you create a comprehensive picture that enhances the credibility and impact of your research.

Ensuring the Robustness of Operationalized Variables

Cross-validation and replication studies.

In your research endeavors, cross-validation and replication studies are pivotal for affirming the robustness of your operationalized variables. Principles of replicability include clear methodology, transparent data sharing, independent verification, and reproducible analysis. These principles are not just theoretical ideals; they are practical steps that ensure the reliability of scientific findings. Documentation and collaboration are key for reliable research in scientific progress, and they facilitate the critical examination of results by the wider research community.

When you conduct replication studies, you are essentially retesting the operationalized variables in new contexts or with different samples. This can reveal the generalizability of your findings and highlight any contextual factors that may influence the outcomes. For instance, a study's results may vary when different researchers analyze the data independently, underscoring the importance of context in social sciences. Below is a list of considerations to keep in mind when planning for replication studies:

  • Ensure that the methodology is thoroughly documented and shared.
  • Seek independent verification of the findings by other researchers.
  • Test the operationalized variables across different populations and settings.
  • Be prepared for results that may differ from the original study, and explore the reasons why.

By adhering to these practices, you contribute to the cumulative knowledge in your field and enhance the credibility of your research.

Dealing with Confounding Variables

In your research, identifying and managing confounding variables is crucial to ensure the integrity of your findings. Confounding variables are external factors that can influence the outcome of your study, potentially leading to erroneous conclusions if not properly controlled. To mitigate their effects, it's essential to first recognize these variables during the design phase of your research.

Once identified, you can employ various strategies to control for confounders. Here are some common methods:

  • Randomization : Assign subjects to treatment or control groups randomly to evenly distribute confounders.
  • Matching : Pair subjects with similar characteristics to balance out confounding variables.
  • Statistical control : Use regression or other statistical techniques to adjust for the influence of confounders.

Remember, the goal is to isolate the relationship between the independent and dependent variables by minimizing the impact of confounders. This process often involves revisiting and refining your experimental design to ensure that your results will be as accurate and reliable as possible.

Continuous Improvement of Measurement Methods

In the pursuit of scientific rigor, you must recognize the necessity for the continuous improvement of measurement methods. Measurements of abstract constructs have been criticized for their theoretical limitations, underscoring the importance of refinement and evolution in operationalization. To enhance the robustness of your research, consider the following steps:

  • Regularly review the units and standards used to represent your variables' quantified values.
  • Prioritize the inclusion of previously validated concepts and measures, especially those with strong psychometric properties across multiple languages and cultural contexts.
  • Conduct follow-on experiments to test the reliability and validity of your measures.
  • Engage in cross-validation with other studies to ensure consistency and generalizability.

By committing to these practices, you ensure that your operationalization process remains dynamic and responsive to new insights and methodologies.

The Impact of Operationalization on Research Outcomes

Influence on study validity.

The operationalization of variables is pivotal to the validity of your study. Operationalization ensures that the constructs you are examining are not only defined but also measured in a way that is consistent with your research objectives. This process directly impacts the credibility of your findings and the conclusions you draw.

When you operationalize a variable, you translate abstract concepts into measurable indicators . This translation is crucial because it allows you to collect data that can be analyzed statistically. For instance, if you are studying the concept of 'anxiety,' you might operationalize it by measuring heart rate, self-reported stress levels, or the frequency of anxiety-related behaviors.

Consider the following aspects to ensure that your operationalization strengthens the validity of your study:

  • Conceptual clarity : Define your variables clearly to avoid ambiguity.
  • Construct validity : Choose measures that accurately capture the theoretical constructs.
  • Reliability : Use measurement methods that yield consistent results over time.
  • Contextual relevance : Ensure that your operationalization is appropriate for the population and setting of your study.

By meticulously operationalizing your variables, you not only bolster the validity of your research but also enhance the trustworthiness of your findings within the scientific community.

Operationalization and Research Generalizability

The process of operationalization is pivotal in determining the generalizability of your research findings. Generalizability refers to the extent to which the results of a study can be applied to broader contexts beyond the specific conditions of the original research. By carefully operationalizing variables, you ensure that the constructs you measure are not only relevant within your study's framework but also resonate with external scenarios.

When operationalizing variables, consider the universality of the constructs. Are the variables culturally bound, or do they hold significance across different groups? This consideration is crucial for cross-cultural studies or research aiming for wide applicability. To illustrate, here's a list of factors that can influence generalizability:

  • Cultural relevance of the operationalized variables
  • The representativeness of the sample population
  • The settings in which data is collected
  • The robustness of the measurement instruments

Ensuring that these factors are addressed in your operationalization strategy can significantly enhance the generalizability of your research. Remember, the more universally applicable your operationalized variables are, the more impactful your research can be in contributing to the global body of knowledge.

Contributions to the Field of Study

Operationalization is not merely a methodological step in research; it is a transformative process that can significantly enhance the impact of your study. By meticulously converting theoretical constructs into measurable variables, you contribute to the field by enabling empirical testing of theories and facilitating the accumulation of knowledge. This process of quantification allows for the precise replication of research , which is essential for the advancement of science.

Your contributions through operationalization can be manifold. They may include the development of new measurement instruments, the refinement of existing scales, or the introduction of innovative ways to quantify complex constructs. Here's how your work can contribute to the field:

  • Providing a clear basis for empirical inquiry
  • Enhancing the precision of research findings
  • Enabling cross-study comparisons and meta-analyses
  • Informing policy decisions and practical applications

Each of these points reflects the broader significance of operationalization. It's not just about the numbers; it's about the clarity and applicability of research that can inform future studies, contribute to theory development, and ultimately, impact real-world outcomes.

Challenges and Solutions in Operationalizing Variables

Common pitfalls in operationalization.

Operationalizing variables is a critical step in research, yet it is fraught with challenges that can compromise the integrity of your study. One major pitfall is the misidentification of variables, which can lead to incorrect assumptions about causal relationships. Avoiding the inclusion of 'bad controls' that can confound results is essential. For instance, when dealing with observational data that includes many variables, it's easy to misspecify a model, leading to biased estimates.

Another common issue arises when researchers infer causal structure ex-post , which can be problematic without a correctly specified Directed Acyclic Graph (DAG). This underscores the importance of identifying causal structures ex-ante to ensure that the operationalization aligns with the true nature of the constructs being studied. Here are some key considerations to keep in mind:

  • Ensure clarity in distinguishing between variables and constructs.
  • Select variables based on clear criteria that align with your research questions.
  • Validate the causal structure of your data before operationalization.

By being mindful of these aspects, you can mitigate the risks associated with operationalization and enhance the credibility of your research findings.

Adapting Operationalization in Evolving Research Contexts

As research contexts evolve, so must the methods of operationalization. The dynamic nature of social sciences, for instance, requires that operationalization be flexible enough to account for changes in environment and population. Outcomes that are valid in one context may not necessarily apply to another , necessitating a reevaluation of operational variables.

In the face of such variability, you can employ a structured approach to adapt your operationalization. Consider the following steps:

  • Review the theoretical underpinnings of your constructs.
  • Reassess the variables and their definitions in light of the new context.
  • Modify measurement instruments to better capture the nuances of the changed environment.
  • Conduct pilot studies to test the revised operationalization.

Furthermore, the integration of automation in research allows for a more nuanced operationalization process. You can select variables, define their operationalization, and customize statistical analyses to fit the evolving research landscape. This adaptability is crucial in ensuring that your research remains relevant and accurate over time.

Case Studies and Best Practices

In the realm of research, the operationalization of variables is a critical step that transforms abstract concepts into measurable entities. Case studies often illustrate the practical application of these principles, providing you with a blueprint for success. For instance, the ThinkIB guide on DP Psychology emphasizes the importance of clearly stating the independent and dependent variables when formulating a hypothesis. This clarity is paramount for the integrity of your research design.

Best practices suggest a structured approach to operationalization. Begin by identifying your variables and ensuring they align with your research objectives. Next, select appropriate measurement instruments that offer both validity and reliability. Finally, design your study to account for potential confounding variables and employ statistical techniques that will yield precise findings. Below is a list of steps that encapsulate these best practices:

  • Clearly define your variables.
  • Choose measurement instruments with care.
  • Design a study that minimizes bias.
  • Analyze data with appropriate statistical methods.
  • Report findings with accuracy and detail.

By adhering to these steps and learning from the experiences of others, you can enhance the robustness of your research and contribute meaningful insights to your field of study.

Operationalizing variables is a critical step in research and data analysis, but it comes with its own set of challenges. From ensuring reliability and validity to dealing with the complexities of real-world data, researchers and analysts often need to find innovative solutions. If you're grappling with these issues, don't worry! Our website offers a wealth of resources and expert guidance to help you navigate the intricacies of operationalizing variables. Visit us now to explore our articles, tools, and support services designed to streamline your research process.

In conclusion, operationalizing variables is a critical step in the research process that transforms abstract concepts into measurable entities. This guide has delineated a systematic approach to quantifying research constructs, ensuring that they are empirically testable and scientifically valid. By carefully defining variables, selecting appropriate measurement scales, and establishing reliable and valid indicators, researchers can enhance the rigor of their studies and contribute to the advancement of knowledge in their respective fields. It is our hope that this step-by-step guide has demystified the operationalization process and provided researchers with the tools necessary to embark on their empirical inquiries with confidence and precision.

Frequently Asked Questions

What is operationalization in research.

Operationalization is the process of defining a research construct in measurable terms, specifying the exact operations involved in measuring it, and determining the method of data collection.

How do I differentiate between endogenous and exogenous variables?

Endogenous variables are the outcomes within a study that are influenced by other variables, while exogenous variables are external factors that influence the endogenous variables but are not influenced by them within the study's scope.

What criteria should I consider when selecting variables for operationalization?

Criteria include relevance to the research question, measurability, the potential for valid and reliable data collection, and the ability to be manipulated or observed within the study's design.

Why is ensuring validity and reliability important in measurement?

Validity ensures that the instrument measures what it's supposed to measure, while reliability ensures that the measurement results are consistent and repeatable over time.

How do I handle qualitative data in quantitative analysis?

Qualitative data can be quantified through coding, categorization, and the use of scales or indices to convert non-numerical data into a format that can be statistically analyzed.

What is a Structured Causal Model (SCM) in experimental design?

An SCM is a conceptual model that outlines the causal relationships between variables, helping researchers to understand and predict the effects of manipulating one or more variables.

What are some common pitfalls in operationalizing variables?

Common pitfalls include poorly defined constructs, using unreliable or invalid measurement instruments, and failing to account for confounding variables that may affect the results.

How does operationalization impact research outcomes?

Proper operationalization leads to more accurate and meaningful data, which in turn affects the validity and generalizability of the research findings, contributing to the field of study.

Operationalizing Variables: Strategies for Ensuring Reliable and Valid Measurements

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Trending Topics for Your Thesis: What's Hot in 2024

Trending Topics for Your Thesis: What's Hot in 2024

How to Deal with a Total Lack of Motivation, Stress, and Anxiety When Finishing Your Master's Thesis

How to Deal with a Total Lack of Motivation, Stress, and Anxiety When Finishing Your Master's Thesis

Confident student with laptop and colorful books

Mastering the First Step: How to Start Your Thesis with Confidence

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

how to write operationalised hypothesis

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

Study Notes

  • Operationalisation

Last updated 22 Mar 2021

  • Share on Facebook
  • Share on Twitter
  • Share by Email

This term describes when a variable is defined by the researcher and a way of measuring that variable is developed for the research.

This is not always easy and care must be taken to ensure that the method of measurement gives a valid measure for the variable.

The term operationalisation can be applied to independent variables (IV), dependent variables (DV) or co variables (in a correlational design)

Examples of operationalised variables are given in the table below:

how to write operationalised hypothesis

You might also like

Observational techniques - introduction, a level psychology topic quiz - research methods.

Quizzes & Activities

Model Answer for Question 11 Paper 2: AS Psychology, June 2016 (AQA)

Exam Support

Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

Topic Videos

Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)

Our subjects.

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

Instant insights, infinite possibilities

What is operationalization?

Last updated

5 February 2023

Reviewed by

Cathy Heath

Short on time? Get an AI generated summary of this article instead

Operationalization is the process of turning abstract concepts or ideas into observable and measurable phenomena. This process is often used in the social sciences to quantify vague or intangible concepts and study them more effectively. Examples are emotions and attitudes.

In this article, we will look at operationalization’s definition, benefits, and limitations. We will also provide a step-by-step guide on how to operationalize a concept, including examples and tips for choosing appropriate indicators.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • Defining operationalization

Operationalization is the process of defining abstract concepts in a way that makes them observable and measurable.

For example, suppose a researcher wants to study the concept of anxiety. They might operationalize it by measuring anxiety levels using a standardized questionnaire or by observing physiological changes, like increased heart rate.

Operationalization is mainly a social sciences tool that is applied in many other disciplines. It allows many unquantifiable concepts in these fields to be directly measured, enabling researchers to study and understand them with more accuracy.

  • Why does operationalization matter?

As a qualitative researcher, accurately defining the types of variables you intend to study is vital. Transparent and specific operational definitions can help you measure relevant concepts and apply methods consistently.

Here are a few reasons why operationalization matters:

Improved reliability and validity. Researchers can ensure that their results are more reliable and valid when they clearly define and measure variables. This is especially important when comparing results from different studies, as it gives researchers confidence that they are measuring the same thing.

Enhanced objectivity: Operationalization helps reduce subjectivity in research by providing clear guidelines for measuring variables. This can help minimize bias and lead to more objective results.

Better decision-making. Operationalization allows researchers to collect and analyze quantifiable data . This can be useful for making informed decisions in various settings. For example, operationalization can be used to assess group or individual performance in the workplace, leading to improved productivity and execution.

Enhanced understanding of abstract concepts. Operationalizing abstract concepts helps researchers study and understand them more effectively. This can lead to new insights and a deeper understanding of complex phenomena.

Operationalization can reduce the possibility of research bias, minimize subjectivity, and enhance a study’s reliability.

  • How to operationalize concepts

Researchers can operationalize abstract concepts in different ways. They will need to measure slightly varying aspects of a concept, so they must be specific about what they are measuring.

Testing a hypothesis using multiple operationalizations of an abstract concept allows you to analyze whether the results depend on the measure type you use. Your results will be labeled “robust” if there’s a lack of variance when using different measures.

The three main steps of operationalization are:

1. Identifying the main concepts you are interested in studying

Begin by defining your research topic and proposing an initial research question . For example, “What effects does daily social media use have on young teenagers’ attention spans?” Here, the main concepts are social media use and attention span.

2. Choosing variables to represent each concept

Each main concept will typically have several measurable properties or variables that can be used to represent it.

For example, the concept of social media use has the following variables:

Number of hours spent

Frequency of use

Preferred social media platform

The concept of attention span has the following variables:

Quality of attention

Amount of attention span

You can find additional variables to use in your study. Consider reviewing previous related studies and identifying underused or relevant variables to fill gaps in the existing literature.

3. Select indicators to measure your variables

Indicators are specific methods or tools used to numerically measure variables. There are two main types of indicators: objective and subjective.

Objective indicators are based on external, observable data, such as scores on a standardized test. You might use a standardized attention span test to measure the variable “amount of attention span.”

Subjective indicators are based on self-reported data, such as questionnaire responses. You might use a self-report questionnaire to measure the variable “quality of attention.”

Choose indicators that are appropriate for the variables you are studying that will provide accurate and reliable data.

Once you have operationalized your concepts, report your study variables and indicators in the methodology section. Evaluate how your operationalization choice may have impacted your results or interpretations under the discussion section.

  • Strengths of operationalization

Operationalizing concepts in research allows you to measure variables across various contexts consistently. Below are the strengths of operationalization for your research purposes:

Objectivity

Data collection using a standardized approach reduces the chance and opportunity for biased or subjective observation interpretation. Operationalization provides clear guidelines for measuring variables, which allows you to interpret observations objectively.

Scientific research relies on observable and measurable findings. Operationalization breaks down abstract, unmeasurable concepts into observable and measurable elements.

Reliability

A good operationalization increases high replicability odds by other researchers. Clearly defining and measuring variables helps you ensure your results are reliable and valid. This is especially important when comparing results from different studies, as it gives you confidence that you’re measuring the same thing.

Better decision-making

Operationalization allows researchers to collect and analyze quantifiable data. It can aid informed decision-making in various settings. For example, operationalization can be used to assess group or individual performance in the workplace, leading to improved productivity and performance.

  • Limitations of operationalization

Operationalization has many benefits, but it also has some limitations that researchers should be aware of:

Measurement error

Operationalization relies on the use of indicators to measure variables. These can be subject to measurement errors. For example, response bias can occur with self-reported questionnaires, and the concept being measured may not be accurately captured.

The Mars Climate Orbiter failure is an example of the effects of measurement errors. The expensive satellite disappeared somewhere above Mars, leading to a critical mission failure.

The failure occurred because of a massive error in the thrust force calculation. Engineering teams used different standardized measurements (metric and imperial) in their calculations. This non-standardization of units resulted in the loss of hundreds of millions of dollars and several wasted years of planning and construction.

Limited scope

Operationalization is limited to the specific variables and indicators chosen by the researcher. This issue is further compounded by the fact that concepts generally vary across different time periods and social settings. This means that certain aspects of a concept may be overlooked or captured inaccurately.

Reductiveness

It is relatively easy for operational definitions to miss valuable and subjective concept perceptions by attempting to simplify complex concepts to mere numbers.

Careful consideration is necessary

Researchers must carefully consider their operational definitions and choose appropriate indicators to measure their variables accurately. Failing to do so can lead to inaccurate or misleading results.

For instance, context-specific operationalization can validate real-life experiences. On the other hand, it becomes challenging to compare studies in case the measures vary greatly.

  • Examples of operationalization

Operationalization is used to convert abstract concepts into observable and measurable traits.

For example, the concept of social anxiety is virtually impossible to measure directly, but you can operationalize it in different ways.

Using a social anxiety scale to self-rate scores is one such way. You can also measure the total incidents of recent behavioral occurrences related to avoiding crowded places. Observing and measuring the levels of physical anxiety symptoms in almost any social situation is another option.

The following are more examples of how researchers might operationalize different concepts:

Concept: happiness

Variables: life satisfaction, positive emotions, negative emotions

Indicators: self-report questionnaire, daily mood diary, facial expression analysis

Concept: intelligence

Variables: verbal ability, spatial ability, memory

Indicators: standardized intelligence test, reaction time tasks, memory tests

Concept: parenting styles

Variables: authoritative, authoritarian, permissive, neglectful

Indicators: parenting style questionnaire, observations of parent–child interactions, parent-reported child behavior

Operationalization can also be used to conduct research in a typical workplace setting.

  • Applications of operationalization

Operationalization can be applied in a range of situations, including research studies, workplace performance assessments, and decision-making processes.

Here are a few examples of how operationalization might be used in different settings:

Research studies: It is commonly used in research studies to define and measure variables systematically and objectively. This allows researchers to collect and analyze quantifiable data that can be used to answer research questions and test hypotheses.

Workplace performance assessments: Operationalization can be used to assess group or individual performance in the workplace by defining and measuring relevant variables such as productivity, efficiency, and teamwork. This can help identify areas for improvement and increase overall workplace performance.

Decision-making processes: It can aid informed decision-making in various settings by defining and measuring relevant variables. For example, a business might use operationalization to compare the costs and benefits of different marketing strategies or to assess the effectiveness of employee training programs.

Business: Operationalization can be used in business settings to assess the performance of employees, departments, or entire organizations. It can also be used to measure the effectiveness of business processes or strategies, such as customer satisfaction or marketing campaigns.

Health: It can be used in the health field to define and measure variables such as disease prevalence, treatment effectiveness, and patient satisfaction. Personnel and organizational performance can also be measured through operationalization.

Education: Operationalization can be used in education settings to define and measure variables such as student achievement, teacher effectiveness, or school performance. It can also be used to assess the effectiveness of educational programs or interventions.

By defining and measuring variables in a systematic and objective way, operationalization can help researchers and professionals make more informed decisions, improve performance, and better understand complex concepts.

What is the process of operationalization in research?

Operationalization is the process of defining abstract concepts through measurable observations and quantifiable data. It involves identifying the main concepts you are interested in studying, choosing variables to represent each concept, and selecting indicators to measure those variables.

Operationalization helps researchers study abstract concepts in a more systematic and objective way, improving the reliability and validity of their research and reducing subjectivity and bias.

What does it mean to operationalize a variable?

Operationalizing a variable involves clearly defining and measuring it in a way that allows researchers to collect and analyze quantifiable data.

It typically involves selecting indicators to measure the variable and determining how the data will be interpreted.

Operationalization helps researchers measure variables with more accuracy and consistency, improving the reliability and validity of their research.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

psychology

Operational Hypothesis

An Operational Hypothesis is a testable statement or prediction made in research that not only proposes a relationship between two or more variables but also clearly defines those variables in operational terms, meaning how they will be measured or manipulated within the study. It forms the basis of an experiment that seeks to prove or disprove the assumed relationship, thus helping to drive scientific research.

The Core Components of an Operational Hypothesis

Understanding an operational hypothesis involves identifying its key components and how they interact.

The Variables

An operational hypothesis must contain two or more variables — factors that can be manipulated, controlled, or measured in an experiment.

The Proposed Relationship

Beyond identifying the variables, an operational hypothesis specifies the type of relationship expected between them. This could be a correlation, a cause-and-effect relationship, or another type of association.

The Importance of Operationalizing Variables

Operationalizing variables — defining them in measurable terms — is a critical step in forming an operational hypothesis. This process ensures the variables are quantifiable, enhancing the reliability and validity of the research.

Constructing an Operational Hypothesis

Creating an operational hypothesis is a fundamental step in the scientific method and research process. It involves generating a precise, testable statement that predicts the outcome of a study based on the research question. An operational hypothesis must clearly identify and define the variables under study and describe the expected relationship between them. The process of creating an operational hypothesis involves several key steps:

Steps to Construct an Operational Hypothesis

  • Define the Research Question : Start by clearly identifying the research question. This question should highlight the key aspect or phenomenon that the study aims to investigate.
  • Identify the Variables : Next, identify the key variables in your study. Variables are elements that you will measure, control, or manipulate in your research. There are typically two types of variables in a hypothesis: the independent variable (the cause) and the dependent variable (the effect).
  • Operationalize the Variables : Once you’ve identified the variables, you must operationalize them. This involves defining your variables in such a way that they can be easily measured, manipulated, or controlled during the experiment.
  • Predict the Relationship : The final step involves predicting the relationship between the variables. This could be an increase, decrease, or any other type of correlation between the independent and dependent variables.

By following these steps, you will create an operational hypothesis that provides a clear direction for your research, ensuring that your study is grounded in a testable prediction.

Evaluating the Strength of an Operational Hypothesis

Not all operational hypotheses are created equal. The strength of an operational hypothesis can significantly influence the validity of a study. There are several key factors that contribute to the strength of an operational hypothesis:

  • Clarity : A strong operational hypothesis is clear and unambiguous. It precisely defines all variables and the expected relationship between them.
  • Testability : A key feature of an operational hypothesis is that it must be testable. That is, it should predict an outcome that can be observed and measured.
  • Operationalization of Variables : The operationalization of variables contributes to the strength of an operational hypothesis. When variables are clearly defined in measurable terms, it enhances the reliability of the study.
  • Alignment with Research : Finally, a strong operational hypothesis aligns closely with the research question and the overall goals of the study.

By carefully crafting and evaluating an operational hypothesis, researchers can ensure that their work provides valuable, valid, and actionable insights.

Examples of Operational Hypotheses

To illustrate the concept further, this section will provide examples of well-constructed operational hypotheses in various research fields.

The operational hypothesis is a fundamental component of scientific inquiry, guiding the research design and providing a clear framework for testing assumptions. By understanding how to construct and evaluate an operational hypothesis, we can ensure our research is both rigorous and meaningful.

Examples of Operational Hypothesis:

  • In Education : An operational hypothesis in an educational study might be: “Students who receive tutoring (Independent Variable) will show a 20% improvement in standardized test scores (Dependent Variable) compared to students who did not receive tutoring.”
  • In Psychology : In a psychological study, an operational hypothesis could be: “Individuals who meditate for 20 minutes each day (Independent Variable) will report a 15% decrease in self-reported stress levels (Dependent Variable) after eight weeks compared to those who do not meditate.”
  • In Health Science : An operational hypothesis in a health science study might be: “Participants who drink eight glasses of water daily (Independent Variable) will show a 10% decrease in reported fatigue levels (Dependent Variable) after three weeks compared to those who drink four glasses of water daily.”
  • In Environmental Science : In an environmental study, an operational hypothesis could be: “Cities that implement recycling programs (Independent Variable) will see a 25% reduction in landfill waste (Dependent Variable) after one year compared to cities without recycling programs.”

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

how to write operationalised hypothesis

Operationalization

Operationalization is the process of strictly defining variables into measurable factors. The process defines fuzzy concepts and allows them to be measured, empirically and quantitatively.

This article is a part of the guide:

  • Null Hypothesis
  • Research Hypothesis
  • Defining a Research Problem
  • Selecting Method

Browse Full Outline

  • 1 Scientific Method
  • 2.1.1 Null Hypothesis
  • 2.1.2 Research Hypothesis
  • 2.2 Prediction
  • 2.3 Conceptual Variable
  • 3.1 Operationalization
  • 3.2 Selecting Method
  • 3.3 Measurements
  • 3.4 Scientific Observation
  • 4.1 Empirical Evidence
  • 5.1 Generalization
  • 5.2 Errors in Conclusion

For experimental research , where interval or ratio measurements are used, the scales are usually well defined and strict.

Operationalization also sets down exact definitions of each variable, increasing the quality of the results, and improving the robustness of the design .

Operationalization in Research

For many fields, such as social science, which often use ordinal measurements, operationalization is essential. It determines how the researchers are going to measure an emotion or concept, such as the level of distress or aggression.

Such measurements are arbitrary, but allow others to replicate the research, as well as perform statistical analysis of the results.

how to write operationalised hypothesis

Fuzzy Concepts

Fuzzy concepts are vague ideas, concepts that lack clarity or are only partially true. These are often referred to as " conceptual variables ".

It is important to define the variables to facilitate accurate replication of the research process . For example, a scientist might propose the hypothesis :

“Children grow more quickly if they eat vegetables.”

What does the statement mean by 'children'? Are they from America or Africa. What age are they? Are the children boys or girls? There are billions of children in the world, so how do you define the sample groups?

How is 'growth' defined? Is it weight, height, mental growth or strength? The statement does not strictly define the measurable, dependent variable .

What does the term 'more quickly' mean? What units, and what timescale, will be used to measure this? A short-term experiment, lasting one month, may give wildly different results than a longer-term study.

The frequency of sampling is important for operationalization , too.

If you were conducting the experiment over one year, it would not be practical to test the weight every 5 minutes, or even every month. The first is impractical, and the latter will not generate enough analyzable data points.

What are 'vegetables'? There are hundreds of different types of vegetable, each containing different levels of vitamins and minerals. Are the children fed raw vegetables, or are they cooked? How does the researcher standardize diets, and ensure that the children eat their greens?

how to write operationalised hypothesis

The above hypothesis is not a bad statement, but it needs clarifying and strengthening, a process called operationalization.

The researcher could narrow down the range of children, by specifying age, sex, nationality, or a combination of attributes. As long as the sample group is representative of the wider group, then the statement is more clearly defined.

Growth may be defined as height or weight. The researcher must select a definable and measurable variable, which will form part of the research problem and hypothesis.

Again, 'more quickly' would be redefined as a period of time, and stipulate the frequency of sampling. The initial research design could specify three months or one year, giving a reasonable time scale and taking into account time and budget restraints.

Each sample group could be fed the same diet, or different combinations of vegetables. The researcher might decide that the hypothesis could revolve around vitamin C intake, so the vegetables could be analyzed for the average vitamin content.

Alternatively, a researcher might decide to use an ordinal scale of measurement, asking subjects to fill in a questionnaire about their dietary habits.

Already, the fuzzy concept has undergone a period of operationalization, and the hypothesis takes on a testable format.

The Importance of Operationalization

Of course, strictly speaking, concepts such as seconds, kilograms and centigrade are artificial constructs, a way in which we define variables.

Pounds and Fahrenheit are no less accurate, but were jettisoned in favor of the metric system. A researcher must justify their scale of scientific measurement .

Operationalization defines the exact measuring method used, and allows other scientists to follow exactly the same methodology. One example of the dangers of non-operationalization is the failure of the Mars Climate Orbiter .

This expensive satellite was lost, somewhere above Mars, and the mission completely failed. Subsequent investigation found that the engineers at the sub-contractor, Lockheed, had used imperial units instead of metric units of force.

A failure in operationalization meant that the units used during the construction and simulations were not standardized. The US engineers used pound force, the other engineers and software designers, correctly, used metric Newtons.

This led to a huge error in the thrust calculations, and the spacecraft ended up in a lower orbit around Mars, burning up from atmospheric friction. This failure in operationalization cost hundreds of millions of dollars, and years of planning and construction were wasted.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Jan 17, 2008). Operationalization. Retrieved Sep 11, 2024 from Explorable.com: https://explorable.com/operationalization

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Get all these articles in 1 guide.

Want the full version to study at home, take to school or just scribble on?

Whether you are an academic novice, or you simply want to brush up your skills, this book will take your academic writing skills to the next level.

how to write operationalised hypothesis

Download electronic versions: - Epub for mobiles and tablets - For Kindle here - PDF version here

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

how to write operationalised hypothesis

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Psychol Med
  • v.43(3); 2021 May

A Student’s Guide to the Classification and Operationalization of Variables in the Conceptualization and Design of a Clinical Study: Part 2

Chittaranjan andrade.

Dept. of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.

Students without prior research experience may not know how to conceptualize and design a study. This is the second of a two-part article that explains how an understanding of the classification and operationalization of variables is the key to the process. Variables need to be operationalized; that is, defined in a way that permits their accurate measurement. They may be operationalized as categorical or continuous variables. Categorical variables are expressed as category frequencies in the sample as a whole, while continuous variables are expressed as absolute numbers for each subject in the sample. Continuous variables should not be converted into categorical variables; there are many reasons for this, the most important being that precision and statistical power are lost. However, in certain circumstances, such as when variables cannot be accurately measured, when there is an administrative or public health need, or when the data are not normally distributed, it may be justifiable to do so. Confounding variables are those that increase (or decrease) the apparent effect of an independent variable on the dependent variable, thereby producing spurious (or suppressing true) relationships. These and other concepts are explained with the help of clinically relevant examples.

Introduction

The first article in this two-part series explained what independent and dependent variables are, how an understanding of these is important in framing hypotheses, and what operationalization of a variable entails. 1 This article is the second part; it discusses categorical and continuous variables and explains the importance of identifying and studying confounding variables.

Categorical and Continuous Variables

Categorical variables are also known as discrete or qualitative variables. These are variables that are operationalized as categories. The value of the variable is expressed as a category count (also known as category frequency) for the sample, or as a cell count (or cell frequency) when the data are presented in a table. Sex is an example of a categorical variable; it is operationalized into male and female categories and is expressed as the number (count, frequency) of males and the number (count, frequency) of females in the sample. Religion (categories: Hindu, Muslim, Christian, Other), place of residence (categories: rural, semi-urban, urban), occupation (categories: unskilled, semi-skilled, skilled), family history of mental illness (categories: present, absent), HIV test result (categories: positive, negative), two-year survival (categories: alive, dead), and response to a question (categories: yes, no) are other examples of categorical variables.

Continuous variables are also known as quantitative variables. These are variables that are operationalized as a number for each unit in the sample. Age is an example of a continuous variable; it is represented by a number for each subject in the sample. Other examples of continuous variables include height, number of previous depressive episodes, total score on a depression rating scale, red blood cell count, and duration of survival after treatment for cancer. Whereas the value of a categorical variable is expressed as category frequencies in the sample, the value of a continuous variable is expressed as mean, median, mode, range, standard deviation, and/or interquartile range for the sample.

Expressing Continuous Variables as Categorical Variables

Continuous variables can be converted into categorical variables. Thus, instead of expressing age as a value for each subject (and as mean and standard deviation for the sample), we can describe age as a category size, as shown in Table 1 . There are many reasons why this is not good statistical practice 2 , 3 :

  • We lose precision. Imagine that we classify the variable “Examination result” into pass and fail categories with fail defined as a score of <40 marks and pass as a score of >40 marks. With such a classification, we have no idea whether those who passed barely managed to pass or passed with flying colors. This is exactly what happens when, in a drug trial, we classify patients as responders and nonresponders; we have no idea whether those who responded improved partially and so continued to exhibit residual symptoms, or recovered completely. And, if a male subject in our study does not tell us his exact age but hedges, saying “I’m 20 to 29 years old,” and we are unhappy with his statement, why would we record age as presented in Table 1 ? Loss of precision impairs our ability to see and understand finer details in the data.
  • We may classify subjects in a way that defies common sense. With reference to Table 1 , subjects who are 20 and 29 years old, who are nine years apart in age, are classified in the same group (20 to 29 years) whereas subjects who are 29 and 30 years old, who are just one year apart, are classified in different groups (20 to 29 years and 30 to 39 years).
  • The boundaries of the categories are arbitrary. There is no mathematical reason why we should prefer categories that increase in units of ten (e.g., 20 to 29, 30 to 39) as opposed, say, to categories that increase in units of eight (e.g., 20 to 27, 28 to 35).
  • Statistical significance is harder to achieve in tests applied to categorical data. So, if continuous data are converted into categorical data, the analyses may be contaminated by type 2 (false negative) errors.

Presentation of Age as a Categorical Variable

AgeAntidepressant [n (%)]Placebo [n (%)]
20–29 years10 (20%)16 (32%)
30–39 years12 (24%)24 (48%)
40–49 years28 (56%)10 (20%)

Note: Data presented are cell count (percentage in the treatment group).

The above notwithstanding, there are certain situations in which continuous variables may justifiably be converted into categorical variables 2 , 3 :

  • There is an administrative or public health need. As an example of an administrative need, age may be categorized into pediatric, adult, and geriatric groups for hospital services. As an example of a public health need, blood pressure and low-density lipoprotein cholesterol values may be split into different categories, using different cut-off values, for category-specific treatment guidelines. Similarly, classifying patients into responders and nonresponders satisfies a public health need; it helps people understand how many patients can be expected to improve to at least the cut-off point (e.g., 50% improvement) that was used to define treatment response.
  • The variable cannot be accurately measured. This happens, for example, when rural or illiterate patients are unable to state their exact age but are able to say that they are in their twenties, thirties, or forties.
  • A variable shows a nonlinear association with the dependent variable. As an example, in the well-known Yerkes–Dodson curve, low and high stress are both associated with poorer performance or achievement, whereas moderate stress is associated with higher performance or achievement. There may, likewise, be nonlinear associations between alcohol intake and ischemic heart disease events.
  • The data are skewed, that is, there are some subjects (outliers) with extreme values. In such situations, the mean is not an appropriate measure of central tendency; rather, the median is appropriate. The data, then, are either ranked and studied using nonparametric tests or categorized and further studied. As an example, data on physical exercise variables are usually skewed: most people do little exercise, some people exercise moderately, and a few people exercise vigorously. For statistical analysis, such data may be categorized into tertiles, quartiles, or quintiles.
  • The data are presented in a histogram. When histograms are necessary to explain the data, the only way to do so is to present continuous data in class intervals (or categories) along the X-axis, with frequency count displayed on the Y-axis.
  • When risks need to be calculated. In logistic regression analyses, continuous data may be converted into categories (e.g., quintiles) so that odds ratios (e.g., for highest vs. lowest quintiles) can be calculated. Such a strategy can be used, for example, to examine the influence of baseline low-density lipoprotein cholesterol level on the five-year risk of an ischemic heart disease event. As a simpler example, in a randomized, placebo-controlled trial, the relative risk of response or remission can only be determined if a cut-off is applied to continuous data (obtained using a rating scale) to classify patients into response or remission categories.

Confounding Variables

A discussion on variables is incomplete without a section on confounding variables. Consider the following example. We study data on mortality associated with helmet use in a thousand two-wheeler traffic accident cases ( Table 2 ). Here, wearing a helmet is the (categorical) independent variable, and occurrence of death is the (categorical) dependent variable. It would indeed seem, from the statistically significant finding in Table 2 , that wearing a helmet protects the rider from serious head injuries and death. Can we conclude that the data prove a cause and effect relationship and hence that wearing a helmet should be made compulsory for two-wheeler riders? To the layperson’s eye, it would seem so.

Mortality Associated With Traffic Accidents Involving Two-Wheeler Riders

 Survived the AccidentDied in the Accident
Riders wearing helmet500 50
Riders not wearing helmet300150

Note: Chi-square = 90.91; df = 1; P < 0.001.

This was an observational study, not a randomized controlled trial. So, we must consider another possibility. What if personality factors are responsible for reckless riding (resulting in more serious and potentially fatal accidents) as well as for a disregard for safety measures such as helmet use? If such is the case, then recklessness, rather than not wearing a helmet, would partly or wholly explain the mortality risk. So, personality may be a confounding variable that influences the association between wearing a helmet and the risk of death in a traffic accident. Expressed otherwise, people who are careful by nature may ride carefully and be less likely to suffer an accident. People who are careful are also more likely to obey laws and wear helmets. So, carefulness, as a personality trait, is what saves lives; wearing a helmet is merely a marker for carefulness and hence a lower risk of accidents.

Similarly, we may find that overcrowding of wards is associated with a higher risk of postoperative infection. It may not be the crowding of beds in the wards that increases the risk; rather, when wards are crowded, the number of visitors proportionately increases, and the risk of germs being brought into the ward also proportionately increases. Thus, visitor density, and not bed density, may explain the relationship between overcrowding of wards and postoperative infection. Bed density is just a marker of (increased) risk of infection.

In an example cited in the first article in this series, 1 age is the confounding variable that explains the association between the number of teeth and body weight in preschool children. In an example relevant to perinatal psychiatry, the increased risk of autism spectrum disorder (ASD) associated with antidepressant (AD) use during pregnancy may not be because of AD exposure; it may be because of genetic factors or behavioral changes associated with depression. The use of AD to treat depression during pregnancy is therefore merely a marker for the increased risk of ASD. Thus, the genetic factors and behavioral changes are confounding variables that partly or wholly explain the association between AD exposure and the risk of ASD. 4 , 5

Readers may note that confounding variables may also mask relationships between independent and dependent variables. 6 For example, a study may find that stress has no significant effect on performance. However, had motivation been examined as a confounding variable, the study might have found that stress increased performance in persons with high motivation and decreased performance in persons with low motivation, resulting in a net absence of effect in the sample as a whole. A more extensive discussion on confounding variables is available elsewhere. 6 – 9

From this discussion, it should be clear that once the independent variable has been defined, confounding variables comprise all the other variables that can either increase or decrease the value of the dependent variable. In good research, therefore, all variables which influence the dependent variable should be measured and studied, and not just the independent variable(s) of interest. It would be disastrous to complete a study and then discover that an important confound had not been studied.

Concluding Notes

It is important to identify and study all important dependent and independent variables related to the study’s subject. This requires careful thought at the time of preparation of the research protocol, itself. As an example, in a study on sociodemographic and clinical predictors of AD response in patients with major depressive disorder, after data collection is complete, it is too late to remember that adherence to AD treatment should also have been studied.

Studying a large number of variables improves the understanding of the subject of the study as well as allows the examination of the influence of confounding variables. Thus, if a researcher wishes to examine the effects of diet on ischemic heart disease, it is not sufficient to collect information only about dietary habits and the occurrence of myocardial infarction in a large cohort of subjects. A far better design would be to include:

  • The following independent variables: age, sex, dietary habits, exercise patterns, smoking, alcohol intake, family history of ischemic heart disease, medical history of diabetes and hypertension, and so on.
  • The following dependent variables: occurrence(s) of angina during follow-up, occurrence(s) of myocardial infarction during follow-up, need for angioplasty or other surgical intervention, and occurrence of cardiovascular death.

It is important to study the same variable using different instruments. This is because not all instruments are equal in sensitivity, specificity, reliability, validity, and other characteristics. Furthermore, different instruments may measure different aspects of the same variable, or different concepts of the same variable when the variable is abstract (e.g., personality, depression, and psychosis). Thus, as explained in the first part of this article, 1 when studying the influence of medication on depression, it is a good idea to use several different methods for the assessment of the disorder, and not just one method, and several methods for the assessment of the same dependent variable, and not just one.

Declaration of Conflicting Interests: The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding: The author received no financial support for the research, authorship, and/or publication of this article.

  • Abnormal Psychology
  • Assessment (IB)
  • Biological Psychology
  • Cognitive Psychology
  • Criminology
  • Developmental Psychology
  • Extended Essay
  • General Interest
  • Health Psychology
  • Human Relationships
  • IB Psychology
  • IB Psychology HL Extensions
  • Internal Assessment (IB)
  • Love and Marriage
  • Post-Traumatic Stress Disorder
  • Prejudice and Discrimination
  • Qualitative Research Methods
  • Research Methodology
  • Revision and Exam Preparation
  • Social and Cultural Psychology
  • Studies and Theories
  • Teaching Ideas

Travis Dixon October 24, 2016 Assessment (IB) , Internal Assessment (IB) , Research Methodology

how to write operationalised hypothesis

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email a link to a friend (Opens in new window)

Updated June 2020

Writing good hypotheses in IB Psychology IAs is something many students find challenging. After moderating another 175+ IA’s this year I could see some common errors students were making. This post hopes to give a clear explanation with examples to help with this tricky task. 

Null and Alternative Hypotheses

Null hypothesis (h0).

how to write operationalised hypothesis

Our teacher support pack has everything students and teachers need to get top marks in the IA. Download a Free preview from https://store.themantic-education.com/

The term “null” means having no value, significance or effect. It also refers to something associated with zero. A null hypothesis in a student’s IA, therefore, should state that there is (or will be) no effect of the IV on the DV. This is what we assume to be true until we have the evidence to suggest otherwise.

A common misconception is that the hypothesis is based on the sample in the study. Our hypotheses should actually be about the population from which we’ve drawn the sample, not the sample itself. Therefore, when writing our hypotheses we can use present tense instead of future tense (e.g. There is instead of There will be… ).

Having said that, in the IB Psych’ IA, the IB is apparently assuming the hypotheses are based on the sample (because variables need to be operationalized) so writing your hypotheses as predictions of what might happen in the experiment is fine (see below for examples).

IB Psych IA Tip: It’s fine (and even recommended) to state in your null hypotheses that there will be no significant difference between the two conditions in your experiment or any differences are due to chance (see footnote 1)

The Alternative Hypothesis (H1)

This is also referred to as the research hypothesis or the experimental hypothesis. It’s an alternative hypothesis to the null because if the null is not true, there must be an alternative explanation.

Generally speaking it’s not a prediction of what will happen in the study, but it’s an assumption about what is true for the population being studied. But, similar to the null hypothesis in the IB Psych IA you can (and should) write this about a prediction of what you think will happen in your study (see examples below).

This must be operationalized: it must be evident how the variables will be quantified, and may be either one- or two-tailed (directional or non-directional).

Read more: 

Operational Definitions

  • Key Studies for the IA
  • Lesson Idea: Inferential Statistics

To avoid issues with copying and plagiarism, the following examples are from studies that students cannot do for the internal assessment. Some are taken from this post on how to operationalize definitions of variables .

A Fictional Drug Trial

  • H1: Taking Paroxetine  will decrease symptoms of PTSD.
  • Ho: Taking paroxetine will not decrease symptoms of PTSD.

Operationalized (as if for an IB Psych IA):

  • H1: The experimental group who take 20mg of Paroxetine (as a pill) every morning for 7 days will have a larger decrease in symptoms (as measured by the CAPs scale) when compared to the control group who will take an identical placebo pill every morning for 7 days.

A Fictional Study on Body Image*

  • H1: Viewing media that portrays the thin ideal increases feelings of body image dissatisfaction.
  • Ho: Types of media viewed does not affect body image dissatisfaction.
  • H1: Watching a video portraying the thin ideal in a  Baywatch  film trailer will result in higher scores on the Body Shape Questionnaire (BSQ-34) compared with watching media with “normal” body types in the Grownups film trailer.

*This entire IA exemplar is included in the IA Teacher Support Pack.  

A fictional study on weight training.

  • H1: Listening to music affects training performance.
  • Ho: Music has no effect on training performance.
  • H1:  Listening to heavy metal rock music (AC/DC songs) causes a difference in the number of push-ups performed compared to listening to classical music (Mozart’s symphony #41).

One vs. Two Tailed

It is important to know if your hypothesis is one or two-tailed. This will influence the type of inferential statistics test you use later. If you have a one-tailed hypotheses, you should use a one-tailed test. And if you have a two-tailed hypothesis? You guessed it – a two-tailed test.

The one vs two tailed debate still continues in Psychology ( read more ). The IB ignores this and makes it simple: one tailed hypotheses = one tailed test. No ifs, ands, or buts!

If you are predicting that one of your conditions in your experiment will have a higher value than the other, it’s one-tailed (because you know the direction of the effect – the IV is increasing the DV). Similarly, your hypothesis is one-tailed if you are predicting that manipulating the IV will cause a decrease in the DV.

However, if you think your IV will have an effect, but you’re not sure if it will increase  or  decrease it, this is two-tailed.

Of the three examples above, can you tell which one is two-tailed and which one is one-tailed?

Read more about operationally defining your variables in your hypotheses in this blog post .

Points to Remember

  • Hypotheses are based on the population, not the sample, so you can write in present tense. However, the norm for IB Psych IA’s is to write in the future tense as a prediction of what will happen in your experiment.
  • In IB IA’s, we’re hypothesizing about a causal relationship of an IV on a DV in a population – the hypotheses should reflect that causal relationship.
  • Inferential tests are test of the null hypothesis (hence it’s called null hypothesis testing). We are conducting the tests to see the chances of obtaining our results even if the null is true (i.e. there is no effect).

Footnote 1: Saying “that there will be no significant difference between the two conditions in or any differences are due to chance” is technically an incorrect way to state a null hypothesis. That’s because when we conduct our inferential tests we’re seeing what the probability is of getting our results even if our null were true. So if we get a p value of say 0.10 (10%), according to the above null hypothesis we’re saying there is a 10% chance that there will be no significant difference between the two conditions, which isn’t actually accurate (don’t worry if I’ve lost you – it’s mind bending stuff). This is one of those instances where poor statistical practice has ingrained itself in IB assessment. But on the plus side it does make it easier for students (and not enough time is spent on this for the bad habits to be too ingrained anyway).

Travis Dixon

Travis Dixon is an IB Psychology teacher, author, workshop leader, examiner and IA moderator.

operationalised hypothesis

Quick reply, related discussions.

  • Aqa psychology how to write hypothesis Directional/ Non directional
  • OCR A-LEVEL PSYCHOLOGY PAPER 1 (H567/01) - 17th May [Exam Chat]
  • confusion re: null hypothesis for population mean test
  • How to do hypothesis testing
  • Year 12 alevel Geography NEA help
  • Alevel Biology
  • Hypothesis testing with critical values
  • Hypothesis testing - Alevel Math AQA
  • Geography nea
  • Geography NEA help
  • geography nea proposal form
  • Hypothesis testing
  • Alevel Biology Practicals
  • nea geography a level hypothesis
  • paper 2 biology
  • Applied science Unit 6

Last reply 1 week ago

Last reply 2 weeks ago

Last reply 3 weeks ago

Last reply 4 weeks ago

Last reply 1 month ago

Last reply 2 months ago

Last reply 3 months ago

Articles for you

How to write an excellent personal statement in 10 steps

How to write an excellent personal statement in 10 steps

Finding a university place in Ucas Clearing 2024: 10 top tips to help you get ready

Finding a university place in Ucas Clearing 2024: 10 top tips to help you get ready

Top 10 tips for Ucas Clearing 2024

Bringing business people into the classroom: what students learn from industry professionals

Bringing business people into the classroom: what students learn from industry professionals

Try out the app

Continue on web

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

how to write operationalised hypothesis

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.

One Mind Therapy

Operational Definition Psychology – Definition, Examples, and How to Write One

Elizabeth Research

Every good psychology study contains an operational definition for the variables in the research. An operational definition allows the researchers to describe in a specific way what they mean when they use a certain term. Generally, operational definitions are concrete and measurable. Defining variables in this way allows other people to see if the research has validity . Validity here refers to if the researchers are actually measuring what they intended to measure.

Definition: An operational definition is the statement of procedures the researcher is going to use in order to measure a specific variable.

We need operational definitions in psychology so that we know exactly what researchers are talking about when they refer to something. There might be different definitions of words depending on the context in which the word is used. Think about how words mean something different to people from different cultures. To avoid any confusion about definitions, in research we explain clearly what we mean when we use a certain term.

Operational Definition of Variables

Operational Definition Examples

Example one:.

A researcher wants to measure if age is related to addiction. Perhaps their hypothesis is: the incidence of addiction will increase with age. Here we have two variables, age and addiction. In order to make the research as clear as possible, the researcher must define how they will measure these variables. Essentially, how do we measure someone’s age and how to we measure addiction?

Variable One: Age might seem straightforward. You might be wondering why we need to define age if we all know what age is. However, one researcher might decide to measure age in months in order to get someone’s precise age, while another researcher might just choose to measure age in years. In order to understand the results of the study, we will need to know how this researcher operationalized age. For the sake of this example lets say that age is defined as how old someone is in years.

Variable Two: The variable of addiction is slightly more complicated than age. In order to operationalize it the researcher has to decide exactly how they want to measure addiction. They might narrow down their definition and say that addiction is defined as going through withdrawal when the person stops using a substance. Or the researchers might decide that the definition of addiction is: if someone currently meets the DSM-5 diagnostic criteria for any substance use disorder. For the sake of this example, let’s say that the researcher chose the latter.

Final Definition: In this research study age is defined as participant’s age measured in years and the incidence of addiction is defined as whether or not the participant currently meets the DSM-5 diagnostic criteria for any substance use disorder.

Example Two

A researcher wants to measure if there is a correlation between hot weather and violent crime. Perhaps their guiding hypothesis is: as temperature increases so will violent crime. Here we have two variables, weather and violent crime. In order to make this research precise the researcher will have to operationalize the variables.

Variable One: The first variable is weather. The researcher needs to decide how to define weather. Researchers might chose to define weather as outside temperature in degrees Fahrenheit. But we need to get a little more specific because there is not one stable temperature throughout the day. So the researchers might say that weather is defined as the high recorded temperature for the day measured in degrees Fahrenheit.

Variable Two: The second variable is violent crime. Again, the researcher needs to define how violent crime is measured. Let’s say that for this study it they use the FBI’s definition of violent crime . This definition describes violent crime as “murder and nonnegligent manslaughter, forcible rape, robbery, and aggravated assault”.

However, how do we actually know how many violent crimes were committed on a given day? Researchers might include in the definition something like: the number of people arrested that day for violent crimes as recorded by the local police.

Final Definition: For this study temperature was defined as high recorded temperature for the day measured in degrees Fahrenheit. Violent crime was defined as the number of people arrested in a given day for murder, forcible rape, robbery, and aggravated assault as recorded by the local police.

Examples of Operational Definitions

How to Write an Operational Definition

For the last example take the opportunity to see if you can write a clear operational definition for yourself. Imagine that you are creating a research study and you want to see if group therapy is helpful for treating social anxiety.

Variable One: How are you going to define group therapy? here are some things you might want to consider when creating your operational definition:

  • What type of group therapy?
  • Who is leading the therapy group?
  • How long do people participate in the therapy group for?
  • How can you “measure” group therapy?

There is no one way to write the operational definition for this variable. You could say something like group therapy was defined as a weekly cognitive behavioral therapy group led by a licensed MFT held over the course of ten weeks. Remember there are many ways to write an operational definition. You know you have written an effective one if another researcher could pick it up and create a very similar variable based on your definition.

Variable Two: The second variable you need to define is “effective treatment social anxiety”. Again, see if you can come up with an operational definition of this variable. This is a little tricky because you will need to be specific about what an effective treatment is as well as what social anxiety is. Here are some things to consider when writing your definition:

  • How do you know a treatment is effective?
  • How do you measure the effectiveness of treatment?
  • Who provides a reliable definition of social anxiety?
  • How can you measure social anxiety?

Again, there is no one right way to write this operational definition. If someone else could recreate the study using your definition it is probably an effective one. Here as one example of how you could operationalize the variable: social anxiety was defined as meeting the DSM-5 criteria for social anxiety and the effectiveness of treatment was defined as the reduction of social anxiety symptoms over the 10 week treatment period.

Final Definition: Take your definition for variable one and your definition for variable two and write them in a clear and succinct way. It is alright for your definition to be more than one sentence.

Why We Need Operational Definitions

There are a number of reasons why researchers need to have operational definitions including:

  • Replicability
  • Generalizability
  • Dissemination

The first reason was mentioned earlier in the post when reading research others should be able to assess the validity of the research. That is, did the researchers measure what they intended to measure? If we don’t know how researchers measured something it is very hard to know if the study had validity.

The next reason it is important to have an operational definition is for the sake of replicability . Research should be designed so that if someone else wanted to replicate it they could. By replicating research and getting the same findings we validate the findings. It is impossible to recreate a study if we are unsure about how they defined or measured the variables.

Another reason we need operational definitions is so that we can understand how generalizable the findings are. In research, we want to know that the findings are true not just for a small sample of people. We hope to get findings that generalize to the whole population. If we do not have operational definitions it is hard to generalize the findings because we don’t know who they generalize to.

Finally, operational definitions are important for the dissemination of information. When a study is done it is generally published in a peer-reviewed journal and might be read by other psychologists, students, or journalists. Researchers want people to read their research and apply their findings. If the person reading the article doesn’t know what they are talking about because a variable is not clear it will be hard to them to actually apply this new knowledge.

Receive updates from my blog!

Research Hypothesis In Psychology: Types, & Examples

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

how to write operationalised hypothesis

Transcription Service for Your Academic Paper

Start Transcription now

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Transcription Service for Your Paper

Printing & Binding with 3D Live Preview

Operationalization – how to do it right!

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Operationalization-250x166

Operationalization is essentially the measurement of a phenomenon that is not directly measurable. Operationalization defines a concept to make it measurable, stand out and be understandable. This article talks about operationalization to a broader extent by explaining what is and isn’t an example of the concept.

Inhaltsverzeichnis

  • 1 Operationalization - FAQ
  • 2 Operationalization: Definition
  • 3 How to operationalize: Step by step
  • 4 Advantages and disadvantages
  • 5 In a Nutshell

Operationalization - FAQ

What is operationalization in qualitative research.

Operationalization is a process by which researchers set up indicators to measure concepts. Moreover, evaluators set indicators that help in measuring any changes in concepts. Qualitative researchers use this process in the definition of key concepts used in their research.

Tip: If you are done with your academic work, we can help you with dissertation printing !

What is an example of operationalization?

Social anxiety is a concept that can’t be measured directly. Instead, you can operationalize it in several different ways. For instance, using a social anxiety scale to self-rate scores. Total incidents of recent behavioral incidents on avoiding crowded places and level of physical anxiety symptoms while in any social situations.

What is an operationalized variable?

When it comes to psychological research, there are two main variables; the independent and dependent variables. The independent variable is a variable that is changed or manipulated, while the dependent variable is measured. It measures to see if the independent variable has an impact on human behavior. Therefore, operationalized variable implies defining how the independent variable and dependent variable are measured.

What is the difference between indicators, variables and concepts?

Concepts can be defined as the phenomena or abstract ideas which are being studied. Indicators are ways of quantifying or measuring variables, while variables are characteristics and properties of the concept.

What's the difference between validity and reliability?

The difference between reliability and validity is that reliability is the consistency of a measure. Meaning whether you can reproduce the results under the same conditions. While validity means the accuracy of a measure. If the results are an actual representation of what they intended to measure.

Operationalization: Definition

Operationalization refers to converting abstract concepts into measurable observations. However, you can easily measure concepts like age or height while others like anxiety and spirituality can’t be measured. Through operationalization, one can systematically collect data regarding phenomena or processes that can’t be observed directly.

How to operationalize: Step by step

There are three main steps involved in operationalization:

Operationalization-Program-logic-and-intervention-protocol-90x90

Coming up with a program logic and intervention protocol

For a start, there should be a development of a program logic that describes what the program is for, change process, objectives, outcome and expected impact of the intervention. While coming up with program logic, it needs to have the support of an operationalized program logic. An intervention protocol for intervention has to specify:

  • Which components are effective
  • What is the importance of fidelity concerning adaptation? Is there room for adaptation of the content to the desired target group, does the protocol have to follow strictly?

Operationalization-In-depth-description-90x90

In-depth description of a complete and an acceptable delivery for the intervention

Elements that you will use in the intervention that will have to be delivered during the study to preserve treatment integrity need to be defined in terms of pre-specified success. The elements will have to be put in criteria for each intervention component for all the sessions and written down in the intervention protocol. Once there is a clear definition of the successful procedure, there must be a clarification of opportunities for adaptation to the intervention content to receivers. Lastly, success criteria must be measurable.

Operationalization-Description-of-factors-90x90

Description of factors that determine receipt of intervention

For the intervention receipt, it is up to the program developers to define the crucial components that determine when a person gets an intervention. For instance, an intervention may occur at a higher organizational level. What are the determinants of an individual’s exposure to an intervention? A simple receipt measurement of the intervention is attendance or participation. However, researchers need to pre-define the level of participation that is needed.

Moreover, during an intervention, a participant’s level will determine the amount of intervention that an individual takes up. Some factors play a huge role in an individual’s responsiveness, such as knowledge, satisfaction, engagement and pre-intervention expectations. However, in some situations, these factors don’t play a big role, while they may play a huge impact in some cases.

Advantages and disadvantages

Operationalization-Advantages

Advantages of operationalization

Operationalization brings about the possibility of consistently measuring variables over different contexts. Some of the advantages of operationalization include;

  • Objectivity : Operationalization brings about a standard approach that organizations such as colleges and universities can use to collect data that does not provide room for biased or subjective personal interpretations regarding observations.
  • Empiricism : While carrying out scientific research, it is done based on observing and measuring findings. Moreover, operational definitions are used in breaking down intangible concepts into characteristics that are recordable.
  • Reliability: A desirable operationalization can be used for long by other researchers. If other people use operationalization procedures to measure the same things, then the results need to be the same as those your organization got.

Operationalization-Disadvantages

Disadvantages of operationalization

Operational definitions of concepts can have challenges at times. Some of the disadvantages include:

  • Reductiveness : This procedure can easily miss out on subjective and meaningful perceptions of concepts through trying to eliminate complex concepts to numbers. For instance, asking students to rate their satisfaction with certain services offered in the university on a 10-point scale will not tell you the reasons why they were not satisfied.
  • Underdetermination: Several concepts vary in different social settings and time periods. For instance, poverty is a global problem but there is no exact income level used to determine poverty across different countries.
  • Lack of university : operationalization that is context-specific only help in preserving real-life experiences. However, they make it hard to relate studies, especially if there is a huge difference in the measures.

Operationalization-Thesis-Printing-Binding

Thesis Printing & Binding

You are already done writing your thesis and need a high quality printing & binding service? Then you are right to choose BachelorPrint! Check out our 24-hour online printing service. For more information click the button below :

In a Nutshell

  • Operationalization refers to a process that defines measuring a phenomenon that can’t be measured directly if its existence is directly affected by the phenomena. Operationalization, therefore, defines a concept that can be said to be fuzzy to make it measurable, understandable and distinguishable by empirical observation.
  • On the other hand, it can be said to define the extension to which a concept such as medicine which is a health phenomenon, can be defined by several indicators like tobacco smoking or body mass index. Another example can be visually processing certain objects’ availability in an environment that can be inferred by taking note of specific aspects of the reflected light.
  • In an example like health, it is hard to directly observe or measure the phenomena. Operationalization will help in measuring the existence and certain elements of the extension through measurable and observable effects that they contain.
  • At times, there are competing or multiple definitions for the same phenomenon. Analyzing the same phenomenon with different definitions can help check if the results will be affected by different definitions. This is known as checking robustness.

Bachelor Print is the most amazing company ever to print or bind academic work...

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Name
Anbieter Eigentümer dieser Website,
Zweck Speichert die Einstellungen der Besucher, die in der Cookie Box von Borlabs Cookie ausgewählt wurden.
Cookie Name borlabs-cookie
Cookie Laufzeit 1 Jahr
Name
Anbieter Bachelorprint
Zweck Erkennt das Herkunftsland und leitet zur entsprechenden Sprachversion um.
Datenschutzerklärung
Host(s) ip-api.com
Cookie Name georedirect
Cookie Laufzeit 1 Jahr
Name
Anbieter Playcanvas
Zweck Display our 3D product animations
Datenschutzerklärung
Host(s) playcanv.as, playcanvas.as, playcanvas.com
Cookie Laufzeit 1 Jahr

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Zweck Cookie von Google zur Steuerung der erweiterten Script- und Ereignisbehandlung.
Datenschutzerklärung
Cookie Name _ga,_gat,_gid
Cookie Laufzeit 2 Jahre

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Akzeptieren
Name
Anbieter Meta Platforms Ireland Limited, 4 Grand Canal Square, Dublin 2, Ireland
Zweck Wird verwendet, um Facebook-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .facebook.com
Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Zweck Wird zum Entsperren von Google Maps-Inhalten verwendet.
Datenschutzerklärung
Host(s) .google.com
Cookie Name NID
Cookie Laufzeit 6 Monate
Akzeptieren
Name
Anbieter Meta Platforms Ireland Limited, 4 Grand Canal Square, Dublin 2, Ireland
Zweck Wird verwendet, um Instagram-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .instagram.com
Cookie Name pigeon_state
Cookie Laufzeit Sitzung
Akzeptieren
Name
Anbieter Openstreetmap Foundation, St John’s Innovation Centre, Cowley Road, Cambridge CB4 0WS, United Kingdom
Zweck Wird verwendet, um OpenStreetMap-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .openstreetmap.org
Cookie Name _osm_location, _osm_session, _osm_totp_token, _osm_welcome, _pk_id., _pk_ref., _pk_ses., qos_token
Cookie Laufzeit 1-10 Jahre
Akzeptieren
Name
Anbieter Twitter International Company, One Cumberland Place, Fenian Street, Dublin 2, D02 AX07, Ireland
Zweck Wird verwendet, um Twitter-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .twimg.com, .twitter.com
Cookie Name __widgetsettings, local_storage_support_test
Cookie Laufzeit Unbegrenzt
Akzeptieren
Name
Anbieter Vimeo Inc., 555 West 18th Street, New York, New York 10011, USA
Zweck Wird verwendet, um Vimeo-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) player.vimeo.com
Cookie Name vuid
Cookie Laufzeit 2 Jahre
Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Zweck Wird verwendet, um YouTube-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) google.com
Cookie Name NID
Cookie Laufzeit 6 Monate

Privacy Policy Imprint

psychologyrocks

Hypotheses; directional and non-directional, what is the difference between an experimental and an alternative hypothesis.

Nothing much! If the study is a true experiment then we can call the hypothesis “an experimental hypothesis”, a prediction is made about how the IV causes an effect on the DV. In a study which does not involve the direct manipulation of an IV, i.e. a natural or quasi-experiment or any other quantitative research method (e.g. survey) has been used, then we call it an “alternative hypothesis”, it is the alternative to the null.

Directional hypothesis: A directional (or one-tailed hypothesis) states which way you think the results are going to go, for example in an experimental study we might say…”Participants who have been deprived of sleep for 24 hours will have more cold symptoms the week after exposure to a virus than participants who have not been sleep deprived”; the hypothesis compares the two groups/conditions and states which one will ….have more/less, be quicker/slower, etc.

If we had a correlational study, the directional hypothesis would state whether we expect a positive or a negative correlation, we are stating how the two variables will be related to each other, e.g. there will be a positive correlation between the number of stressful life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”. The directional hypothesis can also state a negative correlation, e.g. the higher the number of face-book friends, the lower the life satisfaction score “

Non-directional hypothesis: A non-directional (or two tailed hypothesis) simply states that there will be a difference between the two groups/conditions but does not say which will be greater/smaller, quicker/slower etc. Using our example above we would say “There will be a difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.”

When the study is correlational, we simply state that variables will be correlated but do not state whether the relationship will be positive or negative, e.g. there will be a significant correlation between variable A and variable B.

Null hypothesis The null hypothesis states that the alternative or experimental hypothesis is NOT the case, if your experimental hypothesis was directional you would say…

Participants who have been deprived of sleep for 24 hours will NOT have more cold symptoms in the following week after exposure to a virus than participants who have not been sleep deprived and any difference that does arise will be due to chance alone.

or with a directional correlational hypothesis….

There will NOT be a positive correlation between the number of stress life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”

With a non-directional or  two tailed hypothesis…

There will be NO difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.

or for a correlational …

there will be NO correlation between variable A and variable B.

When it comes to conducting an inferential stats test, if you have a directional hypothesis , you must do a one tailed test to find out whether your observed value is significant. If you have a non-directional hypothesis , you must do a two tailed test .

Exam Techniques/Advice

  • Remember, a decent hypothesis will contain two variables, in the case of an experimental hypothesis there will be an IV and a DV; in a correlational hypothesis there will be two co-variables
  • both variables need to be fully operationalised to score the marks, that is you need to be very clear and specific about what you mean by your IV and your DV; if someone wanted to repeat your study, they should be able to look at your hypothesis and know exactly what to change between the two groups/conditions and exactly what to measure (including any units/explanation of rating scales etc, e.g. “where 1 is low and 7 is high”)
  • double check the question, did it ask for a directional or non-directional hypothesis?
  • if you were asked for a null hypothesis, make sure you always include the phrase “and any difference/correlation (is your study experimental or correlational?) that does arise will be due to chance alone”

Practice Questions:

  • Mr Faraz wants to compare the levels of attendance between his psychology group and those of Mr Simon, who teaches a different psychology group. Which of the following is a suitable directional (one tailed) hypothesis for Mr Faraz’s investigation?

A There will be a difference in the levels of attendance between the two psychology groups.

B Students’ level of attendance will be higher in Mr Faraz’s group than Mr Simon’s group.

C Any difference in the levels of attendance between the two psychology groups is due to chance.

D The level of attendance of the students will depend upon who is teaching the groups.

2. Tracy works for the local council. The council is thinking about reducing the number of people it employs to pick up litter from the street. Tracy has been asked to carry out a study to see if having the streets cleaned at less regular intervals will affect the amount of litter the public will drop. She studies a street to compare how much litter is dropped at two different times, once when it has just been cleaned and once after it has not been cleaned for a month.

Write a fully operationalised non-directional (two-tailed) hypothesis for Tracy’s study. (2)

3. Jamila is conducting a practical investigation to look at gender differences in carrying out visuo-spatial tasks. She decides to give males and females a jigsaw puzzle and will time them to see who completes it the fastest. She uses a random sample of pupils from a local school to get her participants.

(a) Write a fully operationalised directional (one tailed) hypothesis for Jamila’s study. (2) (b) Outline one strength and one weakness of the random sampling method. You may refer to Jamila’s use of this type of sampling in your answer. (4)

4. Which of the following is a non-directional (two tailed) hypothesis?

A There is a difference in driving ability with men being better drivers than women

B Women are better at concentrating on more than one thing at a time than men

C Women spend more time doing the cooking and cleaning than men

D There is a difference in the number of men and women who participate in sports

Revision Activities

writing-hypotheses-revision-sheet

Quizizz link for teachers: https://quizizz.com/admin/quiz/5bf03f51add785001bc5a09e

By Psychstix by Mandy wood

Share this:

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

COMMENTS

  1. Operationalization

    Operationalization | A Guide with Examples, Pros & Cons

  2. Operationalisation

    Example: Operationalisation. The concept of social anxiety can't be directly measured, but it can be operationalised in many different ways. For example: Self-rating scores on a social anxiety scale. Number of recent behavioural incidents of avoidance of crowded places. Intensity of physical anxiety symptoms in social situations.

  3. Operationalize a Variable: A Step-by-Step Guide to Quantifying Your

    This hypothesis will serve as the foundation for your experimental design and guide the direction of your study. Formulating a hypothesis requires a deep understanding of the variables at play and their potential interrelations. It's essential to ensure that your hypothesis is testable and that you have a structured plan for how to test it.

  4. Operationalisation

    Operationalisation. This term describes when a variable is defined by the researcher and a way of measuring that variable is developed for the research. This is not always easy and care must be taken to ensure that the method of measurement gives a valid measure for the variable. The term operationalisation can be applied to independent ...

  5. What is Operationalization? Definition & How-to

    What is Operationalization? Definition & How-to

  6. A Student's Guide to the Classification and Operationalization of

    A hypothesis is a clear statement of what the researcher expects to find in the study. As an example, a researcher may hypothesize that longer duration of current depression is associated with poorer response to ADs. In this hypothesis, the duration of the current episode of depression is the independent variable and treatment response is the ...

  7. Operational Hypothesis

    Definition. An Operational Hypothesis is a testable statement or prediction made in research that not only proposes a relationship between two or more variables but also clearly defines those variables in operational terms, meaning how they will be measured or manipulated within the study. It forms the basis of an experiment that seeks to prove ...

  8. Operationalization

    Operationalization - Defining Variables Into Measurable ...

  9. A Student's Guide to the Classification and Operationalization of

    Categorical and Continuous Variables. Categorical variables are also known as discrete or qualitative variables. These are variables that are operationalized as categories. The value of the variable is expressed as a category count (also known as category frequency) for the sample, or as a cell count (or cell frequency) when the data are presented in a table.

  10. Research hypothesis + operationalising the IV & DV

    This clip demonstrates how to construct a research hypothesis by including the 4 key ingredients and then operationalionising the IV and DV.

  11. Hypotheses

    But, similar to the null hypothesis in the IB Psych IA you can (and should) write this about a prediction of what you think will happen in your study (see examples below). This must be operationalized: it must be evident how the variables will be quantified, and may be either one- or two-tailed (directional or non-directional).

  12. What is operationalization?

    What is operationalization?

  13. operationalised hypothesis

    A. Retrospect. 15. Operationalising a hypothesis makes it testable, meaning it can also be repeated by others, increasing the reliability (or lack of) of your findings. You need to operationalise the variables (IV and DV). So, you need a method of MEASURING memory (for example, a memory test - you can be even more specific but I imagine just ...

  14. How to Write a Strong Hypothesis

    How to Write a Strong Hypothesis | Steps & Examples

  15. Hypothesis

    The Experimental Hypothesis: Directional A directional experimental hypothesis (also known as one-tailed) predicts the direction of the change/difference (it anticipates more specifically what might happen); A directional hypothesis is usually used when there is previous research which support a particular theory or outcome i.e. what a researcher might expect to happen

  16. Operational Definition Psychology

    Operational Definition Psychology - Definition, Examples ...

  17. Hypotheses AO1 AO2

    Hypotheses AO1 AO2 - PSYCHOLOGY WIZARD

  18. Research Hypothesis In Psychology: Types, & Examples

    Research Hypothesis In Psychology: Types, & Examples

  19. Operationalization

    Operationalization refers to converting abstract concepts into measurable observations. However, you can easily measure concepts like age or height while others like anxiety and spirituality can't be measured. Through operationalization, one can systematically collect data regarding phenomena or processes that can't be observed directly.

  20. Hypotheses; directional and non-directional

    Hypotheses; directional and non-directional

  21. How do you write a good hypothesis?

    The way to write a good hypothesis is to follow a 3 step proess. 1) Identify your variables and operationalise them. 2) Identify whether you are looking for a difference or a relationship. 3) Identify whether you are going to write a directional or non-directional hypothesis. As long as your hypothesis includes these three things then it will ...

  22. Operational Hypothesis definition

    Operational Hypothesis. An operational hypothesis in a research experiment clearly defines what the variables of interest are and how the different variables are related to each other. The operational hypothesis should also define the relationship that is being measured and state how the measurement is occurring. It attempts to take an abstract ...