Penn State University Libraries

Empirical research in the social sciences and education.

  • What is Empirical Research and How to Read It
  • Finding Empirical Research in Library Databases
  • Designing Empirical Research
  • Ethics, Cultural Responsiveness, and Anti-Racism in Research
  • Citing, Writing, and Presenting Your Work

Contact the Librarian at your campus for more help!

Ellysa Cahoy

Introduction: What is Empirical Research?

Empirical research is based on observed and measured phenomena and derives knowledge from actual experience rather than from theory or belief. 

How do you know if a study is empirical? Read the subheadings within the article, book, or report and look for a description of the research "methodology."  Ask yourself: Could I recreate this study and test these results?

Key characteristics to look for:

  • Specific research questions to be answered
  • Definition of the population, behavior, or phenomena being studied
  • Description of the process used to study this population or phenomena, including selection criteria, controls, and testing instruments (such as surveys)

Another hint: some scholarly journals use a specific layout, called the "IMRaD" format, to communicate empirical research findings. Such articles typically have 4 components:

  • Introduction: sometimes called "literature review" -- what is currently known about the topic -- usually includes a theoretical framework and/or discussion of previous studies
  • Methodology: sometimes called "research design" -- how to recreate the study -- usually describes the population, research process, and analytical tools used in the present study
  • Results: sometimes called "findings" -- what was learned through the study -- usually appears as statistical data or as substantial quotations from research participants
  • Discussion: sometimes called "conclusion" or "implications" -- why the study is important -- usually describes how the research results influence professional practices or future studies

Reading and Evaluating Scholarly Materials

Reading research can be a challenge. However, the tutorials and videos below can help. They explain what scholarly articles look like, how to read them, and how to evaluate them:

  • CRAAP Checklist A frequently-used checklist that helps you examine the currency, relevance, authority, accuracy, and purpose of an information source.
  • IF I APPLY A newer model of evaluating sources which encourages you to think about your own biases as a reader, as well as concerns about the item you are reading.
  • Credo Video: How to Read Scholarly Materials (4 min.)
  • Credo Tutorial: How to Read Scholarly Materials
  • Credo Tutorial: Evaluating Information
  • Credo Video: Evaluating Statistics (4 min.)
  • Credo Tutorial: Evaluating for Diverse Points of View
  • Next: Finding Empirical Research in Library Databases >>
  • Last Updated: Aug 13, 2024 3:16 PM
  • URL: https://guides.libraries.psu.edu/emp

What is Empirical Research? Definition, Methods, Examples

Appinio Research · 09.02.2024 · 36min read

What is Empirical Research Definition Methods Examples

Ever wondered how we gather the facts, unveil hidden truths, and make informed decisions in a world filled with questions? Empirical research holds the key.

In this guide, we'll delve deep into the art and science of empirical research, unraveling its methods, mysteries, and manifold applications. From defining the core principles to mastering data analysis and reporting findings, we're here to equip you with the knowledge and tools to navigate the empirical landscape.

What is Empirical Research?

Empirical research is the cornerstone of scientific inquiry, providing a systematic and structured approach to investigating the world around us. It is the process of gathering and analyzing empirical or observable data to test hypotheses, answer research questions, or gain insights into various phenomena. This form of research relies on evidence derived from direct observation or experimentation, allowing researchers to draw conclusions based on real-world data rather than purely theoretical or speculative reasoning.

Characteristics of Empirical Research

Empirical research is characterized by several key features:

  • Observation and Measurement : It involves the systematic observation or measurement of variables, events, or behaviors.
  • Data Collection : Researchers collect data through various methods, such as surveys, experiments, observations, or interviews.
  • Testable Hypotheses : Empirical research often starts with testable hypotheses that are evaluated using collected data.
  • Quantitative or Qualitative Data : Data can be quantitative (numerical) or qualitative (non-numerical), depending on the research design.
  • Statistical Analysis : Quantitative data often undergo statistical analysis to determine patterns , relationships, or significance.
  • Objectivity and Replicability : Empirical research strives for objectivity, minimizing researcher bias . It should be replicable, allowing other researchers to conduct the same study to verify results.
  • Conclusions and Generalizations : Empirical research generates findings based on data and aims to make generalizations about larger populations or phenomena.

Importance of Empirical Research

Empirical research plays a pivotal role in advancing knowledge across various disciplines. Its importance extends to academia, industry, and society as a whole. Here are several reasons why empirical research is essential:

  • Evidence-Based Knowledge : Empirical research provides a solid foundation of evidence-based knowledge. It enables us to test hypotheses, confirm or refute theories, and build a robust understanding of the world.
  • Scientific Progress : In the scientific community, empirical research fuels progress by expanding the boundaries of existing knowledge. It contributes to the development of theories and the formulation of new research questions.
  • Problem Solving : Empirical research is instrumental in addressing real-world problems and challenges. It offers insights and data-driven solutions to complex issues in fields like healthcare, economics, and environmental science.
  • Informed Decision-Making : In policymaking, business, and healthcare, empirical research informs decision-makers by providing data-driven insights. It guides strategies, investments, and policies for optimal outcomes.
  • Quality Assurance : Empirical research is essential for quality assurance and validation in various industries, including pharmaceuticals, manufacturing, and technology. It ensures that products and processes meet established standards.
  • Continuous Improvement : Businesses and organizations use empirical research to evaluate performance, customer satisfaction , and product effectiveness. This data-driven approach fosters continuous improvement and innovation.
  • Human Advancement : Empirical research in fields like medicine and psychology contributes to the betterment of human health and well-being. It leads to medical breakthroughs, improved therapies, and enhanced psychological interventions.
  • Critical Thinking and Problem Solving : Engaging in empirical research fosters critical thinking skills, problem-solving abilities, and a deep appreciation for evidence-based decision-making.

Empirical research empowers us to explore, understand, and improve the world around us. It forms the bedrock of scientific inquiry and drives progress in countless domains, shaping our understanding of both the natural and social sciences.

How to Conduct Empirical Research?

So, you've decided to dive into the world of empirical research. Let's begin by exploring the crucial steps involved in getting started with your research project.

1. Select a Research Topic

Selecting the right research topic is the cornerstone of a successful empirical study. It's essential to choose a topic that not only piques your interest but also aligns with your research goals and objectives. Here's how to go about it:

  • Identify Your Interests : Start by reflecting on your passions and interests. What topics fascinate you the most? Your enthusiasm will be your driving force throughout the research process.
  • Brainstorm Ideas : Engage in brainstorming sessions to generate potential research topics. Consider the questions you've always wanted to answer or the issues that intrigue you.
  • Relevance and Significance : Assess the relevance and significance of your chosen topic. Does it contribute to existing knowledge? Is it a pressing issue in your field of study or the broader community?
  • Feasibility : Evaluate the feasibility of your research topic. Do you have access to the necessary resources, data, and participants (if applicable)?

2. Formulate Research Questions

Once you've narrowed down your research topic, the next step is to formulate clear and precise research questions . These questions will guide your entire research process and shape your study's direction. To create effective research questions:

  • Specificity : Ensure that your research questions are specific and focused. Vague or overly broad questions can lead to inconclusive results.
  • Relevance : Your research questions should directly relate to your chosen topic. They should address gaps in knowledge or contribute to solving a particular problem.
  • Testability : Ensure that your questions are testable through empirical methods. You should be able to gather data and analyze it to answer these questions.
  • Avoid Bias : Craft your questions in a way that avoids leading or biased language. Maintain neutrality to uphold the integrity of your research.

3. Review Existing Literature

Before you embark on your empirical research journey, it's essential to immerse yourself in the existing body of literature related to your chosen topic. This step, often referred to as a literature review, serves several purposes:

  • Contextualization : Understand the historical context and current state of research in your field. What have previous studies found, and what questions remain unanswered?
  • Identifying Gaps : Identify gaps or areas where existing research falls short. These gaps will help you formulate meaningful research questions and hypotheses.
  • Theory Development : If your study is theoretical, consider how existing theories apply to your topic. If it's empirical, understand how previous studies have approached data collection and analysis.
  • Methodological Insights : Learn from the methodologies employed in previous research. What methods were successful, and what challenges did researchers face?

4. Define Variables

Variables are fundamental components of empirical research. They are the factors or characteristics that can change or be manipulated during your study. Properly defining and categorizing variables is crucial for the clarity and validity of your research. Here's what you need to know:

  • Independent Variables : These are the variables that you, as the researcher, manipulate or control. They are the "cause" in cause-and-effect relationships.
  • Dependent Variables : Dependent variables are the outcomes or responses that you measure or observe. They are the "effect" influenced by changes in independent variables.
  • Operational Definitions : To ensure consistency and clarity, provide operational definitions for your variables. Specify how you will measure or manipulate each variable.
  • Control Variables : In some studies, controlling for other variables that may influence your dependent variable is essential. These are known as control variables.

Understanding these foundational aspects of empirical research will set a solid foundation for the rest of your journey. Now that you've grasped the essentials of getting started, let's delve deeper into the intricacies of research design.

Empirical Research Design

Now that you've selected your research topic, formulated research questions, and defined your variables, it's time to delve into the heart of your empirical research journey – research design . This pivotal step determines how you will collect data and what methods you'll employ to answer your research questions. Let's explore the various facets of research design in detail.

Types of Empirical Research

Empirical research can take on several forms, each with its own unique approach and methodologies. Understanding the different types of empirical research will help you choose the most suitable design for your study. Here are some common types:

  • Experimental Research : In this type, researchers manipulate one or more independent variables to observe their impact on dependent variables. It's highly controlled and often conducted in a laboratory setting.
  • Observational Research : Observational research involves the systematic observation of subjects or phenomena without intervention. Researchers are passive observers, documenting behaviors, events, or patterns.
  • Survey Research : Surveys are used to collect data through structured questionnaires or interviews. This method is efficient for gathering information from a large number of participants.
  • Case Study Research : Case studies focus on in-depth exploration of one or a few cases. Researchers gather detailed information through various sources such as interviews, documents, and observations.
  • Qualitative Research : Qualitative research aims to understand behaviors, experiences, and opinions in depth. It often involves open-ended questions, interviews, and thematic analysis.
  • Quantitative Research : Quantitative research collects numerical data and relies on statistical analysis to draw conclusions. It involves structured questionnaires, experiments, and surveys.

Your choice of research type should align with your research questions and objectives. Experimental research, for example, is ideal for testing cause-and-effect relationships, while qualitative research is more suitable for exploring complex phenomena.

Experimental Design

Experimental research is a systematic approach to studying causal relationships. It's characterized by the manipulation of one or more independent variables while controlling for other factors. Here are some key aspects of experimental design:

  • Control and Experimental Groups : Participants are randomly assigned to either a control group or an experimental group. The independent variable is manipulated for the experimental group but not for the control group.
  • Randomization : Randomization is crucial to eliminate bias in group assignment. It ensures that each participant has an equal chance of being in either group.
  • Hypothesis Testing : Experimental research often involves hypothesis testing. Researchers formulate hypotheses about the expected effects of the independent variable and use statistical analysis to test these hypotheses.

Observational Design

Observational research entails careful and systematic observation of subjects or phenomena. It's advantageous when you want to understand natural behaviors or events. Key aspects of observational design include:

  • Participant Observation : Researchers immerse themselves in the environment they are studying. They become part of the group being observed, allowing for a deep understanding of behaviors.
  • Non-Participant Observation : In non-participant observation, researchers remain separate from the subjects. They observe and document behaviors without direct involvement.
  • Data Collection Methods : Observational research can involve various data collection methods, such as field notes, video recordings, photographs, or coding of observed behaviors.

Survey Design

Surveys are a popular choice for collecting data from a large number of participants. Effective survey design is essential to ensure the validity and reliability of your data. Consider the following:

  • Questionnaire Design : Create clear and concise questions that are easy for participants to understand. Avoid leading or biased questions.
  • Sampling Methods : Decide on the appropriate sampling method for your study, whether it's random, stratified, or convenience sampling.
  • Data Collection Tools : Choose the right tools for data collection, whether it's paper surveys, online questionnaires, or face-to-face interviews.

Case Study Design

Case studies are an in-depth exploration of one or a few cases to gain a deep understanding of a particular phenomenon. Key aspects of case study design include:

  • Single Case vs. Multiple Case Studies : Decide whether you'll focus on a single case or multiple cases. Single case studies are intensive and allow for detailed examination, while multiple case studies provide comparative insights.
  • Data Collection Methods : Gather data through interviews, observations, document analysis, or a combination of these methods.

Qualitative vs. Quantitative Research

In empirical research, you'll often encounter the distinction between qualitative and quantitative research . Here's a closer look at these two approaches:

  • Qualitative Research : Qualitative research seeks an in-depth understanding of human behavior, experiences, and perspectives. It involves open-ended questions, interviews, and the analysis of textual or narrative data. Qualitative research is exploratory and often used when the research question is complex and requires a nuanced understanding.
  • Quantitative Research : Quantitative research collects numerical data and employs statistical analysis to draw conclusions. It involves structured questionnaires, experiments, and surveys. Quantitative research is ideal for testing hypotheses and establishing cause-and-effect relationships.

Understanding the various research design options is crucial in determining the most appropriate approach for your study. Your choice should align with your research questions, objectives, and the nature of the phenomenon you're investigating.

Data Collection for Empirical Research

Now that you've established your research design, it's time to roll up your sleeves and collect the data that will fuel your empirical research. Effective data collection is essential for obtaining accurate and reliable results.

Sampling Methods

Sampling methods are critical in empirical research, as they determine the subset of individuals or elements from your target population that you will study. Here are some standard sampling methods:

  • Random Sampling : Random sampling ensures that every member of the population has an equal chance of being selected. It minimizes bias and is often used in quantitative research.
  • Stratified Sampling : Stratified sampling involves dividing the population into subgroups or strata based on specific characteristics (e.g., age, gender, location). Samples are then randomly selected from each stratum, ensuring representation of all subgroups.
  • Convenience Sampling : Convenience sampling involves selecting participants who are readily available or easily accessible. While it's convenient, it may introduce bias and limit the generalizability of results.
  • Snowball Sampling : Snowball sampling is instrumental when studying hard-to-reach or hidden populations. One participant leads you to another, creating a "snowball" effect. This method is common in qualitative research.
  • Purposive Sampling : In purposive sampling, researchers deliberately select participants who meet specific criteria relevant to their research questions. It's often used in qualitative studies to gather in-depth information.

The choice of sampling method depends on the nature of your research, available resources, and the degree of precision required. It's crucial to carefully consider your sampling strategy to ensure that your sample accurately represents your target population.

Data Collection Instruments

Data collection instruments are the tools you use to gather information from your participants or sources. These instruments should be designed to capture the data you need accurately. Here are some popular data collection instruments:

  • Questionnaires : Questionnaires consist of structured questions with predefined response options. When designing questionnaires, consider the clarity of questions, the order of questions, and the response format (e.g., Likert scale , multiple-choice).
  • Interviews : Interviews involve direct communication between the researcher and participants. They can be structured (with predetermined questions) or unstructured (open-ended). Effective interviews require active listening and probing for deeper insights.
  • Observations : Observations entail systematically and objectively recording behaviors, events, or phenomena. Researchers must establish clear criteria for what to observe, how to record observations, and when to observe.
  • Surveys : Surveys are a common data collection instrument for quantitative research. They can be administered through various means, including online surveys, paper surveys, and telephone surveys.
  • Documents and Archives : In some cases, data may be collected from existing documents, records, or archives. Ensure that the sources are reliable, relevant, and properly documented.

To streamline your process and gather insights with precision and efficiency, consider leveraging innovative tools like Appinio . With Appinio's intuitive platform, you can harness the power of real-time consumer data to inform your research decisions effectively. Whether you're conducting surveys, interviews, or observations, Appinio empowers you to define your target audience, collect data from diverse demographics, and analyze results seamlessly.

By incorporating Appinio into your data collection toolkit, you can unlock a world of possibilities and elevate the impact of your empirical research. Ready to revolutionize your approach to data collection?

Book a Demo

Data Collection Procedures

Data collection procedures outline the step-by-step process for gathering data. These procedures should be meticulously planned and executed to maintain the integrity of your research.

  • Training : If you have a research team, ensure that they are trained in data collection methods and protocols. Consistency in data collection is crucial.
  • Pilot Testing : Before launching your data collection, conduct a pilot test with a small group to identify any potential problems with your instruments or procedures. Make necessary adjustments based on feedback.
  • Data Recording : Establish a systematic method for recording data. This may include timestamps, codes, or identifiers for each data point.
  • Data Security : Safeguard the confidentiality and security of collected data. Ensure that only authorized individuals have access to the data.
  • Data Storage : Properly organize and store your data in a secure location, whether in physical or digital form. Back up data to prevent loss.

Ethical Considerations

Ethical considerations are paramount in empirical research, as they ensure the well-being and rights of participants are protected.

  • Informed Consent : Obtain informed consent from participants, providing clear information about the research purpose, procedures, risks, and their right to withdraw at any time.
  • Privacy and Confidentiality : Protect the privacy and confidentiality of participants. Ensure that data is anonymized and sensitive information is kept confidential.
  • Beneficence : Ensure that your research benefits participants and society while minimizing harm. Consider the potential risks and benefits of your study.
  • Honesty and Integrity : Conduct research with honesty and integrity. Report findings accurately and transparently, even if they are not what you expected.
  • Respect for Participants : Treat participants with respect, dignity, and sensitivity to cultural differences. Avoid any form of coercion or manipulation.
  • Institutional Review Board (IRB) : If required, seek approval from an IRB or ethics committee before conducting your research, particularly when working with human participants.

Adhering to ethical guidelines is not only essential for the ethical conduct of research but also crucial for the credibility and validity of your study. Ethical research practices build trust between researchers and participants and contribute to the advancement of knowledge with integrity.

With a solid understanding of data collection, including sampling methods, instruments, procedures, and ethical considerations, you are now well-equipped to gather the data needed to answer your research questions.

Empirical Research Data Analysis

Now comes the exciting phase of data analysis, where the raw data you've diligently collected starts to yield insights and answers to your research questions. We will explore the various aspects of data analysis, from preparing your data to drawing meaningful conclusions through statistics and visualization.

Data Preparation

Data preparation is the crucial first step in data analysis. It involves cleaning, organizing, and transforming your raw data into a format that is ready for analysis. Effective data preparation ensures the accuracy and reliability of your results.

  • Data Cleaning : Identify and rectify errors, missing values, and inconsistencies in your dataset. This may involve correcting typos, removing outliers, and imputing missing data.
  • Data Coding : Assign numerical values or codes to categorical variables to make them suitable for statistical analysis. For example, converting "Yes" and "No" to 1 and 0.
  • Data Transformation : Transform variables as needed to meet the assumptions of the statistical tests you plan to use. Common transformations include logarithmic or square root transformations.
  • Data Integration : If your data comes from multiple sources, integrate it into a unified dataset, ensuring that variables match and align.
  • Data Documentation : Maintain clear documentation of all data preparation steps, as well as the rationale behind each decision. This transparency is essential for replicability.

Effective data preparation lays the foundation for accurate and meaningful analysis. It allows you to trust the results that will follow in the subsequent stages.

Descriptive Statistics

Descriptive statistics help you summarize and make sense of your data by providing a clear overview of its key characteristics. These statistics are essential for understanding the central tendencies, variability, and distribution of your variables. Descriptive statistics include:

  • Measures of Central Tendency : These include the mean (average), median (middle value), and mode (most frequent value). They help you understand the typical or central value of your data.
  • Measures of Dispersion : Measures like the range, variance, and standard deviation provide insights into the spread or variability of your data points.
  • Frequency Distributions : Creating frequency distributions or histograms allows you to visualize the distribution of your data across different values or categories.

Descriptive statistics provide the initial insights needed to understand your data's basic characteristics, which can inform further analysis.

Inferential Statistics

Inferential statistics take your analysis to the next level by allowing you to make inferences or predictions about a larger population based on your sample data. These methods help you test hypotheses and draw meaningful conclusions. Key concepts in inferential statistics include:

  • Hypothesis Testing : Hypothesis tests (e.g., t-tests , chi-squared tests ) help you determine whether observed differences or associations in your data are statistically significant or occurred by chance.
  • Confidence Intervals : Confidence intervals provide a range within which population parameters (e.g., population mean) are likely to fall based on your sample data.
  • Regression Analysis : Regression models (linear, logistic, etc.) help you explore relationships between variables and make predictions.
  • Analysis of Variance (ANOVA) : ANOVA tests are used to compare means between multiple groups, allowing you to assess whether differences are statistically significant.

Chi-Square Calculator :

t-Test Calculator :

One-way ANOVA Calculator :

Inferential statistics are powerful tools for drawing conclusions from your data and assessing the generalizability of your findings to the broader population.

Qualitative Data Analysis

Qualitative data analysis is employed when working with non-numerical data, such as text, interviews, or open-ended survey responses. It focuses on understanding the underlying themes, patterns, and meanings within qualitative data. Qualitative analysis techniques include:

  • Thematic Analysis : Identifying and analyzing recurring themes or patterns within textual data.
  • Content Analysis : Categorizing and coding qualitative data to extract meaningful insights.
  • Grounded Theory : Developing theories or frameworks based on emergent themes from the data.
  • Narrative Analysis : Examining the structure and content of narratives to uncover meaning.

Qualitative data analysis provides a rich and nuanced understanding of complex phenomena and human experiences.

Data Visualization

Data visualization is the art of representing data graphically to make complex information more understandable and accessible. Effective data visualization can reveal patterns, trends, and outliers in your data. Common types of data visualization include:

  • Bar Charts and Histograms : Used to display the distribution of categorical data or discrete data .
  • Line Charts : Ideal for showing trends and changes in data over time.
  • Scatter Plots : Visualize relationships and correlations between two variables.
  • Pie Charts : Display the composition of a whole in terms of its parts.
  • Heatmaps : Depict patterns and relationships in multidimensional data through color-coding.
  • Box Plots : Provide a summary of the data distribution, including outliers.
  • Interactive Dashboards : Create dynamic visualizations that allow users to explore data interactively.

Data visualization not only enhances your understanding of the data but also serves as a powerful communication tool to convey your findings to others.

As you embark on the data analysis phase of your empirical research, remember that the specific methods and techniques you choose will depend on your research questions, data type, and objectives. Effective data analysis transforms raw data into valuable insights, bringing you closer to the answers you seek.

How to Report Empirical Research Results?

At this stage, you get to share your empirical research findings with the world. Effective reporting and presentation of your results are crucial for communicating your research's impact and insights.

1. Write the Research Paper

Writing a research paper is the culmination of your empirical research journey. It's where you synthesize your findings, provide context, and contribute to the body of knowledge in your field.

  • Title and Abstract : Craft a clear and concise title that reflects your research's essence. The abstract should provide a brief summary of your research objectives, methods, findings, and implications.
  • Introduction : In the introduction, introduce your research topic, state your research questions or hypotheses, and explain the significance of your study. Provide context by discussing relevant literature.
  • Methods : Describe your research design, data collection methods, and sampling procedures. Be precise and transparent, allowing readers to understand how you conducted your study.
  • Results : Present your findings in a clear and organized manner. Use tables, graphs, and statistical analyses to support your results. Avoid interpreting your findings in this section; focus on the presentation of raw data.
  • Discussion : Interpret your findings and discuss their implications. Relate your results to your research questions and the existing literature. Address any limitations of your study and suggest avenues for future research.
  • Conclusion : Summarize the key points of your research and its significance. Restate your main findings and their implications.
  • References : Cite all sources used in your research following a specific citation style (e.g., APA, MLA, Chicago). Ensure accuracy and consistency in your citations.
  • Appendices : Include any supplementary material, such as questionnaires, data coding sheets, or additional analyses, in the appendices.

Writing a research paper is a skill that improves with practice. Ensure clarity, coherence, and conciseness in your writing to make your research accessible to a broader audience.

2. Create Visuals and Tables

Visuals and tables are powerful tools for presenting complex data in an accessible and understandable manner.

  • Clarity : Ensure that your visuals and tables are clear and easy to interpret. Use descriptive titles and labels.
  • Consistency : Maintain consistency in formatting, such as font size and style, across all visuals and tables.
  • Appropriateness : Choose the most suitable visual representation for your data. Bar charts, line graphs, and scatter plots work well for different types of data.
  • Simplicity : Avoid clutter and unnecessary details. Focus on conveying the main points.
  • Accessibility : Make sure your visuals and tables are accessible to a broad audience, including those with visual impairments.
  • Captions : Include informative captions that explain the significance of each visual or table.

Compelling visuals and tables enhance the reader's understanding of your research and can be the key to conveying complex information efficiently.

3. Interpret Findings

Interpreting your findings is where you bridge the gap between data and meaning. It's your opportunity to provide context, discuss implications, and offer insights. When interpreting your findings:

  • Relate to Research Questions : Discuss how your findings directly address your research questions or hypotheses.
  • Compare with Literature : Analyze how your results align with or deviate from previous research in your field. What insights can you draw from these comparisons?
  • Discuss Limitations : Be transparent about the limitations of your study. Address any constraints, biases, or potential sources of error.
  • Practical Implications : Explore the real-world implications of your findings. How can they be applied or inform decision-making?
  • Future Research Directions : Suggest areas for future research based on the gaps or unanswered questions that emerged from your study.

Interpreting findings goes beyond simply presenting data; it's about weaving a narrative that helps readers grasp the significance of your research in the broader context.

With your research paper written, structured, and enriched with visuals, and your findings expertly interpreted, you are now prepared to communicate your research effectively. Sharing your insights and contributing to the body of knowledge in your field is a significant accomplishment in empirical research.

Examples of Empirical Research

To solidify your understanding of empirical research, let's delve into some real-world examples across different fields. These examples will illustrate how empirical research is applied to gather data, analyze findings, and draw conclusions.

Social Sciences

In the realm of social sciences, consider a sociological study exploring the impact of socioeconomic status on educational attainment. Researchers gather data from a diverse group of individuals, including their family backgrounds, income levels, and academic achievements.

Through statistical analysis, they can identify correlations and trends, revealing whether individuals from lower socioeconomic backgrounds are less likely to attain higher levels of education. This empirical research helps shed light on societal inequalities and informs policymakers on potential interventions to address disparities in educational access.

Environmental Science

Environmental scientists often employ empirical research to assess the effects of environmental changes. For instance, researchers studying the impact of climate change on wildlife might collect data on animal populations, weather patterns, and habitat conditions over an extended period.

By analyzing this empirical data, they can identify correlations between climate fluctuations and changes in wildlife behavior, migration patterns, or population sizes. This empirical research is crucial for understanding the ecological consequences of climate change and informing conservation efforts.

Business and Economics

In the business world, empirical research is essential for making data-driven decisions. Consider a market research study conducted by a business seeking to launch a new product. They collect data through surveys , focus groups , and consumer behavior analysis.

By examining this empirical data, the company can gauge consumer preferences, demand, and potential market size. Empirical research in business helps guide product development, pricing strategies, and marketing campaigns, increasing the likelihood of a successful product launch.

Psychological studies frequently rely on empirical research to understand human behavior and cognition. For instance, a psychologist interested in examining the impact of stress on memory might design an experiment. Participants are exposed to stress-inducing situations, and their memory performance is assessed through various tasks.

By analyzing the data collected, the psychologist can determine whether stress has a significant effect on memory recall. This empirical research contributes to our understanding of the complex interplay between psychological factors and cognitive processes.

These examples highlight the versatility and applicability of empirical research across diverse fields. Whether in medicine, social sciences, environmental science, business, or psychology, empirical research serves as a fundamental tool for gaining insights, testing hypotheses, and driving advancements in knowledge and practice.

Conclusion for Empirical Research

Empirical research is a powerful tool for gaining insights, testing hypotheses, and making informed decisions. By following the steps outlined in this guide, you've learned how to select research topics, collect data, analyze findings, and effectively communicate your research to the world. Remember, empirical research is a journey of discovery, and each step you take brings you closer to a deeper understanding of the world around you. Whether you're a scientist, a student, or someone curious about the process, the principles of empirical research empower you to explore, learn, and contribute to the ever-expanding realm of knowledge.

How to Collect Data for Empirical Research?

Introducing Appinio , the real-time market research platform revolutionizing how companies gather consumer insights for their empirical research endeavors. With Appinio, you can conduct your own market research in minutes, gaining valuable data to fuel your data-driven decisions.

Appinio is more than just a market research platform; it's a catalyst for transforming the way you approach empirical research, making it exciting, intuitive, and seamlessly integrated into your decision-making process.

Here's why Appinio is the go-to solution for empirical research:

  • From Questions to Insights in Minutes : With Appinio's streamlined process, you can go from formulating your research questions to obtaining actionable insights in a matter of minutes, saving you time and effort.
  • Intuitive Platform for Everyone : No need for a PhD in research; Appinio's platform is designed to be intuitive and user-friendly, ensuring that anyone can navigate and utilize it effectively.
  • Rapid Response Times : With an average field time of under 23 minutes for 1,000 respondents, Appinio delivers rapid results, allowing you to gather data swiftly and efficiently.
  • Global Reach with Targeted Precision : With access to over 90 countries and the ability to define target groups based on 1200+ characteristics, Appinio empowers you to reach your desired audience with precision and ease.

Register now EN

Get free access to the platform!

Join the loop 💌

Be the first to hear about new updates, product news, and data insights. We'll send it all straight to your inbox.

Get the latest market research news straight to your inbox! 💌

Wait, there's more

What is Employee Experience EX and How to Improve It

20.08.2024 | 30min read

What is Employee Experience (EX) and How to Improve It?

Grow your brand and sales market share with a Mental Availability Brand Health Tracking

19.08.2024 | 14min read

Revolutionizing Brand Health with Mental Availability: Key Takeaways

360-Degree Feedback Survey Process Software Examples

15.08.2024 | 31min read

360-Degree Feedback: Survey, Process, Software, Examples

Purdue University

  • Ask a Librarian

Research: Overview & Approaches

  • Getting Started with Undergraduate Research
  • Planning & Getting Started
  • Building Your Knowledge Base
  • Locating Sources
  • Reading Scholarly Articles
  • Creating a Literature Review
  • Productivity & Organizing Research
  • Scholarly and Professional Relationships

Introduction to Empirical Research

Databases for finding empirical research, guided search, google scholar, examples of empirical research, sources and further reading.

  • Interpretive Research
  • Action-Based Research
  • Creative & Experimental Approaches

Your Librarian

Profile Photo

  • Introductory Video This video covers what empirical research is, what kinds of questions and methods empirical researchers use, and some tips for finding empirical research articles in your discipline.

Video Tutorial

  • Guided Search: Finding Empirical Research Articles This is a hands-on tutorial that will allow you to use your own search terms to find resources.

Google Scholar Search

  • Study on radiation transfer in human skin for cosmetics
  • Long-Term Mobile Phone Use and the Risk of Vestibular Schwannoma: A Danish Nationwide Cohort Study
  • Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services
  • Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles
  • Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women?

empirical study research paper example

  • << Previous: Scholarly and Professional Relationships
  • Next: Interpretive Research >>
  • Last Updated: Aug 13, 2024 12:18 PM
  • URL: https://guides.lib.purdue.edu/research_approaches
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

empirical study research paper example

Home Market Research

Empirical Research: Definition, Methods, Types and Examples

What is Empirical Research

Content Index

Empirical research: Definition

Empirical research: origin, quantitative research methods, qualitative research methods, steps for conducting empirical research, empirical research methodology cycle, advantages of empirical research, disadvantages of empirical research, why is there a need for empirical research.

Empirical research is defined as any research where conclusions of the study is strictly drawn from concretely empirical evidence, and therefore “verifiable” evidence.

This empirical evidence can be gathered using quantitative market research and  qualitative market research  methods.

For example: A research is being conducted to find out if listening to happy music in the workplace while working may promote creativity? An experiment is conducted by using a music website survey on a set of audience who are exposed to happy music and another set who are not listening to music at all, and the subjects are then observed. The results derived from such a research will give empirical evidence if it does promote creativity or not.

LEARN ABOUT: Behavioral Research

You must have heard the quote” I will not believe it unless I see it”. This came from the ancient empiricists, a fundamental understanding that powered the emergence of medieval science during the renaissance period and laid the foundation of modern science, as we know it today. The word itself has its roots in greek. It is derived from the greek word empeirikos which means “experienced”.

In today’s world, the word empirical refers to collection of data using evidence that is collected through observation or experience or by using calibrated scientific instruments. All of the above origins have one thing in common which is dependence of observation and experiments to collect data and test them to come up with conclusions.

LEARN ABOUT: Causal Research

Types and methodologies of empirical research

Empirical research can be conducted and analysed using qualitative or quantitative methods.

  • Quantitative research : Quantitative research methods are used to gather information through numerical data. It is used to quantify opinions, behaviors or other defined variables . These are predetermined and are in a more structured format. Some of the commonly used methods are survey, longitudinal studies, polls, etc
  • Qualitative research:   Qualitative research methods are used to gather non numerical data.  It is used to find meanings, opinions, or the underlying reasons from its subjects. These methods are unstructured or semi structured. The sample size for such a research is usually small and it is a conversational type of method to provide more insight or in-depth information about the problem Some of the most popular forms of methods are focus groups, experiments, interviews, etc.

Data collected from these will need to be analysed. Empirical evidence can also be analysed either quantitatively and qualitatively. Using this, the researcher can answer empirical questions which have to be clearly defined and answerable with the findings he has got. The type of research design used will vary depending on the field in which it is going to be used. Many of them might choose to do a collective research involving quantitative and qualitative method to better answer questions which cannot be studied in a laboratory setting.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

Quantitative research methods aid in analyzing the empirical evidence gathered. By using these a researcher can find out if his hypothesis is supported or not.

  • Survey research: Survey research generally involves a large audience to collect a large amount of data. This is a quantitative method having a predetermined set of closed questions which are pretty easy to answer. Because of the simplicity of such a method, high responses are achieved. It is one of the most commonly used methods for all kinds of research in today’s world.

Previously, surveys were taken face to face only with maybe a recorder. However, with advancement in technology and for ease, new mediums such as emails , or social media have emerged.

For example: Depletion of energy resources is a growing concern and hence there is a need for awareness about renewable energy. According to recent studies, fossil fuels still account for around 80% of energy consumption in the United States. Even though there is a rise in the use of green energy every year, there are certain parameters because of which the general population is still not opting for green energy. In order to understand why, a survey can be conducted to gather opinions of the general population about green energy and the factors that influence their choice of switching to renewable energy. Such a survey can help institutions or governing bodies to promote appropriate awareness and incentive schemes to push the use of greener energy.

Learn more: Renewable Energy Survey Template Descriptive Research vs Correlational Research

  • Experimental research: In experimental research , an experiment is set up and a hypothesis is tested by creating a situation in which one of the variable is manipulated. This is also used to check cause and effect. It is tested to see what happens to the independent variable if the other one is removed or altered. The process for such a method is usually proposing a hypothesis, experimenting on it, analyzing the findings and reporting the findings to understand if it supports the theory or not.

For example: A particular product company is trying to find what is the reason for them to not be able to capture the market. So the organisation makes changes in each one of the processes like manufacturing, marketing, sales and operations. Through the experiment they understand that sales training directly impacts the market coverage for their product. If the person is trained well, then the product will have better coverage.

  • Correlational research: Correlational research is used to find relation between two set of variables . Regression analysis is generally used to predict outcomes of such a method. It can be positive, negative or neutral correlation.

LEARN ABOUT: Level of Analysis

For example: Higher educated individuals will get higher paying jobs. This means higher education enables the individual to high paying job and less education will lead to lower paying jobs.

  • Longitudinal study: Longitudinal study is used to understand the traits or behavior of a subject under observation after repeatedly testing the subject over a period of time. Data collected from such a method can be qualitative or quantitative in nature.

For example: A research to find out benefits of exercise. The target is asked to exercise everyday for a particular period of time and the results show higher endurance, stamina, and muscle growth. This supports the fact that exercise benefits an individual body.

  • Cross sectional: Cross sectional study is an observational type of method, in which a set of audience is observed at a given point in time. In this type, the set of people are chosen in a fashion which depicts similarity in all the variables except the one which is being researched. This type does not enable the researcher to establish a cause and effect relationship as it is not observed for a continuous time period. It is majorly used by healthcare sector or the retail industry.

For example: A medical study to find the prevalence of under-nutrition disorders in kids of a given population. This will involve looking at a wide range of parameters like age, ethnicity, location, incomes  and social backgrounds. If a significant number of kids coming from poor families show under-nutrition disorders, the researcher can further investigate into it. Usually a cross sectional study is followed by a longitudinal study to find out the exact reason.

  • Causal-Comparative research : This method is based on comparison. It is mainly used to find out cause-effect relationship between two variables or even multiple variables.

For example: A researcher measured the productivity of employees in a company which gave breaks to the employees during work and compared that to the employees of the company which did not give breaks at all.

LEARN ABOUT: Action Research

Some research questions need to be analysed qualitatively, as quantitative methods are not applicable there. In many cases, in-depth information is needed or a researcher may need to observe a target audience behavior, hence the results needed are in a descriptive analysis form. Qualitative research results will be descriptive rather than predictive. It enables the researcher to build or support theories for future potential quantitative research. In such a situation qualitative research methods are used to derive a conclusion to support the theory or hypothesis being studied.

LEARN ABOUT: Qualitative Interview

  • Case study: Case study method is used to find more information through carefully analyzing existing cases. It is very often used for business research or to gather empirical evidence for investigation purpose. It is a method to investigate a problem within its real life context through existing cases. The researcher has to carefully analyse making sure the parameter and variables in the existing case are the same as to the case that is being investigated. Using the findings from the case study, conclusions can be drawn regarding the topic that is being studied.

For example: A report mentioning the solution provided by a company to its client. The challenges they faced during initiation and deployment, the findings of the case and solutions they offered for the problems. Such case studies are used by most companies as it forms an empirical evidence for the company to promote in order to get more business.

  • Observational method:   Observational method is a process to observe and gather data from its target. Since it is a qualitative method it is time consuming and very personal. It can be said that observational research method is a part of ethnographic research which is also used to gather empirical evidence. This is usually a qualitative form of research, however in some cases it can be quantitative as well depending on what is being studied.

For example: setting up a research to observe a particular animal in the rain-forests of amazon. Such a research usually take a lot of time as observation has to be done for a set amount of time to study patterns or behavior of the subject. Another example used widely nowadays is to observe people shopping in a mall to figure out buying behavior of consumers.

  • One-on-one interview: Such a method is purely qualitative and one of the most widely used. The reason being it enables a researcher get precise meaningful data if the right questions are asked. It is a conversational method where in-depth data can be gathered depending on where the conversation leads.

For example: A one-on-one interview with the finance minister to gather data on financial policies of the country and its implications on the public.

  • Focus groups: Focus groups are used when a researcher wants to find answers to why, what and how questions. A small group is generally chosen for such a method and it is not necessary to interact with the group in person. A moderator is generally needed in case the group is being addressed in person. This is widely used by product companies to collect data about their brands and the product.

For example: A mobile phone manufacturer wanting to have a feedback on the dimensions of one of their models which is yet to be launched. Such studies help the company meet the demand of the customer and position their model appropriately in the market.

  • Text analysis: Text analysis method is a little new compared to the other types. Such a method is used to analyse social life by going through images or words used by the individual. In today’s world, with social media playing a major part of everyone’s life, such a method enables the research to follow the pattern that relates to his study.

For example: A lot of companies ask for feedback from the customer in detail mentioning how satisfied are they with their customer support team. Such data enables the researcher to take appropriate decisions to make their support team better.

Sometimes a combination of the methods is also needed for some questions that cannot be answered using only one type of method especially when a researcher needs to gain a complete understanding of complex subject matter.

We recently published a blog that talks about examples of qualitative data in education ; why don’t you check it out for more ideas?

Learn More: Data Collection Methods: Types & Examples

Since empirical research is based on observation and capturing experiences, it is important to plan the steps to conduct the experiment and how to analyse it. This will enable the researcher to resolve problems or obstacles which can occur during the experiment.

Step #1: Define the purpose of the research

This is the step where the researcher has to answer questions like what exactly do I want to find out? What is the problem statement? Are there any issues in terms of the availability of knowledge, data, time or resources. Will this research be more beneficial than what it will cost.

Before going ahead, a researcher has to clearly define his purpose for the research and set up a plan to carry out further tasks.

Step #2 : Supporting theories and relevant literature

The researcher needs to find out if there are theories which can be linked to his research problem . He has to figure out if any theory can help him support his findings. All kind of relevant literature will help the researcher to find if there are others who have researched this before, or what are the problems faced during this research. The researcher will also have to set up assumptions and also find out if there is any history regarding his research problem

Step #3: Creation of Hypothesis and measurement

Before beginning the actual research he needs to provide himself a working hypothesis or guess what will be the probable result. Researcher has to set up variables, decide the environment for the research and find out how can he relate between the variables.

Researcher will also need to define the units of measurements, tolerable degree for errors, and find out if the measurement chosen will be acceptable by others.

Step #4: Methodology, research design and data collection

In this step, the researcher has to define a strategy for conducting his research. He has to set up experiments to collect data which will enable him to propose the hypothesis. The researcher will decide whether he will need experimental or non experimental method for conducting the research. The type of research design will vary depending on the field in which the research is being conducted. Last but not the least, the researcher will have to find out parameters that will affect the validity of the research design. Data collection will need to be done by choosing appropriate samples depending on the research question. To carry out the research, he can use one of the many sampling techniques. Once data collection is complete, researcher will have empirical data which needs to be analysed.

LEARN ABOUT: Best Data Collection Tools

Step #5: Data Analysis and result

Data analysis can be done in two ways, qualitatively and quantitatively. Researcher will need to find out what qualitative method or quantitative method will be needed or will he need a combination of both. Depending on the unit of analysis of his data, he will know if his hypothesis is supported or rejected. Analyzing this data is the most important part to support his hypothesis.

Step #6: Conclusion

A report will need to be made with the findings of the research. The researcher can give the theories and literature that support his research. He can make suggestions or recommendations for further research on his topic.

Empirical research methodology cycle

A.D. de Groot, a famous dutch psychologist and a chess expert conducted some of the most notable experiments using chess in the 1940’s. During his study, he came up with a cycle which is consistent and now widely used to conduct empirical research. It consists of 5 phases with each phase being as important as the next one. The empirical cycle captures the process of coming up with hypothesis about how certain subjects work or behave and then testing these hypothesis against empirical data in a systematic and rigorous approach. It can be said that it characterizes the deductive approach to science. Following is the empirical cycle.

  • Observation: At this phase an idea is sparked for proposing a hypothesis. During this phase empirical data is gathered using observation. For example: a particular species of flower bloom in a different color only during a specific season.
  • Induction: Inductive reasoning is then carried out to form a general conclusion from the data gathered through observation. For example: As stated above it is observed that the species of flower blooms in a different color during a specific season. A researcher may ask a question “does the temperature in the season cause the color change in the flower?” He can assume that is the case, however it is a mere conjecture and hence an experiment needs to be set up to support this hypothesis. So he tags a few set of flowers kept at a different temperature and observes if they still change the color?
  • Deduction: This phase helps the researcher to deduce a conclusion out of his experiment. This has to be based on logic and rationality to come up with specific unbiased results.For example: In the experiment, if the tagged flowers in a different temperature environment do not change the color then it can be concluded that temperature plays a role in changing the color of the bloom.
  • Testing: This phase involves the researcher to return to empirical methods to put his hypothesis to the test. The researcher now needs to make sense of his data and hence needs to use statistical analysis plans to determine the temperature and bloom color relationship. If the researcher finds out that most flowers bloom a different color when exposed to the certain temperature and the others do not when the temperature is different, he has found support to his hypothesis. Please note this not proof but just a support to his hypothesis.
  • Evaluation: This phase is generally forgotten by most but is an important one to keep gaining knowledge. During this phase the researcher puts forth the data he has collected, the support argument and his conclusion. The researcher also states the limitations for the experiment and his hypothesis and suggests tips for others to pick it up and continue a more in-depth research for others in the future. LEARN MORE: Population vs Sample

LEARN MORE: Population vs Sample

There is a reason why empirical research is one of the most widely used method. There are a few advantages associated with it. Following are a few of them.

  • It is used to authenticate traditional research through various experiments and observations.
  • This research methodology makes the research being conducted more competent and authentic.
  • It enables a researcher understand the dynamic changes that can happen and change his strategy accordingly.
  • The level of control in such a research is high so the researcher can control multiple variables.
  • It plays a vital role in increasing internal validity .

Even though empirical research makes the research more competent and authentic, it does have a few disadvantages. Following are a few of them.

  • Such a research needs patience as it can be very time consuming. The researcher has to collect data from multiple sources and the parameters involved are quite a few, which will lead to a time consuming research.
  • Most of the time, a researcher will need to conduct research at different locations or in different environments, this can lead to an expensive affair.
  • There are a few rules in which experiments can be performed and hence permissions are needed. Many a times, it is very difficult to get certain permissions to carry out different methods of this research.
  • Collection of data can be a problem sometimes, as it has to be collected from a variety of sources through different methods.

LEARN ABOUT:  Social Communication Questionnaire

Empirical research is important in today’s world because most people believe in something only that they can see, hear or experience. It is used to validate multiple hypothesis and increase human knowledge and continue doing it to keep advancing in various fields.

For example: Pharmaceutical companies use empirical research to try out a specific drug on controlled groups or random groups to study the effect and cause. This way, they prove certain theories they had proposed for the specific drug. Such research is very important as sometimes it can lead to finding a cure for a disease that has existed for many years. It is useful in science and many other fields like history, social sciences, business, etc.

LEARN ABOUT: 12 Best Tools for Researchers

With the advancement in today’s world, empirical research has become critical and a norm in many fields to support their hypothesis and gain more knowledge. The methods mentioned above are very useful for carrying out such research. However, a number of new methods will keep coming up as the nature of new investigative questions keeps getting unique or changing.

Create a single source of real data with a built-for-insights platform. Store past data, add nuggets of insights, and import research data from various sources into a CRM for insights. Build on ever-growing research with a real-time dashboard in a unified research management platform to turn insights into knowledge.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

empirical study research paper example

Customer Experience Lessons from 13,000 Feet — Tuesday CX Thoughts

Aug 20, 2024

insight

Insight: Definition & meaning, types and examples

Aug 19, 2024

employee loyalty

Employee Loyalty: Strategies for Long-Term Business Success 

Jotform vs SurveyMonkey

Jotform vs SurveyMonkey: Which Is Best in 2024

Aug 15, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Examples

Empirical Research

Ai generator.

empirical study research paper example

By conducting empirical research, you can come up with a conclusion for your study through primary data such as indirect observation, experimentation, or anecdotal evidence such as experience and direct observation. To analyze this evidence, you may either use qualitative or quantitative methods. To compose a theoretical background, you can also use secondary data.

9+ Empirical Research Templates and Examples

Conducting empirical research can be tough, especially if it is your first formal research. That is why we created an article with a list of templates and examples that you can use as a guide in creating a well-designed research paper quickly. Get started and check out these free downloadable documents!

1. Empirical Research Through Design

empirical research 1

Undeniably, we are living in an era where people are amazed by technology advancement. Business leaders are using this opportunity and are responding to this demand by producing advanced technology devices and tools. However, consumers are also smart. They appreciate these advancements because these are entertaining and are making things easier for them. If you are going to conduct a study where you can observe the demand of a product to the target market , you can use this empirical research example as your guide.

2. Empirical Research Paper Outline

empirical research 2

Size: 93 KB

Are you looking for a good research paper outline for your first empirical study? If that is the case, this research outline is the right tool for you. This outline contains a description of the necessary fields of your research and detailed instructions on how to build each of these sections of your research, such as the introduction, literature review, model, data description, econometric model, results, conclusion, and other general comments.

3. Journal policy effectiveness for computational reproducibility Empirical analysis

empirical research 3

Size: 556 KB

Science is a field with a vast scope with many branches. It means that expert individuals from a particular arm of Science may not be knowledgeable of the other categories of the field. Nevertheless, their one great goal is to understand and explain how the natural world works. For this reason, researchers and scientists use proper science communication to address information to a defined audience. As a way to improve scientific communication , researchers conducted this research example and observed the effectiveness of computational reproducibility.

4. Empirical Research for Advanced Econometrics

empirical research 4

Size: 246 KB

As you may have probably known, in the field of Econometrics, some research papers do not have econometric analysis. Instead, they use the conceptual foundation and knowledge they gathered from books to support their arguments. However, the information collected through these methods may not be enough. Thus, it can be essential to use empirical evidence to strengthen your study. This document contains a template of empirical research with detailed instructions that will suit your needs if you are in the field of Econometrics.

5. Empirical Study About The Success Of A Company

empirical research 5

Size: 376 KB

As a business leader, it is essential to keep records of the sales and performance of the company. You can use these records as your reference to better manage the performance of your company in the future. Also, you should track all the factors that affect these performances and the specific impacts of these factors. Through this method, the existing businessmen gain an edge over their competitors. Still, if you are a new businessman, you can level with them by studying this empirical research example. This research example analyses the influence of the cooperation of a business on its partnered firms.

6. Empirical Research In Law

empirical research 6

Size: 774 KB

On June 15, 2019, BBC News reported that Hong Kong suspended its controversial plan to allow  extradition  to its mainland, China, which Chief Executive Carrie Lam previously refused to discard. With this situation in mind, you should know that even the authorities can also make an unpleasant decision, but the voice of people can help them come up with a fair decision. If you are researching in regards to the law, you can download this empirical research example to get more knowledge on applying empirical research to a law-related study.

7. Empirical Studies in Discourse

empirical research 7

Size: 111 KB

Whether it is a written or spoken language, you can use discourse analysis to study a language to understand to use it in real life. In conducting this type of research, you will use an empirical method to observe its purpose and effects, which are the main sections that you are going to focus on. Learn more on how to apply the practical approach to your discourse study by downloading this 12-page document in PDF file.

8. Quantitative Empirical Analysis In Strategic Management

empirical research 8

Size: 205 KB

To attain the goals of your company, you will need strategic management. Through this supervision, you can plan out the necessary steps or changes in the management method of your company towards its objectives. With strategic management, you can also analyze and assess the effects of its implementation. One way to carry out this plan is to use  Quantitative Empirical Analysis . Know more about this type of study by downloading this 5-page document, which you can download in PDF format.

9. School Psychology Doctoral Program Dissertation Outline

empirical research 9

Size: 151 KB

As part of your curriculum, your professors may ask you to develop a dissertation . You should know that your aim when creating this type of project is to present your findings to the question or hypothesis that you take for yourself. By conducting this type of study, your professor will measure the research skills that you have learned in school. You should also know that the dissertation uses an empirical methodology. Before conducting your thesis, gain enough knowledge by downloading this outline.

10. APA Style Empirical Research Example

Empirical Research Example

Size: 304 KB

If you are planning to conduct empirical research for academic purposes, you can use this example as your guide. This downloadable file is following the APA style, which is a writing style that writers use for educational documents. This example also includes labels and notes explaining the function of each section in the research paper. Master the APA writing style and apply this learning to your empirical research now!

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Library Homepage

Identifying Empirical Research Articles

Identifying empirical articles.

  • Searching for Empirical Research Articles

What is Empirical Research?

An empirical research article reports the results of a study that uses data derived from actual observation or experimentation. Empirical research articles are examples of primary research. To learn more about the differences between primary and secondary research, see our related guide:

  • Primary and Secondary Sources

By the end of this guide, you will be able to:

  • Identify common elements of an empirical article
  • Use a variety of search strategies to search for empirical articles within the library collection

Look for the  IMRaD  layout in the article to help identify empirical research. Sometimes the sections will be labeled differently, but the content will be similar. 

  • I ntroduction: why the article was written, research question or questions, hypothesis, literature review
  • M ethods: the overall research design and implementation, description of sample, instruments used, how the authors measured their experiment
  • R esults: output of the author's measurements, usually includes statistics of the author's findings
  • D iscussion: the author's interpretation and conclusions about the results, limitations of study, suggestions for further research

Parts of an Empirical Research Article

Parts of an empirical article.

The screenshots below identify the basic IMRaD structure of an empirical research article. 

Introduction

The introduction contains a literature review and the study's research hypothesis.

empirical study research paper example

The method section outlines the research design, participants, and measures used.

empirical study research paper example

Results 

The results section contains statistical data (charts, graphs, tables, etc.) and research participant quotes.

empirical study research paper example

The discussion section includes impacts, limitations, future considerations, and research.

empirical study research paper example

Learn the IMRaD Layout: How to Identify an Empirical Article

This short video overviews the IMRaD method for identifying empirical research.

  • Next: Searching for Empirical Research Articles >>
  • Last Updated: Nov 16, 2023 8:24 AM

CityU Home - CityU Catalog

Creative Commons License

Empirical Research

  • Reference work entry
  • First Online: 01 January 2020
  • Cite this reference work entry

empirical study research paper example

  • Emeka Thaddues Njoku 3  

230 Accesses

The term “empirical” entails gathered data based on experience, observations, or experimentation. In empirical research, knowledge is developed from factual experience as opposed to theoretical assumption and usually involved the use of data sources like datasets or fieldwork, but can also be based on observations within a laboratory setting. Testing hypothesis or answering definite questions is a primary feature of empirical research. Empirical research, in other words, involves the process of employing working hypothesis that are tested through experimentation or observation. Hence, empirical research is a method of uncovering empirical evidence.

Through the process of gathering valid empirical data, scientists from a variety of fields, ranging from the social to the natural sciences, have to carefully design their methods. This helps to ensure quality and accuracy of data collection and treatment. However, any error in empirical data collection process could inevitably render such...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Bhattacherjee, A. (2012). Social science research: Principles, methods, and practices. Textbooks Collection . Book 3.

Google Scholar  

Comte, A., & Bridges, J. H. (Tr.) (1865). A general view of positivism . Trubner and Co. (reissued by Cambridge University Press, 2009).

Dilworth, C. B. (1982). Empirical research in the literature class. English Journal, 71 (3), 95–97.

Article   Google Scholar  

Heisenberg, W. (1971). Positivism, metaphysics and religion. In R. N. Nanshen (Ed.), Werner Heisenberg – Physics and beyond – Encounters and conversations , World Perspectives. 42. Translator: Arnold J. Pomerans. New York: Harper and Row.

Hossain, F. M. A. (2014). A critical analysis of empiricism. Open Journal of Philosophy, 2014 (4), 225–230.

Kant, I. (1783). Prolegomena to any future metaphysic (trans: Bennett, J.). Early Modern Texts. www.earlymoderntexts.com

Koch, S. (1992). Psychology’s Bridgman vs. Bridgman’s Bridgman: An essay in reconstruction. Theory and Psychology, 2 (3), 261–290.

Matin, A. (1968). An outline of philosophy . Dhaka: Mullick Brothers.

Mcleod, S. (2008). Psychology as science. http://www.simplypsychology.org/science-psychology.html

Popper, K. (1963). Conjectures and refutations: The growth of scientific knowledge . London: Routledge.

Simmel, G. (1908). The problem areas of sociology in Kurt H. Wolf: The sociology of Georg Simmel . London: The Free Press.

Weber, M. (1991). The nature of social action. In W. G. Runciman (Ed.), Weber: Selections in translation . Cambridge: Cambridge University Press.

Download references

Author information

Authors and affiliations.

Department of Political Science, University of Ibadan, Ibadan, Oyo, Nigeria

Emeka Thaddues Njoku

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Emeka Thaddues Njoku .

Editor information

Editors and affiliations.

University of Connecticut, Storrs, CT, USA

David A. Leeming

Blanton-Peale Institute, New York, NY, USA

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Cite this entry.

Njoku, E.T. (2020). Empirical Research. In: Leeming, D.A. (eds) Encyclopedia of Psychology and Religion. Springer, Cham. https://doi.org/10.1007/978-3-030-24348-7_200051

Download citation

DOI : https://doi.org/10.1007/978-3-030-24348-7_200051

Published : 12 June 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-24347-0

Online ISBN : 978-3-030-24348-7

eBook Packages : Behavioral Science and Psychology Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

helpful professor logo

15 Empirical Evidence Examples

15 Empirical Evidence Examples

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

Learn about our Editorial Process

15 Empirical Evidence Examples

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

empirical study research paper example

The term empirical evidence refers to the attainment of knowledge through observation, measurement, or experimentation ( also known as empiricism ). It is accumulated through systematic observations of phenomena in natural or laboratory setting.

One of the key standards of empirical evidence in academic research is that the results can be tested and verified by others. This can increase confidence in the conclusion and demonstrate that there is substantial evidence to accept something as a natural fact.

By contrast, anecdotal evidence , which is considered unclear and open to bias, might be a form of one-off evidence that wouldn’t be accepted unless it’s replicable. Confidence in the conclusion of anecdotal evidence is minimal.

Empirical Evidence Examples

  • Quantitative Data: Quantitative data is numerical data obtained through measurement, counting, or statistical analysis. An example is a person’s test scores, which are used as empirical evidence that can get you into a prestigious university. The strength of this type of data is that it tends to be objective, meaning it is less disputable than qualitative data.
  • Qualitative Data : Qualitative data is non-numerical data that captures the characteristics or properties of something. Examples include interview transcripts, field notes, and descriptions of behaviors or events. Its strength is that it can lead to in-depth explanations and understandingsthat quantitative data often cannot support.
  • Survey Data (Quantitative): Survey data, such as polling data in the lead up to an election, can be used as a form of empirical evidence if the study is reliable and valid. When the survey size is sufficient and population sample is sufficiently uniform, the data may be able to make population-wide predications about society and social views.
  • Data from Naturalistic Observation (Qualitative): Naturalistic observations are observations that we can make in the real world, not just in a lab environment. It can pass as empirical evidence if it’s repeatable over time and renders similar results. However, if the observation is made only once and future studies do not support claims made by the original observer, it may slip into the category of anecdotal evidence.
  • Case Study Data (Qualitative): Sometimes the first step to understanding a psychological disorder is to thoroughly examine how it is manifest in a single individual. This is referred to as a case study. This data is empirical and may be very sound, but its lack of population-level relevance limits is usability.
  • Textual Data (Quantitative or Qualitative): Although it is not possible to read people’s minds yet, the next best thing is to ask people to write their thoughts down on paper. Those words can then be coded along a variety of dimensions to develop trends across a textual dataset ( also known as textual analysis and thematic analysis).
  • Experimental Lab Data (Quantitative) : Randomly assigning research participants to receive different treatments is a hallmark of scientific research. By manipulating the level of one variable and observing changes in another, the researcher can draw conclusions regarding causality. Many consider this type of research as the most scientifically sound method of attaining empirical evidence.  
  • Longitudinal Research Data (Quantitative or Qualitative): This strategy for acquiring empirical evidence involves collecting data on a particular trait over a long period of time. Researchers will administer the same measurement tool at different points in the participants’ lifespan. This can provide valuable clues regarding the stability of personality characteristics or intellectual abilities.
  • Cross-sectional Data (Quantitative or Qualitative): Cross-sectional data is data collected from different subjects at a single point in time. For example, a national census usually generates a cross-sectional dataset of a nation’s population at a specific point in time by asking everyone to complete the census on the same day.
  • Historical Data (Quantitative or Qualitative) : Historical data is empirical evidence collected from past records or documents that can provide valuable context and insight into past events or societal trends. Examples include analyzing economic data from past decades to understand the causes of financial crises or examining the diaries of individuals who lived through significant historical events to gain a deeper understanding of their experiences.
  • Meta-Analysis Data (Generally Quantitative) : Meta-analysis is a quantitative technique that combines the results of multiple studies on a similar topic to derive an overall conclusion. This type of empirical evidence can provide a more reliable and generalizable understanding of a phenomenon by aggregating the findings of individual studies, reducing the influence of individual study biases, and increasing statistical power.
  • Ethnographic Data (Qualitative) : Ethnographic data is a form of qualitative data that provides evidence recorded by an anthropologist or similar researcher. While this data gives extremely in-depth understandings (often called ‘think descriptions’), its inability to be replicated means it lacks the authority of many other types of empirical research provided in this list. Examples include studying the daily lives of a remote tribe or exploring the workplace culture of a specific organization.
  • Computer Simulation Data (Quantitative) : Computer simulations can be used to model complex systems or processes, providing empirical evidence that may not be easily obtained through direct observation or experimentation. Examples include modeling the spread of infectious diseases to inform public health interventions, or simulating the effects of climate change on ecosystems.
  • Physiological Measurement Data (Quantitative) : Physiological measurements are the empirical data that result from the recording of physical or biological signals from the body. This can provide evidence about a person’s physical state and whether it fits within physiological norms required for healthy living. Examples include measuring heart rate or skin conductance to assess stress levels.
  • Cultural Artifacts (Quantitative or Qualitative) : Cultural artifacts and provide powerful empirical evidence about past cultures. For example, the etchings of Aboriginal rock art in Australia has been valuable in providing clear evidence about the historical longevity of the world’s oldest continuous culture.

Case Studies of Empirical Evidence  

1. evidence on who shares their passwords.

Evidence Collected by: Surveys

We all know that sharing passwords is risky. Experts would like to know who is most likely to engage in this risky behavior. As a group of these professionals sit around the table debating the issue, they quickly realize that everyone can provide good arguments to support their opinion.

So, how can this question be answered objectively?

The answer: through the scientific method .

To this end, Whitty et al. (2015) measured several personality characteristics of 630 internet users in the UK. Participants were administered questionnaires that assessed Impulsivity, Self-monitoring, and Locus of Control.

Age and knowledge of cyber security issues were also measured.

The results were sometimes surprising:

  • Younger people were more likely to share passwords than older people.
  • Those who scored high on a lack of perseverance (i.e., impulsivity) were more likely to share passwords.
  • Knowledge about cybersecurity did not distinguish between those who share passwords and those who do not share passwords.

The researchers concluded that:

“psychology plays an important role in providing answers to why individuals engage in cyber security practices” (p. 6).

It should be noted that several of the researchers’ hypotheses were not supported by the data. This points to a key reason empirical evidence is so valuable.

2. Linguistic Inquiry and Word Count (LIWC)  

Evidence Collected by: Text Analysis

Language is the most common way that people communicate their internal thoughts and emotions. Language is key to business, relationships, scientific innovation and nearly every facet of human existence.

Studying people through language is the way that cognitive, clinical, and social psychologist try to understand human behavior .

Today, communication via texting has never been easier, offering researchers an opportunity like never before. In the old day, text analysis was conducted by hand. Weintraub (1981, 1989) pioneered this approach by hand, analyzing political speeches and medical interviews.

Tausczik and Pennebaker’s (2010) pay respects to Weintraub’s work:

“He noticed that first-person singular pronouns (e.g., I, me, my) were reliably linked to people’s levels of depression. Although his methods were straightforward and his findings consistently related to important outcome measures, his work was largely ignored” (p. 26).

Fortunately, the volume of texts today can be handled with the use of linguistic technology.

The LIWC is unique in that it has the capability of analyzing text that can

“…provide important psychological cues to their thought processes, emotional states, intentions, and motivations…that reflect language correlates of attentional focus, emotional state, social relationships, thinking styles, and individual differences” (p. 37).

Human coding is subject to bias, but empirical evidence via computer technology is much more objective.

3. Measuring Neural Activity as Empirical Evidence

Evidence collected by: Physiological instruments

One of the most common methods of measuring the brain’s neural activity in psychological research is the EEG (electroencephalogram). A few electrodes attached to the scalp can measure this activity in real time.

This kind of data collection technique has allowed researchers to study a wide range of psychological phenomena, such as memory, attention span, and emotions.

In one interesting application, Wong et al. (2007) examined if music-related experience could enhance the processing of a tonal language such as Mandarin.

After all, music involves a lot of tones, as does Mandarin. Therefore, it would seem logical that musicians would be better at processing the sounds of Mandarin than non-musicians.

So, musicians and non-musicians watched a video that contained audio recordings of Mandarin while EEG data were collected. 

The results showed that the auditory brainstem regions of musicians

“…showed more faithful representation of the stimulus…Musicians showed significantly better identification and discrimination” (p. 421).

More simply put, the brains of musicians encoded the tones of Mandarin more accurately than the brains of non-musicians.

When empirical evidence is gathered using high-tech equipment, it lends a lot of credibility to the findings.

4. Reaction Time and Semantic Memory 

Evidence collected by: Computational data

A frequently used measure of cognitive processing is called “reaction time.” This is a precise measurement of how long it takes for a person to process a specific piece of information. 

For example, a research participant is presented with two words that are either related or unrelated.

If the two words are related, then they press one key. If the words are unrelated, then they press a different key.

The computer records how long it takes between the presentation of the words and the key press.

In one of the most influential studies in cognitive psychology , Collins and Loftus (1975) built a foundation of evidence suggesting that semantic information is stored in memory based on strengths of associations.

The reaction time of processing words that were related was much faster than words unrelated. This is because related words are more strongly connected in the memory network:

“The more properties two concepts have in common, the more links there are between the two nodes via these properties and the more closely related are the concepts…When a concept is processed (or stimulated), activation spreads out along the paths of the network in a decreasing gradient” (p. 411).

Empirical evidence in the form of reaction time is not subject to bias and the precision of measurement is quite impressive.  

5. Classroom Décor and Learning

Evidence collected by: Naturalistic observation

Most teachers enjoy decorating the classroom environment with educational posters, student artwork, and theme-based materials. But if you were to tell them that those decorations actually impair learning, it might be a tough sell.

However, Fisher et al. (2014) have empirical evidence suggesting this is a real possibility.

Visual stimuli can be distracting, especially to young children. They already have short attention spans.

To put the hypothesis to the test, 24 kindergarten students participated in six lessons over a two-week period; the classroom was either fully decorate or sparsely decorated.

The lessons were recorded and coded for on-task and off-task behaviors. In addition, students took a test immediately after each lesson.

“…spent significantly more instructional time off task in the decorated-classroom condition than in the sparse-classroom condition…learning scores were higher in the sparse-classroom condition than in the decorated-classroom condition” (p. 6).

Empirical evidence isn’t perfect, and every study has limitations, but it is far more objective than opinions based on subjective judgements.

Empirical evidence is attained objectively through methods that adhere to rigorous scientific standards.

The precision of empirical evidence is quite wide. On one end of the continuum, data collected from surveys simply involves participants circling a number that is supposed to reflect their attitude.

On the other end, computer programs can be designed that track how long it takes a person to process a stimulus down to milliseconds.

But perhaps the greatest value of empirical evidence is that it can resolve debates. Smart people can generate convincing arguments to support their opinions on either side of an issue.

However, evidence that comes from scientific methods can settle those debates. Even if it takes several studies to arrive at a firm conclusion, the end result helps move science forward.

Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory . Journal of Verbal Learning and Verbal Behavior , 8 (2), 240-247.

Collins, W. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82 (6), 407-428.

Fisher, A. V., Godwin, K. E., & Seltman, H. (2014). Visual environment, attention allocation, and learning in young children: When too much of a good thing may be bad. Psychological Science , 25 (7), 1362-1370.

Hacking, I. (1983). Representing and intervening . Cambridge: Cambridge University Press.

Malik, S. (2017). Observation versus experiment: An adequate framework for analysing scientific experimentation? Journal for General Philosophy of Science, 48 , 71–95. https://doi.org/10.1007/s10838-016-9335-y

Iliev, R., Dehghani, M., & Sagi, E. (2015). Automated text analysis in psychology: Methods, applications, and future developments. Language and Cognition , 7 (2), 265-290.

Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology , 29 (1), 24-54.

Weintraub, W. (1981). Verbal behavior: Adaptation and psychopathology . New York: Springer.

Weintraub, W. (1989). Verbal behavior in everyday life . New York: Springer

Whitty, M., Doodson, J., Creese, S., & Hodges, D. (2015). Individual differences in cyber security behaviors: an examination of who is sharing passwords. Cyberpsychology, Behavior, and Social Networking , 18 (1), 3-7.

Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience , 10 (4), 420–422. https://doi.org/10.1038/nn1872

Dave

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 23 Achieved Status Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Ableism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Theory of Planned Behavior Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

empirical study research paper example

  • Meriam Library

Empirical Research

  • Empirical Research Examples

Key Features

Empirical research: test your knowledge, article example.

  • Research Design

These are some key features to look for when identifying empirical research in political science and criminal justice.

NOTE: Not all of these features will be in every empirical research article, some may be excluded, use this only as a guide.

  • Statement of methodology
  • Research questions are clear and measurable
  • Individuals, group, subjects which are being studied are identified/defined
  • Data is presented regarding the findings
  • Controls or instruments such as surveys or tests were conducted
  • There is a literature review
  • There is discussion of the results included
  • Citations/references are included
  • Empirical Research? Yes or no?

Evaluate these articles to determine if they are empirical research or not.

2009. "Disproportionate sales of crime guns among licensed handgun retailers in the United States: a case–control study." Injury Prevention 15, no. 5: 291-299. Criminal Justice Abstracts with Full Text , EBSCO host (accessed October 3, 2013). http://mantis.csuchico.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=i3h&AN=44739892&site=eds-live

  • << Previous: Home
  • Next: Research Design >>
  • Last Updated: Feb 2, 2024 8:27 AM
  • URL: https://libguides.csuchico.edu/empirical

Meriam Library | CSU, Chico

Banner

Empirical Research

  • Search for Empirical Articles
  • Related Guides

Ask a Librarian: 

[email protected]  .

La Plata : 301-934-7676

Leonardtown : 240-725-5360

Prince Frederick : 443-550-6060

Empirical Research Article: Example with Annotations

Here are a few examples of empirical research articles. Look at the abstract, source, subject terms (under “MeSH”,“Subject”, or “Subject Terms”). 

Gender Differences in Affective Responses to Sexual Rejection  Hanneke de Graaf; Theo G M Sandfort Archives of Sexual Behavior ; Aug 2004; 33(4), pp. 395-403; Research Library

Couples Watching Television: gender, power, and the remote control  Alexis J Walker Journal of Marriage and the Family ; Nov 1996; 58(4), pp. 813-823; ProQuest Religion

Elementary and High School Teachers: birds of a feather?  Susan H Marston; Gerald J Brunetti; Victoria B Courtney Education ; Spring 2005; 125(3), pp. 469-495; Research Library

Racially Biased Policing: determinants of citizen perceptions  Ronald Weitzer; Steven A Tuch Social Forces; Mar 2005; 83(3), pp. 1009-1030; Research Library

Note: you may not use these examples for your assignment!

  • << Previous: Search for Empirical Articles
  • Next: Related Guides >>
  • Last Updated: Aug 21, 2023 12:50 PM
  • URL: https://libguides.csmd.edu/empirical_research

empirical study research paper example

How to Write a Research Proposal: (with Examples & Templates)

how to write a research proposal

Table of Contents

Before conducting a study, a research proposal should be created that outlines researchers’ plans and methodology and is submitted to the concerned evaluating organization or person. Creating a research proposal is an important step to ensure that researchers are on track and are moving forward as intended. A research proposal can be defined as a detailed plan or blueprint for the proposed research that you intend to undertake. It provides readers with a snapshot of your project by describing what you will investigate, why it is needed, and how you will conduct the research.  

Your research proposal should aim to explain to the readers why your research is relevant and original, that you understand the context and current scenario in the field, have the appropriate resources to conduct the research, and that the research is feasible given the usual constraints.  

This article will describe in detail the purpose and typical structure of a research proposal , along with examples and templates to help you ace this step in your research journey.  

What is a Research Proposal ?  

A research proposal¹ ,²  can be defined as a formal report that describes your proposed research, its objectives, methodology, implications, and other important details. Research proposals are the framework of your research and are used to obtain approvals or grants to conduct the study from various committees or organizations. Consequently, research proposals should convince readers of your study’s credibility, accuracy, achievability, practicality, and reproducibility.   

With research proposals , researchers usually aim to persuade the readers, funding agencies, educational institutions, and supervisors to approve the proposal. To achieve this, the report should be well structured with the objectives written in clear, understandable language devoid of jargon. A well-organized research proposal conveys to the readers or evaluators that the writer has thought out the research plan meticulously and has the resources to ensure timely completion.  

Purpose of Research Proposals  

A research proposal is a sales pitch and therefore should be detailed enough to convince your readers, who could be supervisors, ethics committees, universities, etc., that what you’re proposing has merit and is feasible . Research proposals can help students discuss their dissertation with their faculty or fulfill course requirements and also help researchers obtain funding. A well-structured proposal instills confidence among readers about your ability to conduct and complete the study as proposed.  

Research proposals can be written for several reasons:³  

  • To describe the importance of research in the specific topic  
  • Address any potential challenges you may encounter  
  • Showcase knowledge in the field and your ability to conduct a study  
  • Apply for a role at a research institute  
  • Convince a research supervisor or university that your research can satisfy the requirements of a degree program  
  • Highlight the importance of your research to organizations that may sponsor your project  
  • Identify implications of your project and how it can benefit the audience  

What Goes in a Research Proposal?    

Research proposals should aim to answer the three basic questions—what, why, and how.  

The What question should be answered by describing the specific subject being researched. It should typically include the objectives, the cohort details, and the location or setting.  

The Why question should be answered by describing the existing scenario of the subject, listing unanswered questions, identifying gaps in the existing research, and describing how your study can address these gaps, along with the implications and significance.  

The How question should be answered by describing the proposed research methodology, data analysis tools expected to be used, and other details to describe your proposed methodology.   

Research Proposal Example  

Here is a research proposal sample template (with examples) from the University of Rochester Medical Center. 4 The sections in all research proposals are essentially the same although different terminology and other specific sections may be used depending on the subject.  

Research Proposal Template

Structure of a Research Proposal  

If you want to know how to make a research proposal impactful, include the following components:¹  

1. Introduction  

This section provides a background of the study, including the research topic, what is already known about it and the gaps, and the significance of the proposed research.  

2. Literature review  

This section contains descriptions of all the previous relevant studies pertaining to the research topic. Every study cited should be described in a few sentences, starting with the general studies to the more specific ones. This section builds on the understanding gained by readers in the Introduction section and supports it by citing relevant prior literature, indicating to readers that you have thoroughly researched your subject.  

3. Objectives  

Once the background and gaps in the research topic have been established, authors must now state the aims of the research clearly. Hypotheses should be mentioned here. This section further helps readers understand what your study’s specific goals are.  

4. Research design and methodology  

Here, authors should clearly describe the methods they intend to use to achieve their proposed objectives. Important components of this section include the population and sample size, data collection and analysis methods and duration, statistical analysis software, measures to avoid bias (randomization, blinding), etc.  

5. Ethical considerations  

This refers to the protection of participants’ rights, such as the right to privacy, right to confidentiality, etc. Researchers need to obtain informed consent and institutional review approval by the required authorities and mention this clearly for transparency.  

6. Budget/funding  

Researchers should prepare their budget and include all expected expenditures. An additional allowance for contingencies such as delays should also be factored in.  

7. Appendices  

This section typically includes information that supports the research proposal and may include informed consent forms, questionnaires, participant information, measurement tools, etc.  

8. Citations  

empirical study research paper example

Important Tips for Writing a Research Proposal  

Writing a research proposal begins much before the actual task of writing. Planning the research proposal structure and content is an important stage, which if done efficiently, can help you seamlessly transition into the writing stage. 3,5  

The Planning Stage  

  • Manage your time efficiently. Plan to have the draft version ready at least two weeks before your deadline and the final version at least two to three days before the deadline.
  • What is the primary objective of your research?  
  • Will your research address any existing gap?  
  • What is the impact of your proposed research?  
  • Do people outside your field find your research applicable in other areas?  
  • If your research is unsuccessful, would there still be other useful research outcomes?  

  The Writing Stage  

  • Create an outline with main section headings that are typically used.  
  • Focus only on writing and getting your points across without worrying about the format of the research proposal , grammar, punctuation, etc. These can be fixed during the subsequent passes. Add details to each section heading you created in the beginning.   
  • Ensure your sentences are concise and use plain language. A research proposal usually contains about 2,000 to 4,000 words or four to seven pages.  
  • Don’t use too many technical terms and abbreviations assuming that the readers would know them. Define the abbreviations and technical terms.  
  • Ensure that the entire content is readable. Avoid using long paragraphs because they affect the continuity in reading. Break them into shorter paragraphs and introduce some white space for readability.  
  • Focus on only the major research issues and cite sources accordingly. Don’t include generic information or their sources in the literature review.  
  • Proofread your final document to ensure there are no grammatical errors so readers can enjoy a seamless, uninterrupted read.  
  • Use academic, scholarly language because it brings formality into a document.  
  • Ensure that your title is created using the keywords in the document and is neither too long and specific nor too short and general.  
  • Cite all sources appropriately to avoid plagiarism.  
  • Make sure that you follow guidelines, if provided. This includes rules as simple as using a specific font or a hyphen or en dash between numerical ranges.  
  • Ensure that you’ve answered all questions requested by the evaluating authority.  

Key Takeaways   

Here’s a summary of the main points about research proposals discussed in the previous sections:  

  • A research proposal is a document that outlines the details of a proposed study and is created by researchers to submit to evaluators who could be research institutions, universities, faculty, etc.  
  • Research proposals are usually about 2,000-4,000 words long, but this depends on the evaluating authority’s guidelines.  
  • A good research proposal ensures that you’ve done your background research and assessed the feasibility of the research.  
  • Research proposals have the following main sections—introduction, literature review, objectives, methodology, ethical considerations, and budget.  

empirical study research paper example

Frequently Asked Questions  

Q1. How is a research proposal evaluated?  

A1. In general, most evaluators, including universities, broadly use the following criteria to evaluate research proposals . 6  

  • Significance —Does the research address any important subject or issue, which may or may not be specific to the evaluator or university?  
  • Content and design —Is the proposed methodology appropriate to answer the research question? Are the objectives clear and well aligned with the proposed methodology?  
  • Sample size and selection —Is the target population or cohort size clearly mentioned? Is the sampling process used to select participants randomized, appropriate, and free of bias?  
  • Timing —Are the proposed data collection dates mentioned clearly? Is the project feasible given the specified resources and timeline?  
  • Data management and dissemination —Who will have access to the data? What is the plan for data analysis?  

Q2. What is the difference between the Introduction and Literature Review sections in a research proposal ?  

A2. The Introduction or Background section in a research proposal sets the context of the study by describing the current scenario of the subject and identifying the gaps and need for the research. A Literature Review, on the other hand, provides references to all prior relevant literature to help corroborate the gaps identified and the research need.  

Q3. How long should a research proposal be?  

A3. Research proposal lengths vary with the evaluating authority like universities or committees and also the subject. Here’s a table that lists the typical research proposal lengths for a few universities.  

     
  Arts programs  1,000-1,500 
University of Birmingham  Law School programs  2,500 
  PhD  2,500 
    2,000 
  Research degrees  2,000-3,500 

Q4. What are the common mistakes to avoid in a research proposal ?  

A4. Here are a few common mistakes that you must avoid while writing a research proposal . 7  

  • No clear objectives: Objectives should be clear, specific, and measurable for the easy understanding among readers.  
  • Incomplete or unconvincing background research: Background research usually includes a review of the current scenario of the particular industry and also a review of the previous literature on the subject. This helps readers understand your reasons for undertaking this research because you identified gaps in the existing research.  
  • Overlooking project feasibility: The project scope and estimates should be realistic considering the resources and time available.   
  • Neglecting the impact and significance of the study: In a research proposal , readers and evaluators look for the implications or significance of your research and how it contributes to the existing research. This information should always be included.  
  • Unstructured format of a research proposal : A well-structured document gives confidence to evaluators that you have read the guidelines carefully and are well organized in your approach, consequently affirming that you will be able to undertake the research as mentioned in your proposal.  
  • Ineffective writing style: The language used should be formal and grammatically correct. If required, editors could be consulted, including AI-based tools such as Paperpal , to refine the research proposal structure and language.  

Thus, a research proposal is an essential document that can help you promote your research and secure funds and grants for conducting your research. Consequently, it should be well written in clear language and include all essential details to convince the evaluators of your ability to conduct the research as proposed.  

This article has described all the important components of a research proposal and has also provided tips to improve your writing style. We hope all these tips will help you write a well-structured research proposal to ensure receipt of grants or any other purpose.  

References  

  • Sudheesh K, Duggappa DR, Nethra SS. How to write a research proposal? Indian J Anaesth. 2016;60(9):631-634. Accessed July 15, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037942/  
  • Writing research proposals. Harvard College Office of Undergraduate Research and Fellowships. Harvard University. Accessed July 14, 2024. https://uraf.harvard.edu/apply-opportunities/app-components/essays/research-proposals  
  • What is a research proposal? Plus how to write one. Indeed website. Accessed July 17, 2024. https://www.indeed.com/career-advice/career-development/research-proposal  
  • Research proposal template. University of Rochester Medical Center. Accessed July 16, 2024. https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/pediatrics/research/documents/Research-proposal-Template.pdf  
  • Tips for successful proposal writing. Johns Hopkins University. Accessed July 17, 2024. https://research.jhu.edu/wp-content/uploads/2018/09/Tips-for-Successful-Proposal-Writing.pdf  
  • Formal review of research proposals. Cornell University. Accessed July 18, 2024. https://irp.dpb.cornell.edu/surveys/survey-assessment-review-group/research-proposals  
  • 7 Mistakes you must avoid in your research proposal. Aveksana (via LinkedIn). Accessed July 17, 2024. https://www.linkedin.com/pulse/7-mistakes-you-must-avoid-your-research-proposal-aveksana-cmtwf/  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

How to write a phd research proposal.

  • What are the Benefits of Generative AI for Academic Writing?
  • How to Avoid Plagiarism When Using Generative AI Tools
  • What is Hedging in Academic Writing?  

How to Write Your Research Paper in APA Format

The future of academia: how ai tools are changing the way we do research, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write your research paper in apa..., how to choose a dissertation topic, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers..., how to write dissertation acknowledgements.

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

land-logo

Article Menu

empirical study research paper example

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

The impact of covid-19 on the jobs–housing dynamic balance: empirical evidence from wuhan between 2019, 2021, 2023.

empirical study research paper example

1. Introduction

2. materials and methods, 2.1. study area, 2.3. methods, 2.3.1. individual jobs–housing migration and dynamic jobs–housing balance, 2.3.2. assessment of jobs–housing migration, 2.3.3. assessment of jobs–housing dynamics balance, 3.1. synchronous and asynchronous characteristics of jobs–housing migration, 3.2. characteristics of jobs–housing dynamic balance, 4. discussion, 5. conclusions, author contributions, data availability statement, conflicts of interest.

  • Kain, J.F. Housing Segregation, Negro Employment, and Metropolitan Decentralization. Q. J. Econ. 1968 , 82 , 175–197. [ Google Scholar ] [ CrossRef ]
  • Yan, L.; Wang, D.; Zhang, S.; Xie, D. Evaluating the multi-scale patterns of jobs-residence balance and commuting time-cost using cellular signaling data: A case study in Shanghai. Transportation 2019 , 46 , 777–792. [ Google Scholar ] [ CrossRef ]
  • Zhao, P. Managing urban growth in a transforming China: Evidence from Beijing. Land Use Policy 2011 , 28 , 96–109. [ Google Scholar ] [ CrossRef ]
  • Zhao, P.; Hu, H. Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing. Cities 2019 , 92 , 164–174. [ Google Scholar ] [ CrossRef ]
  • Shen, Y.; Ta, N.; Liu, Z. Job-housing distance, neighborhood environment, and mental health in suburban Shanghai: A gender difference perspective. Cities 2021 , 115 , 103214. [ Google Scholar ] [ CrossRef ]
  • Pan, Q.; Jiao, H.; Liu, X.; Zheng, Z.; He, H.; Wang, W. Optimization of City-Industry Integration Evaluation in Conjunction with Plan Formulation: The Practice in Wuhan. Urban Plan. Forum 2024 , 110–118. [ Google Scholar ] [ CrossRef ]
  • Horner, M.; Murray, A. A Multi-objective Approach to Improving Regional Jobs-Housing Balance. Reg. Stud. 2003 , 37 , 135–146. [ Google Scholar ] [ CrossRef ]
  • Zhou, J.; Chen, X.; Huang, W.; Yu, P.; Zhang, C. Jobs-housing Balance and Commute Efficiency in Cities of Central and Western China: A Case Study of XI’an. Acta Geogr. Sin. 2013 , 68 , 1316–1330. [ Google Scholar ]
  • Horner, M.W. Spatial Dimensions of Urban Commuting: A Review of Major Issues and Their Implications for Future Geographic Research*. Prof. Geogr. 2004 , 56 , 160–173. [ Google Scholar ] [ CrossRef ]
  • Cervero, R. Jobs-Housing Balance Revisited: Trends and Impacts in the San Francisco Bay Area. J. Am. Plan. Assoc. 1996 , 62 , 492–511. [ Google Scholar ] [ CrossRef ]
  • Kim, C. Commuting time stability: A test of a co-location hypothesis. Transp. Res. Part A Policy Pract. 2008 , 42 , 524–544. [ Google Scholar ] [ CrossRef ]
  • Blumenberg, E.; King, H. Jobs–Housing Balance Re-Re-Visited. J. Am. Plan. Assoc. 2021 , 87 , 484–496. [ Google Scholar ] [ CrossRef ]
  • Kim, K.; Horner, M.W. Examining the impacts of the Great Recession on the commuting dynamics and jobs-housing balance of public and private sector workers. J. Transp. Geogr. 2021 , 90 , 102933. [ Google Scholar ] [ CrossRef ]
  • Zheng, Z.; Zhou, S.; Deng, X. Exploring both home-based and work-based jobs-housing balance by distance decay effect. J. Transp. Geogr. 2021 , 93 , 103043. [ Google Scholar ] [ CrossRef ]
  • Dai, L.; Jiao, H.; Xiao, L. A Review on Jobs-housing Spatial Matching of Urban Residents. Hum. Geogr. 2013 , 28 , 27–31+66. [ Google Scholar ]
  • Moreno, C.; Allam, Z.; Chabaud, D.; Gall, C.; Pratlong, F. Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities. Smart Cities 2021 , 4 , 93–111. [ Google Scholar ] [ CrossRef ]
  • Liu, Q.; Sha, D.; Liu, W.; Houser, P.; Zhang, L.; Hou, R.; Lan, H.; Flynn, C.; Lu, M.; Hu, T.; et al. Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data. Remote Sens. 2020 , 12 , 1576. [ Google Scholar ] [ CrossRef ]
  • Yang, X.; Ye, Q.; Peng, Y.; Liu, S.; Feng, T. Effects of Urban Parks on Housing Prices in the Post-COVID-19 Pandemic Era in China. Land 2024 , 13 , 519. [ Google Scholar ] [ CrossRef ]
  • Chen, L.; Liu, L.; Wu, H.; Peng, Z.; Sun, Z. Change of Residents’ Attitudes and Behaviors toward Urban Green Space Pre- and Post-COVID-19 Pandemic. Land 2022 , 11 , 1051. [ Google Scholar ] [ CrossRef ]
  • Ilham, M.A.; Fonzone, A.; Fountas, G.; Mora, L. To move or not to move: A review of residential relocation trends after COVID-19. Cities 2024 , 151 , 105078. [ Google Scholar ] [ CrossRef ]
  • Kang, B.; Won, J.; Kim, E.J. COVID-19 Impact on Residential Preferences in the Early-Stage Outbreak in South Korea. Int. J. Environ. Res. Public Health 2021 , 18 , 11207. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wu, L.; Niu, Q.; Liang, X.; Jiang, Y.; Zhang, H. Impacts of virtual amenities on residential relocation and decentralization of megacity: An empirical study in wuhan, China. Appl. Geogr. 2024 , 167 , 103273. [ Google Scholar ] [ CrossRef ]
  • Niu, Q.; Zhang, H.; Wu, L.; Zou, W. Urban-suburban Heterogeneity of Mobile Office Development in Recent Years: Based on Mobile Office App Usage Big Data of China Unicom Users in Wuhan in 2019 and 2021. Prog. Geogr. 2022 , 41 , 1428–1439. [ Google Scholar ] [ CrossRef ]
  • Salon, D.; Mirtich, L.; Bhagat-Conway, M.W.; Costello, A.; Rahimi, E.; Mohammadian, A.K.; Chauhan, R.S.; Derrible, S.; Da Silva Baker, D.; Pendyala, R.M. The COVID-19 pandemic and the future of telecommuting in the United States. Transp. Res. Part D Transp. Environ. 2022 , 112 , 103473. [ Google Scholar ] [ CrossRef ]
  • Somoza Medina, X. From Deindustrialization to a Reinforced Process of Reshoring in Europe. Another Effect of the COVID-19 Pandemic? Land 2022 , 11 , 2109. [ Google Scholar ] [ CrossRef ]
  • Denham, T. The limits of telecommuting: Policy challenges of counterurbanisation as a pandemic response. Geogr. Res. 2021 , 59 , 514–521. [ Google Scholar ] [ CrossRef ]
  • Niu, Q.; Wu, L.; Sheng, F.; Wu, W. Analytic Approach for the Jobs-housing Dynamic Balance in Suburban New Cities Based on Individual Migration: A case study of Wuhan, China. Acta Geogr. Sin. 2023 , 78 , 3095–3108. [ Google Scholar ]
  • Yu, J.; Dong, G.; Zhang, W.; Chen, L.; Dang, Y. The correlated decision process of house moving and job change and its heterogeneity: A case study of Beijing. Acta Geogr. Sin. 2014 , 69 , 147–155. [ Google Scholar ]
  • Yao, Y. People and job migration during suburbanization: A case study of Beijing. Urban Dev. Stud. 2011 , 18 , 24–29. [ Google Scholar ]
  • Zhang, P.; Zhou, J.; Zhang, T. Quantifying and visualizing jobs-housing balance with big data: A case study of Shanghai. Cities 2017 , 66 , 10–22. [ Google Scholar ] [ CrossRef ]
  • Niu, Q.; Sheng, F.; Liu, X.; Yan, X. Research on the Identification Method of Relocation Activity Degree in Inner City Based on Mobile Phone Signaling Data: A Case Study of Wuhan. Geogr. Res. 2022 , 41 , 2142–2154. [ Google Scholar ]
  • Wu, L.; Deng, H.; Hu, J.; Niu, Q.; Liang, X. Using cell phone usage data to explore the spatial distribution of virtual leisure and the impact on reality leisure. Leis. Stud. 2024 , 1–15. [ Google Scholar ] [ CrossRef ]
  • Niu, Q.; Xi, Y.; Hu, Z.; Zhang, W.; Wu, L. After Forced Relocation: Assessing the Impact of Urban Regeneration on Residents’ Living Spaces in Wuhan, China. Hous. Policy Debate 2024 , 1–19. [ Google Scholar ] [ CrossRef ]
  • Matilla-Santander, N.; Ahonen, E.; Albin, M.; Baron, S.; Bolíbar, M.; Bosmans, K.; Burström, B.; Cuervo, I.; Davis, L.; Gunn, V.; et al. COVID-19 and Precarious Employment: Consequences of the Evolving Crisis. Int. J. Health Serv. 2021 , 51 , 226–228. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lee, J.; Yang, H. Pandemic and employment: Evidence from COVID-19 in South Korea. J. Asian Econ. 2022 , 78 , 101432. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lee, A.S.; Lahr, M.L.; Wang, S. Couple Households and the Commuting Time–Gender Gap. Prof. Geogr. 2022 , 74 , 688–703. [ Google Scholar ] [ CrossRef ]
  • Gimenez-Nadal, J.I.; Molina, J.A. Daily feelings of US workers and commuting time. J. Transp. Health 2019 , 12 , 21–33. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

Num.NameFormulaExplanation
(5)Index of synchronous employment in-migration (I ) m is the number of individuals who synchronously migrated their workplaces into a certain area during the study period
(6)Index of asynchronous employment in-migration (I ) m is the number of individuals who asynchronously migrated their workplaces into a certain area during the study period
(7)Index of synchronous residential in-migration (I ) m is the number of individuals who synchronously migrated their residences into a certain area during the study period
(8)Index of asynchronous residential in-migration (I ) m is the number of individuals who asynchronously migrated their residences into a certain area during the study period
(9)Index of simultaneous jobs–housing in-migration (I ) m is the number of individuals who simultaneously migrated their workplaces and residences into a certain area during the study period, so it needs to be calculated twice
(10)Index of synchronous employment out-migration (O ) n is the number of individuals who synchronously migrated their workplaces from a certain area during the study period
(11)Index of asynchronous employment out-migration (O ) n is the number of individuals who asynchronously migrated their workplaces from a certain area during the study period
(12)Index of synchronous residential out-migration (O ) n is the number of individuals who synchronously migrated their residences from a certain area during the study period
(13)Index of asynchronous residential out-migration (O ) n is the number of individuals who asynchronously migrated their residences from a certain area during the study period
(14)Index of simultaneous jobs–housing out-migration (O ) n is the number of individuals who simultaneously migrated their workplaces and residences from a certain area during the study period, so it needs to be calculated twice
(15)Sum changes in the number of individuals after migration (S)
Type of MigrationImpact on the Number of Same-Region Workplace–Residences Impact on the Number of Cross-Region Workplace–ResidencesImpact on the Total Number of Workplaces and Residences
Original status---
Synchronous residential in-migration of m individuals
Synchronous employment in-migration of m individuals
simultaneous jobs–housing in-migration of m individuals No impact
Asynchronous residential in-migration of m individualsNo impact
Asynchronous employment in-migration of m individualsNo impact
Synchronous residential out-migration of n individualsNo impact
Synchronous employment out-migration of n individualsNo impact
Simultaneous jobs–housing out-migration of n individuals No impact
Asynchronous residential out-migration of n individuals
Asynchronous employment out-migration of n individuals
NumNameFormula
(16)The change rate of same-region after employment in-migration (R )
(17)The change rate of cross-region after employment in-migration (R )
(18)The change rate of same-region after residential in-migration (R )
(19)The change rate of cross-region after residential in-migration (R )
(20)The change rate of same-region after simultaneous in-migration (R )
(21)The change rate of same-region after employment out-migration (R )
(22)The change rate of cross-region after employment out-migration (R )
(23)The change rate of same-region after residential out-migration (R )
(24)The change rate of cross-region after residential out-migration (R )
(25)The change rate of same-region after simultaneous out-migration (R )
Eastern
New City
Southeast New CitySouthern New CitySouthwest New CityWestern New CityNorthern New CityCentral Urban Area
Index of synchronous employment in-migration (I )0.0330.0670.0570.0400.0680.0870.152
Index of synchronous residential in-migration (I )0.0350.0460.0300.0350.0330.0300.104
Index of simultaneous jobs–housing in-migration (I )0.1000.1060.0870.0890.0830.0930.069
Index of asynchronous employment in-migration (I )0.3280.2560.1770.2930.2410.2410.087
Index of asynchronous residential in-migration (I )0.2230.1320.2750.1650.1910.2380.044
Index of synchronous employment out-migration (O )0.1340.1370.1190.1380.1410.1070.061
Index of asynchronous employment out-migration (O )0.0710.0770.1020.1090.0960.0740.036
Index of simultaneous jobs–housing out-migration (O )0.0370.0670.0560.0480.0470.0370.080
Index of synchronous residential out-migration (O )0.0250.0650.0690.0450.0660.0740.202
Index of asynchronous residential out-migration (O )0.0130.0480.0270.0410.0340.0180.166
Eastern
New City
Southeast New CitySouthern New CitySouthwest New CityWestern New CityNorthern New CityCentral Urban Area
Index of synchronous employment in-migration (I )0.0700.1070.1190.0810.1300.1610.192
Index of synchronous residential in-migration (I )0.0350.0630.0360.0540.0440.0330.100
Index of simultaneous jobs–housing in-migration (I )0.1800.1390.1610.1470.1310.1480.063
Index of asynchronous employment in-migration (I )0.1870.2280.1060.1790.1670.1230.062
Index of asynchronous residential in-migration (I )0.1680.0870.2520.1300.1310.1620.030
Index of synchronous employment out-migration (O )0.1980.1650.1310.2140.1800.1720.117
Index of asynchronous employment out-migration (O )0.0720.0680.0930.0910.1060.0880.046
Index of simultaneous jobs–housing out-migration (O )0.0490.0630.0490.0560.0480.0450.126
Index of synchronous residential out-migration (O )0.0300.0450.0360.0230.0410.0490.134
Index of asynchronous residential out-migration (O )0.0120.0350.0150.0250.0230.0180.129
Eastern
New City
Southeast New CitySouthern New CitySouthwest New CityWestern New CityNorthern New CityCentral Urban Area
The overall impact index−0.279−0.181−0.328−0.314−0.242−0.221−0.114
The impact index of in-migration−0.0840.155−0.117−0.0260.0100.0670.265
The impact index of out-migration−0.195−0.336−0.211−0.288−0.253−0.288−0.369
The impact index of employment migration−0.097−0.077−0.070−0.115−0.059−0.036−0.059
The impact index of residential migration−0.181−0.103−0.258−0.199−0.183−0.186−0.044
The impact index of employment in-migration−0.0930.0570.020−0.0560.0330.1170.160
The impact index of employment out-migration−0.004−0.134−0.090−0.058−0.092−0.152−0.219
The impact index of residential in-migration0.0090.099−0.1370.030−0.022−0.0500.105
The impact index of residential out-migration−0.191−0.202−0.121−0.229−0.161−0.136−0.150
the proportion of same-region jobs–housing numbers in 20190.3760.4260.5270.4040.4520.4250.840
the proportion of same-region jobs–housing numbers in 20210.3850.4150.4970.3890.4380.4190.825
Eastern
New City
Southeast New CitySouthern New CitySouthwest New CityWestern New CityNorthern New CityCentral Urban Area
The overall impact index0.1720.2270.1220.2330.2120.3060.103
The impact index of in-migration0.3240.4340.2470.3820.3760.4980.257
The impact index of out-migration−0.151−0.207−0.126−0.149−0.164−0.192−0.154
The impact index of employment migration0.2470.1880.2990.2770.2950.4130.100
The impact index of residential migration−0.0740.039−0.177−0.043−0.083−0.1070.003
The impact index of employment in-migration0.2170.2290.3030.2160.2910.4480.166
The impact index of employment out-migration0.030−0.041−0.0040.0610.003−0.035−0.067
The impact index of residential in-migration0.1070.204−0.0550.1660.0840.0500.091
The impact index of residential out-migration−0.181−0.166−0.122−0.210−0.167−0.157−0.088
the proportion of same-region jobs–housing numbers in 20210.3850.4150.4970.3890.4380.4190.825
the proportion of same-region jobs–housing numbers in 20230.4990.4980.5710.4990.5400.5410.843
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Wu, L.; Yuan, M.; Liu, F.; Niu, Q. The Impact of COVID-19 on the Jobs–Housing Dynamic Balance: Empirical Evidence from Wuhan between 2019, 2021, 2023. Land 2024 , 13 , 1299. https://doi.org/10.3390/land13081299

Wu L, Yuan M, Liu F, Niu Q. The Impact of COVID-19 on the Jobs–Housing Dynamic Balance: Empirical Evidence from Wuhan between 2019, 2021, 2023. Land . 2024; 13(8):1299. https://doi.org/10.3390/land13081299

Wu, Lei, Muxi Yuan, Fangjie Liu, and Qiang Niu. 2024. "The Impact of COVID-19 on the Jobs–Housing Dynamic Balance: Empirical Evidence from Wuhan between 2019, 2021, 2023" Land 13, no. 8: 1299. https://doi.org/10.3390/land13081299

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

  • Introduction
  • Conclusions
  • Article Information

Outcomes are estimated from bivariate and multivariable generalized estimating equation models. aOR, indicates adjusted odds ratio; GAD-7, Generalized Anxiety Disorder 7-item scale; PHQ-9, Patient Health Questionnaire 9-item scale; whiskers, 95% CIs.

eTable 1. Survey Instruments

eTable 2. Prevalence of Exposure Over Time

eTable 3. Prevalence of Outcomes Over Time by Exposure Group

eTable 4. E-Value Calculation for Association Between Puberty Blockers or Gender-Affirming Hormones and Mental Health Outcomes

eTable 5. Examining Association Between Puberty Blockers or Gender-Affirming Hormones and Mental Health Outcomes Separately

eTable 6. Bivariate Model Restricted to Youths Ages 13 to 17 Years

eTable 7. Multivariable Model Restricted to 90 Youths Ages 13 to 17 Years

eTable 8. Sensitivity Analyses using Patient Health Questionnaire 8-item Scale Score of 10 or Greater for Moderate to Severe Depression

eFigure 1. Schematic of Generalized Estimating Equation Model

eFigure 2. Association Between Receipt of Gender-Affirming Hormones or Puberty Blockers and Mental Health Outcomes

eReferences

  • Medical Groups Defend Patient-Physician Relationship and Access to Adolescent Gender-Affirming Care JAMA Medical News & Perspectives April 19, 2022 This Medical News article discusses physicians’ advocacy to protect patients and the patient-physician relationship amid efforts by politicians to limit access or criminalize gender-affirming care. Bridget M. Kuehn, MSJ
  • As Laws Restricting Health Care Surge, Some US Physicians Choose Between Fight or Flight JAMA Medical News & Perspectives June 13, 2023 In this Medical News article, 13 physicians and health care experts spoke with JAMA about the increasing efforts to criminalize evidence-based medical care in the US. Melissa Suran, PhD, MSJ
  • Data Errors in eTables 2 and 3 JAMA Network Open Correction July 26, 2022
  • Improving Mental Health Among Transgender and Gender-Diverse Youth JAMA Network Open Invited Commentary February 25, 2022 Brett Dolotina, BS; Jack L. Turban, MD, MHS

See More About

Sign up for emails based on your interests, select your interests.

Customize your JAMA Network experience by selecting one or more topics from the list below.

  • Academic Medicine
  • Acid Base, Electrolytes, Fluids
  • Allergy and Clinical Immunology
  • American Indian or Alaska Natives
  • Anesthesiology
  • Anticoagulation
  • Art and Images in Psychiatry
  • Artificial Intelligence
  • Assisted Reproduction
  • Bleeding and Transfusion
  • Caring for the Critically Ill Patient
  • Challenges in Clinical Electrocardiography
  • Climate and Health
  • Climate Change
  • Clinical Challenge
  • Clinical Decision Support
  • Clinical Implications of Basic Neuroscience
  • Clinical Pharmacy and Pharmacology
  • Complementary and Alternative Medicine
  • Consensus Statements
  • Coronavirus (COVID-19)
  • Critical Care Medicine
  • Cultural Competency
  • Dental Medicine
  • Dermatology
  • Diabetes and Endocrinology
  • Diagnostic Test Interpretation
  • Drug Development
  • Electronic Health Records
  • Emergency Medicine
  • End of Life, Hospice, Palliative Care
  • Environmental Health
  • Equity, Diversity, and Inclusion
  • Facial Plastic Surgery
  • Gastroenterology and Hepatology
  • Genetics and Genomics
  • Genomics and Precision Health
  • Global Health
  • Guide to Statistics and Methods
  • Hair Disorders
  • Health Care Delivery Models
  • Health Care Economics, Insurance, Payment
  • Health Care Quality
  • Health Care Reform
  • Health Care Safety
  • Health Care Workforce
  • Health Disparities
  • Health Inequities
  • Health Policy
  • Health Systems Science
  • History of Medicine
  • Hypertension
  • Images in Neurology
  • Implementation Science
  • Infectious Diseases
  • Innovations in Health Care Delivery
  • JAMA Infographic
  • Law and Medicine
  • Leading Change
  • Less is More
  • LGBTQIA Medicine
  • Lifestyle Behaviors
  • Medical Coding
  • Medical Devices and Equipment
  • Medical Education
  • Medical Education and Training
  • Medical Journals and Publishing
  • Mobile Health and Telemedicine
  • Narrative Medicine
  • Neuroscience and Psychiatry
  • Notable Notes
  • Nutrition, Obesity, Exercise
  • Obstetrics and Gynecology
  • Occupational Health
  • Ophthalmology
  • Orthopedics
  • Otolaryngology
  • Pain Medicine
  • Palliative Care
  • Pathology and Laboratory Medicine
  • Patient Care
  • Patient Information
  • Performance Improvement
  • Performance Measures
  • Perioperative Care and Consultation
  • Pharmacoeconomics
  • Pharmacoepidemiology
  • Pharmacogenetics
  • Pharmacy and Clinical Pharmacology
  • Physical Medicine and Rehabilitation
  • Physical Therapy
  • Physician Leadership
  • Population Health
  • Primary Care
  • Professional Well-being
  • Professionalism
  • Psychiatry and Behavioral Health
  • Public Health
  • Pulmonary Medicine
  • Regulatory Agencies
  • Reproductive Health
  • Research, Methods, Statistics
  • Resuscitation
  • Rheumatology
  • Risk Management
  • Scientific Discovery and the Future of Medicine
  • Shared Decision Making and Communication
  • Sleep Medicine
  • Sports Medicine
  • Stem Cell Transplantation
  • Substance Use and Addiction Medicine
  • Surgical Innovation
  • Surgical Pearls
  • Teachable Moment
  • Technology and Finance
  • The Art of JAMA
  • The Arts and Medicine
  • The Rational Clinical Examination
  • Tobacco and e-Cigarettes
  • Translational Medicine
  • Trauma and Injury
  • Treatment Adherence
  • Ultrasonography
  • Users' Guide to the Medical Literature
  • Vaccination
  • Venous Thromboembolism
  • Veterans Health
  • Women's Health
  • Workflow and Process
  • Wound Care, Infection, Healing

Get the latest research based on your areas of interest.

Others also liked.

  • Download PDF
  • X Facebook More LinkedIn

Tordoff DM , Wanta JW , Collin A , Stepney C , Inwards-Breland DJ , Ahrens K. Mental Health Outcomes in Transgender and Nonbinary Youths Receiving Gender-Affirming Care. JAMA Netw Open. 2022;5(2):e220978. doi:10.1001/jamanetworkopen.2022.0978

Manage citations:

© 2024

  • Permissions

Mental Health Outcomes in Transgender and Nonbinary Youths Receiving Gender-Affirming Care

  • 1 Department of Epidemiology, University of Washington, Seattle
  • 2 Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle
  • 3 School of Medicine, University of Washington, Seattle
  • 4 Department of Psychiatry and Behavioral Medicine, Department of Adolescent and Young Adult Medicine, Seattle Children’s Hospital, Seattle, Washington
  • 5 University of California, San Diego School of Medicine, Rady Children's Hospital
  • 6 Division of Adolescent Medicine, Department of Pediatrics, Seattle Children’s Hospital, Seattle, Washington
  • Invited Commentary Improving Mental Health Among Transgender and Gender-Diverse Youth Brett Dolotina, BS; Jack L. Turban, MD, MHS JAMA Network Open
  • Medical News & Perspectives Medical Groups Defend Patient-Physician Relationship and Access to Adolescent Gender-Affirming Care Bridget M. Kuehn, MSJ JAMA
  • Medical News & Perspectives As Laws Restricting Health Care Surge, Some US Physicians Choose Between Fight or Flight Melissa Suran, PhD, MSJ JAMA
  • Correction Data Errors in eTables 2 and 3 JAMA Network Open

Question   Is gender-affirming care for transgender and nonbinary (TNB) youths associated with changes in depression, anxiety, and suicidality?

Findings   In this prospective cohort of 104 TNB youths aged 13 to 20 years, receipt of gender-affirming care, including puberty blockers and gender-affirming hormones, was associated with 60% lower odds of moderate or severe depression and 73% lower odds of suicidality over a 12-month follow-up.

Meaning   This study found that access to gender-affirming care was associated with mitigation of mental health disparities among TNB youths over 1 year; given this population's high rates of adverse mental health outcomes, these data suggest that access to pharmacological interventions may be associated with improved mental health among TNB youths over a short period.

Importance   Transgender and nonbinary (TNB) youths are disproportionately burdened by poor mental health outcomes owing to decreased social support and increased stigma and discrimination. Although gender-affirming care is associated with decreased long-term adverse mental health outcomes among these youths, less is known about its association with mental health immediately after initiation of care.

Objective   To investigate changes in mental health over the first year of receiving gender-affirming care and whether initiation of puberty blockers (PBs) and gender-affirming hormones (GAHs) was associated with changes in depression, anxiety, and suicidality.

Design, Setting, and Participants   This prospective observational cohort study was conducted at an urban multidisciplinary gender clinic among TNB adolescents and young adults seeking gender-affirming care from August 2017 to June 2018. Data were analyzed from August 2020 through November 2021.

Exposures   Time since enrollment and receipt of PBs or GAHs.

Main Outcomes and Measures   Mental health outcomes of interest were assessed via the Patient Health Questionnaire 9-item (PHQ-9) and Generalized Anxiety Disorder 7-item (GAD-7) scales, which were dichotomized into measures of moderate or severe depression and anxiety (ie, scores ≥10), respectively. Any self-report of self-harm or suicidal thoughts over the previous 2 weeks was assessed using PHQ-9 question 9. Generalized estimating equations were used to assess change from baseline in each outcome at 3, 6, and 12 months of follow-up. Bivariate and multivariable logistic models were estimated to examine temporal trends and investigate associations between receipt of PBs or GAHs and each outcome.

Results   Among 104 youths aged 13 to 20 years (mean [SD] age, 15.8 [1.6] years) who participated in the study, there were 63 transmasculine individuals (60.6%), 27 transfeminine individuals (26.0%), 10 nonbinary or gender fluid individuals (9.6%), and 4 youths who responded “I don’t know” or did not respond to the gender identity question (3.8%). At baseline, 59 individuals (56.7%) had moderate to severe depression, 52 individuals (50.0%) had moderate to severe anxiety, and 45 individuals (43.3%) reported self-harm or suicidal thoughts. By the end of the study, 69 youths (66.3%) had received PBs, GAHs, or both interventions, while 35 youths had not received either intervention (33.7%). After adjustment for temporal trends and potential confounders, we observed 60% lower odds of depression (adjusted odds ratio [aOR], 0.40; 95% CI, 0.17-0.95) and 73% lower odds of suicidality (aOR, 0.27; 95% CI, 0.11-0.65) among youths who had initiated PBs or GAHs compared with youths who had not. There was no association between PBs or GAHs and anxiety (aOR, 1.01; 95% CI, 0.41, 2.51).

Conclusions and Relevance   This study found that gender-affirming medical interventions were associated with lower odds of depression and suicidality over 12 months. These data add to existing evidence suggesting that gender-affirming care may be associated with improved well-being among TNB youths over a short period, which is important given mental health disparities experienced by this population, particularly the high levels of self-harm and suicide.

Transgender and nonbinary (TNB) youths are disproportionately burdened by poor mental health outcomes, including depression, anxiety, and suicidal ideation and attempts. 1 - 5 These disparities are likely owing to high levels of social rejection, such as a lack of support from parents 6 , 7 and bullying, 6 , 8 , 9 and increased stigma and discrimination experienced by TNB youths. Multidisciplinary care centers have emerged across the country to address the health care needs of TNB youths, which include access to medical gender-affirming interventions, such as puberty blockers (PBs) and gender-affirming hormones (GAHs). 10 These centers coordinate care and help youths and their families address barriers to care, such as lack of insurance coverage 11 and travel times. 12 Gender-affirming care is associated with decreased rates of long-term adverse outcomes among TNB youths. Specifically, PBs, GAHs, and gender-affirming surgeries have all been found to be independently associated with decreased rates of depression, anxiety, and other adverse mental health outcomes. 13 - 16 Access to these interventions is also associated with a decreased lifetime incidence of suicidal ideation among adults who had access to PBs during adolescence. 17 Conversely, TNB youths who present to care later in adolescence or young adulthood experience more adverse mental health outcomes. 18 Despite this robust evidence base, legislation criminalizing and thus limiting access to gender-affirming medical care for minors is increasing. 19 , 20

Less is known about the association of gender-affirming care with mental health outcomes immediately after initiation of care. Several studies published from 2015 to 2020 found that receipt of PBs or GAHs was associated with improved psychological functioning 21 and body satisfaction, 22 as well as decreased depression 23 and suicidality 24 within a 1-year period. Initiation of gender-affirming care may be associated with improved short-term mental health owing to validation of gender identity and clinical staff support. Conversely, prerequisite mental health evaluations, often perceived as pathologizing by TNB youths, and initiation of GAHs may present new stressors that may be associated with exacerbation of mental health symptoms early in care, such as experiences of discrimination associated with more frequent points of engagement in a largely cisnormative health care system (eg, interactions with nonaffirming pharmacists to obtain laboratory tests, syringes, and medications). 25 Given the high risk of suicidality among TNB adolescents, there is a pressing need to better characterize mental health trends for TNB youths early in gender-affirming care. This study aimed to investigate changes in mental health among TNB youths enrolled in an urban multidisciplinary gender clinic over the first 12 months of receiving care. We also sought to investigate whether initiation of PBs or GAHs was associated with depression, anxiety, and suicidality.

This cohort study received approval from the Seattle Children’s Hospital Institutional Review Board. For youths younger than age 18 years, caregiver consent and youth assent was obtained. For youths ages 18 years and older, youth consent alone was obtained. The 12-month assessment was funded via a different mechanism than other survey time points; thus, participants were reconsented for the 12-month survey. The study follows the Strengthening the Reporting of Observational Studies in Epidemiology ( STROBE ) reporting guideline.

We conducted a prospective observational cohort study of TNB youths seeking care at Seattle Children’s Gender Clinic, an urban multidisciplinary gender clinic. After a referral is placed or a patient self-refers, new patients, their caregivers, or patients with their caregivers are scheduled for a 1-hour phone intake with a care navigator who is a licensed clinical social worker. Patients are then scheduled for an appointment at the clinic with a medical provider.

All patients who completed the phone intake and in-person appointment between August 2017 and June 2018 were recruited for this study. Participants completed baseline surveys within 24 hours of their first appointment and were invited to complete follow-up surveys at 3, 6, and 12 months. Youth surveys were used to assess most variables in this study; caregiver surveys were used to assess caregiver income. Participation and completion of study surveys had no bearing on prescribing of PBs or GAHs.

We assessed 3 internalizing mental health outcomes: depression, generalized anxiety, and suicidality. Depression was assessed using the Patient Health Questionnaire 9-item scale (PHQ-9), and anxiety was assessed using the Generalized Anxiety Disorder 7-item scale (GAD-7). We dichotomized PHQ-9 and GAD-7 scores into measures of moderate or severe depression and anxiety (ie, scores ≥10). 26 , 27 Self-harm and suicidal thoughts were assessed using PHQ-9 question 9 (eTable 1 in the Supplement ).

Participants self-reported if they had ever received GAHs, including estrogen or testosterone, or PBs (eg, gonadotropin-releasing hormone analogues) on each survey. We conducted a medical record review to capture prescription of androgen blockers (eg, spironolactone) and medications for menstrual suppression or contraception (ie, medroxyprogesterone acetate or levonorgestrel-releasing intrauterine device) during the study period.

We a priori considered potential confounders hypothesized to be associated with our exposures and outcomes of interest based on theory and prior research. Self-reported gender was ascertained on each survey using a 2-step question that asked participants about their current gender and their sex assigned at birth. If a participant’s self-reported gender changed across surveys, we used the gender reported most frequently by a participant (3 individuals identified as transmasculine at baseline and as nonbinary on all follow-up surveys). We collected data on self-reported race and ethnicity (available response options were Arab or Middle Eastern; Asian; Black or African American; Latinx; Native American, American Indian, or Alaskan Native or Native Hawaiian; Pacific Islander; and White), age, caregiver income, and insurance type. Race and ethnicity were assessed as potential covariates owing to known barriers to accessing gender-affirming care among transgender youth who are members of minority racial and ethnic groups. For descriptive statistics, Asian and Pacific Islander groups were combined owing to small population numbers. We included a baseline variable reflecting receipt of ongoing mental health therapy other than for the purpose of a mental health assessment to receive a gender dysphoria diagnosis. We included a self-report variable reflecting whether youths felt their gender identity or expression was a source of tension with their parents or guardians. Substance use included any alcohol, marijuana, or other drug use in the past year. Resilience was measured by the Connor-Davidson Resilience Scale (CD-RISC) 10-item score developed to measure change in an individual’s state resilience over time. 28 Resilience scores were dichotomized into high (ie, ≥median) and low (ie, <median). Prior studies of young adults in the US reported mean CD-RISC scores ranging from 27.2 to 30.1. 29 , 30

We used generalized estimating equations to assess change in outcomes from baseline at each follow-up point (eFigure 1 in the Supplement ). We used a logit link function to estimate adjusted odds ratio (aOR) for the association between variables and each mental health outcome. We initially estimated bivariate associations between potential confounders and mental health outcomes. Multivariable models included variables that were statistically significant in bivariate models. For all outcomes and models, statistical significance was defined as 95% CIs that did not contain 1.00. Reported P values are based on 2-sided Wald test statistics.

Model 1 examined temporal trends in mental health outcomes, with time (ie, baseline, 3, 6, and 12 months) modeled as a categorical variable. Model 2 estimated the association between receipt of PBs or GAHs and mental health outcomes adjusted for temporal trends and potential confounders. Receipt of PBs or GAHs was modeled as a composite binary time-varying exposure that compared mean outcomes between participants who had initiated PBs or GAHs and those who had not across all time points (eTable 2 in the Supplement ). All models used an independent working correlation structure and robust standard errors to account for the time-varying exposure variable.

We performed several sensitivity analyses. Because our data were from an observational cohort, we first considered the degree to which they were sensitive to unmeasured confounding. To do this, we calculated the E-value for the association between PBs or GAHs and mental health outcomes in model 2. The E-value is defined as the minimum strength of association that a confounder would need to have with both exposure and outcome to completely explain away their association (eTable 4 in the Supplement ). 31 Second, we performed sensitivity analyses on several subsets of youths. We separately examined the association of PBs and GAHs with outcomes of interest, although we a priori did not anticipate being powered to detect statistically significant outcomes owing to our small sample size and the relatively low proportion of youths who accessed PBs. We also conducted sensitivity analyses using the Patient Health Questionnaire 8-item scale (PHQ-8), in which the PHQ-9 question 9 regarding self-harm or suicidal thoughts was removed, given that we analyzed this item as a separate outcome. Lastly, we restricted our analysis to minor youths ages 13 to 17 years because they were subject to different laws and policies related to consent and prerequisite mental health assessments. We used R statistical software version 3.6.2 (R Project for Statistical Computing) to conduct all analyses. Data were analyzed from August 2020 through November 2021.

A total of 169 youths were screened for eligibility during the study period, among whom 161 eligible youths were approached. Nine youths or caregivers declined participation, and 39 youths did not complete consent or assent or did not complete the baseline survey, leaving a sample of 113 youths (70.2% of approached youths). We excluded 9 youths aged younger than 13 years from the analysis because they received different depression and anxiety screeners. Our final sample included 104 youths ages 13 to 20 years (mean [SD] age, 15.8 [1.6] years). Of these individuals, 84 youths (80.8%), 84 youths, and 65 youths (62.5%) completed surveys at 3, 6, and 12 months, respectively.

Our cohort included 63 transmasculine youths (60.6%), 27 transfeminine youths (26.0%), 10 nonbinary or gender fluid youths (9.6%), and 4 youths who responded “I don’t know” or did not respond to the gender identity question on all completed questionnaires (3.8%) ( Table 1 ). There were 4 Asian or Pacific Islander youths (3.8%), 3 Black or African American youths (2.9%); 9 Latinx youths (8.7%); 6 Native American, American Indian, or Alaskan Native or Native Hawaiian youths (5.8%); 67 White youths (64.4%); and 9 youths who reported more than 1 race or ethnicity (8.7%). Race and ethnicity data were missing for 6 youth (5.8%).

At baseline, 7 youths had ever received PBs or GAHs (including 1 youth who received PBs, 4 youths who received GAHs, and 2 youths who received both PBs and GAHs). By the end of the study, 69 youths (66.3%) had received PBs or GAHs (including 50 youths who received GAHs only [48.1%], 5 youths who received PBs only [4.8%], and 14 youths who received PBs and GAHs [13.5%]), while 35 youths had not received either PBs or GAHs (33.7%) (eTable 3 in the Supplement ). Among 33 participants assigned male sex at birth, 17 individuals (51.5%) had received androgen blockers, and among 71 participants assigned female sex at birth, 25 individuals (35.2%) had received menstrual suppression or contraceptives by the end of the study.

A large proportion of youths reported depressive and anxious symptoms at baseline. Specifically, 59 individuals (56.7%) had baseline PHQ-9 scores of 10 or more, suggesting moderate to severe depression; there were 22 participants (21.2%) scoring in the moderate range, 11 participants (10.6%) in the moderately severe range, and 26 participants (25.0%) in the severe range. Similarly, half of participants had a GAD-7 score suggestive of moderate to severe anxiety at baseline (52 individuals [50.0%]), including 20 participants (19.2%) scored in the moderate range, and 32 participants (30.8%) scored in the severe range. There were 45 youths (43.3%) who reported self-harm or suicidal thoughts in the prior 2 weeks. At baseline, 65 youths (62.5%) were receiving ongoing mental health therapy, 36 youths (34.6%) reported tension with their caregivers about their gender identity or expression, and 34 youths (32.7%) reported any substance use in the prior year. Lastly, we observed a wide range of resilience scores (median [range], 22.5 [1-38], with higher scores equaling more resiliency). There were no statistically significant differences in baseline characteristics by gender.

In bivariate models, substance use was associated with all mental health outcomes ( Table 2 ). Youths who reported any substance use were 4-fold as likely to have PHQ-9 scores of moderate to severe depression (aOR, 4.38; 95% CI, 2.10-9.16) and 2-fold as likely to have GAD-7 scores of moderate to severe anxiety (aOR, 2.07; 95% CI, 1.04-4.11) or report thoughts of self-harm or suicide in the prior 2 weeks (aOR, 2.06; 95% CI, 1.08-3.93). High resilience scores (ie, ≥median), compared with low resilience scores (ie, <median), were associated with lower odds of moderate or severe anxiety (aOR, 0.51; 95% CI, 0.26-0.999).

There were no statistically significant temporal trends in the bivariate model or model 1 ( Table 2 and Table 3 ). However, among all participants, odds of moderate to severe depression increased at 3 months of follow-up relative to baseline (aOR, 2.12; 95% CI, 0.98-4.60), which was not a significant increase, and returned to baseline levels at months 6 and 12 ( Figure ) prior to adjusting for receipt of PBs or GAHs.

We also examined the association between receipt of PBs or GAHs and mental health outcomes in bivariate and multivariable models (eFigure 2 in the Supplement ). After adjusting for temporal trends and potential confounders ( Table 4 ), we observed that youths who had initiated PBs or GAHs had 60% lower odds of moderate to severe depression (aOR, 0.40; 95% CI, 0.17-0.95) and 73% lower odds of self-harm or suicidal thoughts (aOR, 0.27; 95% CI, 0.11-0.65) compared with youths who had not yet initiated PBs or GAHs. There was no association between receipt of PBs or GAHs and moderate to severe anxiety (aOR, 1.01; 95% CI, 0.41-2.51). After adjusting for time-varying exposure of PBs or GAHs in model 2 ( Table 4 ), we observed statistically significant increases in moderate to severe depression among youths who had not received PBs or GAHs by 3 months of follow-up (aOR, 3.22; 95% CI, 1.37-7.56). A similar trend was observed for self-harm or suicidal thoughts among youths who had not received PBs or GAHs by 6 months of follow-up (aOR, 2.76; 95% CI, 1.22-6.26). Lastly, we estimated E-values of 2.56 and 3.25 for the association between receiving PGs or GAHs and moderate to severe depression and suicidality, respectively (eTable 4 in the Supplement ). Sensitivity analyses obtained comparable results and are presented in eTables 5 through 8 in the Supplement .

In this prospective clinical cohort study of TNB youths, we observed high rates of moderate to severe depression and anxiety, as well as suicidal thoughts. Receipt of gender-affirming interventions, specifically PBs or GAHs, was associated with 60% lower odds of moderate to severe depressive symptoms and 73% lower odds of self-harm or suicidal thoughts during the first year of multidisciplinary gender care. Among youths who did not initiate PBs or GAHs, we observed that depressive symptoms and suicidality were 2-fold to 3-fold higher than baseline levels at 3 and 6 months of follow-up, respectively. Our study results suggest that risks of depression and suicidality may be mitigated with receipt of gender-affirming medications in the context of a multidisciplinary care clinic over the relatively short time frame of 1 year.

Our findings are consistent with those of prior studies finding that TNB adolescents are at increased risk of depression, anxiety, and suicidality 1 , 11 , 32 and studies finding long-term and short-term improvements in mental health outcomes among TNB individuals who receive gender-affirming medical interventions. 14 , 21 - 24 , 33 , 34 Surprisingly, we observed no association with anxiety scores. A recent cohort study of TNB youths in Dallas, Texas, found that total anxiety symptoms improved over a longer follow-up of 11 to 18 months; however, similar to our study, the authors did not observe statistically significant improvements in generalized anxiety. 22 This suggests that anxiety symptoms may take longer to improve after the initiation of gender-affirming care. In addition, Olson et al 35 found that prepubertal TNB children who socially transitioned did not have increased rates of depression symptoms but did have increased rates of anxiety symptoms compared with children who were cisgender. Although social transition and access to gender-affirming medical care do not always go hand in hand, it is noteworthy that access to gender-affirming medical care and supported social transition appear to be associated with decreased depression and suicidality more than anxiety symptoms.

Time trends were not significant in our study; however, it is important to note that we observed a transient and nonsignificant worsening in mental health outcomes in the first several months of care among all participants and that these outcomes subsequently returned to baseline by 12 months. This is consistent with findings from a 2020 study 36 in an academic medical center in the northwestern US that observed no change in TNB adolescents’ GAD-7 or PHQ-9 scores from intake to first follow-up appointment, which occurred a mean of 4.7 months apart. Given that receipt of PBs or GAHs was associated with protection against depression and suicidality in our study, it could be that delays in receipt of medications is associated with initially exacerbated mental health symptoms that subsequently improve. It is also possible that mental health improvements associated with receiving these interventions may have a delayed onset, given the delay in physical changes after starting GAHs.

Few of our hypothesized confounders were associated with mental health outcomes in this sample, most notably receipt of ongoing mental health therapy and caregiver support; however, this is not surprising given that these variables were colinear with baseline mental health, which we adjusted for in all models. Substance use was the only variable associated with all mental health outcomes. In addition, youths with high baseline resilience scores were half as likely to experience moderate to severe anxiety as those with low scores. This finding suggests that substance use and resilience may be additional modifiable factors that could be addressed through multidisciplinary gender-affirming care. We recommend more granular assessment of substance use and resilience to better understand support needs (for substance use) and effective support strategies (for resilience) for TNB youths in future research.

This study has a number of strengths. This is one of the first studies to quantify a short-term transient increase in depressive symptoms experienced by TNB youths after initiating gender-affirming care, a phenomenon observed clinically by some of the authors and described in qualitative research. 37 Although we are unable to make causal statements owing to the observational design of the study, the strength of associations between gender-affirming medications and depression and suicidality, with large aOR values, and sensitivity analyses that suggest that these findings are robust to moderate levels of unmeasured confounding. Specifically, E-values calculated for this study suggest that the observed associations could be explained away only by an unmeasured confounder that was associated with both PBs and GAHs and the outcomes of interest by a risk ratio of 2-fold to 3-fold each, above and beyond the measured confounders, but that weaker confounding could not do so. 31

Our findings should be interpreted in light of the following limitations. This was a clinical sample of TNB youths, and there was likely selection bias toward youths with supportive caregivers who had resources to access a gender-affirming care clinic. Family support and access to care are associated with protection against poor mental health outcomes, and thus actual rates of depression, anxiety, and suicidality in nonclinical samples of TNB youths may differ. Youths who are unable to access gender-affirming care owing to a lack of family support or resources require particular emphasis in future research and advocacy. Our sample also primarily included White and transmasculine youths, limiting the generalizability of our findings. In addition, the need to reapproach participants for consent and assent for the 12-month survey likely contributed to attrition at this time point. There may also be residual confounding because we were unable to include a variable reflecting receipt of psychotropic medications that could be associated with depression, anxiety, and self-harm and suicidal thought outcomes. Additionally, we used symptom-based measures of depression, anxiety, and suicidality; further studies should include diagnostic evaluations by mental health practitioners to track depression, anxiety, gender dysphoria, suicidal ideation, and suicide attempts during gender care. 2

Our study provides quantitative evidence that access to PBs or GAHs in a multidisciplinary gender-affirming setting was associated with mental health improvements among TNB youths over a relatively short time frame of 1 year. The associations with the highest aORs were with decreased suicidality, which is important given the mental health disparities experienced by this population, particularly the high levels of self-harm and suicide. Our findings have important policy implications, suggesting that the recent wave of legislation restricting access to gender-affirming care 19 may have significant negative outcomes in the well-being of TNB youths. 20 Beyond the need to address antitransgender legislation, there is an additional need for medical systems and insurance providers to decrease barriers and expand access to gender-affirming care.

Accepted for Publication: January 10, 2022.

Published: February 25, 2022. doi:10.1001/jamanetworkopen.2022.0978

Correction: This article was corrected on July 26, 2022, to fix minor errors in the numbers of patients in eTables 2 and 3 in the Supplement.

Open Access: This is an open access article distributed under the terms of the CC-BY License . © 2022 Tordoff DM et al. JAMA Network Open .

Corresponding Author: Diana M. Tordoff, MPH, Department of Epidemiology, University of Washington, UW Box 351619, Seattle, WA 98195 ( [email protected] ).

Author Contributions : Diana Tordoff had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Diana Tordoff and Dr Wanta are joint first authors. Drs Inwards-Breland and Ahrens are joint senior authors.

Concept and design: Collin, Stepney, Inwards-Breland, Ahrens.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Tordoff, Wanta, Collin, Stepney, Inwards-Breland.

Critical revision of the manuscript for important intellectual content: Wanta, Collin, Stepney, Inwards-Breland, Ahrens.

Statistical analysis: Tordoff.

Obtained funding: Inwards-Breland, Ahrens.

Administrative, technical, or material support: Ahrens.

Supervision: Wanta, Inwards-Breland, Ahrens.

Conflict of Interest Disclosures: Diana Tordoff reported receiving grants from the National Institutes of Health National Institute of Allergy and Infectious Diseases unrelated to the present work and outside the submitted work. No other disclosures were reported.

Funding/Support: This study was supported Seattle Children’s Center for Diversity and Health Equity and the Pacific Hospital Preservation Development Authority.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

  • Register for email alerts with links to free full-text articles
  • Access PDFs of free articles
  • Manage your interests
  • Save searches and receive search alerts
  • See us on facebook
  • See us on twitter
  • See us on youtube
  • See us on linkedin
  • See us on instagram

Massive biomolecular shifts occur in our 40s and 60s, Stanford Medicine researchers find

Time marches on predictably, but biological aging is anything but constant, according to a new Stanford Medicine study.

August 14, 2024 - By Rachel Tompa

test

We undergo two periods of rapid change, averaging around age 44 and age 60, according to a Stanford Medicine study. Ratana21 /Shutterstock.com

If it’s ever felt like everything in your body is breaking down at once, that might not be your imagination. A new Stanford Medicine study shows that many of our molecules and microorganisms dramatically rise or fall in number during our 40s and 60s.

Researchers assessed many thousands of different molecules in people from age 25 to 75, as well as their microbiomes — the bacteria, viruses and fungi that live inside us and on our skin — and found that the abundance of most molecules and microbes do not shift in a gradual, chronological fashion. Rather, we undergo two periods of rapid change during our life span, averaging around age 44 and age 60. A paper describing these findings was published in the journal Nature Aging Aug. 14.

“We’re not just changing gradually over time; there are some really dramatic changes,” said Michael Snyder , PhD, professor of genetics and the study’s senior author. “It turns out the mid-40s is a time of dramatic change, as is the early 60s. And that’s true no matter what class of molecules you look at.”

Xiaotao Shen, PhD, a former Stanford Medicine postdoctoral scholar, was the first author of the study. Shen is now an assistant professor at Nanyang Technological University Singapore.

These big changes likely impact our health — the number of molecules related to cardiovascular disease showed significant changes at both time points, and those related to immune function changed in people in their early 60s.

Abrupt changes in number

Snyder, the Stanford W. Ascherman, MD, FACS Professor in Genetics, and his colleagues were inspired to look at the rate of molecular and microbial shifts by the observation that the risk of developing many age-linked diseases does not rise incrementally along with years. For example, risks for Alzheimer’s disease and cardiovascular disease rise sharply in older age, compared with a gradual increase in risk for those under 60.

The researchers used data from 108 people they’ve been following to better understand the biology of aging. Past insights from this same group of study volunteers include the discovery of four distinct “ ageotypes ,” showing that people’s kidneys, livers, metabolism and immune system age at different rates in different people.

Michael Snyder

Michael Snyder

The new study analyzed participants who donated blood and other biological samples every few months over the span of several years; the scientists tracked many different kinds of molecules in these samples, including RNA, proteins and metabolites, as well as shifts in the participants’ microbiomes. The researchers tracked age-related changes in more than 135,000 different molecules and microbes, for a total of nearly 250 billion distinct data points.

They found that thousands of molecules and microbes undergo shifts in their abundance, either increasing or decreasing — around 81% of all the molecules they studied showed non-linear fluctuations in number, meaning that they changed more at certain ages than other times. When they looked for clusters of molecules with the largest changes in amount, they found these transformations occurred the most in two time periods: when people were in their mid-40s, and when they were in their early 60s.

Although much research has focused on how different molecules increase or decrease as we age and how biological age may differ from chronological age, very few have looked at the rate of biological aging. That so many dramatic changes happen in the early 60s is perhaps not surprising, Snyder said, as many age-related disease risks and other age-related phenomena are known to increase at that point in life.

The large cluster of changes in the mid-40s was somewhat surprising to the scientists. At first, they assumed that menopause or perimenopause was driving large changes in the women in their study, skewing the whole group. But when they broke out the study group by sex, they found the shift was happening in men in their mid-40s, too.

“This suggests that while menopause or perimenopause may contribute to the changes observed in women in their mid-40s, there are likely other, more significant factors influencing these changes in both men and women. Identifying and studying these factors should be a priority for future research,” Shen said.

Changes may influence health and disease risk

In people in their 40s, significant changes were seen in the number of molecules related to alcohol, caffeine and lipid metabolism; cardiovascular disease; and skin and muscle. In those in their 60s, changes were related to carbohydrate and caffeine metabolism, immune regulation, kidney function, cardiovascular disease, and skin and muscle.

It’s possible some of these changes could be tied to lifestyle or behavioral factors that cluster at these age groups, rather than being driven by biological factors, Snyder said. For example, dysfunction in alcohol metabolism could result from an uptick in alcohol consumption in people’s mid-40s, often a stressful period of life.

The team plans to explore the drivers of these clusters of change. But whatever their causes, the existence of these clusters points to the need for people to pay attention to their health, especially in their 40s and 60s, the researchers said. That could look like increasing exercise to protect your heart and maintain muscle mass at both ages or decreasing alcohol consumption in your 40s as your ability to metabolize alcohol slows.

“I’m a big believer that we should try to adjust our lifestyles while we’re still healthy,” Snyder said.

The study was funded by the National Institutes of Health (grants U54DK102556, R01 DK110186-03, R01HG008164, NIH S10OD020141, UL1 TR001085 and P30DK116074) and the Stanford Data Science Initiative.

  • Rachel Tompa Rachel Tompa is a freelance science writer.

About Stanford Medicine

Stanford Medicine is an integrated academic health system comprising the Stanford School of Medicine and adult and pediatric health care delivery systems. Together, they harness the full potential of biomedicine through collaborative research, education and clinical care for patients. For more information, please visit med.stanford.edu .

Hope amid crisis

Psychiatry’s new frontiers

Stanford Medicine magazine: Mental health

IMAGES

  1. Empirical Research

    empirical study research paper example

  2. Identifying An Empirical Research Article

    empirical study research paper example

  3. (PDF) Entrepreneurship theories and Empirical research: A Summary

    empirical study research paper example

  4. Empirical Research Articles

    empirical study research paper example

  5. Empirical Research

    empirical study research paper example

  6. Empirical Research Paper Essay Example

    empirical study research paper example

COMMENTS

  1. PDF B.S. Research Paper Example (Empirical Research Paper)

    B.S. Research Paper Example (Empirical Research Paper) This is an example of a research paper that was written in fulfillment of the B.S. research paper requirement. It uses APA style for all aspects except the cover ... Some studies have found benefits of interleaving and others have found benefits to blocking. For instance, interleaving ...

  2. What Is Empirical Research? Definition, Types & Samples in 2024

    II. Types and Methodologies of Empirical Research. Empirical research is done using either qualitative or quantitative methods. Qualitative research Qualitative research methods are utilized for gathering non-numerical data. It is used to determine the underlying reasons, views, or meanings from study participants or subjects.

  3. The Empirical Research Paper: A Guide

    The introduction section is where you introduce the background and nature of your research question, justify the importance of your research, state your hypotheses, and how your research will contribute to scientific knowledge.. Begin with some opening statements to help situate the reader. Do not immediately dive into the highly technical terminology or the specifics of your research question.

  4. PDF University of Michigan Writing the Empirical Social

    considerably easier to write an empirical research paper when utilizing the normal structure for empirical social science research papers. Note that here you must be very clear about what you mean when you use the terms empirical research paper and writing as well as what you mean by the term "easier." Each can be defined in many ways. Do

  5. PDF Empirical Research Papers

    Empirical researchers observe, measure, record, and analyze data with the goal of generating knowledge. Empirical research may explore, describe, or explain behaviors or phenomena in humans, animals, or the natural world. It may use any number of quantitative or qualitative methods, ranging from laboratory experiments to surveys to artifact ...

  6. PDF Writing an Empirical Paper in APA Style

    Writing an Empirical Paper in APA Style A lab report is a writeup of an experiment and has the same components as a published research study. This handout provides general tips on how to write a psychology lab report. Course standards vary, so check with your instructor if you are not sure what is required. Using APA Style

  7. PDF Introductions for Empirical Research Papers

    Typical structure of an introduction to an empirical research paper: Empirical research paper introductions are a type of literature review—and like all literature reviews, they follow a broad-to-narrow structure. They tend to be narrowly focused and relatively short (5-10 paragraphs), though there are variations among disciplines.

  8. Empirical Research in the Social Sciences and Education

    Empirical research is based on observed and measured phenomena and derives knowledge from actual experience rather than from theory or belief. How do you know if a study is empirical? Read the subheadings within the article, book, or report and look for a description of the research "methodology."

  9. What is Empirical Research? Definition, Methods, Examples

    With your research paper written, structured, and enriched with visuals, and your findings expertly interpreted, you are now prepared to communicate your research effectively. Sharing your insights and contributing to the body of knowledge in your field is a significant accomplishment in empirical research. Examples of Empirical Research

  10. PDF Discussion and Conclusion Sections for Empirical Research Papers

    In an empirical research paper, the purpose of the Discussion section is to interpret the results and discuss their implications, thereby establishing (and often qualifying) the practical and scholarly significance of the present study. It may be helpful to think of the Discussion section as the inverse of the introduction to an empirical ...

  11. PDF EMPIRICAL RESEARCH EXAMPLE

    Chapter 1: Nature of the Study. The content of Chapter 1 is drawn primarily from the literature reviewed for Chapter 2. Realistically, in writing the Dissertation proposal, the major works that document the topic and justify its study must have been read and evaluated for Chapter 2 before Chapter 1 is written.

  12. Empirical Research

    This video covers what empirical research is, what kinds of questions and methods empirical researchers use, and some tips for finding empirical research articles in your discipline. ... Examples of Empirical Research. Study on radiation transfer in human skin for cosmetics. Long-Term Mobile Phone Use and the Risk of Vestibular Schwannoma: A ...

  13. Empirical Research: A Comprehensive Guide for Academics

    Tips for Empirical Writing. In empirical research, the writing is usually done in research papers, articles, or reports. The empirical writing follows a set structure, and each section has a specific role. Here are some tips for your empirical writing. 7. Define Your Objectives: When you write about your research, start by making your goals clear.

  14. Empirical Research: Definition, Methods, Types and Examples

    Empirical research is defined as any research where conclusions of the study is strictly drawn from concretely empirical evidence, and therefore "verifiable" evidence. This empirical evidence can be gathered using quantitative market research and qualitative market research methods. For example: A research is being conducted to find out if ...

  15. Empirical Research

    They appreciate these advancements because these are entertaining and are making things easier for them. If you are going to conduct a study where you can observe the demand of a product to the target market, you can use this empirical research example as your guide. 2. Empirical Research Paper Outline. ocw.mit.edu.

  16. City University of Seattle Library: Identifying Empirical Research

    Identifying Empirical Research Articles. Look for the IMRaD layout in the article to help identify empirical research.Sometimes the sections will be labeled differently, but the content will be similar. Introduction: why the article was written, research question or questions, hypothesis, literature review; Methods: the overall research design and implementation, description of sample ...

  17. Empirical Research

    'Empirical Research' published in 'Encyclopedia of Psychology and Religion' During the seventeenth and the eighteenth centuries, thinkers such as David Hume and John Locke popularized and entrenched empiricism as a major core in philosophical investigation by applying the method in their philosophical inquiry (Matin 1968, pp. 33-47).They further posited that, "experience provides the marks ...

  18. 15 Empirical Evidence Examples (2024)

    Empirical Evidence Examples. Quantitative Data: Quantitative data is numerical data obtained through measurement, counting, or statistical analysis. An example is a person's test scores, which are used as empirical evidence that can get you into a prestigious university. The strength of this type of data is that it tends to be objective ...

  19. Empirical Research Examples

    Statement of methodology. Research questions are clear and measurable. Individuals, group, subjects which are being studied are identified/defined. Data is presented regarding the findings. Controls or instruments such as surveys or tests were conducted. There is a literature review. There is discussion of the results included.

  20. Examples

    Here are a few examples of empirical research articles. Look at the abstract, source, subject terms (under "MeSH","Subject", or "Subject Terms"). Gender Differences in Affective Responses to Sexual Rejection. Hanneke de Graaf; Theo G M Sandfort Archives of Sexual Behavior; Aug 2004; 33 (4), pp. 395-403; Research Library.

  21. PDF Method Sections for Empirical Research Papers

    An annotated Method section and other empirical research paper resources are available here. What is the purpose of the Method section in an empirical research paper? The Method section (also sometimes called Methods, Materials and Methods, or Research Design and Methods) describes the data collection and analysis procedures for a research project.

  22. Free APA Journal Articles

    Recently published articles from subdisciplines of psychology covered by more than 90 APA Journals™ publications. For additional free resources (such as article summaries, podcasts, and more), please visit the Highlights in Psychological Research page. Browse and read free articles from APA Journals across the field of psychology, selected by ...

  23. How to Write a Research Proposal: (with Examples & Templates)

    Before conducting a study, a research proposal should be created that outlines researchers' plans and methodology and is submitted to the concerned evaluating organization or person. Creating a research proposal is an important step to ensure that researchers are on track and are moving forward as intended. A research proposal can be defined as a detailed plan or blueprint for the proposed ...

  24. The Impact of COVID-19 on the Jobs-Housing Dynamic Balance: Empirical

    The COVID-19 pandemic, a significant public health emergency, has underscored the criticality of jobs-housing proximity. Static statistical research, however, struggles to uncover the mechanisms underlying jobs-housing balance, providing limited guidance for urban management. This paper adopts the concept of jobs-housing dynamic balance, analyzing the trends in jobs-housing balance in ...

  25. PDF Results/Findings Sections for Empirical Research Papers

    the study design. For example, it makes sense to present the results of an ethnographic study as a chronological narrative. Qualitative studies that use thematic coding might break down results by theme or category, whereas quantitative studies might break up findings by research question or statistical test. In most Results sections

  26. Mental Health Outcomes in Transgender and Nonbinary Youths Receiving

    This is one of the first studies to quantify a short-term transient increase in depressive symptoms experienced by TNB youths after initiating gender-affirming care, a phenomenon observed clinically by some of the authors and described in qualitative research. 37 Although we are unable to make causal statements owing to the observational design ...

  27. Massive biomolecular shifts occur in our 40s and 60s, Stanford Medicine

    A paper describing these findings was published in the journal Nature Aging Aug. 14. "We're not just changing gradually over time; there are some really dramatic changes," said Michael Snyder, PhD, professor of genetics and the study's senior author. "It turns out the mid-40s is a time of dramatic change, as is the early 60s.