Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 15 December 2023

Structure and growth of plant cell walls

  • Daniel J. Cosgrove   ORCID: orcid.org/0000-0002-4020-5786 1  

Nature Reviews Molecular Cell Biology volume  25 ,  pages 340–358 ( 2024 ) Cite this article

7274 Accesses

34 Citations

6 Altmetric

Metrics details

  • Plant cell biology

Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H + -ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

195,33 € per year

only 16,28 € per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

scientific research on plant cells

Similar content being viewed by others

scientific research on plant cells

Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development

scientific research on plant cells

Elongating maize root: zone-specific combinations of polysaccharides from type I and type II primary cell walls

scientific research on plant cells

A self-regulatory cell-wall-sensing module at cell edges controls plant growth

Bidhendi, A. J. & Geitmann, A. Finite element modeling of shape changes in plant cells. Plant. Physiol. 176 , 41–56 (2018).

Article   CAS   PubMed   Google Scholar  

Coen, E. & Cosgrove, D. J. The mechanics of plant morphogenesis. Science 379 , eade8055 (2023). A concise overview of mechanics, from fibres to fibre networks to tissues and organs, touching on some of the open questions and divergent views in plant mechanobiology.

Echevin, E. et al. Growth and biomechanics of shoot organs. J. Exp. Bot. 70 , 3573–3585 (2019).

Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372 , 706–711 (2021). This paper uses coarse-grained molecular dynamics to simulate the physical properties of cellulose, xyloglucan and hemicellulose and to investigate wall assembly and wall mechanics.

Jarvis, M. C. Forces on and in the cell walls of living plants. Plant Physiol. , kiad387 https://doi.org/10.1093/plphys/kiad387 (2023).

Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. 115 , 6506–6511 (2018).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Bastin, J. F. et al. The global tree restoration potential. Science 365 , 76–79 (2019).

Liao, Y. et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367 , 1385–1390 (2020).

Parre, E. & Geitmann, A. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense . Planta 220 , 582–592 (2005). This paper shows that pectin viscoelasticity plays a big role in the growth of pollen tubes, whose walls are pectin rich and cellulose poor and that regions of de-esterified pectin are mechanically stiffer.

Winship, L. J., Rosen, G. A. & Hepler, P. K. Apical pollen tube wall curvature correlates with growth and indicates localized changes in the yielding of the cell wall. Protoplasma 258 , 1347–1358 (2021).

Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A. & Haswell, E. S. In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Curr. Biol. 32 , 2921–2934.e3 (2022).

Cosgrove, D. J. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant. Cell 9 , 1031–1041 (1997).

Cosgrove, D. J. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177 , 121–130 (1989).

Yamamoto, R., Shinozak, K. & Masuda, Y. Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant. Cell Physiol. 11 , 947–956 (1970).

Article   CAS   Google Scholar  

Cosgrove, D. J. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta 171 , 266–278 (1987).

Article   PubMed   Google Scholar  

Verbancic, J., Lunn, J. E., Stitt, M. & Persson, S. Carbon supply and the regulation of cell wall synthesis. Mol. Plant. 11 , 75–94 (2018).

Vaahtera, L., Schulz, J. & Hamann, T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat. Plants 5 , 924–932 (2019).

Frankova, L. & Fry, S. C. Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides. J. Exp. Bot. 64 , 3519–3550 (2013).

Spartz, A. K. et al. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H + -ATPases to promote cell expansion in arabidopsis. Plant. Cell 26 , 2129–2142 (2014).

Li, Y., Zeng, H. Q., Xu, F. Y., Yan, F. & Xu, W. F. H. H + -ATPases in plant growth and stress responses. Annu. Rev. Plant. Biol. 73 , 495–521 (2022).

Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B. & Sussman, M. R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343 , 408–411 (2014).

Du, M., Spalding, E. P. & Gray, W. M. Rapid auxin-mediated cell expansion. Annu. Rev. Plant. Biol. 71 , 379–402 (2020).

Cosgrove, D. J. Catalysts of plant cell wall loosening. F1000Res. 5 , F1000 (2016).

Article   PubMed   PubMed Central   Google Scholar  

Silk, W. K. & Bogeat-Triboulot, M.-B. Deposition rates in growing tissue: implications for physiology, molecular biology, and response to environmental variation. Plant. Soil. 374 , 1–17 (2014).

Haruta, M. & Sussman, M. R. Ligand receptor-mediated regulation of growth in plants. Curr. Top. Dev. Biol. 123 , 331–363 (2017).

Pérez-Henríquez, P. & Yang, Z. Extranuclear auxin signaling: a new insight into auxin’s versatility. N. Phytol. 237 , 1115–1121 (2023).

Article   Google Scholar  

True, J. H. & Shaw, S. L. Exogenous auxin induces transverse microtubule arrays through transport inhibitor response1/auxin signaling f-box receptors 1. Plant. Physiol. 182 , 892–907 (2020).

Adamowski, M., Li, L. & Friml, J. Reorientation of cortical microtubule arrays in the hypocotyl of Arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling. Int. J. Mol. Sci. 20 , 3337 (2019).

Baskin, T. I. Auxin inhibits expansion rate independently of cortical microtubules. Trends Plant. Sci. 20 , 471–472 (2015).

Xie, Y. et al. FERONIA receptor kinase integrates with hormone signaling to regulate plant growth, development, and responses to environmental stimuli. Int. J. Mol. Sci. 23 , 3730 (2022).

Hofte, H. The yin and yang of cell wall integrity control: brassinosteroid and FERONIA signaling. Plant. Cell Physiol. 56 , 224–231 (2015).

Malivert, A. & Hamant, O. Why is FERONIA pleiotropic? Nat. Plants 9 , 1018–1025 (2023).

Evered, C., Majevadia, B. & Thompson, D. S. Cell wall water content has a direct effect on extensibility in growing hypocotyls of sunflower ( Helianthus annuus L.). J. Exp. Bot. 58 , 3361–3371 (2007).

Edelmann, H. G. Water potential modulates extensibility of rye coleoptile cell-walls. Botanica Acta 108 , 374–380 (1995).

Muhammad Aslam, M. et al. Mechanisms of abscisic acid-mediated drought stress responses in plants. Int. J. Mol. Sci. 23 , 1084 (2022).

Doblin, M. S., Pettolino, F. & Bacic, A. Plant cell walls: the skeleton of the plant world. Funct. Plant. Biol. 37 , 357–381 (2010).

Lampugnani, E. R., Khan, G. A., Somssich, M. & Persson, S. Building a plant cell wall at a glance. J. Cell Sci. 131 , jcs207373 (2018).

Carpita, N. C. & Gibeaut, D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant. J. 3 , 1–30 (1993).

Cosgrove, D. J. Building an extensible cell wall. Plant. Physiol. 189 , 1246–1277 (2022).

Park, Y. B. & Cosgrove, D. J. A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant. Physiol. 158 , 1933–1943 (2012).

Hayashi, T. Xyloglucans in the primary cell wall. Annu. Rev. Plant. Phys. Plant. Mol. Bio 40 , 139–168 (1989).

Fry, S. C. Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiologia Plant. 75 , 532–536 (1989).

McCann, M. C. & Roberts, K. in Cytoskeletal Basis of Plant Growth and Form (ed. Lloyd C.) 109–129 (Academic Press, 1991).

Probine, M. C. & Barber, N. F. The structure and plastic properties of the cell wall of Nitella in relation to extension growth. Aust. J. Biol. Sci. 19 , 439–457 (1966).

Oliveri, H., Traas, J., Godin, C. & Ali, O. Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model. J. Math. Biol. 78 , 625–653 (2019).

Cavalier, D. M. et al. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant. Cell 20 , 1519–1537 (2008). This study showed that genetic deletion of xyloglucan had remarkably little effect on plant development. This undermined the concept that cellulose is mechanically linked by xyloglucan, which was the dominant wall model at that time.

Park, Y. B. & Cosgrove, D. J. Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis . Plant. Physiol. 158 , 465–475 (2012).

Aryal, B. et al. Interplay between cell wall and auxin mediates the control of differential cell elongation during apical hook development. Curr. Biol. 30 , 1733–1739.e3 (2020).

Kim, S.-J. et al. The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proc. Natl Acad. Sci. USA 117 , 20316–20324 (2020).

Zhang, T., Tang, H., Vavylonis, D. & Cosgrove, D. J. Disentangling loosening from softening: insights into primary cell wall structure. Plant. J. 100 , 1101–1117 (2019).

Wei, W. et al. Synergism between cucumber alpha-expansin, fungal endoglucanase and pectin lyase. J. Plant. Physiol. 167 , 1204–1210 (2010).

Zhang, T., Vavylonis, D., Durachko, D. M. & Cosgrove, D. J. Nanoscale movements of cellulose microfibrils in primary cell walls. Nat. Plants 3 , 17056 (2017).

Burton, R. A., Gidley, M. J. & Fincher, G. B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6 , 724–732 (2010).

van de Meene, A. M. L., Doblin, M. S. & Bacic, A. The plant secretory pathway seen through the lens of the cell wall. Protoplasma 254 , 75–94 (2017).

San Clemente, H., Kolkas, H., Canut, H. & Jamet, E. Plant cell wall proteomes: the core of conserved protein families and the case of non-canonical proteins. Int. J. Mol. Sci. 23 , 4273 (2022).

The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408 , 796–815 (2000).

Carpita, N. C. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1->4)-beta- d -glycans. Plant. Physiol. 155 , 171–184 (2011).

Wilson, T. H., Kumar, M. & Turner, S. R. The molecular basis of plant cellulose synthase complex organisation and assembly. Biochem. Soc. Trans. 49 , 379–391 (2021).

Pedersen, G. B., Blaschek, L., Frandsen, K. E. H., Noack, L. C. & Persson, S. Cellulose synthesis in land plants. Mol. Plant. 16 , 206–231 (2023). After a concise summary of cell wall structure, this review dives deep into the machinery of cellulose synthesis, as far as we know it today.

Purushotham, P., Ho, R. & Zimmer, J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 369 , 1089–1094 (2020).

Jarvis, M. C. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 376 , 20170045 (2018).

Google Scholar  

Speicher, T. L., Li, P. Z. & Wallace, I. S. Phosphoregulation of the plant cellulose synthase complex and cellulose synthase-like proteins. Plants 7 , 52 (2018).

Paredez, A. R., Somerville, C. R. & Ehrhardt, D. W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312 , 1491–1495 (2006). A classic in the cellulose field, demonstrating tagging of cellulose synthase with fluorescent protein to monitor the movement of CSC along the plasma membrane.

Duncombe, S. G., Chethan, S. G. & Anderson, C. T. Super-resolution imaging illuminates new dynamic behaviors of cellulose synthase. Plant. Cell 34 , 273–286 (2022).

Gu, Y. & Rasmussen, C. G. Cell biology of primary cell wall synthesis in plants. Plant. Cell 34 , 103–128 (2021).

Article   PubMed Central   Google Scholar  

Li, S., Lei, L., Somerville, C. R. & Gu, Y. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc. Natl Acad. Sci. USA 109 , 185–190 (2012).

Chan, J. & Coen, E. Interaction between autonomous and microtubule guidance systems controls cellulose synthase trajectories. Curr. Biol. 30 , 941–947 (2020).

Schneider, R. et al. Two complementary mechanisms underpin cell wall patterning during xylem vessel development. Plant. Cell 29 , 2433–2449 (2017).

Vain, T. et al. The cellulase KORRIGAN is part of the cellulose synthase complex. Plant. Physiol. 165 , 1521–1532 (2014).

Haigler, C. H. & Roberts, A. W. Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionary perspective. Cellulose 26 , 227–247 (2019).

Nixon, B. T. et al. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci. Rep. 6 , 28696 (2016). This study argues for an 18-chain microfibril based on the structure of the cellulose synthase complex.

Song, B., Zhao, S., Shen, W., Collings, C. & Ding, S. Y. Direct measurement of plant cellulose microfibril and bundles in native cell walls. Front. Plant. Sci. 11 , 479 (2020).

Del Mundo, J. T. et al. Grazing-incidence diffraction reveals cellulose and pectin organization in hydrated plant primary cell wall. Sci. Rep. 13 , 5421 (2023).

Paajanen, A., Zitting, A., Rautkari, L., Ketoja, J. A. & Penttilä, P. A. Nanoscale mechanism of moisture-induced swelling in wood microfibril bundles. Nano Lett. 22 , 5143–5150 (2022).

Wang, T. & Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Bot. 67 , 503–514 (2016).

Tai, H.-C. et al. Wood cellulose microfibrils have a 24-chain core–shell nanostructure in seed plants. Nat. Plants 9 , 1154–1168 (2023).

Zhang, T., Zheng, Y. & Cosgrove, D. J. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant. J. 85 , 179–192 (2016).

Langan, P. et al. Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green. Chem. 16 , 63–68 (2014).

Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590 , 47–56 (2021).

Diotallevi, F. & Mulder, B. The cellulose synthase complex: a polymerization driven supramolecular motor. Biophys. J. 92 , 2666–2673 (2007).

Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M. & Ehrhardt, D. W. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11 , 797–806 (2009).

Crowell, E. F. et al. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis . Plant. Cell 21 , 1141–1154 (2009).

Zhu, Y. & McFarlane, H. E. Regulation of cellulose synthesis via exocytosis and endocytosis. Curr. Opin. Plant. Biol. 69 , 102273 (2022).

Sampathkumar, A. et al. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant. Physiol. 162 , 675–688 (2013).

Ghassemi, N. et al. Solid-state NMR investigations of extracellular matrixes and cell walls of algae, bacteria, fungi, and plants. Chem. Rev. 122 , 10036–10086 (2022).

Yang, J. et al. Biochemical and genetic analysis identify CSLD3 as a beta-1,4-glucan synthase that functions during plant cell wall synthesis. Plant. Cell 32 , 1749–1767 (2020).

Yang, J. et al. Functional relations of CSLD2, CSLD3, and CSLD5 proteins during cell wall synthesis in Arabidopsis . Preprint at bioRxiv https://doi.org/10.1101/2023.04.25.538313 (2023).

Nicolas, W. J. et al. Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks. Curr. Biol. 32 , 2375–2389.e6 (2022).

Chan, J., Calder, G., Fox, S. & Lloyd, C. Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat. Cell Biol. 9 , 171–175 (2007).

Jarvis, M. C. Hydrogen bonding and other non-covalent interactions at the surfaces of cellulose microfibrils. Cellulose 30 , 667–687 (2023).

Zhang, Q., Brumer, H., Agren, H. & Tu, Y. The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation. Carbohydr. Res. 346 , 2595–2602 (2011).

Zhao, Z., Crespi, V. H., Kubicki, J. D., Cosgrove, D. J. & Zhong, L. H. Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose 21 , 1025–1039 (2014).

Kishani, S., Benselfelt, T., Wagberg, L. & Wohlert, J. Entropy drives the adsorption of xyloglucan to cellulose surfaces — a molecular dynamics study. J. Colloid Interface Sci. 588 , 485–493 (2021).

Cosgrove, D. J. Nanoscale structure, mechanics and growth of epidermal cell walls. Curr. Opin. Plant. Biol. 46 , 77–86 (2018).

Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant. Biol. 61 , 263–289 (2010).

Hoffmann, N., King, S., Samuels, A. L. & McFarlane, H. E. Subcellular coordination of plant cell wall synthesis. Dev. Cell 56 , 933–948 (2021). A detailed overview of the cell biology of cell wall synthesis.

Wang, P., Chen, X., Goldbeck, C., Chung, E. & Kang, B. H. A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell. Plant. J. 92 , 596–610 (2017).

Yu, L. et al. Eudicot primary cell wall glucomannan is related in synthesis, structure, and function to xyloglucan. Plant. Cell 34 , 4600–4622 (2022).

Park, Y. B. & Cosgrove, D. J. Xyloglucan and its interactions with other components of the growing cell wall. Plant. Cell Physiol. 56 , 180–194 (2015).

Schultink, A., Liu, L., Zhu, L. & Pauly, M. Structural diversity and function of xyloglucan sidechain substituents. Plants 3 , 526–542 (2014).

Pauly, M. & Keegstra, K. Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan. Annu. Rev. Plant. Biol. 67 , 235–259 (2016).

Chen, M., Cathala, B. & Lahaye, M. Adsorption of apple xyloglucan on cellulose nanofiber depends on molecular weight, concentration and building blocks. Carbohydr. Polym. 296 , 119994 (2022).

Velasquez, S. M. et al. Xyloglucan remodeling defines auxin-dependent differential tissue expansion in plants. Int. J. Mol. Sci. 22 , 9222 (2021).

Schultink, A., Cheng, K., Park, Y. B., Cosgrove, D. J. & Pauly, M. The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents. Plant. Physiol. 163 , 86–94 (2013).

Jonsson, K., Hamant, O. & Bhalerao, R. P. Plant cell walls as mechanical signaling hubs for morphogenesis. Curr. Biol. 32 , R334–R340 (2022).

Sowinski, E. E. et al. Lack of xyloglucan in the cell walls of the Arabidopsis xxt1/xxt2 mutant results in specific increases in homogalacturonan and glucomannan. Plant. J. 110 , 212–227 (2022).

Xiao, C., Zhang, T., Zheng, Y., Cosgrove, D. J. & Anderson, C. T. Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis , altering cell growth and morphogenesis. Plant. Physiol. 170 , 234–249 (2016).

Xiang, M. et al. Xyloglucan galactosylation is essential for proper cell wall assembly that facilitates stabilization of the actin cytoskeleton and the endomembrane system.  J. Exp. Bot. 74 , 5104–5123 (2023).

Kong, Y. et al. Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis . Plant. Physiol. 167 , 1296–1306 (2015).

Pauly, M., Albersheim, P., Darvill, A. & York, W. S. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant. J. 20 , 629–639 (1999).

Zheng, Y., Wang, X., Chen, Y., Wagner, E. & Cosgrove, D. J. Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags. Plant. J. 93 , 211–226 (2018).

Tryfona, T. et al. Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin. Plant. J. 113 , 1004–1020 (2023).

Wang, T., Chen, Y., Tabuchi, A., Cosgrove, D. J. & Hong, M. The target of beta-expansin EXPB1 in maize cell walls from binding and solid-state NMR studies. Plant. Physiol. 172 , 2107–2119 (2016).

Duan, P. et al. Xylan structure and dynamics in native Brachypodium grass cell walls investigated by solid-state NMR spectroscopy. ACS Omega 6 , 15460–15471 (2021).

Carpita, N. C. Hemicellulosic polymers of cell walls of zea coleoptiles. Plant. Physiol. 72 , 515–521 (1983).

Ropartz, D. & Ralet, M.-C. in Pectin: Technological and Physiological Properties (ed. Kontogiorgos V.) Ch. 2, 17-36 (Springer Nature, 2020).

Du, J., Anderson, C. T. & Xiao, C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. Nat. Plants 8 , 332–340 (2022).

Atmodjo, M. A., Hao, Z. & Mohnen, D. Evolving views of pectin biosynthesis. Annu. Rev. Plant. Biol. 64 , 747–779 (2013).

Caffall, K. H. & Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344 , 1879–1900 (2009).

Jarvis, M. C. Structure and properties of pectin gels in plant-cell walls. Plant. Cell Environ. 7 , 153–164 (1984).

Jarvis, M. C. Control of thickness of collenchyma cell walls by pectins. Planta 187 , 218–220 (1992).

Thimm, J. C., Burritt, D. J., Ducker, W. A. & Melton, L. D. Pectins influence microfibril aggregation in celery cell walls: an atomic force microscopy study. J. Struct. Biol. 168 , 337–344 (2009).

Radja, A., Horsley, E. M., Lavrentovich, M. O. & Sweeney, A. M. Pollen cell wall patterns form from modulated phases. Cell 176 , 856–868.e810 (2019).

Radja, A. Pollen wall patterns as a model for biological self-assembly. J. Exp. Zool. B Mol. Dev. Evol. 336 , 629–641 (2021).

Palacio-Lopez, K. et al. Experimental manipulation of pectin architecture in the cell wall of the unicellular charophyte, Penium margaritaceum . Front. Plant. Sci. 11 , 1032 (2020).

Temple, H. et al. Golgi-localized putative S -adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nat. Plants 8 , 656–669 (2022).

John, J., Ray, D., Aswal, V. K., Deshpande, A. P. & Varughese, S. Dissipation and strain-stiffening behavior of pectin–Ca gels under LAOS. Soft Matter 15 , 6852–6866 (2019).

John, J., Ray, D., Aswal, V. K., Deshpande, A. P. & Varughese, S. Pectin self-assembly and its disruption by water: insights into plant cell wall mechanics. Phys. Chem. Chem. Phys. 24 , 22691–22698 (2022).

Willats, W. G. et al. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J. Biol. Chem. 276 , 19404–19413 (2001).

Williams, M. A. K. et al. Polysaccharide structures in the outer mucilage of arabidopsis seeds visualized by AFM. Biomacromolecules 21 , 1450–1459 (2020).

Tan, L. et al. Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein. Carbohydr. Polym. 301 , 120340 (2023).

Yang, H. et al. Rhamnogalacturonan-I is a determinant of cell-cell adhesion in poplar wood. Plant. Biotechnol. J. 18 , 1027–1040 (2020).

Saez-Aguayo, S. & Largo-Gosens, A. Rhamnogalacturonan-I forms mucilage: behind its simplicity, a cutting-edge organization. J. Exp. Bot. 73 , 3299–3303 (2022).

Saffer, A. M. et al. Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition. Plant. J. 116 , 855–870 (2023).

Begum, R. A., Messenger, D. J. & Fry, S. C. Making and breaking of boron bridges in the pectic domain rhamnogalacturonan-II at apoplastic pH in vivo and in vitro. Plant. J. 113 , 1310–1329 (2023).

Lerouge, P., Carlier, M., Mollet, J.-C. & Lehner, A. The cell wall pectic rhamnogalacturonan II, an enigma in plant glycobiology. Carbohydr. Chem. 45 , 553–571 (2021).

Fry, S. C. Polysaccharide-modifying enzymes in the plant cell wall. Ann. Rev. Plant Physiol. 46 , 497–520 (1995).

Wolf, S. Cell wall signaling in plant development and defense. Annu. Rev. Plant. Biol. 73 , 323–353 (2022).  This review details the variety of cell wall sensors and their signalling pathways.

Novakovic, L., Guo, T. T., Bacic, A., Sampathkumar, A. & Johnson, K. L. Hitting the wall sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants-Basel 7 , 89 (2018).

Lin, W. et al. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr. Biol. 32 , 497–507.e4 (2022).

Tang, W. et al. Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr. Biol. 32 , 508–517.e3 (2022).

Duan, Q. et al. FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579 , 561–566 (2020).

Dunser, K. et al. Extracellular matrix sensing by FERONIA and leucine-rich repeat extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana . EMBO J. 38 , e100353 (2019).

Johnson, K. L. et al. Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. Plant. Physiol. 174 , 904–921 (2017).

Borassi, C. et al. An update on cell surface proteins containing extensin-motifs. J. Exp. Bot. 67 , 477–487 (2016).

Moussu, S. & Ingram, G. The EXTENSIN enigma. Cell Surf. 9 , 100094 (2023).

Ma, Y. & Johnson, K. A. Arabinogalactan-proteins. WikiJournal Sci. 4 , 1 (2021).

Shafee, T., Bacic, A. & Johnson, K. Evolution of sequence-diverse disordered regions in a protein family: order within the chaos. Mol. Biol. Evol. 37 , 2155–2172 (2020).

Cannon, M. C. et al. Self-assembly of the plant cell wall requires an extensin scaffold. Proc. Natl Acad. Sci. USA 105 , 2226–2231 (2008).

Sede, A. R. et al. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett. 592 , 233–243 (2018).

Marzol, E. et al. Filling the gaps to solve the extensin puzzle. Mol. Plant. 11 , 645–658 (2018).

Doll, N. M., Berenguer, E., Truskina, J. & Ingram, G. AtEXT3 is not essential for early embryogenesis or plant viability in Arabidopsis . New Phytol. 236 , 1629–1633 (2022).

Hromadova, D., Soukup, A. & Tylova, E. Arabinogalactan proteins in plant roots — an update on possible functions. Front. Plant Sci. 12 , 674010 (2021).

Lopez-Hernandez, F. et al. Calcium binding by arabinogalactan polysaccharides is important for normal plant development. Plant. Cell 32 , 3346–3369 (2020).

Silva, J., Ferraz, R., Dupree, P., Showalter, A. M. & Coimbra, S. Three decades of advances in arabinogalactan-protein biosynthesis. Front. Plant Sci. 11 , 610377 (2020).

Chen, P., Nishiyama, Y. & Wohlert, J. Quantifying the influence of dispersion interactions on the elastic properties of crystalline cellulose. Cellulose 28 , 10777–10786 (2021).

Wohlert, M. et al. Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose 29 , 1–23 (2021).

Glasser, W. G. et al. About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19 , 589–598 (2012).

Williams, M. A. K. in Pectin: Technological and Physiological Properties (ed. Kontogiorgos V.) 125–148 (Springer International Publishing, 2020).

Pieczywek, P. M., Cieśla, J., Płaziński, W. & Zdunek, A. Aggregation and weak gel formation by pectic polysaccharide homogalacturonan. Carbohydr. Polym. 256 , 117566 (2021).

Talbott, L. D. & Ray, P. M. Molecular size and separability features of pea cell wall polysaccharides. Implications for models of primary wall structure. Plant. Physiol. 92 , 357–368 (1992).

Broxterman, S. E. & Schols, H. A. Characterisation of pectin-xylan complexes in tomato primary plant cell walls. Carbohydr. Polym. 197 , 269–276 (2018).

Cornuault, V., Pose, S. & Knox, J. P. Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: evidence for sub-populations in fruit parenchyma systems. Food Chem. 246 , 275–285 (2018).

Moneo-Sánchez, M. et al. β-(1,4)-Galactan remodelling in Arabidopsis cell walls affects the xyloglucan structure during elongation. Planta 249 , 351–362 (2019).

Herburger, K. et al. Hetero-trans-beta-glucanase produces cellulose-xyloglucan covalent bonds in the cell walls of structural plant tissues and is stimulated by expansin. Mol. Plant. 13 , 1047–1062 (2020).

Herburger, K. et al. Defining natural factors that stimulate and inhibit cellulose:xyloglucan hetero-transglucosylation. Plant. J. 105 , 1549–1565 (2021).

Buanafina, M. M. de O. Feruloylation in grasses: current and future perspectives. Mol. Plant. 2 , 861–872 (2009).

Chateigner-Boutin, A.-L. & Saulnier, L. in Advances in Botanical Research (ed. Sibout R.) 104 , 169–213 (Academic, 2022).

Buanafina, M. M. D. & Morris, P. The impact of cell wall feruloylation on plant growth, responses to environmental stress, plant pathogens and cell wall degradability. Agronomy 12 , 1847 (2022).

Guhados, G., Wan, W. K. & Hutter, J. L. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21 , 6642–6646 (2005).

Jacobs, C. R., Huang, H. & Kwon, R. Y. Introduction to Cell Mechanics and Mechanobiology (Garland Science, 2013).

Usov, I. et al. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat. Commun. 6 , 7564 (2015).

McFarlane, H. E. Open questions in plant cell wall synthesis. J. Exp. Bot. 74 , 3425–3448 (2023).

Zhu, X., Li, S., Pan, S., Xin, X. & Gu, Y. CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc. Natl Acad. Sci. 115 , E3578 (2018).

Schneider, R., Ehrhardt, D. W., Meyerowitz, E. M. & Sampathkumar, A. Tethering of cellulose synthase to microtubules dampens mechano-induced cytoskeletal organization in Arabidopsis pavement cells. Nat. Plants 8 , 1064–1073 (2022).

Zykwinska, A. W., Ralet, M. C., Garnier, C. D. & Thibault, J. F. Evidence for in vitro binding of pectin side chains to cellulose. Plant. Physiol. 139 , 397–407 (2005).

Lipowczan, M., Borowska-Wykret, D., Natonik-Bialon, S. & Kwiatkowska, D. Growing cell walls show a gradient of elastic strain across their layers. J. Exp. Bot. 69 , 4349–4362 (2018).

Crowell, E. F. et al. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant. Cell 23 , 2592–2605 (2011).

Chen, D., Melton, L. D., McGillivray, D. J., Ryan, T. M. & Harris, P. J. Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery ( Apium graveolens L.). Planta 250 , 1819–1832 (2019).

Kelly-Bellow, R. et al. Brassinosteroid coordinates cell layer interactions in plants via cell wall and tissue mechanics. Science 380 , 1275–1281 (2023).

Mollier, C. et al. Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1. Cell Rep. 42 , 112689 (2023).

McQueen-Mason, S., Durachko, D. M. & Cosgrove, D. J. Two endogenous proteins that induce cell wall extension in plants. Plant. Cell 4 , 1425–1433 (1992).

CAS   PubMed   PubMed Central   Google Scholar  

Cosgrove, D. J. Plant expansins: diversity and interactions with plant cell walls. Curr. Opin. Plant. Biol. 25 , 162–172 (2015).

Sampedro, J. & Cosgrove, D. J. The expansin superfamily. Genome Biol. 6 , 242 (2005).

Marowa, P., Ding, A. M. & Kong, Y. Z. Expansins: roles in plant growth and potential applications in crop improvement. Plant. Cell Rep. 35 , 949–965 (2016).

Rayle, D. L. & Cleland, R. E. The acid growth theory of auxin-induced cell elongation is alive and well. Plant. Physiol. 99 , 1271–1274 (1992).

Hocq, L., Pelloux, J. & Lefebvre, V. Connecting homogalacturonan-type pectin remodeling to acid growth. Trends Plant. Sci. 22 , 20–29 (2017).

Arsuffi, G. & Braybrook, S. A. Acid growth: an ongoing trip. J. Exp. Bot. 69 , 137–146 (2018).

Phyo, P., Gu, Y. & Hong, M. Impact of acidic pH on plant cell wall polysaccharide structure and dynamics: insights into the mechanism of acid growth in plants from solid-state NMR. Cellulose 26 , 291–304 (2018).

Cho, H. T. & Kende, H. Expansins in deepwater rice internodes. Plant. Physiol. 113 , 1137–1143 (1997).

Cleland, R. E., Cosgrove, D. J. & Tepfer, M. Long-term acid-induced wall extension in an in vitro system. Planta 170 , 379–385 (1987).

Li, L. et al. Cell surface and intracellular auxin signalling for H + fluxes in root growth. Nature 599 , 273–277 (2021).

Fendrych, M. et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4 , 453–459 (2018).

Li, L., Gallei, M. & Friml, J. Bending to auxin: fast acid growth for tropisms. Trends Plant. Sci. 27 , 440–449 (2021).

Yuan, S., Wu, Y. & Cosgrove, D. J. A fungal endoglucanase with plant cell wall extension activity. Plant. Physiol. 127 , 324–333 (2001).

Wang, C. X., Wang, L., McQueen-Mason, S. J., Pritchard, J. & Thomas, C. R. pH and expansin action on single suspension-cultured tomato ( Lycopersicon esculentum ) cells. J. Plant. Res. 121 , 527–534 (2008).

McQueen-Mason, S. J. & Cosgrove, D. J. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant. Physiol. 107 , 87–100 (1995).

McQueen-Mason, S. J., Fry, S. C., Durachko, D. M. & Cosgrove, D. J. The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. Planta 190 , 327–331 (1993).

Cosgrove, D. J. Non-enzymatic action of expansins. J. Biol. Chem. 295 , 6782 (2020).

Fleming, A. J., McQueen-Mason, S., Mandel, T. & Kuhlemeier, C. Induction of leaf primordia by the cell wall protein expansin. Science 276 , 1415 (1997).

Link, B. M. & Cosgrove, D. J. Acid-growth response and alpha-expansins in suspension cultures of bright yellow 2 tobacco. Plant. Physiol. 118 , 907–916 (1998).

Goh, H. H., Sloan, J., Malinowski, R. & Fleming, A. Variable expansin expression in Arabidopsis leads to different growth responses. J. Plant. Physiol. 171 , 329–339 (2014).

Rochange, S. F., Wenzel, C. L. & McQueen-Mason, S. J. Impaired growth in transgenic plants over-expressing an expansin isoform. Plant. Mol. Biol. 46 , 581–589 (2001).

Samalova, M. et al. Hormone-regulated expansins: expression, localization, and cell wall biomechanics in Arabidopsis root growth. Plant. Physiol . https://doi.org/10.1093/plphys/kiad228 (2023).

McQueen-Mason, S. & Cosgrove, D. J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl Acad. Sci. USA 91 , 6574–6578 (1994).

Whitney, S. E. C., Gidley, M. J. & McQueen-Mason, S. J. Probing expansin action using cellulose/hemicellulose composites. Plant. J. 22 , 327–334 (2000).

Georgelis, N., Tabuchi, A., Nikolaidis, N. & Cosgrove, D. J. Structure-function analysis of the bacterial expansin EXLX1. J. Biol. Chem. 286 , 16814–16823 (2011).

Georgelis, N., Yennawar, N. H. & Cosgrove, D. J. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc. Natl Acad. Sci. USA 109 , 14830–14835 (2012).

Imai, T. et al. Disturbance of the hydrogen bonding in cellulose by bacterial expansin. Cellulose 30 , https://doi.org/10.1007/s10570-023-05402-6 (2023).

Yennawar, N. H., Li, L. C., Dudzinski, D. M., Tabuchi, A. & Cosgrove, D. J. Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc. Natl Acad. Sci. USA 103 , 14664–14671 (2006).

Silveira, R. L. & Skaf, M. S. Molecular dynamics of the Bacillus subtilis expansin EXLX1: interaction with substrates and structural basis of the lack of activity of mutants. Phys. Chem. Chem. Phys. 18 , 3510–3521 (2016).

Hayashi, T. & Kaida, R. Functions of xyloglucan in plant cells. Mol. Plant. 4 , 17–24 (2011).

Nishitani, K. & Vissenberg, K. in The Expanding Cell (eds. Verbelen J.-P. & Vissenberg K. eds) 89–116 (Springer Berlin Heidelberg, 2007).

Behar, H., Graham, S. W. & Brumer, H. Comprehensive cross-genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages. Plant. J. 95 , 1114–1128 (2018).

Behar, H., Tamura, K., Wagner, E. R., Cosgrove, D. J. & Brumer, H. Conservation of endo-glucanase 16 (EG16) activity across highly divergent plant lineages. Biochem. J. 478 , 3063–3078 (2021).

Hrmova, M., Stratilova, B. & Stratilova, E. Broad specific xyloglucan:xyloglucosyl transferases are formidable players in the re-modelling of plant cell wall structures. Int. J. Mol. Sci. 23 , 1656 (2022).

Saladie, M., Rose, J. K., Cosgrove, D. J. & Catala, C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant. J. 47 , 282–295 (2006).

Maris, A., Suslov, D., Fry, S. C., Verbelen, J. P. & Vissenberg, K. Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J. Exp. Bot. 60 , 3959–3972 (2009).

Van Sandt, V. S. T., Suslov, D., Verbelen, J. P. & Vissenberg, K. Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann. Bot. 100 , 1467–1473 (2007).

Kaewthai, N. et al. Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. Plant. Physiol. 161 , 440–454 (2013).

Hara, Y., Yokoyama, R., Osakabe, K., Toki, S. & Nishitani, K. Function of xyloglucan endotransglucosylase/hydrolases in rice. Ann. Bot. 114 , 1309–1318 (2014).

Niraula, P. M., Zhang, X., Jeremic, D., Lawrence, K. S. & Klink, V. P. Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines . PLoS ONE 16 , e0244305 (2021).

Osato, Y., Yokoyama, R. & Nishitani, K. A principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants. J. Plant. Res. 119 , 153–162 (2006).

Miedes, E. et al. Xyloglucan endotransglucosylase and cell wall extensibility. J. Plant. Physiol. 168 , 196–203 (2011).

Miedes, E. et al. Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. J. Exp. Bot. 64 , 2481–2497 (2013).

Kushwah, S. et al. Arabidopsis XTH4 and XTH9 contribute to wood cell expansion and secondary wall formation. Plant Physiol. 182 , 1946–1965 (2020).

Herburger, K., Schoenaers, S., Vissenberg, K. & Mravec, J. Shank-localized cell wall growth contributes to Arabidopsis root hair elongation. Nat. Plants 8 , 1222–1232 (2022).

Zabotina, O. A. et al. Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis. Plant. Physiol. 159 , 1367–1384 (2012).

Ohmiya, Y. et al. Evidence that endo-1,4-beta-glucanases act on cellulose in suspension-cultured poplar cells. Plant. J. 24 , 147–158 (2000).

Peaucelle, A., Braybrook, S. & Hofte, H. Cell wall mechanics and growth control in plants: the role of pectins revisited. Front. Plant. Sci. 3 , 121 (2012). A minireview that attempts to integrate the concepts of growth control by pectins and by expansin-induced loosening of cellulose. The authors speculate that pectin control is an evolutionarily primitive system that emerged in algae and that expansin-mediated control emerged later.

Haas, K. T., Wightman, R., Peaucelle, A. & Hofte, H. The role of pectin phase separation in plant cell wall assembly and growth. Cell Surf. 7 , 100054 (2021).

Taiz, L. Plant-cell expansion — regulation of cell-wall mechanical-properties. Annu. Rev. Plant. Physiol. 35 , 585–657 (1984).

Levesque-Tremblay, G., Pelloux, J., Braybrook, S. A. & Muller, K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta 242 , 791–811 (2015).

Peaucelle, A. et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis . Curr. Biol. 21 , 1720–1726 (2011).

Milani, P., Braybrook, S. A. & Boudaoud, A. Shrinking the hammer: micromechanical approaches to morphogenesis. J. Exp. Bot. 64 , 4651–4662 (2013).

Chebli, Y. & Geitmann, A. Cellular growth in plants requires regulation of cell wall biochemistry. Curr. Opin. Cell Biol. 44 , 28–35 (2017).

Phyo, P. et al. Gradients in wall mechanics and polysaccharides along growing inflorescence stems. Plant. Physiol. 175 , 1593–1607 (2017).

Liberman, M. et al. Mung bean hypocotyl homogalacturonan: localization, organization and origin. Ann. Bot. 84 , 225–233 (1999).

Wang, X., Wilson, L. & Cosgrove, D. J. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. J. Exp. Bot. 71 , 2629–2640 (2020).

Safran, J. et al. Plant polygalacturonase structures specify enzyme dynamics and processivities to fine-tune cell wall pectins. Plant. Cell 35 , 3073–3091 (2023).

Palin, R. & Geitmann, A. The role of pectin in plant morphogenesis. Bio Syst. 109 , 397–402 (2012).

CAS   Google Scholar  

Haas, K. T., Wightman, R., Meyerowitz, E. M. & Peaucelle, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367 , 1003–1007 (2020).

Altartouri, B. et al. Pectin chemistry and cellulose crystallinity govern pavement cell morphogenesis in a multi-step mechanism. Plant. Physiol. 181 , 127–141 (2019).

Belteton, S. A. et al. Real-time conversion of tissue-scale mechanical forces into an interdigitated growth pattern. Nat. Plants 7 , 826–841 (2021).

Braybrook, S. A., Hofte, H. & Peaucelle, A. Probing the mechanical contributions of the pectin matrix: insights for cell growth. Plant. Signal. Behav. 7 , 1037–1041 (2012).

White, P. B., Wang, T., Park, Y. B., Cosgrove, D. J. & Hong, M. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J. Am. Chem. Soc. 136 , 10399–10409 (2014).

Cho, H.-T. & Cosgrove, D. J. in Plant Hormones: Biosynthesis, Signal Transduction, Action! (ed. Davies P. J.) 262–281 (Springer Netherlands, 2010).

Pacifici, E., Di Mambro, R., Dello Ioio, R., Costantino, P. & Sabatini, S. Acidic cell elongation drives cell differentiation in the Arabidopsis root. EMBO J. 37 , e99134 (2018).

Ramakrishna, P. et al. EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc. Natl Acad. Sci. USA 116 , 8597–8602 (2019).

Vermeer, J. E. et al. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343 , 178–183 (2014).

Keuskamp, D. H. et al. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant. J. 67 , 208–217 (2011).

Rauf, M. et al. NAC transcription factor SPEEDY HYPONASTIC GROWTH regulates flooding-induced leaf movement in Arabidopsis . Plant. Cell 25 , 4941–4955 (2013).

Braybrook, S. A. & Peaucelle, A. Mechano-chemical aspects of organ formation in Arabidopsis thaliana : the relationship between auxin and pectin. PLoS ONE 8 , e57813 (2013).

Fleming, A. J., Caderas, D., Wehrli, E., McQueen-Mason, S. & Kuhlemeier, C. Analysis of expansin-induced morphogenesis on the apical meristem of tomato. Planta 208 , 166–174 (1999).

Reinhardt, D., Wittwer, F., Mandel, T. & Kuhlemeier, C. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant. Cell 10 , 1427–1437 (1998).

Nakayama, N. et al. Mechanical regulation of auxin-mediated growth. Curr. Biol. 22 , 1468–1476 (2012).

Sampathkumar, A., Yan, A., Krupinski, P. & Meyerowitz, E. M. Physical forces regulate plant development and morphogenesis. Curr. Biol. 24 , R475–483 (2014).

Bacete, L. et al. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana . Proc. Natl Acad. Sci. USA 119 , e2119258119 (2022).

Gonneau, M. et al. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis . Curr. Biol. 28 , 2452–2458.e2454 (2018).

Smokvarska, M. et al. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Sci. Adv. 9 , eadd4791 (2023).

Pacheco, J. M. et al. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana . New Phytol. 238 , 169–185 (2023).

Mecchia, M. A. et al. The single Marchantia polymorpha FERONIA homolog reveals an ancestral role in regulating cellular expansion and integrity. Development 149 , dev200580 (2022).

Shih, H. W., Miller, N. D., Dai, C., Spalding, E. P. & Monshausen, G. B. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24 , 1887–1892 (2014).

Li, C., Wu, H. M. & Cheung, A. Y. FERONIA and her pals: functions and mechanisms. Plant. Physiol. 171 , 2379–2392 (2016).

Wang, P. et al. Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana . Plant. Cell 34 , 2594–2614 (2022).

Steinwand, B. J. et al. Alterations in auxin homeostasis suppress defects in cell wall function. PLoS ONE 9 , e98193 (2014).

Anderson, C. T. & Kieber, J. J. Dynamic construction, perception, and remodeling of plant cell walls. Annu. Rev. Plant. Biol. 71 , 39–69 (2020).

Kohorn, B. D. & Kohorn, S. L. The cell wall-associated kinases, WAKs, as pectin receptors. Front. Plant. Sci. 3 , 88 (2012).

Wagner, T. A. & Kohorn, B. D. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant. Cell 13 , 303–318 (2001).

Yue, Z. L. et al. The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice. Curr. Biol. 32 , 2454–2466.e7 (2022).

Hamant, O., Inoue, D., Bouchez, D., Dumais, J. & Mjolsness, E. Are microtubules tension sensors? Nat. Commun. 10 , 2360 (2019).

Li, J., Szymanski, D. B. & Kim, T. Probing stress-regulated ordering of the plant cortical microtubule array via a computational approach. BMC Plant Biol. 23 , 308 (2023).

Fruleux, A., Verger, S. & Boudaoud, A. Feeling stressed or strained? A biophysical model for cell wall mechanosensing in plants. Front. Plant. Sci. 10 , 757 (2019).

Williamson, R. E. Alignment of cortical microtubules by anisotropic wall stresses. Aust. J. Plant. Physiol. 17 , 601–613 (1990).

Decreux, A. & Messiaen, J. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol. 46 , 268–278 (2005).

Hamilton, E. S. et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350 , 438–441 (2015).

Chebli, Y., Bidhendi, A. J., Kapoor, K. & Geitmann, A. Cytoskeletal regulation of primary plant cell wall assembly. Curr. Biol. 31 , R681–R695 (2021).

Leyser, O. Auxin signaling. Plant. Physiol. 176 , 465–479 (2018).

Friml, J. et al. ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature 609 , 575–581 (2022).

Lin, W. et al. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 599 , 278–282 (2021).

Minami, A., Takahashi, K., Inoue, S. I., Tada, Y. & Kinoshita, T. Brassinosteroid induces phosphorylation of the plasma membrane H + -ATPase during hypocotyl elongation in Arabidopsis thaliana . Plant Cell Physiol. 60 , 935–944 (2019).

Ajeet, C. et al. Brassinosteroid recruits FERONIA to safeguard cell expansion in Arabidopsis . Preprint at bioRxiv 2023.2010.2001.560400, https://doi.org/10.1101/2023.10.01.560400 (2023).

Haruta, M., Gray, W. M. & Sussman, M. R. Regulation of the plasma membrane proton pump (H + -ATPase) by phosphorylation. Curr. Opin. Plant. Biol. 28 , 68–75 (2015).

Moussu, S. et al. Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. Proc. Natl Acad. Sci. 117 , 7494 (2020).

Herger, A., Dunser, K., Kleine-Vehn, J. & Ringli, C. Leucine-rich repeat extensin proteins and their role in cell wall sensing. Curr. Biol. 29 , R851–R858 (2019).

Download references

Acknowledgements

Work on wall loosening and expansins was supported by the US Department of Energy (grant no. DE-FG2-84ER13179). Work on wall mechanics was supported by the Human Frontier Science Program for a collaborative research grant RGP0005/2022, and work on wall structure was supported as part of The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0001090.

Author information

Authors and affiliations.

Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA

Daniel J. Cosgrove

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Daniel J. Cosgrove .

Ethics declarations

Competing interests.

The author declares no competing interests.

Peer review

Peer review information.

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The soft wall-like layer initially separating two daughter cells during cell division. With subsequent stabilization by the deposition of additional wall materials, it becomes the pectin-rich adhesive zone, called the middle lamella, between two cell walls.

A measure of the ability of a structure to return to its original shape after being mechanically deformed.

A cylindrical layer of cells located just inside the endodermis. Lateral roots are initiated in the pericycle.

A measure of the extent of irreversible deformation of a material that is stretched or compressed by mechanical force.

The component of stress that is coplanar with a material, resulting in deformation in which parallel surfaces slide past each other.

Refers to higher-order molecular assemblies that rely on extensive noncovalent interactions between components to form a coherent structure.

The minimum force or stress required for a material to begin to deform irreversibly.

A measure of the stiffness of a material, normalized by cross-sectional area.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Cosgrove, D.J. Structure and growth of plant cell walls. Nat Rev Mol Cell Biol 25 , 340–358 (2024). https://doi.org/10.1038/s41580-023-00691-y

Download citation

Accepted : 15 November 2023

Published : 15 December 2023

Issue Date : May 2024

DOI : https://doi.org/10.1038/s41580-023-00691-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Exploring plant and microbial antimicrobials for sustainable public health and environmental preservation.

  • Mayuri Saini
  • Baljeet Singh Saharan

Discover Public Health (2024)

Leaf form diversity and evolution: a never-ending story in plant biology

  • Hokuto Nakayama

Journal of Plant Research (2024)

Insights into the cell-wall dynamics in grapevine berries during ripening and in response to biotic and abiotic stresses

  • Giulia Malacarne
  • Jorge Lagreze
  • Lorenza Dalla Costa

Plant Molecular Biology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

scientific research on plant cells

IMAGES

  1. Plant Cells

    scientific research on plant cells

  2. Plant cell

    scientific research on plant cells

  3. Structural Overview of a Plant Cell

    scientific research on plant cells

  4. Protozoa

    scientific research on plant cells

  5. Plant Cell Diagram: Each and Every Components of Plat Cell Explained

    scientific research on plant cells

  6. Draw a well-labelled diagram of a plant cell

    scientific research on plant cells

VIDEO

  1. Why Do Plants Grow Up? The Hidden Force Behind Plant Growth

  2. Plant Cell Basics in 60 Seconds! 🌱#scienceeasytech #biology

  3. Diffusing plant cells- link in bio

  4. Plant Cells: The Most Interesting Cells #education #plants #cellbiology #biology #youtube

  5. Plant cells| botany biology| plant anatomy| #botany #botanymcqs #rap #music #plantlab #plantgenetics

  6. Research and Development in Plant Science