Instant insights, infinite possibilities

How to write a research plan: Step-by-step guide

Last updated

30 January 2024

Reviewed by

Short on time? Get an AI generated summary of this article instead

Today’s businesses and institutions rely on data and analytics to inform their product and service decisions. These metrics influence how organizations stay competitive and inspire innovation. However, gathering data and insights requires carefully constructed research, and every research project needs a roadmap. This is where a research plan comes into play.

Read this step-by-step guide for writing a detailed research plan that can apply to any project, whether it’s scientific, educational, or business-related.

  • What is a research plan?

A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project’s goals and mission, creating layers of steps to achieve those goals within a specified timeline.

Without a research plan, you and your team are flying blind, potentially wasting time and resources to pursue research without structured guidance.

The principal investigator, or PI, is responsible for facilitating the research oversight. They will create the research plan and inform team members and stakeholders of every detail relating to the project. The PI will also use the research plan to inform decision-making throughout the project.

  • Why do you need a research plan?

Create a research plan before starting any official research to maximize every effort in pursuing and collecting the research data. Crucially, the plan will model the activities needed at each phase of the research project .

Like any roadmap, a research plan serves as a valuable tool providing direction for those involved in the project—both internally and externally. It will keep you and your immediate team organized and task-focused while also providing necessary definitions and timelines so you can execute your project initiatives with full understanding and transparency.

External stakeholders appreciate a working research plan because it’s a great communication tool, documenting progress and changing dynamics as they arise. Any participants of your planned research sessions will be informed about the purpose of your study, while the exercises will be based on the key messaging outlined in the official plan.

Here are some of the benefits of creating a research plan document for every project:

Project organization and structure

Well-informed participants

All stakeholders and teams align in support of the project

Clearly defined project definitions and purposes

Distractions are eliminated, prioritizing task focus

Timely management of individual task schedules and roles

Costly reworks are avoided

  • What should a research plan include?

The different aspects of your research plan will depend on the nature of the project. However, most official research plan documents will include the core elements below. Each aims to define the problem statement , devising an official plan for seeking a solution.

Specific project goals and individual objectives

Ideal strategies or methods for reaching those goals

Required resources

Descriptions of the target audience, sample sizes , demographics, and scopes

Key performance indicators (KPIs)

Project background

Research and testing support

Preliminary studies and progress reporting mechanisms

Cost estimates and change order processes

Depending on the research project’s size and scope, your research plan could be brief—perhaps only a few pages of documented plans. Alternatively, it could be a fully comprehensive report. Either way, it’s an essential first step in dictating your project’s facilitation in the most efficient and effective way.

  • How to write a research plan for your project

When you start writing your research plan, aim to be detailed about each step, requirement, and idea. The more time you spend curating your research plan, the more precise your research execution efforts will be.

Account for every potential scenario, and be sure to address each and every aspect of the research.

Consider following this flow to develop a great research plan for your project:

Define your project’s purpose

Start by defining your project’s purpose. Identify what your project aims to accomplish and what you are researching. Remember to use clear language.

Thinking about the project’s purpose will help you set realistic goals and inform how you divide tasks and assign responsibilities. These individual tasks will be your stepping stones to reach your overarching goal.

Additionally, you’ll want to identify the specific problem, the usability metrics needed, and the intended solutions.

Know the following three things about your project’s purpose before you outline anything else:

What you’re doing

Why you’re doing it

What you expect from it

Identify individual objectives

With your overarching project objectives in place, you can identify any individual goals or steps needed to reach those objectives. Break them down into phases or steps. You can work backward from the project goal and identify every process required to facilitate it.

Be mindful to identify each unique task so that you can assign responsibilities to various team members. At this point in your research plan development, you’ll also want to assign priority to those smaller, more manageable steps and phases that require more immediate or dedicated attention.

Select research methods

Once you have outlined your goals, objectives, steps, and tasks, it’s time to drill down on selecting research methods . You’ll want to leverage specific research strategies and processes. When you know what methods will help you reach your goals, you and your teams will have direction to perform and execute your assigned tasks.

Research methods might include any of the following:

User interviews : this is a qualitative research method where researchers engage with participants in one-on-one or group conversations. The aim is to gather insights into their experiences, preferences, and opinions to uncover patterns, trends, and data.

Field studies : this approach allows for a contextual understanding of behaviors, interactions, and processes in real-world settings. It involves the researcher immersing themselves in the field, conducting observations, interviews, or experiments to gather in-depth insights.

Card sorting : participants categorize information by sorting content cards into groups based on their perceived similarities. You might use this process to gain insights into participants’ mental models and preferences when navigating or organizing information on websites, apps, or other systems.

Focus groups : use organized discussions among select groups of participants to provide relevant views and experiences about a particular topic.

Diary studies : ask participants to record their experiences, thoughts, and activities in a diary over a specified period. This method provides a deeper understanding of user experiences, uncovers patterns, and identifies areas for improvement.

Five-second testing: participants are shown a design, such as a web page or interface, for just five seconds. They then answer questions about their initial impressions and recall, allowing you to evaluate the design’s effectiveness.

Surveys : get feedback from participant groups with structured surveys. You can use online forms, telephone interviews, or paper questionnaires to reveal trends, patterns, and correlations.

Tree testing : tree testing involves researching web assets through the lens of findability and navigability. Participants are given a textual representation of the site’s hierarchy (the “tree”) and asked to locate specific information or complete tasks by selecting paths.

Usability testing : ask participants to interact with a product, website, or application to evaluate its ease of use. This method enables you to uncover areas for improvement in digital key feature functionality by observing participants using the product.

Live website testing: research and collect analytics that outlines the design, usability, and performance efficiencies of a website in real time.

There are no limits to the number of research methods you could use within your project. Just make sure your research methods help you determine the following:

What do you plan to do with the research findings?

What decisions will this research inform? How can your stakeholders leverage the research data and results?

Recruit participants and allocate tasks

Next, identify the participants needed to complete the research and the resources required to complete the tasks. Different people will be proficient at different tasks, and having a task allocation plan will allow everything to run smoothly.

Prepare a thorough project summary

Every well-designed research plan will feature a project summary. This official summary will guide your research alongside its communications or messaging. You’ll use the summary while recruiting participants and during stakeholder meetings. It can also be useful when conducting field studies.

Ensure this summary includes all the elements of your research project . Separate the steps into an easily explainable piece of text that includes the following:

An introduction: the message you’ll deliver to participants about the interview, pre-planned questioning, and testing tasks.

Interview questions: prepare questions you intend to ask participants as part of your research study, guiding the sessions from start to finish.

An exit message: draft messaging your teams will use to conclude testing or survey sessions. These should include the next steps and express gratitude for the participant’s time.

Create a realistic timeline

While your project might already have a deadline or a results timeline in place, you’ll need to consider the time needed to execute it effectively.

Realistically outline the time needed to properly execute each supporting phase of research and implementation. And, as you evaluate the necessary schedules, be sure to include additional time for achieving each milestone in case any changes or unexpected delays arise.

For this part of your research plan, you might find it helpful to create visuals to ensure your research team and stakeholders fully understand the information.

Determine how to present your results

A research plan must also describe how you intend to present your results. Depending on the nature of your project and its goals, you might dedicate one team member (the PI) or assume responsibility for communicating the findings yourself.

In this part of the research plan, you’ll articulate how you’ll share the results. Detail any materials you’ll use, such as:

Presentations and slides

A project report booklet

A project findings pamphlet

Documents with key takeaways and statistics

Graphic visuals to support your findings

  • Format your research plan

As you create your research plan, you can enjoy a little creative freedom. A plan can assume many forms, so format it how you see fit. Determine the best layout based on your specific project, intended communications, and the preferences of your teams and stakeholders.

Find format inspiration among the following layouts:

Written outlines

Narrative storytelling

Visual mapping

Graphic timelines

Remember, the research plan format you choose will be subject to change and adaptation as your research and findings unfold. However, your final format should ideally outline questions, problems, opportunities, and expectations.

  • Research plan example

Imagine you’ve been tasked with finding out how to get more customers to order takeout from an online food delivery platform. The goal is to improve satisfaction and retain existing customers. You set out to discover why more people aren’t ordering and what it is they do want to order or experience. 

You identify the need for a research project that helps you understand what drives customer loyalty . But before you jump in and start calling past customers, you need to develop a research plan—the roadmap that provides focus, clarity, and realistic details to the project.

Here’s an example outline of a research plan you might put together:

Project title

Project members involved in the research plan

Purpose of the project (provide a summary of the research plan’s intent)

Objective 1 (provide a short description for each objective)

Objective 2

Objective 3

Proposed timeline

Audience (detail the group you want to research, such as customers or non-customers)

Budget (how much you think it might cost to do the research)

Risk factors/contingencies (any potential risk factors that may impact the project’s success)

Remember, your research plan doesn’t have to reinvent the wheel—it just needs to fit your project’s unique needs and aims.

Customizing a research plan template

Some companies offer research plan templates to help get you started. However, it may make more sense to develop your own customized plan template. Be sure to include the core elements of a great research plan with your template layout, including the following:

Introductions to participants and stakeholders

Background problems and needs statement

Significance, ethics, and purpose

Research methods, questions, and designs

Preliminary beliefs and expectations

Implications and intended outcomes

Realistic timelines for each phase

Conclusion and presentations

How many pages should a research plan be?

Generally, a research plan can vary in length between 500 to 1,500 words. This is roughly three pages of content. More substantial projects will be 2,000 to 3,500 words, taking up four to seven pages of planning documents.

What is the difference between a research plan and a research proposal?

A research plan is a roadmap to success for research teams. A research proposal, on the other hand, is a dissertation aimed at convincing or earning the support of others. Both are relevant in creating a guide to follow to complete a project goal.

What are the seven steps to developing a research plan?

While each research project is different, it’s best to follow these seven general steps to create your research plan:

Defining the problem

Identifying goals

Choosing research methods

Recruiting participants

Preparing the brief or summary

Establishing task timelines

Defining how you will present the findings

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

FLEET LIBRARY | Research Guides

Rhode island school of design, create a research plan: research plan.

  • Research Plan
  • Literature Review
  • Ulrich's Global Serials Directory
  • Related Guides

A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan

1. Research conceptualization - introduces your research question

2. Research methodology - describes your approach to the research question

3. Literature review, critical evaluation and synthesis - systematic approach to locating,

    reviewing and evaluating the work (text, exhibitions, critiques, etc) relating to your topic

4. Communication - geared toward an intended audience, shows evidence of your inquiry

Research conceptualization refers to the ability to identify specific research questions, problems or opportunities that are worthy of inquiry. Research conceptualization also includes the skills and discipline that go beyond the initial moment of conception, and which enable the researcher to formulate and develop an idea into something researchable ( Newbury 373).

Research methodology refers to the knowledge and skills required to select and apply appropriate methods to carry through the research project ( Newbury 374) .

Method describes a single mode of proceeding; methodology describes the overall process.

Method - a way of doing anything especially according to a defined and regular plan; a mode of procedure in any activity

Methodology - the study of the direction and implications of empirical research, or the sustainability of techniques employed in it; a method or body of methods used in a particular field of study or activity *Browse a list of research methodology books  or this guide on Art & Design Research

Literature Review, critical evaluation & synthesis

A literature review is a systematic approach to locating, reviewing, and evaluating the published work and work in progress of scholars, researchers, and practitioners on a given topic.

Critical evaluation and synthesis is the ability to handle (or process) existing sources. It includes knowledge of the sources of literature and contextual research field within which the person is working ( Newbury 373).

Literature reviews are done for many reasons and situations. Here's a short list:

to learn about a field of study

to understand current knowledge on a subject

to formulate questions & identify a research problem

to focus the purpose of one's research

to contribute new knowledge to a field

personal knowledge

intellectual curiosity

to prepare for architectural program writing

academic degrees

grant applications

proposal writing

academic research

planning

funding

Sources to consult while conducting a literature review:

Online catalogs of local, regional, national, and special libraries

meta-catalogs such as worldcat , Art Discovery Group , europeana , world digital library or RIBA

subject-specific online article databases (such as the Avery Index, JSTOR, Project Muse)

digital institutional repositories such as Digital Commons @RISD ; see Registry of Open Access Repositories

Open Access Resources recommended by RISD Research LIbrarians

works cited in scholarly books and articles

print bibliographies

the internet-locate major nonprofit, research institutes, museum, university, and government websites

search google scholar to locate grey literature & referenced citations

trade and scholarly publishers

fellow scholars and peers

Communication                              

Communication refers to the ability to

  • structure a coherent line of inquiry
  • communicate your findings to your intended audience
  • make skilled use of visual material to express ideas for presentations, writing, and the creation of exhibitions ( Newbury 374)

Research plan framework: Newbury, Darren. "Research Training in the Creative Arts and Design." The Routledge Companion to Research in the Arts . Ed. Michael Biggs and Henrik Karlsson. New York: Routledge, 2010. 368-87. Print.

About the author

Except where otherwise noted, this guide is subject to a Creative Commons Attribution license

source document

  Routledge Companion to Research in the Arts

  • Next: Literature Review >>
  • Last Updated: Sep 7, 2024 3:56 PM
  • URL: https://risd.libguides.com/researchplan

We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Logo

  • A Research Guide
  • Research Paper Guide

How to Write a Research Plan

  • Research plan definition
  • Purpose of a research plan
  • Research plan structure
  • Step-by-step writing guide

Tips for creating a research plan

  • Research plan examples

Research plan: definition and significance

What is the purpose of a research plan.

  • Bridging gaps in the existing knowledge related to their subject.
  • Reinforcing established research about their subject.
  • Introducing insights that contribute to subject understanding.

Research plan structure & template

Introduction.

  • What is the existing knowledge about the subject?
  • What gaps remain unanswered?
  • How will your research enrich understanding, practice, and policy?

Literature review

Expected results.

  • Express how your research can challenge established theories in your field.
  • Highlight how your work lays the groundwork for future research endeavors.
  • Emphasize how your work can potentially address real-world problems.

5 Steps to crafting an effective research plan

Step 1: define the project purpose, step 2: select the research method, step 3: manage the task and timeline, step 4: write a summary, step 5: plan the result presentation.

  • Brainstorm Collaboratively: Initiate a collective brainstorming session with peers or experts. Outline the essential questions that warrant exploration and answers within your research.
  • Prioritize and Feasibility: Evaluate the list of questions and prioritize those that are achievable and important. Focus on questions that can realistically be addressed.
  • Define Key Terminology: Define technical terms pertinent to your research, fostering a shared understanding. Ensure that terms like “church” or “unreached people group” are well-defined to prevent ambiguity.
  • Organize your approach: Once well-acquainted with your institution’s regulations, organize each aspect of your research by these guidelines. Allocate appropriate word counts for different sections and components of your research paper.

Research plan example

aside icon

  • Writing a Research Paper
  • Research Paper Title
  • Research Paper Sources
  • Research Paper Problem Statement
  • Research Paper Thesis Statement
  • Hypothesis for a Research Paper
  • Research Question
  • Research Paper Outline
  • Research Paper Summary
  • Research Paper Prospectus
  • Research Paper Proposal
  • Research Paper Format
  • Research Paper Styles
  • AMA Style Research Paper
  • MLA Style Research Paper
  • Chicago Style Research Paper
  • APA Style Research Paper
  • Research Paper Structure
  • Research Paper Cover Page
  • Research Paper Abstract
  • Research Paper Introduction
  • Research Paper Body Paragraph
  • Research Paper Literature Review
  • Research Paper Background
  • Research Paper Methods Section
  • Research Paper Results Section
  • Research Paper Discussion Section
  • Research Paper Conclusion
  • Research Paper Appendix
  • Research Paper Bibliography
  • APA Reference Page
  • Annotated Bibliography
  • Bibliography vs Works Cited vs References Page
  • Research Paper Types
  • What is Qualitative Research

service-1

Receive paper in 3 Hours!

  • Choose the number of pages.
  • Select your deadline.
  • Complete your order.

Number of Pages

550 words (double spaced)

Deadline: 10 days left

By clicking "Log In", you agree to our terms of service and privacy policy . We'll occasionally send you account related and promo emails.

Sign Up for your FREE account

career support

support to get a great job

  • Career Development

How to Write an Effective Research Plan: The Ultimate Guide

Some logistical headaches are inevitable. Many can be relieved with a well-structured, well-written, research plan. Heres a go-to reference for crafting one effectively. Words by Nikki Anderson-Stanier, Visuals by Alisa Harvey

When we think about what we love about our work—what excites us, what inspires us, what triggers the next big “a-ha” moment—we rarely think about processes or documentation.

But when we think about what frustrates us about our work—”next steps” that get delayed, projects that feel unfocused, little logistics that hold up our plans—we often blame processes and documentation.

Even if you don’t consistently reference a research plan, it can help ensure your next project goes more smoothly.

This walk-through will teach you how to write a plan in 15 minutes that’ll save you hours of work down the road.

Get our time-saving research plan templates (with a sample plan, and handy walkthrough) for free here.

What do you mean by user research plan? And why do I need one? A user research plan is a concise reference point for your project’s timeline, goals, main players, and objectives. It’s not always used extensively after the project has started. But sometimes youll use it to remind stakeholders of a project’s purpose, or explain certain logistical decisions (like why certain types of participants were recruited).

Overall, research plans offer an overview about the initiative taking place and serve as a kick-off document for a project. Their beauty lies in their capacity to keep your team on track, to ensure overarching goals are well-defined and agreed upon, and to guarantee those goals are met by the research.

Research plans keep the entire team focused on an outcome and provide an easy reference to keep “need-to-know” stakeholders in the know. They prevent everyone from getting bogged down in the details and from switching the goal of the research in the middle by mistake.

Most importantly, they allow researchers—or whoever is doing the research—to ensure the objectives of the research plan will be answered in the most effective and efficient way possible by the end of the project. We want to make sure we are actually answering the questions we set out to uncover, and research plans enable us to do so.

Imagine you’re working as a researcher at an online food ordering service that allows you to order takeaway delivered to your door from restaurants in your area.

One day, a project lands on your desk. A product manager wants to know how to get people to order takeaway more frequently.

After some back and forth, you get a handle on what the product team is hoping to learn. Their goal is to increase retention rates and user satisfaction. They want to know: Why do customers not order more frequently? And how do customers decide what they want to order?

The team wants to have a better overall understanding of the drivers for customer loyalty, and the pain points that prevent customers from becoming loyal to the platform.

With the project in hand, you’re ready to sit down and write a plan. Then you can share the first draft with the product team to ensure you’re interpreting their aims correctly.

The background section is pretty straightforward. It consists of a few sentences on what the research is about and why it is happening, which orients people to needs and expectations. The background also includes a problem statement (the central question you’re trying to answer with the research findings).

We want to understand the reasons behind why certain customers are reordering at a higher frequency, as well as the barriers encountered by customers that prevent them from reordering on the platform (problem statement).

We will be using generative research techniques to explore the journey users take—both inside and outside of our platform, when they decide to order takeaway—in order to better understand the challenges and needs they face in these circumstances.

Objectives are one of the hardest parts of the research plan to write. They’re the specific ideas you want to learn more about during the research and the questions you want to be answered. Essentially, the objectives drive the entire project. So, how do you write them effectively?

First, start with the central problem statement: to understand the reasons behind why certain customers are reordering at a higher frequency, as well as the barriers encountered by customers that prevent them from reordering on the platform.

Our research objectives should address what we want to learn and how we are going to study the problem statement.

A well-crafted research plan is essential for guiding your research project towards success. Whether conducting academic studies or market research for business, having a thoughtful plan sets you up to generate meaningful insights and conclusions

This step-by-step guide will teach you how to write a clear, actionable research plan to keep your project on track.

Define the Core Research Problem

Start by clearly defining the fundamental problem your research aims to address Concisely explain

  • What gap in understanding or need for knowledge exists?
  • Who is affected by this problem?
  • Why is it important to address?

For example, a research problem could be: “Childhood obesity has tripled over the past 30 years. This epidemic needs to be better understood so preventative health programs can be improved.”

Articulating the research problem provides focus and frames the significance of your study. It’s the catalyst for the entire endeavor.

Identify the Research Goals and Objectives

Once the research problem is established, specify your goals and objectives.

The goals are the overarching achievements you hope to accomplish. Common examples are:

  • Discover new information about a topic
  • Prove or disprove a hypothesis
  • Develop solutions to an existing problem

Objectives are the specific aims you will complete to reach the larger goals. For instance:

  • Conduct surveys gathering input from 500 patients
  • Interview 25 doctors working in related healthcare fields
  • Analyze trends in childhood obesity rates across 10 years of CDC data

Well-defined goals and objectives keep the project sharply focused on outcomes that address the research problem. They also establish clear milestones for measuring progress.

Choose the Research Methods

Your objectives point to the specific research methods you’ll use to conduct the study. Outline the techniques you’ll leverage to gather and analyze data.

Common qualitative methods include:

  • One-on-one interviews asking open-ended questions
  • Focus groups for group discussions
  • Observation gathering descriptive field notes
  • Case studies examining individuals or events in-depth

Quantitative methods often entail:

  • Surveys with closed-ended questions
  • Experiments manipulating variables under controlled conditions
  • Systematic statistical analysis of numerical datasets

Choose methods that allow you to best answer your research questions with credible, relevant data. Be specific on tools and analytical approaches.

Recruit Research Participants

If your methods involve surveys, interviews, focus groups or other direct interactions with people, outline your participant recruitment plan.

  • How many participants you aim to include
  • Their key demographic qualifications (e.g. age, gender, location)
  • How you will find and screen qualified participants
  • Incentives you’ll provide in exchange for their time

Thoughtful recruiting is essential for getting enough participants with characteristics critical to your research goals. Take care to recruit ethically and avoid sampling bias.

Craft an Informative Research Summary

After defining the core elements above, draft a short summary clearly explaining:

  • The research problem and goals
  • Specific objectives
  • Methods for collecting and analyzing data
  • Participant recruitment plan
  • Anticipated timeline

This high-level summary gives interested parties a quick understanding of the scope before they dive into the details. It’s a valuable part of your research proposal or application.

Build a Detailed Timeline

With goals identified, flesh out a realistic timeline for each phase. Typical steps include:

  • Background reading – 2 weeks
  • Research method design – 3 weeks
  • Participant recruitment – 3 weeks
  • Data collection – 5 weeks
  • Data analysis – 4 weeks
  • Conclusions, results and recommendations – 3 weeks

Schedule time for delays, revisions and unexpected roadblocks. Finishing late can decrease the value of your findings, so leave ample margins.

Tools like GANTT charts help visualize key milestones over the project timeline. Reviewing your timeline often keeps momentum going.

Plan Your Findings Report

It’s never too early to start planning how you’ll share eventual findings. Will you produce a detailed final paper? Present results at a conference? Write an executive summary for sponsors?

Define expected report elements such as:

  • Statistical charts and graphs
  • Highlights of major discoveries
  • Recommendations based on conclusions
  • Appendices with raw data or research artifacts

Consider your target audiences and tailor report formats to optimize value for each. How you share discoveries is part of the process.

Write Concisely to Showcase Expertise

Keep language clear, specific and concise throughout your research plan. Avoid excessive jargon that could confuse readers. Show you thoroughly understand the methodology at hand vs. relying on generic descriptions.

A well-written plan quickly establishes you as an expert. It instills confidence in your ability to conduct rigorous research that adds meaningful insights. Sloppy plans raise doubts.

Refine drafts until the plan encapsulates your research aims as succinctly as possible. Precision demonstrates you are ready to skillfully execute.

Emphasize Significance to Secure Support

Take every opportunity to emphasize why your research matters. Explain how it addresses important gaps or problems. Outline the practical applications of expected insights.

Funders won’t invest precious resources without believing useful knowledge will result. Help them visualize the positive impacts on organizations, communities or society at large.

Depending on the project scope, you may need to submit proposals to boards for formal approval. Convince them of merits through articulate planning.

Adjust Expectations as Needed

Research rarely goes exactly according to the initial plan. As work progresses, adjust timelines, methods and goals as needed while keeping the core aims intact.

For example, you may need to revise recruiting criteria to increase participation. Or new discoveries mid-project might lead to adding interviews for richer data.

View your plan as a guiding framework rather than unbreakable contract. Stay nimble and adaptable, but don’t lose sight of the end goalposts.

Maintain Momentum With Project Management

Throughout execution, diligently track progress against your plan. Tools like Asana, Trello and Excel help you:

  • Manage timelines with reminders for upcoming milestones
  • Update stakeholders on project status
  • Prioritize next actions and mark items complete
  • Identify any roadblocks or resource gaps

Think of your plan as a working document. Referring to it often drives momentum and keeps efforts aligned.

Celebrate Hitting Major Milestones

Research requires intense focus and persistence. But don’t forget to celebrate progress along the way.

Take time to recognize when you complete:

  • Secondary objectives like finishing initial interviews
  • Primary goals like collecting all survey data
  • The final report compiling all insights

Acknowledging wins motivates you through slogs. Share updates with colleagues and sponsors to maintain engagement.

Careful planning sets you up to generate research that provides true value. Avoid underplanning and risk wasting significant time. Overplanning wastes energy better directed elsewhere.

Finding the right balance takes practice across projects. Use this guide to build rigorous plans that steer impactful research delivering meaningful results.

how to write research plan

Interested in more articles like this?

Nikki Anderson-Stanier is the founder of User Research Academy and a qualitative researcher with 9 years in the field. She loves solving human problems and petting all the dogs.

Bad versus better objectives:

Here are some additional examples I have generated in order to exemplify good versus bad objectives.

Bad: Understand why participants order food.

Better: Understand the end-to-end journey of how and why participants choose to order food online.

Why: “Understand why participants order food” is still too broad. It feels more like a problem statement that you’d want to break down into further objectives. You haven’t set a direction or boundaries.

Bad: Find out how to get participants to order food online.

Better: Uncover participants’ thought processes and prior experiences behind ordering food online.

Why: Trying to learn how to make someone do something is a challenging perspective with which to go into research. How would we ask good questions to get that information?

We are more interested in seeing what their thought process is behind the process, and if/why they have done so in the past. That’s a better foundation to build from.

Bad: Find out why people use Postmates to order food.

Better: Discover the different tools participants use when deciding to order food, and how they feel about each tool

Why: This could be helpful if Postmates is a tool your users frequently use instead of your platform, and you’re setting out to do a competitive analysis.

However, in this case, we’re doing generative research—defined by the product team’s needs and the plan’s background statement.

So in this case, it’s more useful to rely on the research to uncover what kinds of other tools are used. Otherwise, you’re hyper-focused and might miss other opportunities to explore.

Now that we’ve defined our problem statements and objectives, it’s time to define the type of participants we’ll rely on to get the insights we need.

One of the most important elements to any project is talking to the right people. If you don’t have a set vision for who you want to recruit, approximate your user, and include that approximation in your plan.

This will help optimize recruiting efforts to ensure you have the best participants you need for your study. Here are a few ways to approach this:

Bring in internal stakeholders that may have a good idea of what the target user will look like (such as marketing, sales, and customer support). With these stakeholders you can create hypotheses about who your users are, which is a great starting point for who you should be talking to.

Recruit based on their audiences. You can even recruit people who use the competitors product and, during the interview, ask them how they would make it better.

This will get you the participants you need.

  • Is there a particular behavior you are looking for (such as ordered takeout X# amount of times in the past three months)?
  • Is it necessary they have used your product (or a competitor’s product)?
  • Do they need to be a certain age or hold a certain professional title?

Make sure you include the right criteria in order to evaluate whether or not that person would be your target participant.

It’s often useful to attach your screener questions to this part of the plan.

Compared to the others, this step is fairly easy. In this section, talk briefly about the chosen methodology and the reasons behind why that particular method was chosen.

Example methodology

For this study, we’re using one-on-one generative research interviews. This method will enable us to dig deeper into understanding our customers, fostering a strong sense of empathy and enabling us to answer our objectives.

If you’ll be talking to your users in real time, an interview guide is a valuable cheat sheet. It reminds you of which questions will help you meet your objectives, and can keep your discussions on track.

If you’re doing longitudinal or unmoderated research—like unmoderated usability testing, or a diary study—your interview guide might include the exact prompts or triggers you’ll be sending your participants to complete.

Even if you don’t actively refer to your interview guide, writing one ensures everyone else on the team has a place to input their questions. And if you’re outlining questions or prompts for unmoderated research, making those questions public for reference gives your team a chance to alert you if something is unclear.

For moderated research, my interview guides consist of the following sections:

The introduction details what you will say to the participant before the session begins, and serves as a nice preview of all the different points you’ll be discussing. It’s especially helpful if you are nervous about going into a session.

Example introduction

Hi there, I’m Nikki, a user researcher at a takeaway delivery company. Thank you so much for talking with me today. I am really excited to have a conversation with you!

During this session, we are looking to better understand what makes you order food from our service. Imagine were filming a small documentary on you, and are really trying to understand all your thoughts. There are no right or wrong answers, so please just talk freely, and I promise we will find it fascinating.

This session should take about 60 minutes. If you feel uncomfortable at any time or need to stop/take a break, just let me know. Everything you say here today will be completely confidential.

Would it be okay if we recorded today’s session for internal notetaking purposes? Do you have any questions for me? Let’s get started!

This portion of the interview guide is the trickiest to write. In this section, we’re writing down some of the open-ended questions we want to ask users during the session.

For most types of qual research, you won’t always have a long list of detailed questions, since it’s more of a conversation than an interview. But readying a few open-ended questions you can then follow up on can serve as useful prep.

Pro tip: Questions to avoid in your interviews and interview guides

  • Priming users – Forces the user to answer in a particular way
  • Leading questions – May prohibit the user from exploring a different avenue
  • Asking about future behavior – Instead of focusing on the past/present
  • Double-barreled questions – Asking two questions in one sentence
  • Yes/no questions – Ends the conversation. Instead, we focus on open-ended questions

Examples of priming/leading questions:

  • Priming: “How much do you like being able to order takeaway online?”
  • Leading: “Could you show me how you would reorder the same order by clicking on the button?”

I always outline my interview guide questions with the TEDW approach. TEDW stands for the following structures:

  • “ T ell me…”
  • “ E xplain….”
  • “ D escribe….”
  • “ W alk me through….”

Beyond that, one cool trick for question generation is to use your research objectives. Your questions should be able to give you insights that answer your objectives.

So when you ask a participant a question, it is ultimately answering one of the objectives. Turn each objective into 3–5 questions.

So, let’s take our central research problem and objectives and form some research questions.

Central research problem: To understand the reasons behind why certain customers are reordering at a higher frequency, as well as the barriers encountered by customers that prevent them from reordering on the platform.

  • Discover users’ motivations behind reordering, both inside and outside of the website/app
  • Uncover other websites/apps customers are using to order takeaway
  • Learn about any pain points users are encountering during their process, and what improvements they might make

Research questions

Objective 1: Discover users’ motivations behind reordering, both inside and outside of the website/app

  • Think about the last time you ordered takeaway on our website/app. Walk me through the entire process, starting with what sparked the idea.
  • Explain how you made the decision to reorder food on our particular website/app.
  • Who were you talking to?
  • What time of day was it?
  • How were you feeling?
  • Did you have other websites/apps open?

Objective 2: Learn about any pain points users are encountering during their process, and what improvements they might make.

  • How did you solve the problem?
  • What would be the most ideal scenario for reordering takeaway from the website/app (crazy ideas included!)?
  • How would you change or improve the process of reordering food outside of our website/app? Inside our website/app?

Objective 3: Uncover other websites/apps customers are using to order takeaway.

  • Talk me through the other websites/apps you have used multiple to order takeaway (or even groceries).
  • Describe your experience with these other websites/apps.
  • What are the other websites/apps you use to help you make a decision about whether or not to order takeaway?

Each of these research questions is a jumping off point for a more open conversation. They get at the core of your objectives, which in turn gets to the core of the central problem you’re trying to solve.

The wrap-up is a reminder of all the items to mention during the end of an interview. Generally, you cover information such as compensation, asking if they would be interested in future research, and assuring them that you’re thankful for their time.

Example wrap up

Those are all the questions I have for you today. I really appreciate you taking the time. Your feedback was extremely helpful, and I am excited to share it with the team to see how we can improve.

Since your feedback was so useful, would you be willing to participate in another research session in the future? You have my direct email, so if you have any problems with the compensation or any questions or feedback in the future, please feel free to email me at any time.

Do you have any other questions for me? Again, thank you so much for your time and I hope you enjoy the rest of your day!

I place an approximate timeline in my research plans, so people know what to expect for start and end dates.

Some researchers stay away from this timeline, as it can solidify a deadline that may prove more difficult to meet than expected. I always stress that it is a basic approximation.

Example timeline

  • Research start date: Monday, August 5th
  • Research plan creation and review: Wednesday, August 7th
  • Recruitment begins: Thursday, August 8th
  • Interviewing begins: Thursday, August 15th
  • Interviewing ends: Friday, August 23rd
  • Synthesis begins: Monday, August 26th
  • Synthesis ends: Wednesday, August 28th
  • Report presentation: Friday, August 30th

In this section, I make sure it’s easy for everyone to find:

  • Links to the research sessions
  • Any synthesis documents
  • The presentation
  • Any development/design tickets, prototypes or concepts
  • Any follow-up information which would give context to the study

Your user research plan is your research project in miniature. It’s the simplest way to align expectations, solicit feedback, and generate enthusiasm and support for your study.

Whether it actively guides your interviews, or just provides an active structure for organizing your thoughts, a solid research plan can go a long way towards guaranteeing a solid research project.

How to Write a Successful Research Proposal | Scribbr

What is a research plan?

A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project’s goals and mission, creating layers of steps to achieve those goals within a specified timeline.

How do I create a research plan for my project?

The first step to creating a research plan for your project is to define why and what you’re researching. Regardless of whether you’re working with a team or alone, understanding the project’s purpose can help you better define project goals.

How to write a research proposal?

A research proposal adheres to a clear and logical structure that ensures your project’s effectiveness. In the research plan structure, consider organizing its core components as in the following outline. Often referred to as the ‘need for study’ or ‘abstract,’ the introduction serves as the initial platform for your idea.

What makes a good research plan?

There’s general research planning; then there’s an official, well-executed research plan. Whatever data-driven research project you’re gearing up for, the research plan will be your framework for execution. The plan should also be detailed and thorough, with a diligent set of criteria to formulate your research efforts.

Related posts:

  • What Is Treasury Management? (With Definition and Benefits)
  • RASCI: What It Is and How To Use It for Project Management
  • Interview Question: “What’s the Most Difficult Decision You’ve Had to Make?”
  • Blog : Is there a dress code for the modern paralegal?

Related Posts

How to calculate percentile rank step-by-step, i want to be a lawyer: a step-by-step guide to becoming an attorney, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

How to Write a Research Plan

Academic Writing Service

Your answers to these questions form your research strategy. Most likely, you’ve addressed some of these issues in your proposal. But you are further along now, and you can flesh out your answers. With your instructor’s help, you should make some basic decisions about what information to collect and what methods to use in analyzing it. You will probably develop this research strategy gradually and, if you are like the rest of us, you will make some changes, large and small, along the way. Still, it is useful to devise a general plan early, even though you will modify it as you progress. Develop a tentative research plan early in the project. Write it down and share it with your instructor. The more concrete and detailed the plan, the better the feedback you’ll get.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

This research plan does not need to be elaborate or time-consuming. Like your working bibliography, it is provisional, a work in progress. Still, it is helpful to write it down since it will clarify a number of issues for you and your professor.

Writing a Research Plan

To write out your research plan, begin by restating your main thesis question and any secondary ones. They may have changed a bit since your original proposal. If these questions bear on a particular theory or analytic perspective, state that briefly. In the social sciences, for example, two or three prominent theories might offer different predictions about your subject. If so, then you might want to explore these differences in your thesis and explain why some theories work better (or worse) in this particular case. Likewise, in the humanities, you might consider how different theories offer different insights and contrasting perspectives on the particular novel or film you are studying. If you intend to explore these differences, state your goal clearly in the research plan so you can discuss it later with your professor. Next, turn to the heart of this exercise, your proposed research strategy. Try to explain your basic approach, the materials you will use, and your method of analysis. You may not know all of these elements yet, but do the best you can. Briefly say how and why you think they will help answer your main questions.

Be concrete. What data will you collect? Which poems will you read? Which paintings will you compare? Which historical cases will you examine? If you plan to use case studies, say whether you have already selected them or settled on the criteria for choosing them. Have you decided which documents and secondary sources are most important? Do you have easy access to the data, documents, or other materials you need? Are they reliable sources—the best information you can get on the subject? Give the answers if you have them, or say plainly that you don’t know so your instructor can help. You should also discuss whether your research requires any special skills and, of course, whether you have them. You can—and should—tailor your work to fit your skills.

If you expect to challenge other approaches—an important element of some theses—which ones will you take on, and why? This last point can be put another way: Your project will be informed by some theoretical traditions and research perspectives and not others. Your research will be stronger if you clarify your own perspective and show how it usefully informs your work. Later, you may also enter the jousts and explain why your approach is superior to the alternatives, in this particular study and perhaps more generally. Your research plan should state these issues clearly so you can discuss them candidly and think them through.

If you plan to conduct tests, experiments, or surveys, discuss them, too. They are common research tools in many fields, from psychology and education to public health. Now is the time to spell out the details—the ones you have nailed down tight and the ones that are still rattling around, unresolved. It’s important to bring up the right questions here, even if you don’t have all the answers yet. Raising these questions directly is the best way to get the answers. What kinds of tests or experiments do you plan, and how will you measure the results? How will you recruit your test subjects, and how many will be included in your sample? What test instruments or observational techniques will you use? How reliable and valid are they? Your instructor can be a great source of feedback here.

Your research plan should say:

  • What materials you will use
  • What methods you will use to investigate them
  • Whether your work follow a particular approach or theory

There are also ethical issues to consider. They crop up in any research involving humans or animals. You need to think carefully about them, underscore potential problems, and discuss them with your professor. You also need to clear this research in advance with the appropriate authorities at your school, such as the committee that reviews proposals for research on human subjects.

Not all these issues and questions will bear on your particular project. But some do, and you should wrestle with them as you begin research. Even if your answers are tentative, you will still gain from writing them down and sharing them with your instructor. That’s how you will get the most comprehensive advice, the most pointed recommendations. If some of these issues puzzle you, or if you have already encountered some obstacles, share them, too, so you can either resolve the problems or find ways to work around them.

Remember, your research plan is simply a working product, designed to guide your ongoing inquiry. It’s not a final paper for a grade; it’s a step toward your final paper. Your goal in sketching it out now is to understand these issues better and get feedback from faculty early in the project. It may be a pain to write it out, but it’s a minor sting compared to major surgery later.

Checklist for Conducting Research

  • Familiarize yourself with major questions and debates about your topic.
  • Is appropriate to your topic;
  • Addresses the main questions you propose in your thesis;
  • Relies on materials to which you have access;
  • Can be accomplished within the time available;
  • Uses skills you have or can acquire.
  • Divide your topic into smaller projects and do research on each in turn.
  • Write informally as you do research; do not postpone this prewriting until all your research is complete.

Back to How To Write A Research Paper .

ORDER HIGH QUALITY CUSTOM PAPER

plan of the research

stage indicator - apply for a grant

Write Your Research Plan

In this part, we give you detailed information about writing an effective Research Plan. We start with the importance and parameters of significance and innovation.

We then discuss how to focus the Research Plan, relying on the iterative process described in the Iterative Approach to Application Planning Checklist shown at Draft Specific Aims  and give you advice for filling out the forms.

You'll also learn the importance of having a well-organized, visually appealing application that avoids common missteps and the importance of preparing your just-in-time information early.

While this document is geared toward the basic research project grant, the R01, much of it is useful for other grant types.

Table of Contents

Research plan overview and your approach, craft a title, explain your aims, research strategy instructions, advice for a successful research strategy, graphics and video, significance, innovation, and approach, tracking for your budget, preliminary studies or progress report, referencing publications, review and finalize your research plan, abstract and narrative.

Your application's Research Plan has two sections:

  • Specific Aims —a one-page statement of your objectives for the project.
  • Research Strategy —a description of the rationale for your research and your experiments in 12 pages for an R01.

In your Specific Aims, you note the significance and innovation of your research; then list your two to three concrete objectives, your aims.

Your Research Strategy is the nuts and bolts of your application, where you describe your research rationale and the experiments you will conduct to accomplish each aim. Though how you organize it is largely up to you, NIH expects you to follow these guidelines.

  • Organize using bold headers or an outline or numbering system—or both—that you use consistently throughout.
  • Start each section with the appropriate header: Significance, Innovation, or Approach.
  • Organize the Approach section around your Specific Aims.

Format of Your Research Plan

To write the Research Plan, you don't need the application forms. Write the text in your word processor, turn it into a PDF file, and upload it into the application form when it's final.

Because NIH may return your application if it doesn't meet all requirements, be sure to follow the rules for font, page limits, and more. Read the instructions at NIH’s Format Attachments .

For an R01, the Research Strategy can be up to 12 pages, plus one page for Specific Aims. Don't pad other sections with information that belongs in the Research Plan. NIH is on the lookout and may return your application to you if you try to evade page limits.

Follow Examples

As you read this page, look at our Sample Applications and More  to see some of the different strategies successful PIs use to create an outstanding Research Plan.

Keeping It All In Sync

Writing in a logical sequence will save you time.

Information you put in the Research Plan affects just about every other application part. You'll need to keep everything in sync as your plans evolve during the writing phase.

It's best to consider your writing as an iterative process. As you develop and finalize your experiments, you will go back and check other parts of the application to make sure everything is in sync: the "who, what, when, where, and how (much money)" as well as look again at the scope of your plans.

In that vein, writing in a logical sequence is a good approach that will save you time. We suggest proceeding in the following order:

  • Create a provisional title.
  • Write a draft of your Specific Aims.
  • Start with your Significance and Innovation sections.
  • Then draft the Approach section considering the personnel and skills you'll need for each step.
  • Evaluate your Specific Aims and methods in light of your expected budget (for a new PI, it should be modest, probably under the $250,000 for NIH's modular budget).
  • As you design experiments, reevaluate your hypothesis, aims, and title to make sure they still reflect your plans.
  • Prepare your Abstract (a summary of your Specific Aims).
  • Complete the other forms.

Even the smaller sections of your application need to be well-organized and readable so reviewers can readily grasp the information. If writing is not your forte, get help.

To view writing strategies for successful applications, see our Sample Applications and More . There are many ways to create a great application, so explore your options.

Within the character limit, include the important information to distinguish your project within the research area, your project's goals, and the research problem.

Giving your project a title at the outset can help you stay focused and avoid a meandering Research Plan. So you may want to launch your writing by creating a well-defined title.

NIH gives you a 200 character limit, but don’t feel obliged to use all of that allotment. Instead, we advise you to keep the title as succinct as possible while including the important information to distinguish your project within the research area. Make your title reflect your project's goals, the problem your project addresses, and possibly your approach to studying it. Make your title specific: saying you are studying lymphocyte trafficking is not informative enough.

For examples of strong titles, see our Sample Applications and More .

After you write a preliminary title, check that

  • My title is specific, indicating at least the research area and the goals of my project.
  • It is 200 characters or less.
  • I use as simple language as possible.
  • I state the research problem and, possibly, my approach to studying it.
  • I use a different title for each of my applications. (Note: there are exceptions, for example, for a renewal—see Apply for Renewal  for details.)
  • My title has appropriate keywords.

Later you may want to change your initial title. That's fine—at this point, it's just an aid to keep your plans focused.

Since all your reviewers read your Specific Aims, you want to excite them about your project.

If testing your hypothesis is the destination for your research, your Research Plan is the map that takes you there.

You'll start by writing the smaller part, the Specific Aims. Think of the one-page Specific Aims as a capsule of your Research Plan. Since all your reviewers read your Specific Aims, you want to excite them about your project.

For more on crafting your Specific Aims, see Draft Specific Aims .

Write a Narrative

Use at least half the page to provide the rationale and significance of your planned research. A good way to start is with a sentence that states your project's goals.

For the rest of the narrative, you will describe the significance of your research, and give your rationale for choosing the project. In some cases, you may want to explain why you did not take an alternative route.

Then, briefly describe your aims, and show how they build on your preliminary studies and your previous research. State your hypothesis.

If it is likely your application will be reviewed by a study section with broad expertise, summarize the status of research in your field and explain how your project fits in.

In the narrative part of the Specific Aims of many outstanding applications, people also used their aims to

  • State the technologies they plan to use.
  • Note their expertise to do a specific task or that of collaborators.
  • Describe past accomplishments related to the project.
  • Describe preliminary studies and new and highly relevant findings in the field.
  • Explain their area's biology.
  • Show how the aims relate to one another.
  • Describe expected outcomes for each aim.
  • Explain how they plan to interpret data from the aim’s efforts.
  • Describe how to address potential pitfalls with contingency plans.

Depending on your situation, decide which items are important for you. For example, a new investigator would likely want to highlight preliminary data and qualifications to do the work.

Many people use bold or italics to emphasize items they want to bring to the reviewers' attention, such as the hypothesis or rationale.

Detail Your Aims

After the narrative, enter your aims as bold bullets, or stand-alone or run-on headers.

  • State your plans using strong verbs like identify, define, quantify, establish, determine.
  • Describe each aim in one to three sentences.
  • Consider adding bullets under each aim to refine your objectives.

How focused should your aims be? Look at the example below.

Spot the Sample

Read the Specific Aims of the Application from Drs. Li and Samulski , "Enhance AAV Liver Transduction with Capsid Immune Evasion."

  • Aim 1. Study the effect of adeno-associated virus (AAV) empty particles on AAV capsid antigen cross-presentation in vivo .
  • Aim 2. Investigate AAV capsid antigen presentation following administration of AAV mutants and/or proteasome inhibitors for enhanced liver transduction in vivo .
  • Aim 3. Isolate AAV chimeric capsids with human hepatocyte tropism and the capacity for cytotoxic T lymphocytes (CTL) evasion.

After finishing the draft Specific Aims, check that

  • I keep to the one-page limit.
  • Each of my two or three aims is a narrowly focused, concrete objective I can achieve during the grant.
  • They give a clear picture of how my project can generate knowledge that may improve human health.
  • They show my project's importance to science, how it addresses a critical research opportunity that can move my field forward.
  • My text states how my work is innovative.
  • I describe the biology to the extent needed for my reviewers.
  • I give a rationale for choosing the topic and approach.
  • I tie the project to my preliminary data and other new findings in the field.
  • I explicitly state my hypothesis and why testing it is important.
  • My aims can test my hypothesis and are logical.
  • I can design and lead the execution of two or three sets of experiments that will strive to accomplish each aim.
  • As much as possible, I use language that an educated person without expertise can understand.
  • My text has bullets, bolding, or headers so reviewers can easily spot my aims (and other key items).

For each element listed above, analyze your text and revise it until your Specific Aims hit all the key points you'd like to make.

After the list of aims, some people add a closing paragraph, emphasizing the significance of the work, their collaborators, or whatever else they want to focus reviewers' attention on.

Your Research Strategy is the bigger part of your application's Research Plan (the other part is the Specific Aims—discussed above.)

The Research Strategy is the nuts and bolts of your application, describing the rationale for your research and the experiments you will do to accomplish each aim. It is structured as follows:

  • Significance
  • You can either include this information as a subsection of Approach or integrate it into any or all of the three main sections.
  • If you do the latter, be sure to mark the information clearly, for example, with a bold subhead.
  • Possible other sections, for example, human subjects, vertebrate animals, select agents, and others (these do not count toward the page limit).

Though how you organize your application is largely up to you, NIH does want you to follow these guidelines:

  • Add bold headers or an outlining or numbering system—or both—that you use consistently throughout.
  • Start each of the Research Strategy's sections with a header: Significance, Innovation, and Approach.

For an R01, the Research Strategy is limited to 12 pages for the three main sections and the preliminary studies only. Other items are not included in the page limit.

Find instructions for R01s in the SF 424 Application Guide—go to NIH's SF 424 (R&R) Application and Electronic Submission Information for the generic SF 424 Application Guide or find it in your notice of funding opportunity (NOFO).

For most applications, you need to address Rigor and Reproducibility by describing the experimental design and methods you propose and how they will achieve robust and unbiased results. The requirement applies to research grant, career development, fellowship, and training applications.

If you're responding to an institute-specific program announcement (PA) (not a parent program announcement) or a request for applications (RFA), check the NIH Guide notice, which has additional information you need. Should it differ from the NOFO, go with the NIH Guide .

Also note that your application must meet the initiative's objectives and special requirements. NIAID program staff will check your application, and if it is not responsive to the announcement, your application will be returned to you without a review.

When writing your Research Strategy, your goal is to present a well-organized, visually appealing, and readable description of your proposed project. That means your writing should be streamlined and organized so your reviewers can readily grasp the information. If writing is not your forte, get help.

There are many ways to create an outstanding Research Plan, so explore your options.

What Success Looks Like

Your application's Research Plan is the map that shows your reviewers how you plan to test your hypothesis.

It not only lays out your experiments and expected outcomes, but must also convince your reviewers of your likely success by allaying any doubts that may cross their minds that you will be able to conduct the research.

Notice in the sample applications how the writing keeps reviewers' eyes on the ball by bringing them back to the main points the PIs want to make. Write yourself an insurance policy against human fallibility: if it's a key point, repeat it, then repeat it again.

The Big Three

So as you write, put the big picture squarely in your sights. When reviewers read your application, they'll look for the answers to three basic questions:

  • Can your research move your field forward?
  • Is the field important—will progress make a difference to human health?
  • Can you and your team carry out the work?

Add Emphasis

Savvy PIs create opportunities to drive their main points home. They don't stop at the Significance section to emphasize their project's importance, and they look beyond their biosketches to highlight their team's expertise.

Don't take a chance your reviewer will gloss over that one critical sentence buried somewhere in your Research Strategy or elsewhere. Write yourself an insurance policy against human fallibility: if it's a key point, repeat it, then repeat it again.

Add more emphasis by putting the text in bold, or bold italics (in the modern age, we skip underlining—it's for typewriters).

Here are more strategies from our successful PIs:

  • While describing a method in the Approach section, they state their or collaborators' experience with it.
  • They point out that they have access to a necessary piece of equipment.
  • When explaining their field and the status of current research, they weave in their own work and their preliminary data.
  • They delve into the biology of the area to make sure reviewers will grasp the importance of their research and understand their field and how their work fits into it.

You can see many of these principles at work in the Approach section of the Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms."

  • Reviewers felt that the experiments described for Aim 1 will yield clear results.
  • The plans to translate those findings to gene targets of relevance are well outlined and focused.
  • He ties his proposed experiments to the larger picture, including past research and strong preliminary data for the current application. 

Anticipate Reviewer Questions

Our applicants not only wrote with their reviewers in mind they seemed to anticipate their questions. You may think: how can I anticipate all the questions people may have? Of course you can't, but there are some basic items (in addition to the "big three" listed above) that will surely be on your reviewers' minds:

  • Will the investigators be able to get the work done within the project period, or is the proposed work over ambitious?
  • Did the PI describe potential pitfalls and possible alternatives?
  • Will the experiments generate meaningful data?
  • Could the resulting data prove the hypothesis?
  • Are others already doing the work, or has it been already completed?

Address these questions; then spend time thinking about more potential issues specific to you and your research—and address those too.

For applications, a picture can truly be worth a thousand words. Graphics can illustrate complex information in a small space and add visual interest to your application.

Look at our sample applications to see how the investigators included schematics, tables, illustrations, graphs, and other types of graphics to enhance their applications.

Consider adding a timetable or flowchart to illustrate your experimental plan, including decision trees with alternative experimental pathways to help your reviewers understand your plans.

Plan Ahead for Video

If you plan to send one or more videos, you'll need to meet certain standards and include key information in your Research Strategy now.

To present some concepts or demonstrations, video may enhance your application beyond what graphics alone can achieve. However, you can't count on all reviewers being able to see or hear video, so you'll want to be strategic in how you incorporate it into your application.

Be reviewer-friendly. Help your cause by taking the following steps:

  • Caption any narration in the video.
  • Choose evocative still images from your video to accompany your summary.
  • Write your summary of the video carefully so the text would make sense even without the video.

In addition to those considerations, create your videos to fit NIH’s technical requirements. Learn more in the SF 424 Form Instructions .

Next, as you write your Research Strategy, include key images from the video and a brief description.

Then, state in your cover letter that you plan to send video later. (Don't attach your files to the application.)

After you apply and get assignment information from the Commons, ask your assigned scientific review officer (SRO) how your business official should send the files. Your video files are due at least one month before the peer review meeting.

Know Your Audience's Perspective

The primary audience for your application is your peer review group. Learn how to write for the reviewers who are experts in your field and those who are experts in other fields by reading Know Your Audience .

Be Organized: A B C or 1 2 3?

In the top-notch applications we reviewed, organization ruled but followed few rules. While you want to be organized, how you go about it is up to you.

Nevertheless, here are some principles to follow:

  • Start each of the Research Strategy's sections with a header: Significance, Innovation, and Approach—this you must do.

The Research Strategy's page limit—12 for R01s—is for the three main parts: Significance, Innovation, and Approach and your preliminary studies (or a progress report if you're renewing your grant). Other sections, for example, research animals or select agents, do not have a page limit.

Although you will emphasize your project's significance throughout the application, the Significance section should give the most details. Don't skimp—the farther removed your reviewers are from your field, the more information you'll need to provide on basic biology, importance of the area, research opportunities, and new findings.

When you describe your project's significance, put it in the context of 1) the state of your field, 2) your long-term research plans, and 3) your preliminary data.

In our Sample Applications , you can see that both investigators and reviewers made a case for the importance of the research to improving human health as well as to the scientific field.

Look at the Significance section of the Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses," to see how these elements combine to make a strong case for significance.

  • Dr. Jiang starts with a summary of the field of polyomavirus research, identifying critical knowledge gaps in the field.
  • The application ties the lab's previous discoveries and new research plans to filling those gaps, establishing the significance with context.
  • Note the use of formatting, whitespace, and sectioning to highlight key points and make it easier for reviewers to read the text.

After conveying the significance of the research in several parts of the application, check that

  • In the Significance section, I describe the importance of my hypothesis to the field (especially if my reviewers are not in it) and human disease.
  • I also point out the project's significance throughout the application.
  • The application shows that I am aware of opportunities, gaps, roadblocks, and research underway in my field.
  • I state how my research will advance my field, highlighting knowledge gaps and showing how my project fills one or more of them.
  • Based on my scan of the review committee roster, I determine whether I cannot assume my reviewers will know my field and provide some information on basic biology, the importance of the area, knowledge gaps, and new findings.

If you are either a new PI or entering a new area: be cautious about seeming too innovative. Not only is innovation just one of five review criteria, but there might be a paradigm shift in your area of science. A reviewer may take a challenge to the status quo as a challenge to his or her world view.

When you look at our sample applications, you see that both the new and experienced investigators are not generally shifting paradigms. They are using new approaches or models, working in new areas, or testing innovative ideas.

After finishing the draft innovation section, check that

  • I show how my proposed research is new and unique, e.g., explores new scientific avenues, has a novel hypothesis, will create new knowledge.
  • Most likely, I explain how my project's research can refine, improve, or propose a new application of an existing concept or method.
  • Make a very strong case for challenging the existing paradigm.
  • Have data to support the innovative approach.
  • Have strong evidence that I can do the work.

In your Approach, you spell out a few sets of experiments to address each aim. As we noted above, it's a good idea to restate the key points you've made about your project's significance, its place in your field, and your long-term goals.

You're probably wondering how much detail to include.

If you look at our sample applications as a guide, you can see very different approaches. Though people generally used less detail than you'd see in a scientific paper, they do include some experimental detail.

Expect your assigned reviewers to scrutinize your approach: they will want to know what you plan to do and how you plan to do it.

NIH data show that of the peer review criteria, approach has the highest correlation with the overall impact score.

Look at the Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses," to see how a new investigator handled the Approach section.

For an example of an experienced investigator's well-received Approach section, see the Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms."

Especially if you are a new investigator, you need enough detail to convince reviewers that you understand what you are undertaking and can handle the method.

  • Cite a publication that shows you can handle the method where you can, but give more details if you and your team don't have a proven record using the method—and state explicitly why you think you will succeed.
  • If space is short, you could also focus on experiments that highlight your expertise or are especially interesting. For experiments that are pedestrian or contracted out, just list the method.

Be sure to lay out a plan for alternative experiments and approaches in case you get negative or surprising results. Show reviewers you have a plan for spending the four or five years you will be funded no matter where the experiments lead.

See the Application from Drs. Li and Samulski , "Enhance AAV Liver Transduction with Capsid Immune Evasion," for a strong Approach section covering potential. As an example, see section C.1.3.'s alternative approaches.

Here are some pointers for organizing your Approach:

  • Enter a bold header for each Specific Aim.
  • Under each aim, describe the first set of experiments.
  • If you get result X, you will follow pathway X; if you get result Y, you will follow pathway Y.
  • Consider illustrating this with a flowchart.

Trim the fat—omit all information not needed to make your case. If you try to wow reviewers with your knowledge, they'll find flaws and penalize you heavily. Don't give them ammunition by including anything you don't need.

As you design your experiments, keep a running tab of the following essential data on a separate piece of paper:

  • Who. A list of people who will help you for your Key Personnel section later.
  • What. A list of equipment and supplies for the experiments you plan.
  • Time. Notes on how long each step takes. Timing directly affects your budget as well as how many Specific Aims you can realistically achieve.

Jotting this information down will help you Create a Budget and complete other sections later.

After finishing a draft Approach section, check that

  • I include enough background and preliminary data to give reviewers the context and significance of my plans.
  • They can test the hypothesis (or hypotheses).
  • I show alternative experiments and approaches in case I get negative or surprising results.
  • My experiments can yield meaningful data to test my hypothesis (or hypotheses).
  • As a new investigator, I include enough detail to convince reviewers I understand and can handle a method. I reviewed the sample applications to see how much detail to use.
  • If I or my team has experience with a method, I cite it; otherwise I include enough details to convince reviewers we can handle it.
  • I describe the results I anticipate and their implications.
  • I omit all information not needed to state my case.
  • I keep track of and explain who will do what, what they will do, when and where they will do it, how long it will take, and how much money it will cost.
  • My timeline shows when I expect to complete my aims.

If you are applying for a new application, include preliminary studies; for a renewal or a revision (a competing supplement to an existing grant), prepare a progress report instead.

Describing Preliminary Studies

Your preliminary studies show that you can handle the methods and interpret results. Here's where you build reviewer confidence that you are headed in the right direction by pursuing research that builds on your accomplishments.

Reviewers use your preliminary studies together with the biosketches to assess the investigator review criterion, which reflects the competence of the research team.

Give alternative interpretations to your data to show reviewers you've thought through problems in-depth and are prepared to meet future challenges. If you don't do this, the reviewers will!

Though you may include other people's publications, focus on your preliminary data or unpublished data from your lab and the labs of your team members as much as you can.

As we noted above, you can put your preliminary data anywhere in the Research Strategy that you feel is appropriate, but just make sure your reviewers will be able to distinguish it. Alternatively, you can create a separate section with its own header.

Including a Progress Report

If you are applying for a renewal or a revision (a competing supplement to an existing grant), prepare a progress report instead of preliminary studies.

Create a header so your program officer can easily find it and include the following information:

  • Project period beginning and end dates.
  • Summary of the importance of your findings in relation to your Specific Aims.
  • Account of published and unpublished results, highlighting your progress toward achieving your Specific Aims.

Note: if you submit a renewal application before the due date of your progress report, you do not need to submit a separate progress report for your grant. However, you will need to submit it, if your renewal is not funded.

After finishing the draft, check that

  • I interpret my preliminary results critically.
  • There is enough information to show I know what I'm talking about.
  • If my project is complex, I give more preliminary studies.
  • I show how my previous experience prepared me for the new project.
  • It's clear which data are mine and which are not.

References show your breadth of knowledge of the field. If you leave out an important work, reviewers may assume you're not aware of it.

Throughout your application, you will reference all relevant publications for the concepts underlying your research and your methods.

Read more about your Bibliography and References Cited at Add a Bibliography and Appendix .

  • Throughout my application I cite the literature thoroughly but not excessively, adding citations for all references important to my work.
  • I cite all papers important to my field, including those from potential reviewers.
  • I include fewer than 100 citations (if possible).
  • My Bibliography and References Cited form lists all my references.
  • I refer to unpublished work, including information I learned through personal contacts.
  • If I do not describe a method, I add a reference to the literature.

Look over what you've written with a critical eye of a reviewer to identify potential questions or weak spots.

Enlist others to do that too—they can look at your application with a fresh eye. Include people who aren't familiar with your research to make sure you can get your point across to someone outside your field.

As you finalize the details of your Research Strategy, you will also need to return to your Specific Aims to see if you must revise. See Draft Specific Aims .

After you finish your Research Plan, you are ready to write your Abstract (called Project Summary/Abstract) and Project Narrative, which are attachments to the Other Project Information form.

These sections may be small, but they're important.

  • All your peer reviewers read your Abstract and narrative.
  • Staff and automated systems in NIH's Center for Scientific Review use them to decide where to assign your application, even if you requested an institute and study section.
  • They show the importance and health relevance of your research to members of the public and Congress who are interested in what NIH is funding with taxpayer dollars.

Be sure to omit confidential or proprietary information in these sections! When your application is funded, NIH enters your title and Abstract in the public RePORTER database.

Think brief and simple: to the extent that you can, write these sections in lay language, and include appropriate keywords, e.g., immunotherapy, genetic risk factors.

As NIH referral officers use these parts to direct your application to an institute for possible funding, your description can influence the choice they make.

Write a succinct summary of your project that both a scientist and a lay person can understand (to the extent that you can).

  • Use your Specific Aims as a template—shorten it and simplify the language.
  • In the first sentence, state the significance of your research to your field and relevance to NIAID's mission: to better understand, treat, and prevent infectious, immunologic, and allergic diseases.
  • Next state your hypothesis and the innovative potential of your research.
  • Then list and briefly describe your Specific Aims and long-term objectives.

In your Project Narrative, you have only a few sentences to drive home your project's potential to improve public health.

Check out these effective Abstracts and Narratives from our R01  Sample Applications :

  • Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses"
  • Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms"
  • My Project Summary/Abstract and Project Narrative (and title) are accessible to a broad audience.
  • They describe the significance of my research to my field and state my hypothesis, my aims, and the innovative potential of my research.
  • My narrative describes my project's potential to improve public health.
  • I do not include any confidential or proprietary information.
  • I do not use graphs or images.
  • My Abstract has keywords that are appropriate and distinct enough to avoid confusion with other terms.
  • My title is specific and informative.

Previous Step

Have questions.

A program officer in your area of science can give you application advice, NIAID's perspective on your research, and confirmation that your proposed research fits within NIAID’s mission.

Find contacts and instructions at When to Contact an NIAID Program Officer .

Students & Educators  —Menu

  • Educational Resources
  • Educators & Faculty
  • College Planning
  • ACS ChemClub
  • Project SEED
  • U.S. National Chemistry Olympiad
  • Student Chapters
  • ACS Meeting Information
  • Undergraduate Research
  • Internships, Summer Jobs & Coops
  • Study Abroad Programs
  • Finding a Mentor
  • Two Year/Community College Students
  • Social Distancing Socials
  • Grants & Fellowships
  • Career Planning
  • International Students
  • Planning for Graduate Work in Chemistry
  • ACS Bridge Project
  • Graduate Student Organizations (GSOs)
  • Standards & Guidelines
  • Explore Chemistry
  • Science Outreach
  • Publications
  • ACS Student Communities
  • LEADS Conference
  • ChemMatters
  • Chemistry Outreach Activities
  • National Chemistry Week
  • You are here:
  • American Chemical Society
  • Students & Educators

Writing the Research Plan for Your Academic Job Application

By Jason G. Gillmore, Ph.D., Associate Professor, Department of Chemistry, Hope College, Holland, MI

A research plan is more than a to-do list for this week in lab, or a manila folder full of ideas for maybe someday—at least if you are thinking of a tenure-track academic career in chemistry at virtually any bachelor’s or higher degree–granting institution in the country. A perusal of the academic job ads in C&EN every August–October will quickly reveal that most schools expect a cover letter (whether they say so or not), a CV, a teaching statement, and a research plan, along with reference letters and transcripts. So what is this document supposed to be, and why worry about it now when those job ads are still months away?

What Is a Research Plan?

A research plan is a thoughtful, compelling, well-written document that outlines your exciting, unique research ideas that you and your students will pursue over the next half decade or so to advance knowledge in your discipline and earn you grants, papers, speaking invitations, tenure, promotion, and a national reputation. It must be a document that people at the department you hope to join will (a) read, and (b) be suitably excited about to invite you for an interview.

That much I knew when I was asked to write this article. More specifics I only really knew for my own institution, Hope College (a research intensive undergraduate liberal arts college with no graduate program), and even there you might get a dozen nuanced opinions among my dozen colleagues. So I polled a broad cross-section of my network, spanning chemical subdisciplines at institutions ranging from small, teaching-centered liberal arts colleges to our nation’s elite research programs, such as Scripps and MIT. The responses certainly varied, but they did center on a few main themes, or illustrate a trend across institution types. In this article I’ll share those commonalities, while also encouraging you to be unafraid to contact a search committee chair with a few specific questions, especially for the institutions you are particularly excited about and feel might be the best fit for you.

How Many Projects Should You Have?

While more senior advisors and members of search committees may have gotten their jobs with a single research project, conventional wisdom these days is that you need two to three distinct but related projects. How closely related to one another they should be is a matter of debate, but almost everyone I asked felt that there should be some unifying technique, problem or theme to them. However, the projects should be sufficiently disparate that a failure of one key idea, strategy, or technique will not hamstring your other projects.

For this reason, many applicants wisely choose to identify:

  • One project that is a safe bet—doable, fundable, publishable, good but not earthshaking science.
  • A second project that is pie-in-the-sky with high risks and rewards.
  • A third project that fits somewhere in the middle.

Having more than three projects is probably unrealistic. But even the safest project must be worth doing, and even the riskiest must appear to have a reasonable chance of working.

How Closely Connected Should Your Research Be with Your Past?

Your proposed research must do more than extend what you have already done. In most subdisciplines, you must be sufficiently removed from your postdoctoral or graduate work that you will not be lambasted for clinging to an advisor’s apron strings. After all, if it is such a good idea in their immediate area of interest, why aren’t they pursuing it?!?

But you also must be able to make the case for why your training makes this a good problem for you to study—how you bring a unique skill set as well as unique ideas to this research. The five years you will have to do, fund, and publish the research before crafting your tenure package will go by too fast for you to break into something entirely outside your realm of expertise.

Biochemistry is a partial exception to this advice—in this subdiscipline it is quite common to bring a project with you from a postdoc (or more rarely your Ph.D.) to start your independent career. However, you should still articulate your original contribution to, and unique angle on the work. It is also wise to be sure your advisor tells that same story in his or her letter and articulates support of your pursuing this research in your career as a genuinely independent scientist (and not merely someone who could be perceived as his or her latest "flunky" of a collaborator.)

Should You Discuss Potential Collaborators?

Regarding collaboration, tread lightly as a young scientist seeking or starting an independent career. Being someone with whom others can collaborate in the future is great. Relying on collaborators for the success of your projects is unwise. Be cautious about proposing to continue collaborations you already have (especially with past advisors) and about starting new ones where you might not be perceived as the lead PI. Also beware of presuming you can help advance the research of someone already in a department. Are they still there? Are they still doing that research? Do they actually want that help—or will they feel like you are criticizing or condescending to them, trying to scoop them, or seeking to ride their coattails? Some places will view collaboration very favorably, but the safest route is to cautiously float such ideas during interviews while presenting research plans that are exciting and achievable on your own.

How Do You Show Your Fit?

Some faculty advise tailoring every application packet document to every institution to which you apply, while others suggest tweaking only the cover letter. Certainly the cover letter is the document most suited to introducing yourself and making the case for how you are the perfect fit for the advertised position at that institution. So save your greatest degree of tailoring for your cover letter. It is nice if you can tweak a few sentences of other documents to highlight your fit to a specific school, so long as it is not contrived.

Now, if you are applying to widely different types of institutions, a few different sets of documents will certainly be necessary. The research plan that you target in the middle to get you a job at both Harvard University and Hope College will not get you an interview at either! There are different realities of resources, scope, scale, and timeline. Not that my colleagues and I at Hope cannot tackle research that is just as exciting as Harvard’s. However, we need to have enough of a niche or a unique angle both to endure the longer timeframe necessitated by smaller groups of undergraduate researchers and to ensure that we still stand out. Furthermore, we generally need to be able to do it with more limited resources. If you do not demonstrate that understanding, you will be dismissed out of hand. But at many large Ph.D. programs, any consideration of "niche" can be inferred as a lack of confidence or ambition.

Also, be aware that department Web pages (especially those several pages deep in the site, or maintained by individual faculty) can be woefully out-of-date. If something you are planning to say is contingent on something you read on their Web site, find a way to confirm it!

While the research plan is not the place to articulate start-up needs, you should consider instrumentation and other resources that will be necessary to get started, and where you will go for funding or resources down the road. This will come up in interviews, and hopefully you will eventually need these details to negotiate a start-up package.

Who Is Your Audience?

Your research plan should show the big picture clearly and excite a broad audience of chemists across your sub-discipline. At many educational institutions, everyone in the department will read the proposal critically, at least if you make the short list to interview. Even at departments that leave it all to a committee of the subdiscipline, subdisciplines can be broad and might even still have an outside member on the committee. And the committee needs to justify their actions to the department at large, as well as to deans, provosts, and others. So having at least the introduction and executive summaries of your projects comprehensible and compelling to those outside your discipline is highly advantageous.

Good science, written well, makes a good research plan. As you craft and refine your research plan, keep the following strategies, as well as your audience in mind:

  • Begin the document with an abstract or executive summary that engages a broad audience and shows synergies among your projects. This should be one page or less, and you should probably write it last. This page is something you could manageably consider tailoring to each institution.
  • Provide sufficient details and references to convince the experts you know your stuff and actually have a plan for what your group will be doing in the lab. Give details of first and key experiments, and backup plans or fallback positions for their riskiest aspects.
  • Hook your readers with your own ideas fairly early in the document, then strike a balance between your own new ideas and the necessary well referenced background, precedents, and justification throughout. Propose a reasonable tentative timeline, if you can do so in no more than a paragraph or two, which shows how you envision spacing out the experiments within and among your projects. This may fit well into your executive summary
  • Show how you will involve students (whether undergraduates, graduate students, an eventual postdoc or two, possibly even high schoolers if the school has that sort of outreach, depending on the institutions to which you are applying) and divide the projects among students.
  • Highlight how your work will contribute to the education of these students. While this is especially important at schools with greater teaching missions, it can help set you apart even at research intensive institutions. After all, we all have to demonstrate “broader impacts” to our funding agencies!
  • Include where you will pursue funding, as well as publication, if you can smoothly work it in. This is especially true if there is doubt about how you plan to target or "market" your research. Otherwise, it is appropriate to hold off until the interview to discuss this strategy.

So, How Long Should Your Research Plan Be?

Chemistry Grad Student & Postdoc Blog

Learn more on the Blog

Here is where the answers diverged the most and without a unifying trend across institutions. Bottom line, you need space to make your case, but even more, you need people to read what you write.

A single page abstract or executive summary of all your projects together provides you an opportunity to make the case for unifying themes yet distinct projects. It may also provide space to articulate a timeline. Indeed, many readers will only read this single page in each application, at least until winnowing down to a more manageable list of potential candidates. At the most elite institutions, there may be literally hundreds of applicants, scores of them entirely well-suited to the job.

While three to five pages per proposal was a common response (single spaced, in 11-point Arial or 12-point Times with one inch margins), including references (which should be accurate, appropriate, and current!), some of my busiest colleagues have said they will not read more than about three pages total. Only a few actually indicated they would read up to 12-15 pages for three projects. In my opinion, ten pages total for your research plans should be a fairly firm upper limit unless you are specifically told otherwise by a search committee, and then only if you have two to three distinct proposals.

Why Start Now?

Hopefully, this question has answered itself already! Your research plan needs to be a well thought out document that is an integrated part of applications tailored to each institution to which you apply. It must represent mature ideas that you have had time to refine through multiple revisions and a great deal of critical review from everyone you can get to read them. Moreover, you may need a few different sets of these, especially if you will be applying to a broad range of institutions. So add “write research plans” to this week’s to do list (and every week’s for the next few months) and start writing up the ideas in that manila folder into some genuine research plans. See which ones survive the process and rise to the top and you should be well prepared when the job ads begin to appear in C&EN in August!

Jason G. Gillmore , Ph.D., is an Associate Professor of Chemistry at Hope College in Holland, MI. A native of New Jersey, he earned his B.S. (’96) and M.S. (’98) degrees in chemistry from Virginia Tech, and his Ph.D. (’03) in organic chemistry from the University of Rochester. After a short postdoctoral traineeship at Vanderbilt University, he joined the faculty at Hope in 2004. He has received the Dreyfus Start-up Award, Research Corporation Cottrell College Science Award, and NSF CAREER Award, and is currently on sabbatical as a Visiting Research Professor at Arizona State University. Professor Gillmore is the organizer of the Biennial Midwest Postdoc to PUI Professor (P3) Workshop co-sponsored by ACS, and a frequent panelist at the annual ACS Postdoc to Faculty (P2F) Workshops.

Other tips to help engage (or at least not turn off) your readers include:

  • Avoid two-column formats.
  • Avoid too-small fonts that hinder readability, especially as many will view the documents online rather than in print!
  • Use good figures that are readable and broadly understandable!
  • Use color as necessary but not gratuitously.

Accept & Close The ACS takes your privacy seriously as it relates to cookies. We use cookies to remember users, better understand ways to serve them, improve our value proposition, and optimize their experience. Learn more about managing your cookies at Cookies Policy .

1155 Sixteenth Street, NW, Washington, DC 20036, USA |  service@acs.org  | 1-800-333-9511 (US and Canada) | 614-447-3776 (outside North America)

  • Terms of Use
  • Accessibility

Copyright © 2024 American Chemical Society

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

The goal of a research proposal is twofold: to present and justify the need to study a research problem and to present the practical ways in which the proposed study should be conducted. The design elements and procedures for conducting research are governed by standards of the predominant discipline in which the problem resides, therefore, the guidelines for research proposals are more exacting and less formal than a general project proposal. Research proposals contain extensive literature reviews. They must provide persuasive evidence that a need exists for the proposed study. In addition to providing a rationale, a proposal describes detailed methodology for conducting the research consistent with requirements of the professional or academic field and a statement on anticipated outcomes and benefits derived from the study's completion.

Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005.

How to Approach Writing a Research Proposal

Your professor may assign the task of writing a research proposal for the following reasons:

  • Develop your skills in thinking about and designing a comprehensive research study;
  • Learn how to conduct a comprehensive review of the literature to determine that the research problem has not been adequately addressed or has been answered ineffectively and, in so doing, become better at locating pertinent scholarship related to your topic;
  • Improve your general research and writing skills;
  • Practice identifying the logical steps that must be taken to accomplish one's research goals;
  • Critically review, examine, and consider the use of different methods for gathering and analyzing data related to the research problem; and,
  • Nurture a sense of inquisitiveness within yourself and to help see yourself as an active participant in the process of conducting scholarly research.

A proposal should contain all the key elements involved in designing a completed research study, with sufficient information that allows readers to assess the validity and usefulness of your proposed study. The only elements missing from a research proposal are the findings of the study and your analysis of those findings. Finally, an effective proposal is judged on the quality of your writing and, therefore, it is important that your proposal is coherent, clear, and compelling.

Regardless of the research problem you are investigating and the methodology you choose, all research proposals must address the following questions:

  • What do you plan to accomplish? Be clear and succinct in defining the research problem and what it is you are proposing to investigate.
  • Why do you want to do the research? In addition to detailing your research design, you also must conduct a thorough review of the literature and provide convincing evidence that it is a topic worthy of in-depth study. A successful research proposal must answer the "So What?" question.
  • How are you going to conduct the research? Be sure that what you propose is doable. If you're having difficulty formulating a research problem to propose investigating, go here for strategies in developing a problem to study.

Common Mistakes to Avoid

  • Failure to be concise . A research proposal must be focused and not be "all over the map" or diverge into unrelated tangents without a clear sense of purpose.
  • Failure to cite landmark works in your literature review . Proposals should be grounded in foundational research that lays a foundation for understanding the development and scope of the the topic and its relevance.
  • Failure to delimit the contextual scope of your research [e.g., time, place, people, etc.]. As with any research paper, your proposed study must inform the reader how and in what ways the study will frame the problem.
  • Failure to develop a coherent and persuasive argument for the proposed research . This is critical. In many workplace settings, the research proposal is a formal document intended to argue for why a study should be funded.
  • Sloppy or imprecise writing, or poor grammar . Although a research proposal does not represent a completed research study, there is still an expectation that it is well-written and follows the style and rules of good academic writing.
  • Too much detail on minor issues, but not enough detail on major issues . Your proposal should focus on only a few key research questions in order to support the argument that the research needs to be conducted. Minor issues, even if valid, can be mentioned but they should not dominate the overall narrative.

Procter, Margaret. The Academic Proposal.  The Lab Report. University College Writing Centre. University of Toronto; Sanford, Keith. Information for Students: Writing a Research Proposal. Baylor University; Wong, Paul T. P. How to Write a Research Proposal. International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences, Articles, and Books. The Writing Lab and The OWL. Purdue University; Writing a Research Proposal. University Library. University of Illinois at Urbana-Champaign.

Structure and Writing Style

Beginning the Proposal Process

As with writing most college-level academic papers, research proposals are generally organized the same way throughout most social science disciplines. The text of proposals generally vary in length between ten and thirty-five pages, followed by the list of references. However, before you begin, read the assignment carefully and, if anything seems unclear, ask your professor whether there are any specific requirements for organizing and writing the proposal.

A good place to begin is to ask yourself a series of questions:

  • What do I want to study?
  • Why is the topic important?
  • How is it significant within the subject areas covered in my class?
  • What problems will it help solve?
  • How does it build upon [and hopefully go beyond] research already conducted on the topic?
  • What exactly should I plan to do, and can I get it done in the time available?

In general, a compelling research proposal should document your knowledge of the topic and demonstrate your enthusiasm for conducting the study. Approach it with the intention of leaving your readers feeling like, "Wow, that's an exciting idea and I can’t wait to see how it turns out!"

Most proposals should include the following sections:

I.  Introduction

In the real world of higher education, a research proposal is most often written by scholars seeking grant funding for a research project or it's the first step in getting approval to write a doctoral dissertation. Even if this is just a course assignment, treat your introduction as the initial pitch of an idea based on a thorough examination of the significance of a research problem. After reading the introduction, your readers should not only have an understanding of what you want to do, but they should also be able to gain a sense of your passion for the topic and to be excited about the study's possible outcomes. Note that most proposals do not include an abstract [summary] before the introduction.

Think about your introduction as a narrative written in two to four paragraphs that succinctly answers the following four questions :

  • What is the central research problem?
  • What is the topic of study related to that research problem?
  • What methods should be used to analyze the research problem?
  • Answer the "So What?" question by explaining why this is important research, what is its significance, and why should someone reading the proposal care about the outcomes of the proposed study?

II.  Background and Significance

This is where you explain the scope and context of your proposal and describe in detail why it's important. It can be melded into your introduction or you can create a separate section to help with the organization and narrative flow of your proposal. Approach writing this section with the thought that you can’t assume your readers will know as much about the research problem as you do. Note that this section is not an essay going over everything you have learned about the topic; instead, you must choose what is most relevant in explaining the aims of your research.

To that end, while there are no prescribed rules for establishing the significance of your proposed study, you should attempt to address some or all of the following:

  • State the research problem and give a more detailed explanation about the purpose of the study than what you stated in the introduction. This is particularly important if the problem is complex or multifaceted .
  • Present the rationale of your proposed study and clearly indicate why it is worth doing; be sure to answer the "So What? question [i.e., why should anyone care?].
  • Describe the major issues or problems examined by your research. This can be in the form of questions to be addressed. Be sure to note how your proposed study builds on previous assumptions about the research problem.
  • Explain the methods you plan to use for conducting your research. Clearly identify the key sources you intend to use and explain how they will contribute to your analysis of the topic.
  • Describe the boundaries of your proposed research in order to provide a clear focus. Where appropriate, state not only what you plan to study, but what aspects of the research problem will be excluded from the study.
  • If necessary, provide definitions of key concepts, theories, or terms.

III.  Literature Review

Connected to the background and significance of your study is a section of your proposal devoted to a more deliberate review and synthesis of prior studies related to the research problem under investigation . The purpose here is to place your project within the larger whole of what is currently being explored, while at the same time, demonstrating to your readers that your work is original and innovative. Think about what questions other researchers have asked, what methodological approaches they have used, and what is your understanding of their findings and, when stated, their recommendations. Also pay attention to any suggestions for further research.

Since a literature review is information dense, it is crucial that this section is intelligently structured to enable a reader to grasp the key arguments underpinning your proposed study in relation to the arguments put forth by other researchers. A good strategy is to break the literature into "conceptual categories" [themes] rather than systematically or chronologically describing groups of materials one at a time. Note that conceptual categories generally reveal themselves after you have read most of the pertinent literature on your topic so adding new categories is an on-going process of discovery as you review more studies. How do you know you've covered the key conceptual categories underlying the research literature? Generally, you can have confidence that all of the significant conceptual categories have been identified if you start to see repetition in the conclusions or recommendations that are being made.

NOTE: Do not shy away from challenging the conclusions made in prior research as a basis for supporting the need for your proposal. Assess what you believe is missing and state how previous research has failed to adequately examine the issue that your study addresses. Highlighting the problematic conclusions strengthens your proposal. For more information on writing literature reviews, GO HERE .

To help frame your proposal's review of prior research, consider the "five C’s" of writing a literature review:

  • Cite , so as to keep the primary focus on the literature pertinent to your research problem.
  • Compare the various arguments, theories, methodologies, and findings expressed in the literature: what do the authors agree on? Who applies similar approaches to analyzing the research problem?
  • Contrast the various arguments, themes, methodologies, approaches, and controversies expressed in the literature: describe what are the major areas of disagreement, controversy, or debate among scholars?
  • Critique the literature: Which arguments are more persuasive, and why? Which approaches, findings, and methodologies seem most reliable, valid, or appropriate, and why? Pay attention to the verbs you use to describe what an author says/does [e.g., asserts, demonstrates, argues, etc.].
  • Connect the literature to your own area of research and investigation: how does your own work draw upon, depart from, synthesize, or add a new perspective to what has been said in the literature?

IV.  Research Design and Methods

This section must be well-written and logically organized because you are not actually doing the research, yet, your reader must have confidence that you have a plan worth pursuing . The reader will never have a study outcome from which to evaluate whether your methodological choices were the correct ones. Thus, the objective here is to convince the reader that your overall research design and proposed methods of analysis will correctly address the problem and that the methods will provide the means to effectively interpret the potential results. Your design and methods should be unmistakably tied to the specific aims of your study.

Describe the overall research design by building upon and drawing examples from your review of the literature. Consider not only methods that other researchers have used, but methods of data gathering that have not been used but perhaps could be. Be specific about the methodological approaches you plan to undertake to obtain information, the techniques you would use to analyze the data, and the tests of external validity to which you commit yourself [i.e., the trustworthiness by which you can generalize from your study to other people, places, events, and/or periods of time].

When describing the methods you will use, be sure to cover the following:

  • Specify the research process you will undertake and the way you will interpret the results obtained in relation to the research problem. Don't just describe what you intend to achieve from applying the methods you choose, but state how you will spend your time while applying these methods [e.g., coding text from interviews to find statements about the need to change school curriculum; running a regression to determine if there is a relationship between campaign advertising on social media sites and election outcomes in Europe ].
  • Keep in mind that the methodology is not just a list of tasks; it is a deliberate argument as to why techniques for gathering information add up to the best way to investigate the research problem. This is an important point because the mere listing of tasks to be performed does not demonstrate that, collectively, they effectively address the research problem. Be sure you clearly explain this.
  • Anticipate and acknowledge any potential barriers and pitfalls in carrying out your research design and explain how you plan to address them. No method applied to research in the social and behavioral sciences is perfect, so you need to describe where you believe challenges may exist in obtaining data or accessing information. It's always better to acknowledge this than to have it brought up by your professor!

V.  Preliminary Suppositions and Implications

Just because you don't have to actually conduct the study and analyze the results, doesn't mean you can skip talking about the analytical process and potential implications . The purpose of this section is to argue how and in what ways you believe your research will refine, revise, or extend existing knowledge in the subject area under investigation. Depending on the aims and objectives of your study, describe how the anticipated results will impact future scholarly research, theory, practice, forms of interventions, or policy making. Note that such discussions may have either substantive [a potential new policy], theoretical [a potential new understanding], or methodological [a potential new way of analyzing] significance.   When thinking about the potential implications of your study, ask the following questions:

  • What might the results mean in regards to challenging the theoretical framework and underlying assumptions that support the study?
  • What suggestions for subsequent research could arise from the potential outcomes of the study?
  • What will the results mean to practitioners in the natural settings of their workplace, organization, or community?
  • Will the results influence programs, methods, and/or forms of intervention?
  • How might the results contribute to the solution of social, economic, or other types of problems?
  • Will the results influence policy decisions?
  • In what way do individuals or groups benefit should your study be pursued?
  • What will be improved or changed as a result of the proposed research?
  • How will the results of the study be implemented and what innovations or transformative insights could emerge from the process of implementation?

NOTE:   This section should not delve into idle speculation, opinion, or be formulated on the basis of unclear evidence . The purpose is to reflect upon gaps or understudied areas of the current literature and describe how your proposed research contributes to a new understanding of the research problem should the study be implemented as designed.

ANOTHER NOTE : This section is also where you describe any potential limitations to your proposed study. While it is impossible to highlight all potential limitations because the study has yet to be conducted, you still must tell the reader where and in what form impediments may arise and how you plan to address them.

VI.  Conclusion

The conclusion reiterates the importance or significance of your proposal and provides a brief summary of the entire study . This section should be only one or two paragraphs long, emphasizing why the research problem is worth investigating, why your research study is unique, and how it should advance existing knowledge.

Someone reading this section should come away with an understanding of:

  • Why the study should be done;
  • The specific purpose of the study and the research questions it attempts to answer;
  • The decision for why the research design and methods used where chosen over other options;
  • The potential implications emerging from your proposed study of the research problem; and
  • A sense of how your study fits within the broader scholarship about the research problem.

VII.  Citations

As with any scholarly research paper, you must cite the sources you used . In a standard research proposal, this section can take two forms, so consult with your professor about which one is preferred.

  • References -- a list of only the sources you actually used in creating your proposal.
  • Bibliography -- a list of everything you used in creating your proposal, along with additional citations to any key sources relevant to understanding the research problem.

In either case, this section should testify to the fact that you did enough preparatory work to ensure the project will complement and not just duplicate the efforts of other researchers. It demonstrates to the reader that you have a thorough understanding of prior research on the topic.

Most proposal formats have you start a new page and use the heading "References" or "Bibliography" centered at the top of the page. Cited works should always use a standard format that follows the writing style advised by the discipline of your course [e.g., education=APA; history=Chicago] or that is preferred by your professor. This section normally does not count towards the total page length of your research proposal.

Develop a Research Proposal: Writing the Proposal. Office of Library Information Services. Baltimore County Public Schools; Heath, M. Teresa Pereira and Caroline Tynan. “Crafting a Research Proposal.” The Marketing Review 10 (Summer 2010): 147-168; Jones, Mark. “Writing a Research Proposal.” In MasterClass in Geography Education: Transforming Teaching and Learning . Graham Butt, editor. (New York: Bloomsbury Academic, 2015), pp. 113-127; Juni, Muhamad Hanafiah. “Writing a Research Proposal.” International Journal of Public Health and Clinical Sciences 1 (September/October 2014): 229-240; Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005; Procter, Margaret. The Academic Proposal. The Lab Report. University College Writing Centre. University of Toronto; Punch, Keith and Wayne McGowan. "Developing and Writing a Research Proposal." In From Postgraduate to Social Scientist: A Guide to Key Skills . Nigel Gilbert, ed. (Thousand Oaks, CA: Sage, 2006), 59-81; Wong, Paul T. P. How to Write a Research Proposal. International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences , Articles, and Books. The Writing Lab and The OWL. Purdue University; Writing a Research Proposal. University Library. University of Illinois at Urbana-Champaign.

  • << Previous: Writing a Reflective Paper
  • Next: Generative AI and Writing >>
  • Last Updated: Jun 3, 2024 9:44 AM
  • URL: https://libguides.usc.edu/writingguide/assignments

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on September 5, 2024 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

You might have to write up a research design as a standalone assignment, or it might be part of a larger   research proposal or other project. In either case, you should carefully consider which methods are most appropriate and feasible for answering your question.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach
and describe frequencies, averages, and correlations about relationships between variables

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism. Run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.
Type of design Purpose and characteristics
Experimental relationships effect on a
Quasi-experimental )
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Questionnaires Interviews
)

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity
) )

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2024, September 05). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved September 10, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

Type of design Purpose and characteristics
Experimental
Quasi-experimental
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Questionnaires Interviews

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Illustration of an aerial view of a man at a desk with papers in a question mark shape, coffee, biscuits and office supplies on a yellow background.

Illustration by James Round

How to plan a research project

Whether for a paper or a thesis, define your question, review the work of others – and leave yourself open to discovery.

by Brooke Harrington   + BIO

is professor of sociology at Dartmouth College in New Hampshire. Her research has won international awards both for scholarly quality and impact on public life. She has published dozens of articles and three books, most recently the bestseller Capital without Borders (2016), now translated into five languages.

Edited by Sam Haselby

Need to know

‘When curiosity turns to serious matters, it’s called research.’ – From Aphorisms (1880-1905) by Marie von Ebner-Eschenbach

Planning research projects is a time-honoured intellectual exercise: one that requires both creativity and sharp analytical skills. The purpose of this Guide is to make the process systematic and easy to understand. While there is a great deal of freedom and discovery involved – from the topics you choose, to the data and methods you apply – there are also some norms and constraints that obtain, no matter what your academic level or field of study. For those in high school through to doctoral students, and from art history to archaeology, research planning involves broadly similar steps, including: formulating a question, developing an argument or predictions based on previous research, then selecting the information needed to answer your question.

Some of this might sound self-evident but, as you’ll find, research requires a different way of approaching and using information than most of us are accustomed to in everyday life. That is why I include orienting yourself to knowledge-creation as an initial step in the process. This is a crucial and underappreciated phase in education, akin to making the transition from salaried employment to entrepreneurship: suddenly, you’re on your own, and that requires a new way of thinking about your work.

What follows is a distillation of what I’ve learned about this process over 27 years as a professional social scientist. It reflects the skills that my own professors imparted in the sociology doctoral programme at Harvard, as well as what I learned later on as a research supervisor for Ivy League PhD and MA students, and then as the author of award-winning scholarly books and articles. It can be adapted to the demands of both short projects (such as course term papers) and long ones, such as a thesis.

At its simplest, research planning involves the four distinct steps outlined below: orienting yourself to knowledge-creation; defining your research question; reviewing previous research on your question; and then choosing relevant data to formulate your own answers. Because the focus of this Guide is on planning a research project, as opposed to conducting a research project, this section won’t delve into the details of data-collection or analysis; those steps happen after you plan the project. In addition, the topic is vast: year-long doctoral courses are devoted to data and analysis. Instead, the fourth part of this section will outline some basic strategies you could use in planning a data-selection and analysis process appropriate to your research question.

Step 1: Orient yourself

Planning and conducting research requires you to make a transition, from thinking like a consumer of information to thinking like a producer of information. That sounds simple, but it’s actually a complex task. As a practical matter, this means putting aside the mindset of a student, which treats knowledge as something created by other people. As students, we are often passive receivers of knowledge: asked to do a specified set of readings, then graded on how well we reproduce what we’ve read.

Researchers, however, must take on an active role as knowledge producers . Doing research requires more of you than reading and absorbing what other people have written: you have to engage in a dialogue with it. That includes arguing with previous knowledge and perhaps trying to show that ideas we have accepted as given are actually wrong or incomplete. For example, rather than simply taking in the claims of an author you read, you’ll need to draw out the implications of those claims: if what the author is saying is true, what else does that suggest must be true? What predictions could you make based on the author’s claims?

In other words, rather than treating a reading as a source of truth – even if it comes from a revered source, such as Plato or Marie Curie – this orientation step asks you to treat the claims you read as provisional and subject to interrogation. That is one of the great pieces of wisdom that science and philosophy can teach us: that the biggest advances in human understanding have been made not by being correct about trivial things, but by being wrong in an interesting way . For example, Albert Einstein was wrong about quantum mechanics, but his arguments about it with his fellow physicist Niels Bohr have led to some of the biggest breakthroughs in science, even a century later.

Step 2: Define your research question

Students often give this step cursory attention, but experienced researchers know that formulating a good question is sometimes the most difficult part of the research planning process. That is because the precise language of the question frames the rest of the project. It’s therefore important to pose the question carefully, in a way that’s both possible to answer and likely to yield interesting results. Of course, you must choose a question that interests you, but that’s only the beginning of what’s likely to be an iterative process: most researchers come back to this step repeatedly, modifying their questions in light of previous research, resource limitations and other considerations.

Researchers face limits in terms of time and money. They, like everyone else, have to pose research questions that they can plausibly answer given the constraints they face. For example, it would be inadvisable to frame a project around the question ‘What are the roots of the Arab-Israeli conflict?’ if you have only a week to develop an answer and no background on that topic. That’s not to limit your imagination: you can come up with any question you’d like. But it typically does require some creativity to frame a question that you can answer well – that is, by investigating thoroughly and providing new insights – within the limits you face.

In addition to being interesting to you, and feasible within your resource constraints, the third and most important characteristic of a ‘good’ research topic is whether it allows you to create new knowledge. It might turn out that your question has already been asked and answered to your satisfaction: if so, you’ll find out in the next step of this process. On the other hand, you might come up with a research question that hasn’t been addressed previously. Before you get too excited about breaking uncharted ground, consider this: a lot of potentially researchable questions haven’t been studied for good reason ; they might have answers that are trivial or of very limited interest. This could include questions such as ‘Why does the area of a circle equal π r²?’ or ‘Did winter conditions affect Napoleon’s plans to invade Russia?’ Of course, you might be able to make the argument that a seemingly trivial question is actually vitally important, but you must be prepared to back that up with convincing evidence. The exercise in the ‘Learn More’ section below will help you think through some of these issues.

Finally, scholarly research questions must in some way lead to new and distinctive insights. For example, lots of people have studied gender roles in sports teams; what can you ask that hasn’t been asked before? Reinventing the wheel is the number-one no-no in this endeavour. That’s why the next step is so important: reviewing previous research on your topic. Depending on what you find in that step, you might need to revise your research question; iterating between your question and the existing literature is a normal process. But don’t worry: it doesn’t go on forever. In fact, the iterations taper off – and your research question stabilises – as you develop a firm grasp of the current state of knowledge on your topic.

Step 3: Review previous research

In academic research, from articles to books, it’s common to find a section called a ‘literature review’. The purpose of that section is to describe the state of the art in knowledge on the research question that a project has posed. It demonstrates that researchers have thoroughly and systematically reviewed the relevant findings of previous studies on their topic, and that they have something novel to contribute.

Your own research project should include something like this, even if it’s a high-school term paper. In the research planning process, you’ll want to list at least half a dozen bullet points stating the major findings on your topic by other people. In relation to those findings, you should be able to specify where your project could provide new and necessary insights. There are two basic rhetorical positions one can take in framing the novelty-plus-importance argument required of academic research:

  • Position 1 requires you to build on or extend a set of existing ideas; that means saying something like: ‘Person A has argued that X is true about gender; this implies Y, which has not yet been tested. My project will test Y, and if I find evidence to support it, that will change the way we understand gender.’
  • Position 2 is to argue that there is a gap in existing knowledge, either because previous research has reached conflicting conclusions or has failed to consider something important. For example, one could say that research on middle schoolers and gender has been limited by being conducted primarily in coeducational environments, and that findings might differ dramatically if research were conducted in more schools where the student body was all-male or all-female.

Your overall goal in this step of the process is to show that your research will be part of a larger conversation: that is, how your project flows from what’s already known, and how it advances, extends or challenges that existing body of knowledge. That will be the contribution of your project, and it constitutes the motivation for your research.

Two things are worth mentioning about your search for sources of relevant previous research. First, you needn’t look only at studies on your precise topic. For example, if you want to study gender-identity formation in schools, you shouldn’t restrict yourself to studies of schools; the empirical setting (schools) is secondary to the larger social process that interests you (how people form gender identity). That process occurs in many different settings, so cast a wide net. Second, be sure to use legitimate sources – meaning publications that have been through some sort of vetting process, whether that involves peer review (as with academic journal articles you might find via Google Scholar) or editorial review (as you’d find in well-known mass media publications, such as The Economist or The Washington Post ). What you’ll want to avoid is using unvetted sources such as personal blogs or Wikipedia. Why? Because anybody can write anything in those forums, and there is no way to know – unless you’re already an expert – if the claims you find there are accurate. Often, they’re not.

Step 4: Choose your data and methods

Whatever your research question is, eventually you’ll need to consider which data source and analytical strategy are most likely to provide the answers you’re seeking. One starting point is to consider whether your question would be best addressed by qualitative data (such as interviews, observations or historical records), quantitative data (such as surveys or census records) or some combination of both. Your ideas about data sources will, in turn, suggest options for analytical methods.

You might need to collect your own data, or you might find everything you need readily available in an existing dataset someone else has created. A great place to start is with a research librarian: university libraries always have them and, at public universities, those librarians can work with the public, including people who aren’t affiliated with the university. If you don’t happen to have a public university and its library close at hand, an ordinary public library can still be a good place to start: the librarians are often well versed in accessing data sources that might be relevant to your study, such as the census, or historical archives, or the Survey of Consumer Finances.

Because your task at this point is to plan research, rather than conduct it, the purpose of this step is not to commit you irrevocably to a course of action. Instead, your goal here is to think through a feasible approach to answering your research question. You’ll need to find out, for example, whether the data you want exist; if not, do you have a realistic chance of gathering the data yourself, or would it be better to modify your research question? In terms of analysis, would your strategy require you to apply statistical methods? If so, do you have those skills? If not, do you have time to learn them, or money to hire a research assistant to run the analysis for you?

Please be aware that qualitative methods in particular are not the casual undertaking they might appear to be. Many people make the mistake of thinking that only quantitative data and methods are scientific and systematic, while qualitative methods are just a fancy way of saying: ‘I talked to some people, read some old newspapers, and drew my own conclusions.’ Nothing could be further from the truth. In the final section of this guide, you’ll find some links to resources that will provide more insight on standards and procedures governing qualitative research, but suffice it to say: there are rules about what constitutes legitimate evidence and valid analytical procedure for qualitative data, just as there are for quantitative data.

Circle back and consider revising your initial plans

As you work through these four steps in planning your project, it’s perfectly normal to circle back and revise. Research planning is rarely a linear process. It’s also common for new and unexpected avenues to suggest themselves. As the sociologist Thorstein Veblen wrote in 1908 : ‘The outcome of any serious research can only be to make two questions grow where only one grew before.’ That’s as true of research planning as it is of a completed project. Try to enjoy the horizons that open up for you in this process, rather than becoming overwhelmed; the four steps, along with the two exercises that follow, will help you focus your plan and make it manageable.

Key points – How to plan a research project

  • Planning a research project is essential no matter your academic level or field of study. There is no one ‘best’ way to design research, but there are certain guidelines that can be helpfully applied across disciplines.
  • Orient yourself to knowledge-creation. Make the shift from being a consumer of information to being a producer of information.
  • Define your research question. Your question frames the rest of your project, sets the scope, and determines the kinds of answers you can find.
  • Review previous research on your question. Survey the existing body of relevant knowledge to ensure that your research will be part of a larger conversation.
  • Choose your data and methods. For instance, will you be collecting qualitative data, via interviews, or numerical data, via surveys?
  • Circle back and consider revising your initial plans. Expect your research question in particular to undergo multiple rounds of refinement as you learn more about your topic.

Good research questions tend to beget more questions. This can be frustrating for those who want to get down to business right away. Try to make room for the unexpected: this is usually how knowledge advances. Many of the most significant discoveries in human history have been made by people who were looking for something else entirely. There are ways to structure your research planning process without over-constraining yourself; the two exercises below are a start, and you can find further methods in the Links and Books section.

The following exercise provides a structured process for advancing your research project planning. After completing it, you’ll be able to do the following:

  • describe clearly and concisely the question you’ve chosen to study
  • summarise the state of the art in knowledge about the question, and where your project could contribute new insight
  • identify the best strategy for gathering and analysing relevant data

In other words, the following provides a systematic means to establish the building blocks of your research project.

Exercise 1: Definition of research question and sources

This exercise prompts you to select and clarify your general interest area, develop a research question, and investigate sources of information. The annotated bibliography will also help you refine your research question so that you can begin the second assignment, a description of the phenomenon you wish to study.

Jot down a few bullet points in response to these two questions, with the understanding that you’ll probably go back and modify your answers as you begin reading other studies relevant to your topic:

  • What will be the general topic of your paper?
  • What will be the specific topic of your paper?

b) Research question(s)

Use the following guidelines to frame a research question – or questions – that will drive your analysis. As with Part 1 above, you’ll probably find it necessary to change or refine your research question(s) as you complete future assignments.

  • Your question should be phrased so that it can’t be answered with a simple ‘yes’ or ‘no’.
  • Your question should have more than one plausible answer.
  • Your question should draw relationships between two or more concepts; framing the question in terms of How? or What? often works better than asking Why ?

c) Annotated bibliography

Most or all of your background information should come from two sources: scholarly books and journals, or reputable mass media sources. You might be able to access journal articles electronically through your library, using search engines such as JSTOR and Google Scholar. This can save you a great deal of time compared with going to the library in person to search periodicals. General news sources, such as those accessible through LexisNexis, are acceptable, but should be cited sparingly, since they don’t carry the same level of credibility as scholarly sources. As discussed above, unvetted sources such as blogs and Wikipedia should be avoided, because the quality of the information they provide is unreliable and often misleading.

To create an annotated bibliography, provide the following information for at least 10 sources relevant to your specific topic, using the format suggested below.

Name of author(s):
Publication date:
Title of book, chapter, or article:
If a chapter or article, title of journal or book where they appear:
Brief description of this work, including main findings and methods ( c 75 words):
Summary of how this work contributes to your project ( c 75 words):
Brief description of the implications of this work ( c 25 words):
Identify any gap or controversy in knowledge this work points up, and how your project could address those problems ( c 50 words):

Exercise 2: Towards an analysis

Develop a short statement ( c 250 words) about the kind of data that would be useful to address your research question, and how you’d analyse it. Some questions to consider in writing this statement include:

  • What are the central concepts or variables in your project? Offer a brief definition of each.
  • Do any data sources exist on those concepts or variables, or would you need to collect data?
  • Of the analytical strategies you could apply to that data, which would be the most appropriate to answer your question? Which would be the most feasible for you? Consider at least two methods, noting their advantages or disadvantages for your project.

Links & books

One of the best texts ever written about planning and executing research comes from a source that might be unexpected: a 60-year-old work on urban planning by a self-trained scholar. The classic book The Death and Life of Great American Cities (1961) by Jane Jacobs (available complete and free of charge via this link ) is worth reading in its entirety just for the pleasure of it. But the final 20 pages – a concluding chapter titled ‘The Kind of Problem a City Is’ – are really about the process of thinking through and investigating a problem. Highly recommended as a window into the craft of research.

Jacobs’s text references an essay on advancing human knowledge by the mathematician Warren Weaver. At the time, Weaver was director of the Rockefeller Foundation, in charge of funding basic research in the natural and medical sciences. Although the essay is titled ‘A Quarter Century in the Natural Sciences’ (1960) and appears at first blush to be merely a summation of one man’s career, it turns out to be something much bigger and more interesting: a meditation on the history of human beings seeking answers to big questions about the world. Weaver goes back to the 17th century to trace the origins of systematic research thinking, with enthusiasm and vivid anecdotes that make the process come alive. The essay is worth reading in its entirety, and is available free of charge via this link .

For those seeking a more in-depth, professional-level discussion of the logic of research design, the political scientist Harvey Starr provides insight in a compact format in the article ‘Cumulation from Proper Specification: Theory, Logic, Research Design, and “Nice” Laws’ (2005). Starr reviews the ‘research triad’, consisting of the interlinked considerations of formulating a question, selecting relevant theories and applying appropriate methods. The full text of the article, published in the scholarly journal Conflict Management and Peace Science , is available, free of charge, via this link .

Finally, the book Getting What You Came For (1992) by Robert Peters is not only an outstanding guide for anyone contemplating graduate school – from the application process onward – but it also includes several excellent chapters on planning and executing research, applicable across a wide variety of subject areas. It was an invaluable resource for me 25 years ago, and it remains in print with good reason; I recommend it to all my students, particularly Chapter 16 (‘The Thesis Topic: Finding It’), Chapter 17 (‘The Thesis Proposal’) and Chapter 18 (‘The Thesis: Writing It’).

Photo of a person driving a car, seen through a car window, lit by warm sunlight, wearing glasses, with one hand on the steering wheel and the other hand resting in front of their face.

Consciousness

How to think about consciousness

What is it like to be you? Dive into the philosophical puzzle of consciousness and see yourself and the world in new ways

by Amy Kind

Black-and-white photograph of a person in a jacket standing outdoors in a foggy environment, looking up with eyes closed.

Spirituality and religion

How to find new spiritual practices

Even if religion isn’t for you, there’s a world of rituals and tools to lift yourself up and connect to something greater

by Morgan Shipley

Two women in printed dresses stand at a concrete railing, overlooking a beach and cliffs with the sea stretching into the horizon.

Emerging therapies

How to look after your emotional health

Find out which of your emotional needs you’ve been neglecting and use tips from human givens therapy to address them

by Denise Winn

  • Privacy Policy

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

Research DesignResearch Methodology
The plan and structure for conducting research that outlines the procedures to be followed to collect and analyze data.The set of principles, techniques, and tools used to carry out the research plan and achieve research objectives.
Describes the overall approach and strategy used to conduct research, including the type of data to be collected, the sources of data, and the methods for collecting and analyzing data.Refers to the techniques and methods used to gather, analyze and interpret data, including sampling techniques, data collection methods, and data analysis techniques.
Helps to ensure that the research is conducted in a systematic, rigorous, and valid way, so that the results are reliable and can be used to make sound conclusions.Includes a set of procedures and tools that enable researchers to collect and analyze data in a consistent and valid manner, regardless of the research design used.
Common research designs include experimental, quasi-experimental, correlational, and descriptive studies.Common research methodologies include qualitative, quantitative, and mixed-methods approaches.
Determines the overall structure of the research project and sets the stage for the selection of appropriate research methodologies.Guides the researcher in selecting the most appropriate research methods based on the research question, research design, and other contextual factors.
Helps to ensure that the research project is feasible, relevant, and ethical.Helps to ensure that the data collected is accurate, valid, and reliable, and that the research findings can be interpreted and generalized to the population of interest.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Contribution

Research Contribution – Thesis Guide

Data Interpretation

Data Interpretation – Process, Methods and...

Dissertation Methodology

Dissertation Methodology – Structure, Example...

References in Research

References in Research – Types, Examples and...

Research Project

Research Project – Definition, Writing Guide and...

Thesis

Thesis – Structure, Example and Writing Guide

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Pharmacol Pharmacother
  • v.4(2); Apr-Jun 2013

The critical steps for successful research: The research proposal and scientific writing: (A report on the pre-conference workshop held in conjunction with the 64 th annual conference of the Indian Pharmaceutical Congress-2012)

Pitchai balakumar.

Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong. Kedah Darul Aman, Malaysia

Mohammed Naseeruddin Inamdar

1 Department of Pharmacology, Al-Ameen College of Pharmacy, Bengaluru, Karnataka, India

Gowraganahalli Jagadeesh

2 Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, USA

An interactive workshop on ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing’ was conducted in conjunction with the 64 th Annual Conference of the Indian Pharmaceutical Congress-2012 at Chennai, India. In essence, research is performed to enlighten our understanding of a contemporary issue relevant to the needs of society. To accomplish this, a researcher begins search for a novel topic based on purpose, creativity, critical thinking, and logic. This leads to the fundamental pieces of the research endeavor: Question, objective, hypothesis, experimental tools to test the hypothesis, methodology, and data analysis. When correctly performed, research should produce new knowledge. The four cornerstones of good research are the well-formulated protocol or proposal that is well executed, analyzed, discussed and concluded. This recent workshop educated researchers in the critical steps involved in the development of a scientific idea to its successful execution and eventual publication.

INTRODUCTION

Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society. Hence, the primary objective of research is to produce new knowledge. Research is both theoretical and empirical. It is theoretical because the starting point of scientific research is the conceptualization of a research topic and development of a research question and hypothesis. Research is empirical (practical) because all of the planned studies involve a series of observations, measurements, and analyses of data that are all based on proper experimental design.[ 1 – 9 ]

The subject of this report is to inform readers of the proceedings from a recent workshop organized by the 64 th Annual conference of the ‘ Indian Pharmaceutical Congress ’ at SRM University, Chennai, India, from 05 to 06 December 2012. The objectives of the workshop titled ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing,’ were to assist participants in developing a strong fundamental understanding of how best to develop a research or study protocol, and communicate those research findings in a conference setting or scientific journal. Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the development of an idea to its execution and eventual publication of the results (See the last section for a list of learning objectives).

THE STRUCTURE OF THE WORKSHOP

The two-day workshop was formatted to include key lectures and interactive breakout sessions that focused on protocol development in six subject areas of the pharmaceutical sciences. This was followed by sessions on scientific writing. DAY 1 taught the basic concepts of scientific research, including: (1) how to formulate a topic for research and to describe the what, why , and how of the protocol, (2) biomedical literature search and review, (3) study designs, statistical concepts, and result analyses, and (4) publication ethics. DAY 2 educated the attendees on the basic elements and logistics of writing a scientific paper and thesis, and preparation of poster as well as oral presentations.

The final phase of the workshop was the ‘Panel Discussion,’ including ‘Feedback/Comments’ by participants. There were thirteen distinguished speakers from India and abroad. Approximately 120 post-graduate and pre-doctoral students, young faculty members, and scientists representing industries attended the workshop from different parts of the country. All participants received a printed copy of the workshop manual and supporting materials on statistical analyses of data.

THE BASIC CONCEPTS OF RESEARCH: THE KEY TO GETTING STARTED IN RESEARCH

A research project generally comprises four key components: (1) writing a protocol, (2) performing experiments, (3) tabulating and analyzing data, and (4) writing a thesis or manuscript for publication.

Fundamentals in the research process

A protocol, whether experimental or clinical, serves as a navigator that evolves from a basic outline of the study plan to become a qualified research or grant proposal. It provides the structural support for the research. Dr. G. Jagadeesh (US FDA), the first speaker of the session, spoke on ‘ Fundamentals in research process and cornerstones of a research project .’ He discussed at length the developmental and structural processes in preparing a research protocol. A systematic and step-by-step approach is necessary in planning a study. Without a well-designed protocol, there would be a little chance for successful completion of a research project or an experiment.

Research topic

The first and the foremost difficult task in research is to identify a topic for investigation. The research topic is the keystone of the entire scientific enterprise. It begins the project, drives the entire study, and is crucial for moving the project forward. It dictates the remaining elements of the study [ Table 1 ] and thus, it should not be too narrow or too broad or unfocused. Because of these potential pitfalls, it is essential that a good or novel scientific idea be based on a sound concept. Creativity, critical thinking, and logic are required to generate new concepts and ideas in solving a research problem. Creativity involves critical thinking and is associated with generating many ideas. Critical thinking is analytical, judgmental, and involves evaluating choices before making a decision.[ 4 ] Thus, critical thinking is convergent type thinking that narrows and refines those divergent ideas and finally settles to one idea for an in-depth study. The idea on which a research project is built should be novel, appropriate to achieve within the existing conditions, and useful to the society at large. Therefore, creativity and critical thinking assist biomedical scientists in research that results in funding support, novel discovery, and publication.[ 1 , 4 ]

Elements of a study protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g001.jpg

Research question

The next most crucial aspect of a study protocol is identifying a research question. It should be a thought-provoking question. The question sets the framework. It emerges from the title, findings/results, and problems observed in previous studies. Thus, mastering the literature, attendance at conferences, and discussion in journal clubs/seminars are sources for developing research questions. Consider the following example in developing related research questions from the research topic.

Hepatoprotective activity of Terminalia arjuna and Apium graveolens on paracetamol-induced liver damage in albino rats.

How is paracetamol metabolized in the body? Does it involve P450 enzymes? How does paracetamol cause liver injury? What are the mechanisms by which drugs can alleviate liver damage? What biochemical parameters are indicative of liver injury? What major endogenous inflammatory molecules are involved in paracetamol-induced liver damage?

A research question is broken down into more precise objectives. The objectives lead to more precise methods and definition of key terms. The objectives should be SMART-Specific, Measurable, Achievable, Realistic, Time-framed,[ 10 ] and should cover the entire breadth of the project. The objectives are sometimes organized into hierarchies: Primary, secondary, and exploratory; or simply general and specific. Study the following example:

To evaluate the safety and tolerability of single oral doses of compound X in normal volunteers.

To assess the pharmacokinetic profile of compound X following single oral doses.

To evaluate the incidence of peripheral edema reported as an adverse event.

The objectives and research questions are then formulated into a workable or testable hypothesis. The latter forces us to think carefully about what comparisons will be needed to answer the research question, and establishes the format for applying statistical tests to interpret the results. The hypothesis should link a process to an existing or postulated biologic pathway. A hypothesis is written in a form that can yield measurable results. Studies that utilize statistics to compare groups of data should have a hypothesis. Consider the following example:

  • The hepatoprotective activity of Terminalia arjuna is superior to that of Apium graveolens against paracetamol-induced liver damage in albino rats.

All biological research, including discovery science, is hypothesis-driven. However, not all studies need be conducted with a hypothesis. For example, descriptive studies (e.g., describing characteristics of a plant, or a chemical compound) do not need a hypothesis.[ 1 ]

Relevance of the study

Another important section to be included in the protocol is ‘significance of the study.’ Its purpose is to justify the need for the research that is being proposed (e.g., development of a vaccine for a disease). In summary, the proposed study should demonstrate that it represents an advancement in understanding and that the eventual results will be meaningful, contribute to the field, and possibly even impact society.

Biomedical literature

A literature search may be defined as the process of examining published sources of information on a research or review topic, thesis, grant application, chemical, drug, disease, or clinical trial, etc. The quantity of information available in print or electronically (e.g., the internet) is immense and growing with time. A researcher should be familiar with the right kinds of databases and search engines to extract the needed information.[ 3 , 6 ]

Dr. P. Balakumar (Institute of Pharmacy, Rajendra Institute of Technology and Sciences, Sirsa, Haryana; currently, Faculty of Pharmacy, AIMST University, Malaysia) spoke on ‘ Biomedical literature: Searching, reviewing and referencing .’ He schematically explained the basis of scientific literature, designing a literature review, and searching literature. After an introduction to the genesis and diverse sources of scientific literature searches, the use of PubMed, one of the premier databases used for biomedical literature searches world-wide, was illustrated with examples and screenshots. Several companion databases and search engines are also used for finding information related to health sciences, and they include Embase, Web of Science, SciFinder, The Cochrane Library, International Pharmaceutical Abstracts, Scopus, and Google Scholar.[ 3 ] Literature searches using alternative interfaces for PubMed such as GoPubMed, Quertle, PubFocus, Pubget, and BibliMed were discussed. The participants were additionally informed of databases on chemistry, drugs and drug targets, clinical trials, toxicology, and laboratory animals (reviewed in ref[ 3 ]).

Referencing and bibliography are essential in scientific writing and publication.[ 7 ] Referencing systems are broadly classified into two major types, such as Parenthetical and Notation systems. Parenthetical referencing is also known as Harvard style of referencing, while Vancouver referencing style and ‘Footnote’ or ‘Endnote’ are placed under Notation referencing systems. The participants were educated on each referencing system with examples.

Bibliography management

Dr. Raj Rajasekaran (University of California at San Diego, CA, USA) enlightened the audience on ‘ bibliography management ’ using reference management software programs such as Reference Manager ® , Endnote ® , and Zotero ® for creating and formatting bibliographies while writing a manuscript for publication. The discussion focused on the use of bibliography management software in avoiding common mistakes such as incomplete references. Important steps in bibliography management, such as creating reference libraries/databases, searching for references using PubMed/Google scholar, selecting and transferring selected references into a library, inserting citations into a research article and formatting bibliographies, were presented. A demonstration of Zotero®, a freely available reference management program, included the salient features of the software, adding references from PubMed using PubMed ID, inserting citations and formatting using different styles.

Writing experimental protocols

The workshop systematically instructed the participants in writing ‘ experimental protocols ’ in six disciplines of Pharmaceutical Sciences.: (1) Pharmaceutical Chemistry (presented by Dr. P. V. Bharatam, NIPER, Mohali, Punjab); (2) Pharmacology (presented by Dr. G. Jagadeesh and Dr. P. Balakumar); (3) Pharmaceutics (presented by Dr. Jayant Khandare, Piramal Life Sciences, Mumbai); (4) Pharmacy Practice (presented by Dr. Shobha Hiremath, Al-Ameen College of Pharmacy, Bengaluru); (5) Pharmacognosy and Phytochemistry (presented by Dr. Salma Khanam, Al-Ameen College of Pharmacy, Bengaluru); and (6) Pharmaceutical Analysis (presented by Dr. Saranjit Singh, NIPER, Mohali, Punjab). The purpose of the research plan is to describe the what (Specific Aims/Objectives), why (Background and Significance), and how (Design and Methods) of the proposal.

The research plan should answer the following questions: (a) what do you intend to do; (b) what has already been done in general, and what have other researchers done in the field; (c) why is this worth doing; (d) how is it innovative; (e) what will this new work add to existing knowledge; and (f) how will the research be accomplished?

In general, the format used by the faculty in all subjects is shown in Table 2 .

Elements of a research protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g002.jpg

Biostatistics

Biostatistics is a key component of biomedical research. Highly reputed journals like The Lancet, BMJ, Journal of the American Medical Association, and many other biomedical journals include biostatisticians on their editorial board or reviewers list. This indicates that a great importance is given for learning and correctly employing appropriate statistical methods in biomedical research. The post-lunch session on day 1 of the workshop was largely committed to discussion on ‘ Basic biostatistics .’ Dr. R. Raveendran (JIPMER, Puducherry) and Dr. Avijit Hazra (PGIMER, Kolkata) reviewed, in parallel sessions, descriptive statistics, probability concepts, sample size calculation, choosing a statistical test, confidence intervals, hypothesis testing and ‘ P ’ values, parametric and non-parametric statistical tests, including analysis of variance (ANOVA), t tests, Chi-square test, type I and type II errors, correlation and regression, and summary statistics. This was followed by a practice and demonstration session. Statistics CD, compiled by Dr. Raveendran, was distributed to the participants before the session began and was demonstrated live. Both speakers worked on a variety of problems that involved both clinical and experimental data. They discussed through examples the experimental designs encountered in a variety of studies and statistical analyses performed for different types of data. For the benefit of readers, we have summarized statistical tests applied frequently for different experimental designs and post-hoc tests [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g003.jpg

Conceptual framework for statistical analyses of data. Of the two kinds of variables, qualitative (categorical) and quantitative (numerical), qualitative variables (nominal or ordinal) are not normally distributed. Numerical data that come from normal distributions are analyzed using parametric tests, if not; the data are analyzed using non-parametric tests. The most popularly used Student's t -test compares the means of two populations, data for this test could be paired or unpaired. One-way analysis of variance (ANOVA) is used to compare the means of three or more independent populations that are normally distributed. Applying t test repeatedly in pair (multiple comparison), to compare the means of more than two populations, will increase the probability of type I error (false positive). In this case, for proper interpretation, we need to adjust the P values. Repeated measures ANOVA is used to compare the population means if more than two observations coming from same subject over time. The null hypothesis is rejected with a ‘ P ’ value of less than 0.05, and the difference in population means is considered to be statistically significant. Subsequently, appropriate post-hoc tests are used for pairwise comparisons of population means. Two-way or three-way ANOVA are considered if two (diet, dose) or three (diet, dose, strain) independent factors, respectively, are analyzed in an experiment (not described in the Figure). Categorical nominal unmatched variables (counts or frequencies) are analyzed by Chi-square test (not shown in the Figure)

Research and publication ethics

The legitimate pursuit of scientific creativity is unfortunately being marred by a simultaneous increase in scientific misconduct. A disproportionate share of allegations involves scientists of many countries, and even from respected laboratories. Misconduct destroys faith in science and scientists and creates a hierarchy of fraudsters. Investigating misconduct also steals valuable time and resources. In spite of these facts, most researchers are not aware of publication ethics.

Day 1 of the workshop ended with a presentation on ‘ research and publication ethics ’ by Dr. M. K. Unnikrishnan (College of Pharmaceutical Sciences, Manipal University, Manipal). He spoke on the essentials of publication ethics that included plagiarism (attempting to take credit of the work of others), self-plagiarism (multiple publications by an author on the same content of work with slightly different wordings), falsification (manipulation of research data and processes and omitting critical data or results), gift authorship (guest authorship), ghostwriting (someone other than the named author (s) makes a major contribution), salami publishing (publishing many papers, with minor differences, from the same study), and sabotage (distracting the research works of others to halt their research completion). Additionally, Dr. Unnikrishnan pointed out the ‘ Ingelfinger rule ’ of stipulating that a scientist must not submit the same original research in two different journals. He also advised the audience that authorship is not just credit for the work but also responsibility for scientific contents of a paper. Although some Indian Universities are instituting preventive measures (e.g., use of plagiarism detecting software, Shodhganga digital archiving of doctoral theses), Dr. Unnikrishnan argued for a great need to sensitize young researchers on the nature and implications of scientific misconduct. Finally, he discussed methods on how editors and peer reviewers should ethically conduct themselves while managing a manuscript for publication.

SCIENTIFIC COMMUNICATION: THE KEY TO SUCCESSFUL SELLING OF FINDINGS

Research outcomes are measured through quality publications. Scientists must not only ‘do’ science but must ‘write’ science. The story of the project must be told in a clear, simple language weaving in previous work done in the field, answering the research question, and addressing the hypothesis set forth at the beginning of the study. Scientific publication is an organic process of planning, researching, drafting, revising, and updating the current knowledge for future perspectives. Writing a research paper is no easier than the research itself. The lectures of Day 2 of the workshop dealt with the basic elements and logistics of writing a scientific paper.

An overview of paper structure and thesis writing

Dr. Amitabh Prakash (Adis, Auckland, New Zealand) spoke on ‘ Learning how to write a good scientific paper .’ His presentation described the essential components of an original research paper and thesis (e.g., introduction, methods, results, and discussion [IMRaD]) and provided guidance on the correct order, in which data should appear within these sections. The characteristics of a good abstract and title and the creation of appropriate key words were discussed. Dr. Prakash suggested that the ‘title of a paper’ might perhaps have a chance to make a good impression, and the title might be either indicative (title that gives the purpose of the study) or declarative (title that gives the study conclusion). He also suggested that an abstract is a succinct summary of a research paper, and it should be specific, clear, and concise, and should have IMRaD structure in brief, followed by key words. Selection of appropriate papers to be cited in the reference list was also discussed. Various unethical authorships were enumerated, and ‘The International Committee of Medical Journal Editors (ICMJE) criteria for authorship’ was explained ( http://www.icmje.org/ethical_1author.html ; also see Table 1 in reference #9). The session highlighted the need for transparency in medical publication and provided a clear description of items that needed to be included in the ‘Disclosures’ section (e.g., sources of funding for the study and potential conflicts of interest of all authors, etc.) and ‘Acknowledgements’ section (e.g., writing assistance and input from all individuals who did not meet the authorship criteria). The final part of the presentation was devoted to thesis writing, and Dr. Prakash provided the audience with a list of common mistakes that are frequently encountered when writing a manuscript.

The backbone of a study is description of results through Text, Tables, and Figures. Dr. S. B. Deshpande (Institute of Medical Sciences, Banaras Hindu University, Varanasi, India) spoke on ‘ Effective Presentation of Results .’ The Results section deals with the observations made by the authors and thus, is not hypothetical. This section is subdivided into three segments, that is, descriptive form of the Text, providing numerical data in Tables, and visualizing the observations in Graphs or Figures. All these are arranged in a sequential order to address the question hypothesized in the Introduction. The description in Text provides clear content of the findings highlighting the observations. It should not be the repetition of facts in tables or graphs. Tables are used to summarize or emphasize descriptive content in the text or to present the numerical data that are unrelated. Illustrations should be used when the evidence bearing on the conclusions of a paper cannot be adequately presented in a written description or in a Table. Tables or Figures should relate to each other logically in sequence and should be clear by themselves. Furthermore, the discussion is based entirely on these observations. Additionally, how the results are applied to further research in the field to advance our understanding of research questions was discussed.

Dr. Peush Sahni (All-India Institute of Medical Sciences, New Delhi) spoke on effectively ‘ structuring the Discussion ’ for a research paper. The Discussion section deals with a systematic interpretation of study results within the available knowledge. He said the section should begin with the most important point relating to the subject studied, focusing on key issues, providing link sentences between paragraphs, and ensuring the flow of text. Points were made to avoid history, not repeat all the results, and provide limitations of the study. The strengths and novel findings of the study should be provided in the discussion, and it should open avenues for future research and new questions. The Discussion section should end with a conclusion stating the summary of key findings. Dr. Sahni gave an example from a published paper for writing a Discussion. In another presentation titled ‘ Writing an effective title and the abstract ,’ Dr. Sahni described the important components of a good title, such as, it should be simple, concise, informative, interesting and eye-catching, accurate and specific about the paper's content, and should state the subject in full indicating study design and animal species. Dr. Sahni explained structured (IMRaD) and unstructured abstracts and discussed a few selected examples with the audience.

Language and style in publication

The next lecture of Dr. Amitabh Prakash on ‘ Language and style in scientific writing: Importance of terseness, shortness and clarity in writing ’ focused on the actual sentence construction, language, grammar and punctuation in scientific manuscripts. His presentation emphasized the importance of brevity and clarity in the writing of manuscripts describing biomedical research. Starting with a guide to the appropriate construction of sentences and paragraphs, attendees were given a brief overview of the correct use of punctuation with interactive examples. Dr. Prakash discussed common errors in grammar and proactively sought audience participation in correcting some examples. Additional discussion was centered on discouraging the use of redundant and expendable words, jargon, and the use of adjectives with incomparable words. The session ended with a discussion of words and phrases that are commonly misused (e.g., data vs . datum, affect vs . effect, among vs . between, dose vs . dosage, and efficacy/efficacious vs . effective/effectiveness) in biomedical research manuscripts.

Working with journals

The appropriateness in selecting the journal for submission and acceptance of the manuscript should be determined by the experience of an author. The corresponding author must have a rationale in choosing the appropriate journal, and this depends upon the scope of the study and the quality of work performed. Dr. Amitabh Prakash spoke on ‘ Working with journals: Selecting a journal, cover letter, peer review process and impact factor ’ by instructing the audience in assessing the true value of a journal, understanding principles involved in the peer review processes, providing tips on making an initial approach to the editorial office, and drafting an appropriate cover letter to accompany the submission. His presentation defined the metrics that are most commonly used to measure journal quality (e.g., impact factor™, Eigenfactor™ score, Article Influence™ score, SCOPUS 2-year citation data, SCImago Journal Rank, h-Index, etc.) and guided attendees on the relative advantages and disadvantages of using each metric. Factors to consider when assessing journal quality were discussed, and the audience was educated on the ‘green’ and ‘gold’ open access publication models. Various peer review models (e.g., double-blind, single-blind, non-blind) were described together with the role of the journal editor in assessing manuscripts and selecting suitable reviewers. A typical checklist sent to referees was shared with the attendees, and clear guidance was provided on the best way to address referee feedback. The session concluded with a discussion of the potential drawbacks of the current peer review system.

Poster and oral presentations at conferences

Posters have become an increasingly popular mode of presentation at conferences, as it can accommodate more papers per meeting, has no time constraint, provides a better presenter-audience interaction, and allows one to select and attend papers of interest. In Figure 2 , we provide instructions, design, and layout in preparing a scientific poster. In the final presentation, Dr. Sahni provided the audience with step-by-step instructions on how to write and format posters for layout, content, font size, color, and graphics. Attendees were given specific guidance on the format of text on slides, the use of color, font type and size, and the use of illustrations and multimedia effects. Moreover, the importance of practical tips while delivering oral or poster presentation was provided to the audience, such as speak slowly and clearly, be informative, maintain eye contact, and listen to the questions from judges/audience carefully before coming up with an answer.

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g004.jpg

Guidelines and design to scientific poster presentation. The objective of scientific posters is to present laboratory work in scientific meetings. A poster is an excellent means of communicating scientific work, because it is a graphic representation of data. Posters should have focus points, and the intended message should be clearly conveyed through simple sections: Text, Tables, and Graphs. Posters should be clear, succinct, striking, and eye-catching. Colors should be used only where necessary. Use one font (Arial or Times New Roman) throughout. Fancy fonts should be avoided. All headings should have font size of 44, and be in bold capital letters. Size of Title may be a bit larger; subheading: Font size of 36, bold and caps. References and Acknowledgments, if any, should have font size of 24. Text should have font size between 24 and 30, in order to be legible from a distance of 3 to 6 feet. Do not use lengthy notes

PANEL DISCUSSION: FEEDBACK AND COMMENTS BY PARTICIPANTS

After all the presentations were made, Dr. Jagadeesh began a panel discussion that included all speakers. The discussion was aimed at what we do currently and could do in the future with respect to ‘developing a research question and then writing an effective thesis proposal/protocol followed by publication.’ Dr. Jagadeesh asked the following questions to the panelists, while receiving questions/suggestions from the participants and panelists.

  • Does a Post-Graduate or Ph.D. student receive adequate training, either through an institutional course, a workshop of the present nature, or from the guide?
  • Are these Post-Graduates self-taught (like most of us who learnt the hard way)?
  • How are these guides trained? How do we train them to become more efficient mentors?
  • Does a Post-Graduate or Ph.D. student struggle to find a method (s) to carry out studies? To what extent do seniors/guides help a post graduate overcome technical difficulties? How difficult is it for a student to find chemicals, reagents, instruments, and technical help in conducting studies?
  • Analyses of data and interpretation: Most students struggle without adequate guidance.
  • Thesis and publications frequently feature inadequate/incorrect statistical analyses and representation of data in tables/graphs. The student, their guide, and the reviewers all share equal responsibility.
  • Who initiates and drafts the research paper? The Post-Graduate or their guide?
  • What kind of assistance does a Post-Graduate get from the guide in finalizing a paper for publication?
  • Does the guide insist that each Post-Graduate thesis yield at least one paper, and each Ph.D. thesis more than two papers, plus a review article?

The panelists and audience expressed a variety of views, but were unable to arrive at a decisive conclusion.

WHAT HAVE THE PARTICIPANTS LEARNED?

At the end of this fast-moving two-day workshop, the participants had opportunities in learning the following topics:

  • Sequential steps in developing a study protocol, from choosing a research topic to developing research questions and a hypothesis.
  • Study protocols on different topics in their subject of specialization
  • Searching and reviewing the literature
  • Appropriate statistical analyses in biomedical research
  • Scientific ethics in publication
  • Writing and understanding the components of a research paper (IMRaD)
  • Recognizing the value of good title, running title, abstract, key words, etc
  • Importance of Tables and Figures in the Results section, and their importance in describing findings
  • Evidence-based Discussion in a research paper
  • Language and style in writing a paper and expert tips on getting it published
  • Presentation of research findings at a conference (oral and poster).

Overall, the workshop was deemed very helpful to participants. The participants rated the quality of workshop from “ satisfied ” to “ very satisfied .” A significant number of participants were of the opinion that the time allotted for each presentation was short and thus, be extended from the present two days to four days with adequate time to ask questions. In addition, a ‘hands-on’ session should be introduced for writing a proposal and manuscript. A large number of attendees expressed their desire to attend a similar workshop, if conducted, in the near future.

ACKNOWLEDGMENT

We gratefully express our gratitude to the Organizing Committee, especially Professors K. Chinnasamy, B. G. Shivananda, N. Udupa, Jerad Suresh, Padma Parekh, A. P. Basavarajappa, Mr. S. V. Veerramani, Mr. J. Jayaseelan, and all volunteers of the SRM University. We thank Dr. Thomas Papoian (US FDA) for helpful comments on the manuscript.

The opinions expressed herein are those of Gowraganahalli Jagadeesh and do not necessarily reflect those of the US Food and Drug Administration

Source of Support: Nil

Conflict of Interest: None declared.

  • Get started
  • Project management
  • CRM and Sales
  • Work management
  • Product development life cycle
  • Comparisons
  • Construction management
  • monday.com updates

The value of a good research plan

plan of the research

A research plan is a guiding framework that can make or break the efficiency and success of your research project. Oftentimes teams avoid them because they’ve earned a reputation as a dry or actionless document — however, this doesn’t have to be the case.

In this article, we’ll go over the most important aspects of a good research plan and show you how they can be visual and actionable with monday.com Work OS.

Don’t miss more quality content!

Why is the research plan pivotal to a research project.

A research plan is pivotal to a research project because it identifies and helps define your focus, method, and goals while also outlining the research project from start to finish.

This type of plan is often necessary to:

  • Apply for grants or internal company funding.
  • Discover possible research partners or business partners.
  • Take your research from an idea into reality.

It will also control the entire journey of the research project through every stage by defining crucial research questions and the hypothesis (theory) that you’ll strive to prove or disprove.

What goes into a research plan?

The contents of a thorough research plan should include a hypothesis, methodology, and more. There is some variation between academic and commercial research, but these are common elements:

  • Hypothesis:  the problem you are trying to solve and the basis for a theoretical solution. For example, if I reduce my intake of calories, I’ll lose weight.
  • Research questions: research questions help guide your investigation into particular issues. If you were looking into the potential impact of outsourcing production, you might ask something like: how would outsourcing impact our production costs?
  • Research method: the method you’ll use to get the data for your research. For example, a case study, survey, interviews, a clinical trial, or user tests.
  • Definitions: a glossary for the research plan, explaining the terminology that you use throughout the document.
  • Conceptual frameworks:  a conceptual framework helps illustrate what you think you’ll discover with your research. In a sense, it’s a visual representation of a more complex hypothesis.

For commercial plans, there will also likely be a budget and timeline estimate, as well as concrete hypothetical benefits for the company (such as how much money the project should save you).

OK, so you’ve got a handle on the building blocks of a research plan, but how should you actually write it?

How do you write a research plan on monday.com?

The first, and perhaps most crucial part of having a good research plan is having the right medium for creating and sharing it. Using a pre-defined template can also make it much easier to get started.

On monday.com, you can choose from several templates like the Project Proposal Template or better yet the Research Power Tools Template to manage all aspects of your project including important communication with internal and external stakeholders and teammates.

Use your template to:

  • Create workdocs
  • Upload assets
  • Provide feedback
  • Assign task owners
  • Automate communication

The next step in writing a research plan is choosing the topic. To pick the right topic, focus on these factors:

  • What are the priorities of the potential funder/employer, such as the company or institution?
  • Are there any relevant recent studies with results you can build on and explore with further research?
  • Can you creatively adapt your experience — whether post-grad or professional — to make you the natural candidate? They don’t just need to believe in the research project, but also in your ability to manage it successfully.

Do your research, no pun intended. Once you’ve got the topic, you need to work on fleshing out the core ideas with the building blocks we mentioned above.

  • Get specific with your research questions and goals. Don’t go with, “how can we revolutionize our HR practices?” Instead use, “what is the economic and environmental impact of only accepting digital CVs?”
  • Use clear language aimed at gatekeepers.  If it’s a CTO (Chief Technology Officer) or a lab committee, you can use well-known technical terms. If they aren’t technical experts, adjust accordingly.
  • Include preliminary data or highlight similar studies.  For companies, showing that a similar approach helped a competitor is a better argument than an empty assertion.

The recommended length of the plan depends on who you’re sending it to and their expectations. If possible, look at successful examples or directly ask your potential employers about their preferences. Not only do you need the right idea, but you also need to present it in the right way for your research project to have a fighting chance.

What is a good research plan?

A good research plan is one that gets accepted and funded to start doing the research.

If you want to plan a pivotal study, it’s not enough to consider the problem in a vacuum. You also need to evaluate how you can best communicate the value of your project to the gatekeepers.

Consider the entirety of your current situation and what that means for your project.

For example, inputs like funding, staff, IP, and how the scale of the project lines up with your company’s research budget. Or how it aligns with the goals of a University program. If the primary goal of the research is to impact a company or government agency directly, you should consider these stages of research engagement.

Flowchart of research engagement

( Image Source )

  • Inputs: anything from funding and staff to company IP that you need to both run the project and implement any results. Does this line up with the budget?
  • Activities: case studies, trials, surveys, the actual research.
  • Outputs: the final reports, any publications, and raw data.
  • Outcome: how will it directly impact the company, organization, or larger society?
  • Impacts: what are the indirect benefits or downsides?

In an internal research proposal, you can outline these aspects in separate sections. That allows different execs or managers to focus on the details that matter most to them. You must also work to engage stakeholders  and make sure that they understand the importance of your project.

Frequently asked questions

What are the 5 purposes of research.

The 2 primary purposes of research are to gather information or test an existing theory. When broken down further, you can see 5 more specific purposes:

  • Exploratory research  is an early-stage inquiry that explores a topic for further study down the line, like exploring the deep ocean with a submersible vehicle.
  • Descriptive research  aims to explore and describe a specific substance, person, or phenomenon.
  • Explanatory research  is about figuring out the causal relationship, why something happens.
  • Predictive research  is all about trying to predict what might happen in specific situations based on the properties of the research object.
  • Meta-research  looks for overarching insights from multiple sources and tests the validity of common hypotheses.

What is a research work plan?

A research work plan is another name for a research plan, which is a critical component of any research proposal. Universities, labs, and companies use them to evaluate research projects before they decide to accept them.

As a researcher, it’s essential when targeting a funding opportunity of any kind.

What are the methods of research?

There are many research methods ranging from a simple online survey to a high-budget clinical study. Here are some examples of popular data collection methods:

  • Clinical trials
  • Experiments
  • Case studies
  • Observations

Which one is right for your plan depends on your hypothesis, goals, industry regulations, and more.

Create a dynamic research plan

If you want to turn your research project into a reality, you need to go beyond the academic and into management mode.

With a template from monday.com, you can plan out a research project from start to finish. Including goals and objectives, budget estimates, milestones, and more.

Send this article to someone who’d like it.

Examples

Research Plan

plan of the research

Plans, of any kind, help people keep anticipate the things they need to do in the future. For example, a business needs to devise a  business plan so that they may be able to foresee their business goals, and the methods that need to be done in accomplishing each of their smart goals .

Most people believe in the ability of small business plans to avoid disaster and chaos especially when hosting events. Researchers are among those people. When doing a research, most researchers plan for the whole course of their research in order to avoid circumstances which may negatively affect their research.

Market Research Plan Template

Market Research Plan Template

  • Google Docs
  • Apple Pages

Size: 19 KB

Legal Research Plan Template

Legal Research Plan Template

Size: 17 KB

Research Action Plan Template

Research Action Plan Template

Size: 63 KB

Quantitative Research Plan Template

Quantitative Research Plan Template

Size: 152 KB

Research Development Plan Template

Research Development Plan Template

Size: 40 KB

Simple Project Plan Template

Simple Project Plan Template

Marketing Plan Template

Marketing Plan Template

Work Plan Word Template

Work Plan Word Template

Strategic Plan Template

Strategic Plan Template

Editable Action Plan Template

Editable Action Plan Template

Full Research Plan Example

Full Research Example1

Size: 20 kB

Student Research Plan

Student Research Plan

Size: 53 kB

Strategic Research Plan Sample

Strategic Research Sample1

Size: 775 kB

Proposed Research Plan

Proposed Research Plan

Size: 155 kB

What Is a Research Plan?

Research plan, as the name says, is a plan intended to anticipate a potential research project or study, and the potential course of action for the said research.

Research plans usually include the details of the proposed research including a detailed description of the research, the necessary materials and methods to include in the research, desired outcomes or results, proposed funding for the research, and other important details of the various processes the researchers plan on accomplishing for the research project plan or study.

Importance of a Research Plan

Research plans, basically, describe or propose a potential research.

Like other plans, a strategic plan keeps the researchers organized while doing the research. The researchers will also be able to craft a timeline for the duration of their research and allocate their time properly. Another thing to consider is that research plans constantly remind the researchers of their goals and what they need to do in order to reach those goals. With research plans, researchers will be able to foresee the things that might go wrong and plan for the necessary steps in managing such things.

So basically, if you want your research to go smoothly without sacrificing much time and resources, you need to have a research plan.

Preliminary Research Plan Sample

Preliminary Research Sample1

Size: 31 kB

College Research Plan

College Research Plan

Action Research Plan Example

Action Research Example

Size: 11 kB

How to Write a Research Plan

If you’re a researcher, how you write your research plan will be entirely up to you. But for beginners, here are some tips which might be useful when writing your research plan:

  • Identify the purpose of your research plan.  You just need to answer the question: What do I want to achieve in creating a research plan?
  • Plan the strategies of attaining your goals. What do researchers usually do in a research? List the things you need to do in order for your research to be successful. Find the best strategies to fit your research plan.
  • Organize your strategies. Create an outline of the things you want to do. Create a timeline and allocate enough time for each strategy to be done.
  • Keep it specific. Only include things that are related to the simple business plan . Do not include unnecessary ones which may just cause you confusion.
  • Keep it concise.  You need to keep your plan as concise as you can. Sure you might need a few pages, but maybe not more than three.
  • Be realistic. Do not include unrealistic expectations and desired outcomes. Keep your feet on the ground.
  • Revise and improve your plan.  You don’t need to do much—just check for errors and maybe things to add, and you’re done!

Twitter

Text prompt

  • Instructive
  • Professional

Create a study plan for final exams in high school

Develop a project timeline for a middle school science fair.

Female medical professional reviewing results with a patient and caregiver.

Improving the lives of all people through cancer research

For people affected by cancer.

Cancer patient and caregiver speaking with a doctor.

NCI is the nation’s trusted source for cancer information. We are here for you with information about causes and risk factors, symptoms, how cancer is diagnosed, and treatment options.

  • Find a Cancer Type
  • Side Effects
  • Causes & Prevention
  • Diagnosis & Staging
  • Find a Clinical Trial

For Researchers

Female researcher writes on a sample vial while sitting by a microscope.

Support for the best science underpins everything NCI does. Explore our resources to help researchers conduct their work and apply for funding and training opportunities.

  • Funding Opportunities
  • Resources for Researchers
  • Apply for a Grant
  • Training at NCI
  • Find a Research Contact
  • Key NCI Initiatives

Featured News and Research

A conceptual cartoon meant to represent the translation of proteogenomic data to drug targets.

The study, which used data from NCI’s CPTAC, may fuel development of new cancer drugs.

Illustration of a retrovirus infecting a host cell. Its viral RNA converts into DNA and becomes part of the host cell's DNA. The cell produces more retroviruses that can go on to infect other cells.

Researchers have found the DNA fragment helps turn on cancer-related genes.

An image of a female researcher in the lab with several students to her left and right.

The grant program supports researchers, and their students, at smaller institutions.

Child Patient with Bear

Childhood Cancer Data Initiative (CCDI)

CCDI addresses the critical need to collect, analyze, and share childhood cancer data.

Illustration depicting a silhouette of ten people with different ages, backgrounds, and abilities in front of a centrally illuminated blue and red background. A connected series of people icons throughout the image represents data collected from individuals and groups.

NCI Fiscal Year 2026 Annual Plan & Professional Judgment Budget Proposal

Each year, NCI prepares a plan for advancing cancer research and proposes the budget required to fund a broad research portfolio.

Representative on a headset helping a patient who has called in for assistance

Get Answers

Connect with a cancer information specialist at 1-800-4-CANCER, through live chat, or by email.

Our Organization

Information about NCI Director Dr. W. Kimryn Rathmell and other senior NCI leaders.

National Cancer Institute Shady Grove campus.

NCI has 30 divisions, offices, and centers who work together to build, maintain, and enhance a cohesive and comprehensive cancer research agenda.

plan of the research

NCI relies on advisory committees to provide advice on the National Cancer Program, NCI scientific priorities, and more.

U.S. flag

An official website of the Department of Health and Human Services

AHRQ: Agency for Healthcare Research and Quality

Browse Topics

Priority populations.

  • Children/Adolescents
  • Racial/Ethnic Minorities
  • Rural/Inner-City Residents
  • Special Healthcare Needs
  • Clinicians & Providers
  • Data & Measures
  • Digital Healthcare Research
  • Education & Training
  • Hospitals & Health Systems
  • Prevention & Chronic Care
  • Quality & Patient Safety

Publications & Products

  • AHRQ Publishing and Communications Guidelines
  • Search Publications

Research Findings & Reports

  • Evidence-based Practice Center (EPC) Reports
  • Fact Sheets
  • Grantee Final Reports: Patient Safety
  • Making Healthcare Safer Report
  • National Healthcare Quality and Disparities Reports
  • Technology Assessment Program
  • AHRQ Research Studies

National Healthcare Quality and Disparities Report

Latest available findings on quality of and access to health care

Data & Analytics

  • Data Infographics
  • Data Visualizations
  • Data Innovations
  • All-Payer Claims Database
  • Consumer Assessment of Healthcare Providers and Systems (CAHPS®) Program
  • Healthcare Cost and Utilization Project (HCUP)
  • Medical Expenditure Panel Survey (MEPS)
  • National Healthcare Quality and Disparities Report Data Tools
  • AHRQ Quality Indicator Tools for Data Analytics
  • United States Health Information Knowledgebase (USHIK)
  • Data Sources Available from AHRQ

Funding & Grants

Notice of funding opportunities, research policies.

  • Notice of Funding Opportunity Guidance
  • AHRQ Grants Policy Notices
  • AHRQ Informed Consent & Authorization Toolkit for Minimal Risk Research
  • HHS Grants Policy Statement
  • Federal Regulations & Authorities
  • Federal Register Notices
  • AHRQ Public Access Policy
  • Protection of Human Subjects

Funding Priorities

  • Special Emphasis Notices
  • Staff Contacts

Training & Education Funding

Grant application, review & award process.

  • Grant Application Basics
  • Application Forms
  • Application Deadlines & Important Dates
  • AHRQ Tips for Grant Applicants
  • Grant Mechanisms & Descriptions
  • Application Receipt & Review
  • Study Sections for Scientific Peer Review
  • Award Process

Post-Award Grant Management

  • AHRQ Grantee Profiles
  • Getting Recognition for Your AHRQ-Funded Study
  • Grants by State
  • No-Cost Extensions (NCEs)

AHRQ Grants by State

Searchable database of AHRQ Grants

AHRQ Projects funded by the Patient-Centered Outcomes Research Trust Fund.

  • Press Releases
  • AHRQ Social Media
  • Impact Case Studies
  • AHRQ News Now
  • AHRQ Research Summit on Diagnostic Safety
  • AHRQ Research Summit on Learning Health Systems
  • National Advisory Council Meetings
  • AHRQ Research Conferences
  • AHRQ's 35th Anniversary
  • Mission and Budget
  • AHRQ's Core Competencies
  • National Advisory Council
  • Careers at AHRQ
  • Maps and Directions
  • Other AHRQ Web Sites
  • Other HHS Agencies
  • Testimonials

Organization & Contacts

  • Centers and Offices
  • Organization Chart
  • Key Contacts

Facebook

eCare Plan Videos

Challenges of Managing Multiple Chronic Conditions

Challenges of Managing Multiple Chronic Conditions

One patient provides a personal story on how she manages her multiple chronic conditions.

Creating a Care Plan

Creating a Care Plan

An explanation of what a care plan is and how patients can develop and follow one.

Your Care Plan

Your Care Plan

A care plan can help with communication between the health care team and patient.

Go back to top

  • Skip to main content
  • Keyboard shortcuts for audio player

NPR fact-checked the Harris-Trump presidential debate. Here's what we found

Vice President and Democratic presidential candidate Kamala Harris and former President and Republican presidential candidate Donald Trump speak during a presidential debate.

Vice President and Democratic presidential candidate Kamala Harris and former President and Republican presidential candidate Donald Trump speak during a presidential debate. Saul Loeb/AFP via Getty Images hide caption

Vice President Harris and former President Donald Trump faced off Tuesday in their first — and possibly only — debate of the 2024 campaign, taking questions on key issues like the border, the economy and abortion.

With the candidates virtually tied in the polls, and just 55 days until Election Day, Trump and Harris sought to define their visions for America in front of a national audience and deflect attacks from the other side.

NPR reporters fact-checked the candidates' claims in real time . Here's what they found:

TRUMP: "I had no inflation, virtually no inflation. They had the highest inflation, perhaps in the history of our country, because I've never seen a worse period of time. People can't go out and buy cereal or bacon or eggs or anything else."

Inflation soared to a four-decade high of 9.1% in 2022, according to the consumer price index. While inflation has since fallen to 2.9% (as of July), prices — particularly food prices — are still higher than many Americans would like.

Other countries have also faced high inflation in the wake of the pandemic, as tangled supply chains struggled to keep pace with surging demand. Russia’s invasion of Ukraine also fueled inflation by driving up energy and food prices worldwide.

Government spending in the U.S. under both the Biden-Harris administration and Trump also may have contributed, putting more money in people’s pockets and enabling them to keep spending in the face of high prices.

While high prices are a source of frustration for many Americans, the average worker has more buying power today than she did before the pandemic. Since February 2020 (just before the pandemic took hold in the U.S.), consumer prices have risen 21.6% while average wages have risen 23%.

Many prices were depressed early in the pandemic, however, so the comparison is less flattering if you start the clock when President Biden and Vice President Harris took office. Since early 2021, consumer prices have risen 19.6%, while average wages have risen 16.9%. Wage gains have been outpacing price increases for over a year, so that gap should eventually close.

— NPR economics correspondent Scott Horsley

In her Instagram post, Taylor Swift said she was voting for Kamala Harris because

2024 Election

Taylor swift endorses kamala harris in instagram post after the debate.

HARRIS: "Donald Trump left us the worst unemployment since the Great Depression."

At the height of the Great Depression in 1933, the national unemployment rate was near 25%, according to the Franklin D. Roosevelt Presidential Library.

At the start of the COVID pandemic, the unemployment rate peaked at 14.8% in April 2020, a level not seen since 1948, according to the Congressional Research Service.

But by the time Trump left office, unemployment had fallen to a lower, but still elevated, level. The January 2021 unemployment rate was 6.3%.

— NPR producer Lexie Schapitl

Immigration

TRUMP: "You see what's happening with towns throughout the United States. You look at Springfield, Ohio, you look at Aurora in Colorado. They are taking over the towns. They're taking over buildings. They're going in violently. These are the people that she and Biden let into our country, and they're destroying our country. They're dangerous. They're at the highest level of criminality, and we have to get them out."

Trump attacked Harris and Biden's records on immigration, arguing that they're failing to stem people from other countries from entering the U.S. and causing violence.

In the last two years, more than 40,000 Venezuelan immigrants have arrived in the Denver metro area. And it is true that many now live in Aurora.

A few weeks ago, a video of gang members in an Aurora, Colo., apartment building had right-wing media declaring the city's takeover by Venezuelan gangs. NPR looked into these claims .

A group of Indian and Haitian immigrants arrive at a bus stop in Plattsburgh, N.Y. on a Saturday afternoon in August. The migrants were received by Indian drivers who take them to New York City for a fee.

Indian migrants drive surge in northern U.S. border crossings

Shortly after the video appeared, Colorado's Republican Party sent a fundraising letter claiming the state is under violent attack, and Venezuelan gangs have taken over Aurora.

It's also true Aurora police have recently arrested 10 members of a Venezuelan gang called Tren de Aragua. But Aurora's interim police chief, Heather Morris, says there's no evidence of a gang takeover of apartment buildings in her city.

What's more, violent crime — including murder, robbery and rape — is way down nationwide, according to the most recent data from the FBI . Notably, analysts predict violent crime rates this year will fall back down to where they were before they surged during the pandemic and may even approach a 50-year low.

Trump also claims that migrants are driving up crime rates in the U.S. That is not true. Researchers from Stanford University found that since the 1960s, immigrants have been 60% less likely to be incarcerated than people born in the U.S. The Cato Institute, a libertarian think tank, found undocumented immigrants in Texas were 37% less likely to be convicted of a crime.

— NPR immigration correspondent Jasmine Garsd and criminal justice reporter Meg Anderson

TRUMP: "In Springfield, they're eating the dogs. The people that came in, they're eating the cats. They're eating the pets of the people that live there."

This remark refers to a debunked, dehumanizing claim that Haitian migrants living in Springfield, Ohio, are abducting pets and eating them .

This photo shows Sen. JD Vance of Ohio, the Republican vice presidential nominee, speaking to reporters in front of the border wall with Mexico on Sept. 6 in San Diego. Wearing jeans and a white shirt, he's standing against a blue sky with white clouds.

Untangling Disinformation

Jd vance spreads debunked claims about haitian immigrants eating pets.

The claim, which local police say is baseless, first circulated among far-right activists, local Republicans and neo-Nazis before being picked up by congressional leaders, vice presidential candidate JD Vance and others. A well-known advocate for the Haitian community says she received a wave of racist harassment after Vance shared the theory on social media.

The Springfield News-Sun reported that local police said that incidents of pets being stolen or eaten were "not something that's on our radar right now." The paper said the unsubstantiated claim seems to have started with a post in a Springfield Facebook group that was widely shared across social media.

The claim is the latest example of Trump leaning into anti-immigrant rhetoric. Since entering the political arena in 2015, Trump accused immigrants of being criminals, rapists, or "poisoning the blood of our nation."

— NPR immigration correspondent Jasmine Garsd

TRUMP: "A lot of these illegal immigrants coming in, [Democrats] are trying to get them to vote."

It is illegal for noncitizens to vote in federal elections, and there is no credible evidence that it has happened in significant numbers, or that there is an effort underway to illegally register undocumented immigrants to vote this election.

Voter registration forms require voters to sign an oath — under penalty of perjury — that they are U.S. citizens. If a noncitizen lies about their citizenship on a registration form and votes, they have created a paper trail of a crime that is punishable with jail time and deportation.

“The deterrent is incredibly strong,” David Becker, executive director of the Center for Election Innovation and Research, told NPR.

Yasmelin Velazquez, 35, from Venezuela sits with her sons Jordan Velazquez, 3, (L) and Jeremias Velazquez, 2, (R) while selling souvenirs in Ciudad Juárez, Chihuahua state, Mexico on Saturday, June 29, 2024. Velazquez is part of a growing number of migrants staying in Juárez and working while trying to get an appointment via the CBP One application.

Illegal crossings hit Biden-era low as migrants wait longer for entry

Election officials routinely verify information on voter registration forms, which ask registrants for either a driver’s license number or the last four digits of Social Security numbers.

In 2016, the Brennan Center for Justice surveyed local election officials in 42 jurisdictions with high immigrant populations and found 30 cases of suspected noncitizens voting out of 23.5 million votes cast, or 0.0001%.

Georgia Secretary of State Brad Raffensperger launched an audit in 2022 that found fewer than 1,700 suspected noncitizens had attempted to register to vote over the past 25 years. None were able to vote.

— NPR disinformation reporter Jude Joffe-Block

TRUMP: "[Harris] was the border czar. Remember that she was the border czar."

Republicans have taken to calling Harris the "border czar" as a way to blame her for increased migration to the U.S. and what they see as border security policy failures of the Biden administration.

There is no actual "border czar" position. In 2021, President Biden tasked Harris with addressing the root causes of migration from Central America.

Then-Sen. Kamala Harris, D-Calif., joins a 2018 U.S. Capitol protest against threats by then-President Donald Trump against Central American asylum-seekers to separate children from their parents along the southwest border to deter migrants from crossing into the United States.

As Republicans attack Harris on immigration, here’s what her California record reveals

The "root causes strategy ... identifies, prioritizes, and coordinates actions to improve security, governance, human rights, and economic conditions in the region," the White House said in a statement. "It integrates various U.S. government tools, including diplomacy, foreign assistance, public diplomacy, and sanctions."

While Harris has been scrutinized on the right, immigration advocates have also criticized Harris, including for comments in 2021 where she warned prospective migrants, "Do not come."

TRUMP: "You could do abortions in the seventh month, the eighth month, the ninth month, and probably after birth."

As ABC News anchor Linsey Davis mentioned during her real-time fact check, there is no state where it is legal to kill a baby after birth (Trump called it "execution"). A report from KFF earlier this year also noted that abortions “after birth” are illegal in every state.

According to the Pew Research Center, the overwhelming majority of abortions — 93% — take place during the first trimester. Pew says 1% take place after 21 weeks. Most of those take place before 24 weeks, the approximate timeline for fetal viability, according to a report by KFF Health News.

Donald Trump listens during the presidential debate with Kamala Harris.

Trump repeats the false claim that Democrats support abortion 'after birth' in debate

A separate analysis from KFF earlier this year noted that later abortions are expensive to obtain and offered by relatively few providers, and often occur because of medical complications or because patients face barriers earlier in their pregnancies.

“Nowhere in America is a woman carrying a pregnancy to term and asking for an abortion. That isn’t happening; it’s insulting to the women of America,” Harris said.

Harris also invoked religion in her response, arguing that “one does not have to abandon their faith” to agree that the government should not control reproductive health decisions.

As Davis also noted, Trump has offered mixed messages about abortion over the course of the campaign. He has bragged about his instrumental role in overturning Roe v. Wade , while appearing to backpedal on an issue that polling makes clear is a liability for Republicans.

— NPR political correspondent Sarah McCammon

Afghanistan

TRUMP: The U.S. withdrawal from Afghanistan "was one of the most incompetently handled situations anybody has ever seen."

Trump and Republicans in Congress say President Biden is to blame for the fall of Kabul to the Taliban three years ago, and the chaotic rush at the airport where 13 U.S. troops died in a suicide bomb attack that killed nearly 200 Afghan civilians trying to flee. Of late, Republicans have been emphasizing Harris’ role . But the Afghanistan war spanned four U.S. presidencies , and it's important to note that it was the Trump administration that signed a peace deal that was basically a quick exit plan.

Trump regularly claims there were no casualties in Afghanistan for 18 months under his administration, and it’s not true, according to Pentagon records.

— NPR veterans correspondent Quil Lawrence

Military policy

HARRIS: “There is not one member of the military who is in active duty in a combat zone in any war zone around the world for the first time this century.”

This is a common administration talking point, and it's technically true. But thousands of troops in Iraq and on the Syrian border are still in very dangerous terrain. U.S. troops died in Jordan in January on a base that keeps watch over the war with ISIS in Syria.

HARRIS: "I will not ban fracking. I have not banned fracking as vice president United States, and in fact, I was the tie-breaking vote on the inflation Reduction Act which opened new leases for fracking."

When she first ran for president in 2019, Harris had said she was firmly in favor of banning fracking — a stance she later abandoned when she joined President Biden’s campaign as his running mate.

In an interview with CNN last month, Harris attempted to explain why her position has changed from being against fracking to being in favor of it.

“What I have seen is that we can grow, and we can increase a clean energy economy without banning fracking,” Harris told CNN’s Dana Bash.

A shale gas well drilling site is pictured in 2020 in St. Mary's, Pa., a key battleground state where the fracking industry has brought in jobs.

Harris says she won't ban fracking. What to know about the controversial topic

Under the Biden-Harris administration, the U.S. produced a record amount of oil last year — averaging 12.9 million barrels per day. That eclipsed the previous record of 12.3 million barrels per day, set under Trump in 2019. 2023 was also a record year for domestic production of natural gas . Much of the domestic boom in oil and gas production is the result of hydraulic fracturing or “fracking” techniques .

In addition to record oil and gas production, the Biden-Harris administration has also coincided with rapid growth of solar and wind power . Meanwhile, coal has declined as a source of electricity.

Health care

TRUMP: "I had a choice to make: Do I save [the Affordable Care Act] and make it as good as it can be, or do I let it rot? And I saved it."

During his presidency, Trump undermined the Affordable Care Act in many ways — for instance, by slashing funding for advertising and free "navigators" who help people sign up for a health insurance plan on HealthCare.gov. And rather than deciding to "save" the ACA, he tried hard to get Congress to repeal it, and failed. When pushed Tuesday on what health policy he would put in its place, he said he has "concepts of a plan."

North Carolina Department of Health and Human Services secretary Kody Kinsley discusses the impact of Medicaid expansion on prescriptions during a news conference at the North Carolina Executive Mansion in Raleigh, N.C., on Friday, July 12, 2024. When the state expanded access to Medicaid in December, more than 500,000 residents gained access to health coverage.

Shots - Health News

Amid medicaid's 'unwinding,' many states work to expand health care access.

The Biden administration has reversed course from Trump's management of the Affordable Care Act. Increased subsidies have made premiums more affordable in the marketplaces, and enrollment has surged. The uninsurance rate has dropped to its lowest point ever during the Biden administration.

The Affordable Care Act was passed in 2010 and is entrenched in the health care system. Republicans successfully ran against Obamacare for about a decade, but it has faded as a campaign issue this year.

— NPR health policy correspondent Selena Simmons-Duffin

Donald Trump Tax Plan Ideas: Details & Analysis

Topline preliminary estimates.

  • 10-Year Revenue (Billions) -$1,325
  • Long-run GDP -0.2%
  • Long-Run Wages +0.6%
  • Long-Run FTE Jobs -387,000

Tax Foundation General Equilibrium Model, September 2024

Former President Donald Trump has not released a fully detailed tax A tax is a mandatory payment or charge collected by local, state, and national governments from individuals or businesses to cover the costs of general government services, goods, and activities. plan as part of his current bid for reelection, but he has floated several tax policy ideas. Among various (sometimes competing) ideas, he seeks to extend the expiring 2017 Tax Cuts and Jobs Act ( TCJA ) changes, further reduce the corporate income tax A corporate income tax (CIT) is levied by federal and state governments on business profits. Many companies are not subject to the CIT because they are taxed as pass-through businesses , with income reportable under the individual income tax . rate in some form, exempt tips and Social Security benefits from tax, impose a 10 percent or higher universal baseline tariff on all imports, and raise current tariffs on China to at least 60 percent . He has also discussed replacing the individual income tax An individual income tax (or personal income tax) is levied on the wages, salaries, investments, or other forms of income an individual or household earns. The U.S. imposes a progressive income tax where rates increase with income. The Federal Income Tax was established in 1913 with the ratification of the 16th Amendment . Though barely 100 years old, individual income taxes are the largest source of tax revenue in the U.S. with tariffs.

The impact of Trump’s proposals will vary significantly depending on which combination of policies are pursued. The economic effects could range from slightly positive to slightly negative, while the revenue effect ranges across deficit increases of different magnitudes. As with any economic model, ours does not capture all the possible effects of the proposed tax and tariff Tariffs are taxes imposed by one country on goods or services imported from another country. Tariffs are trade barriers that raise prices and reduce available quantities of goods and services for U.S. businesses and consumers. policies, such as changes in compliance costs, the geopolitical implications of further trade wars, the impact of different tax burdens on different sectors and types of investments, or how uncertainty affects economic decision-making.

Our estimates illustrate that Trump’s proposed tariffs threaten to offset the economic benefits of his proposed tax policy changes, while falling short of offsetting the tax revenue losses. Trump’s combination of policies could therefore shrink economic output and grow the national debt.

plan of the research

Modeling the Major Trump Tax Proposals

Because Trump has suggested various ranges for his proposed tax and tariff policies, we have estimated a range of potential economic and revenue effects based on the different policies he has discussed.

For tax policy, we model the following major proposals:

  • Permanence for the expiring individual provisions of the TCJA
  • Permanence for the expiring estate tax An estate tax is imposed on the net value of an individual’s taxable estate, after any exclusions or credits , at the time of death. The tax is paid by the estate itself before assets are distributed to heirs. provisions of the TCJA
  • Permanence for the business tax phaseouts of the TCJA (100 percent bonus depreciation Bonus depreciation allows firms to deduct a larger portion of certain “short-lived” investments in new or improved technology, equipment, or buildings in the first year. Allowing businesses to write off more investments partially alleviates a bias in the tax code and incentivizes companies to invest more, which, in the long run, raises worker productivity, boosts wages, and creates more jobs. , R&D expensing, and an EBITDA-based interest limitation)
  • Lowering the corporate tax rate to 20 percent
  • Lowering the corporate tax rate to 15 percent
  • Exempting tips from income taxes
  • Exempting Social Security benefits from income taxes
  • Eliminating the green energy subsidies in the Inflation Inflation is when the general price of goods and services increases across the economy, reducing the purchasing power of a currency and the value of certain assets. The same paycheck covers less goods, services, and bills. It is sometimes referred to as a “ hidden tax ,” as it leaves taxpayers less well-off due to higher costs and “bracket creep,” while increasing the government’s spending power. Reduction Act

For tariff policy, we model the following major proposals:

  • Raising current Section 301 tariffs on China to 60 percent
  • Imposing a universal tariff on all US imports of 10 percent
  • Foreign retaliation on US exports, in-kind, matching the 60 percent and 10 percent tariffs
  • Imposing a universal tariff on all US imports of 20 percent

Note that we do not model Trump’s recent proposal that would restrict the 15 percent corporate tax rate to a subset of firms engaged only in domestic production, as it lacks specifics; doing so would reduce the economic and revenue effects of the policy. We also exclude from our analysis the idea floated by vice presidential candidate Sen. JD Vance to increase the child tax credit A tax credit is a provision that reduces a taxpayer’s final tax bill, dollar-for-dollar. A tax credit differs from deductions and exemptions, which reduce taxable income, rather than the taxpayer’s tax bill directly. to $5,000.

Debt, Economic, and Revenue Effects of Trump’s Major Tax and Tariff Proposals

Using the Tax Foundation’s General Equilibrium Model, we estimate the major tax changes proposed by Trump would increase long-run GDP by about 1.5 percent. Permanence for the individual, estate, and business tax components of the TCJA are the largest drivers, together increasing long-run GDP by 1.1 percent; lowering the corporate tax rate to 20 percent (+0.1 percent GDP), further lowering it to 15 percent (another +0.3 percent GDP), and exempting Social Security and tips from income tax (+0.1 percent of GDP), make up the remainder. We estimate that repealing the green energy tax credits has no long-run effect on GDP because the policies are scheduled to expire.

The gross tax cuts would decrease federal tax revenue over the 10-year budget window by $6.1 trillion on a conventional basis and by $5.3 trillion on a dynamic basis. Repealing the IRA green energy tax credits would increase revenue by $921 billion, resulting in a net revenue impact from tax policies that would decrease federal tax revenue by $5.2 trillion on a conventional basis and by $4.4 trillion on a dynamic basis.

PolicyGDPGNPCapital StockPre-Tax WagesFTE Employment10-Year Revenue, Conventional10-Year Revenue, Dynamic
Make TCJA Individual Changes Permanent0.5%0.8%-0.1%-0.1%792,000-$3,392.1-$2,968.9
Make TCJA Estate Tax Changes PermanentLess than +0.05%0.1%0.1%Less than +0.05%9000-$205.6-$186.1
Make TCJA Business Changes Permanent0.5%0.4%1.0%0.5%115,000-$654.3-$406.2
Exempt Social Security from Income Tax0.1%0.1%0.1%0.02%%53,000-$1,196.9-$1,180.6
Exempt Tips from Income TaxLess than +0.05%Less than +0.05%Less than +0.05%Less than +0.05%21,000-$118.0-$117.4
Lower the Corporate Tax Rate from 21% to 20%0.1%0.1%0.1%Less than +0.05%11,000-$110.9-$89.0
Lower the Corporate Tax Rate from 20% to 15%0.3%0.2%0.5%0.2%50,000-$452.4-$350.4
Eliminate IRA Green Energy Tax Credits0.0%0.0%0.0%0.0%0$921.0$921.0
Increase Tariffs on China to 60% and Impose a 10% Universal Tariff on All Goods-0.8%-0.9%-0.6%0.0%-674,000$2,592.9$2,282.4
Increase Universal Tariff from 10% to 20%-0.5%-0.5%-0.4%0.0%-402,000$1,290.9$1,088.1
Impact of Change in Deficit0.0%-0.2%0.0%0.0%000
Foreign Retaliation to 10% Universal and 60% China Tariffs-0.4%-0.5%-0.4%0.0%-362,000$0.0-$222.2
Total-0.2%-0.4%0.3%0.6%-387,000-$1,325.4-$1,229.2

We estimate the proposed tariffs of 60 percent on China and an additional 10 percent on all imports would reduce long-run GDP by nearly 0.8 percent. Further lifting the 10 percent tariff to 20 percent would take the combined economic effect of the tariff proposals to a 1.3 percent drop in long-run output.

To illustrate the potential harms from foreign retaliation, we estimate the impact of a 10 percent tariff on all goods exports plus additional in-kind retaliation on US goods exports to China. We estimate that combination would reduce US GDP by an additional 0.4 percent in the long run while raising no additional revenue for the US government.

We estimate the 10 percent universal tariff would raise about $2 trillion over 10 years, while the increased tariffs on China would raise about $560 billion. Lifting the universal tariffs to 20 percent would raise almost $1.3 trillion in additional revenue. The total revenue increase from tariffs ranges from $2.6 trillion to $3.8 trillion on a conventional basis and from $2.1 trillion to $3.1 trillion on a dynamic basis, factoring in foreign retaliation as well.

Altogether, we estimate the combination of proposed tax and tariff changes, including foreign retaliation, would reduce long-run GDP by nearly 0.2 percent and hours worked by 387,000 full-time equivalent jobs. Both the capital stock and wages would still rise—by 0.3 percent and 0.6 percent, respectively—as the better treatment of capital investment from permanence for 100 percent bonus deprecation and R&D expensing dominates those economic channels. Depending on which combination of proposals Trump ultimately pursues, the overall impact on GDP could range from slightly positive to slightly negative for the US economy.

Under the full suite of tariffs and IRA repeal, we estimate the deficit would rise by $1.3 trillion over the next decade on a conventional basis. After accounting for economic impacts, we estimate the deficit would rise by $1.2 trillion over the next decade. The increase in the budget deficit would lead to higher interest payments made to foreigners, resulting in a reduction in American income (GNP) of 0.2 percent, driving a wedge between the effect on American output and American incomes. The extent to which the budget deficit rises hinges on the exact combination of proposals, and a larger deficit increase would result in a larger decrease in American income.

We estimate that on both a conventional and dynamic basis, debt-to-GDP would rise under the combination of policies proposed by Trump. On a conventional basis, it would rise by 10.6 percentage points and on a dynamic basis, by 9.4 percentage points.

GDP-0.2%
GNP-0.4%
Capital Stock0.3%
Pre-Tax Wages0.6%
FTE Employment-387,000
Baseline Debt-to-GDP Ratio, 2065201.2%
Conventional Debt-to-GDP Ratio, 2065211.8%
Dynamic Debt-to-GDP Ratio, 2065210.6%

Overall, Trump’s policies would reduce distortions in one part of the tax system, namely income taxes, only to replace them with new distortions in another part of the tax system, namely tariffs. The combination of policies under consideration risks shrinking the economy and growing the debt.

Where Do the Candidates Stand on Taxes?

Tax policy has become a significant focus of the US 2024 presidential election.

Modeling Notes

We assume TCJA permanence entails the following changes, described here in our recent publication :

  • Lower rates and reconfigured brackets
  • Larger standard deduction The standard deduction reduces a taxpayer’s taxable income by a set amount determined by the government. It was nearly doubled for all classes of filers by the 2017 Tax Cuts and Jobs Act ( TCJA ) as an incentive for taxpayers not to itemize deductions when filing their federal income taxes .
  • Eliminated personal exemption
  • Larger child tax credit
  • Limited itemized deductions, including for state and local taxes paid, home mortgage interest, and miscellaneous
  • Eliminated Pease limitation
  • Larger AMT exemption and exemption phaseout thresholds
  • 20 percent deduction for pass-through business A pass-through business is a sole proprietorship, partnership, or S corporation that is not subject to the corporate income tax ; instead, this business reports its income on the individual income tax returns of the owners and is taxed at individual income tax rates. income and limitation on noncorporate losses
  • Larger estate tax exemption A tax exemption excludes certain income, revenue, or even taxpayers from tax altogether. For example, nonprofits that fulfill certain requirements are granted tax-exempt status by the Internal Revenue Service ( IRS ), preventing them from having to pay income tax.
  • 100 percent bonus depreciation Depreciation is a measurement of the “useful life” of a business asset, such as machinery or a factory, to determine the multiyear period over which the cost of that asset can be deducted from taxable income . Instead of allowing businesses to deduct the cost of investments immediately (i.e., full expensing ), depreciation requires deductions to be taken over time, reducing their value and discouraging investment.
  • Expensing for research and development
  • Deduction for net interest limitation based on EBITDA

To model the economic effects of tariffs, we treat them as an excise tax An excise tax is a tax imposed on a specific good or activity. Excise taxes are commonly levied on cigarettes, alcoholic beverages, soda , gasoline , insurance premiums, amusement activities, and betting, and typically make up a relatively small and volatile portion of state and local and, to a lesser extent, federal tax collections. applied to US imports. As an excise tax, tariffs create a wedge between the price a consumer pays and the price a producer receives. In Tax Foundation’s modeling, we hold the price level constant, passing tariffs back to the factors of production. In other words, tariffs reduce the amount of revenue businesses have to compensate their workers and shareholders, resulting in a reduction in real incomes.

To model the revenue effects of US-imposed tariffs, we first take the affected imports based on 2023 levels multiplied by the inclusive tariff rate (consistent with the revenue estimating convention that the price level remains constant). We then apply a noncompliance rate of 15 percent, based on the average tax gap The tax gap is the difference between taxes legally owed and taxes collected. The gross tax gap in the U.S. accounts for at least 1 billion in lost revenue each year, according to the latest estimate by the IRS (2011 to 2013), suggesting a voluntary taxpayer compliance rate of 83.6 percent. The net tax gap is calculated by subtracting late tax collections from the gross tax gap: from 2011 to 2013, the average net gap was around 1 billion. , an elasticity of import demand with respect to price of -0.997 , and income and payroll tax A payroll tax is a tax paid on the wages and salaries of employees to finance social insurance programs like Social Security, Medicare, and unemployment insurance. Payroll taxes are social insurance taxes that comprise 24.8 percent of combined federal, state, and local government revenue, the second largest source of that combined tax revenue. offsets of approximately 27 percent to 29 percent. On a dynamic basis, revenue falls further as tariffs result in a reduction in real incomes and output.

Stay informed on the tax policies impacting you.

Subscribe to get insights from our trusted experts delivered straight to your inbox.

Mobile Menu Overlay

The White House 1600 Pennsylvania Ave NW Washington, DC 20500

NSTC: Environmental Justice Science, Data, and Research   Plan

NSTC: Environmental Justice Science, Data, and Research Plan can be found here .

Stay Connected

We'll be in touch with the latest information on how President Biden and his administration are working for the American people, as well as ways you can get involved and help our country build back better.

Opt in to send and receive text messages from President Biden.

How Carolina is complying with UNC System’s DEI policy

Support for faculty, staff and student success and well-being will continue across the University.

Old Well in front of trees and sunset

On Sept. 11, the University of North Carolina Board of Governors received reports from UNC System schools, including Carolina ’s plan , about how they will comply with the Equality Within the University of North Carolina policy. This measure repealed and replaced the 2019 policies that established diversity and inclusion officers and regulations on UNC System campuses. The policy change was made to support academic freedom, equal opportunity and institutional neutrality. 

Vice Provost Leah Cox, the University’s former chief diversity officer, organized the team overseeing the development of UNC-Chapel Hill’s plan. Chancellor Lee H. Roberts and Provost Chris Clemens tasked the group with developing a compliant plan that upholds the University’s commitment to being a place where all can thrive in their working and learning environments. Cox, along with Human Resources and University Counsel, met with schools and units to redirect personnel and activities toward overall student and employee success. 

Carolina’s plan maintains the University’s mission to provide support for student success, well-being and a sense of belonging.  The University will continue to encourage people from all walks of life to see their paths to Carolina and once they are here, provide a welcoming environment that supports their success.     

Below are some FAQs on how Carolina is complying with the policy.  

How does this policy affect Carolina faculty and staff?

The plan eliminated 20 DEI positions campuswide, including positions in the central University Office for Diversity and Inclusion. Most employees affected by the position eliminations were offered and accepted different positions in other parts of campus or within their schools or units.  A total of 27 positions were realigned, with duties and job descriptions shifting to comply with the new policy. Some school- or unit-level DEI offices have been eliminated or reconfigured to focus on student success, employee well-being or community building. 

What are the budget implications?

The elimination of positions resulted in savings in some areas across campus. For example, 55% of the $1.8 million budget of the former central DEI office will be reinvested in other positions and programs to support student success and faculty/staff professional development and well-being. The other 45% of the budget will shift to other divisions to cover the salaries of employees assigned to other divisions.  

How does this affect research, teaching and student organizations?

Research initiatives, faculty teaching and student-led organizations are not impacted by the new policy.  

What about centers that serve specific groups?

The Academic and Community Engagement Centers will remain a vital part of the campus community, and Carolina will continue to implement programming and services that positively influence the success of students from all backgrounds. 

Where are some of the programs relocating within the University?

Student success and employee engagement programs supported by the former DEI office will shift to other units that are focused on success. For example, Student Affairs will coordinate the Martin Luther King Jr. Week of Celebration programming, and a new version of the Carolina Male Empowerment Network available to all members of the Carolina community within Student Wellness. The Project Uplift summer enrichment program will move to the office of Carolina Higher Education Opportunity Programs.  

How do the policy changes support broader employee growth and well-being?

Programs provided by the central DEI office that focused on employees moved to the Division of Human Resources and Equal Opportunity and Compliance. Professional development programs for employees will focus on skill development and leadership training that recognizes differences of all kinds. Reassigned employees will, among other things, manage the development and implementation of a mentoring/coaching program for employees and help re-envision the human resources representative onboarding program. 

UNC-Chapel Hill, along with other system campuses, must submit reports for complying with the policy by Sept. 1.

Animated graphic of composted items next to gold coins being dropped into a bag in front of a brown background.

Composting inspires MPA student

After a summer state government internship and a waste audit, Brianna Beadle is back to studying public administration.

Hammad Nadeem, Abdur Rahman and Senior Program Manager Christina Theodorou discuss the Liberty co-packing facility project with stakeholders.

MBA students nurture NC’s future

Working with NCGrowth, the pair developed a plan to bring jobs and access to healthy food to Robeson County.

Share on Mastodon

IMAGES

  1. Developing a Five-Year Research Plan

    plan of the research

  2. 14+ Research Plan Templates

    plan of the research

  3. FREE 26+ Research Plan Samples in PDF

    plan of the research

  4. FREE 11+ Sample Research Plan Templates in MS Word

    plan of the research

  5. Research Plan

    plan of the research

  6. FAQ: Develop a Research Plan

    plan of the research

VIDEO

  1. How to plan Research Design? #AvikRoy #LibraryScience #InformationScience #Researchmethodology

  2. LEVEL UP YOUR RESEARCH WRITING

  3. Using DALL-E as a data generation tool

  4. Winship Cancer Institute 2016 Year in Review

  5. Planning and Funding Interdisciplinary Research

  6. Introduction Blues: How to Hook Your Readers from the Start #irfannawaz #research #phd #tips

COMMENTS

  1. How to write a research plan: Step-by-step guide

    Here's an example outline of a research plan you might put together: Project title. Project members involved in the research plan. Purpose of the project (provide a summary of the research plan's intent) Objective 1 (provide a short description for each objective) Objective 2. Objective 3.

  2. How To Write a Research Plan (With Template and Examples)

    A research plan is a documented overview of your entire project, from the research you conduct to the results you expect to find at the end of the project. Within a research plan, you determine your goals, the steps to reach them and everything you need to gather your results. Research plans help orient a team, or just yourself, toward a set plan.

  3. Research Plan

    A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan. 1. Research conceptualization - introduces your research question.

  4. How to Write a Research Plan

    A research plan is a comprehensive documented outline of your entire project, encompassing the research process and the anticipated outcomes. This strategic document aids in defining objectives, summarizing the necessary steps to achieve them, and detailing the requirements for obtaining conclusive results.

  5. Research Plan: What Is It & How To Write It [with Templates]

    A research plan is a comprehensive document that outlines the entirety of your research project. It details the research process, from defining the problem statement and research objectives to selecting the research method and outlining the expected outcomes. This plan serves as a blueprint for your research activities, ensuring a focused and ...

  6. How to Write an Effective Research Plan: The Ultimate Guide

    The plan should also be detailed and thorough, with a diligent set of criteria to formulate your research efforts. How To Write a Research Plan (With Template and Examples) How to write a research plan · 1. Define the project purpose · 2. Identify individual objectives · 3. Select a research method · 4.

  7. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research. There are often many possible paths you can take to answering ...

  8. How to Write a Research Plan

    Writing a Research Plan. To write out your research plan, begin by restating your main thesis question and any secondary ones. They may have changed a bit since your original proposal. If these questions bear on a particular theory or analytic perspective, state that briefly. In the social sciences, for example, two or three prominent theories ...

  9. Write Your Research Plan

    Your Research Strategy is the bigger part of your application's Research Plan (the other part is the Specific Aims—discussed above.) The Research Strategy is the nuts and bolts of your application, describing the rationale for your research and the experiments you will do to accomplish each aim. It is structured as follows: Three main sections

  10. Writing a Research Plan

    The research plan, however, serves another, very important function: It contributes to your development as a scientist. Your research plan is a map for your career as a research science professional. As will become apparent later in this document, one of the functions of a research plan is to demonstrate your intellectual vision and aspirations.

  11. Writing the Research Plan for Your Academic Job Application

    A research plan is a thoughtful, compelling, well-written document that outlines your exciting, unique research ideas that you and your students will pursue over the next half decade or so to advance knowledge in your discipline and earn you grants, papers, speaking invitations, tenure, promotion, and a national reputation.

  12. Organizing Your Social Sciences Research Assignments

    IV. Research Design and Methods. This section must be well-written and logically organized because you are not actually doing the research, yet, your reader must have confidence that you have a plan worth pursuing. The reader will never have a study outcome from which to evaluate whether your methodological choices were the correct ones.

  13. Research Process

    The research process is an iterative one, and it is important to review and revise the research plan and methodology as necessary. Researchers should assess the quality of their data and methods, reflect on their findings, and consider areas for improvement. Ethical Considerations.

  14. How to Create a Research Plan (With Tips and an Example)

    A research plan or proposal is a document that describes a research project, including its purpose, methods, objectives, timeline, budget, participants, expected outcomes, and preliminary studies. This proposal usually outlines what the researcher wants to achieve, explore, or corroborate and explains the importance of the project. ...

  15. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  16. Research Design

    Table of contents. Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies.

  17. How to plan a research project

    At its simplest, research planning involves the four distinct steps outlined below: orienting yourself to knowledge-creation; defining your research question; reviewing previous research on your question; and then choosing relevant data to formulate your own answers. Because the focus of this Guide is on planning a research project, as opposed ...

  18. Research Design

    The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection ...

  19. The critical steps for successful research: The research proposal and

    INTRODUCTION. Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society.

  20. Essentials of the Research Plan

    Internet Citation: Essentials of the Research Plan. Content last reviewed January 2017. Agency for Healthcare Research and Quality, Rockville, MD. The research plan is the main part of a grant application describing a principal investigator's proposed research, stating its importance and how it will be conducted.

  21. (PDF) Preparing a research plan

    The research plan is the broad lines that are guided. by the researc h er for the i m plementation o f the. research and th is means that the research plan pl ans. to resear ch before its ...

  22. The value of a good research plan

    A research plan is pivotal to a research project because it identifies and helps define your focus, method, and goals while also outlining the research project from start to finish. This type of plan is often necessary to: Apply for grants or internal company funding. Discover possible research partners or business partners.

  23. Research Plan

    Research plans usually include the details of the proposed research including a detailed description of the research, the necessary materials and methods to include in the research, desired outcomes or results, proposed funding for the research, and other important details of the various processes the researchers plan on accomplishing for the ...

  24. Clinical Research Assistant I, Ob/Gyn

    Summer Undergraduate Research Fellowship Program (SURF) UT Dallas Green Fellows; Supporting a Culture of Clinical Trials. Our research teams help plan, conduct, fund, administer, and report on clinical trials across the broad spectrum of health conditions and diseases. More than 1,000 trials are currently underway, including these areas of ...

  25. Comprehensive Cancer Information

    NCI Fiscal Year 2026 Annual Plan & Professional Judgment Budget Proposal. Each year, NCI prepares a plan for advancing cancer research and proposes the budget required to fund a broad research portfolio. Learn More Get Answers. Connect with a cancer information specialist at 1-800-4-CANCER, through live chat, or by email. ...

  26. eCare Plan

    The eCare Plan project aims to build care planning tools that will improve how we do research and provide healthcare for people with multiple chronic conditions. These tools include data standards and electronic care plan applications that allow all members of the healthcare team (including patients and caregivers) to see and share critical health data from multiple electronic health records ...

  27. Fact check of the presidential debate between Kamala Harris and Donald

    At the start of the COVID pandemic, the unemployment rate peaked at 14.8% in April 2020, a level not seen since 1948, according to the Congressional Research Service.

  28. Trump Tax Plan 2024: Details & Analysis

    Modeling the Major Trump Tax Proposals. Using the Tax Foundation's Taxes and Growth model, we estimate the five major tax changes proposed by Trump would reduce US output by 0.1 percent, employment by 121,000 full-time equivalent jobs, and federal revenue by $1.7 trillion on a conventional basis and by $1.6 trillion on a dynamic basis.

  29. NSTC: Environmental Justice Science, Data, and Research Plan

    NSTC: Environmental Justice Science, Data, and Research Plan can be found here.

  30. How Carolina is complying with UNC System's DEI policy

    The plan eliminated 20 DEI positions campuswide, including positions in the central University Office for Diversity and Inclusion. Most employees affected by the position eliminations were offered and accepted different positions in other parts of campus or within their schools or units. ... How does this affect research, teaching and student ...