• Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

hypothesis in business research examples

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

A Beginner’s Guide to Hypothesis Testing in Business

Business professionals performing hypothesis testing

  • 30 Mar 2021

Becoming a more data-driven decision-maker can bring several benefits to your organization, enabling you to identify new opportunities to pursue and threats to abate. Rather than allowing subjective thinking to guide your business strategy, backing your decisions with data can empower your company to become more innovative and, ultimately, profitable.

If you’re new to data-driven decision-making, you might be wondering how data translates into business strategy. The answer lies in generating a hypothesis and verifying or rejecting it based on what various forms of data tell you.

Below is a look at hypothesis testing and the role it plays in helping businesses become more data-driven.

Access your free e-book today.

What Is Hypothesis Testing?

To understand what hypothesis testing is, it’s important first to understand what a hypothesis is.

A hypothesis or hypothesis statement seeks to explain why something has happened, or what might happen, under certain conditions. It can also be used to understand how different variables relate to each other. Hypotheses are often written as if-then statements; for example, “If this happens, then this will happen.”

Hypothesis testing , then, is a statistical means of testing an assumption stated in a hypothesis. While the specific methodology leveraged depends on the nature of the hypothesis and data available, hypothesis testing typically uses sample data to extrapolate insights about a larger population.

Hypothesis Testing in Business

When it comes to data-driven decision-making, there’s a certain amount of risk that can mislead a professional. This could be due to flawed thinking or observations, incomplete or inaccurate data , or the presence of unknown variables. The danger in this is that, if major strategic decisions are made based on flawed insights, it can lead to wasted resources, missed opportunities, and catastrophic outcomes.

The real value of hypothesis testing in business is that it allows professionals to test their theories and assumptions before putting them into action. This essentially allows an organization to verify its analysis is correct before committing resources to implement a broader strategy.

As one example, consider a company that wishes to launch a new marketing campaign to revitalize sales during a slow period. Doing so could be an incredibly expensive endeavor, depending on the campaign’s size and complexity. The company, therefore, may wish to test the campaign on a smaller scale to understand how it will perform.

In this example, the hypothesis that’s being tested would fall along the lines of: “If the company launches a new marketing campaign, then it will translate into an increase in sales.” It may even be possible to quantify how much of a lift in sales the company expects to see from the effort. Pending the results of the pilot campaign, the business would then know whether it makes sense to roll it out more broadly.

Related: 9 Fundamental Data Science Skills for Business Professionals

Key Considerations for Hypothesis Testing

1. alternative hypothesis and null hypothesis.

In hypothesis testing, the hypothesis that’s being tested is known as the alternative hypothesis . Often, it’s expressed as a correlation or statistical relationship between variables. The null hypothesis , on the other hand, is a statement that’s meant to show there’s no statistical relationship between the variables being tested. It’s typically the exact opposite of whatever is stated in the alternative hypothesis.

For example, consider a company’s leadership team that historically and reliably sees $12 million in monthly revenue. They want to understand if reducing the price of their services will attract more customers and, in turn, increase revenue.

In this case, the alternative hypothesis may take the form of a statement such as: “If we reduce the price of our flagship service by five percent, then we’ll see an increase in sales and realize revenues greater than $12 million in the next month.”

The null hypothesis, on the other hand, would indicate that revenues wouldn’t increase from the base of $12 million, or might even decrease.

Check out the video below about the difference between an alternative and a null hypothesis, and subscribe to our YouTube channel for more explainer content.

2. Significance Level and P-Value

Statistically speaking, if you were to run the same scenario 100 times, you’d likely receive somewhat different results each time. If you were to plot these results in a distribution plot, you’d see the most likely outcome is at the tallest point in the graph, with less likely outcomes falling to the right and left of that point.

distribution plot graph

With this in mind, imagine you’ve completed your hypothesis test and have your results, which indicate there may be a correlation between the variables you were testing. To understand your results' significance, you’ll need to identify a p-value for the test, which helps note how confident you are in the test results.

In statistics, the p-value depicts the probability that, assuming the null hypothesis is correct, you might still observe results that are at least as extreme as the results of your hypothesis test. The smaller the p-value, the more likely the alternative hypothesis is correct, and the greater the significance of your results.

3. One-Sided vs. Two-Sided Testing

When it’s time to test your hypothesis, it’s important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests , or one-tailed and two-tailed tests, respectively.

Typically, you’d leverage a one-sided test when you have a strong conviction about the direction of change you expect to see due to your hypothesis test. You’d leverage a two-sided test when you’re less confident in the direction of change.

Business Analytics | Become a data-driven leader | Learn More

4. Sampling

To perform hypothesis testing in the first place, you need to collect a sample of data to be analyzed. Depending on the question you’re seeking to answer or investigate, you might collect samples through surveys, observational studies, or experiments.

A survey involves asking a series of questions to a random population sample and recording self-reported responses.

Observational studies involve a researcher observing a sample population and collecting data as it occurs naturally, without intervention.

Finally, an experiment involves dividing a sample into multiple groups, one of which acts as the control group. For each non-control group, the variable being studied is manipulated to determine how the data collected differs from that of the control group.

A Beginner's Guide to Data and Analytics | Access Your Free E-Book | Download Now

Learn How to Perform Hypothesis Testing

Hypothesis testing is a complex process involving different moving pieces that can allow an organization to effectively leverage its data and inform strategic decisions.

If you’re interested in better understanding hypothesis testing and the role it can play within your organization, one option is to complete a course that focuses on the process. Doing so can lay the statistical and analytical foundation you need to succeed.

Do you want to learn more about hypothesis testing? Explore Business Analytics —one of our online business essentials courses —and download our Beginner’s Guide to Data & Analytics .

hypothesis in business research examples

About the Author

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Ethical Considerations

Ethical Considerations – Types, Examples and...

Research Results

Research Results Section – Writing Guide and...

Data Analysis

Data Analysis – Process, Methods and Types

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Background of The Study

Background of The Study – Examples and Writing...

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

hypothesis in business research examples

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

hypothesis in business research examples

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

hypothesis in business research examples

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

hypothesis in business research examples

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Paraphrasing techniques

Top 7 Tried and Tested Paraphrasing Techniques

annex vs appendix

Annex vs Appendix: What is the difference?

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

hypothesis in business research examples

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Stratechi.com

  • What is Strategy?
  • Business Models
  • Developing a Strategy
  • Strategic Planning
  • Competitive Advantage
  • Growth Strategy
  • Market Strategy
  • Customer Strategy
  • Geographic Strategy
  • Product Strategy
  • Service Strategy
  • Pricing Strategy
  • Distribution Strategy
  • Sales Strategy
  • Marketing Strategy
  • Digital Marketing Strategy
  • Organizational Strategy
  • HR Strategy – Organizational Design
  • HR Strategy – Employee Journey & Culture
  • Process Strategy
  • Procurement Strategy
  • Cost and Capital Strategy
  • Business Value
  • Market Analysis
  • Problem Solving Skills
  • Strategic Options
  • Business Analytics
  • Strategic Decision Making
  • Process Improvement
  • Project Planning
  • Team Leadership
  • Personal Development
  • Leadership Maturity Model
  • Leadership Team Strategy
  • The Leadership Team
  • Leadership Mindset
  • Communication & Collaboration
  • Problem Solving
  • Decision Making
  • People Leadership
  • Strategic Execution
  • Executive Coaching
  • Strategy Coaching
  • Business Transformation
  • Strategy Workshops
  • Leadership Strategy Survey
  • Leadership Training
  • Who’s Joe?

“A fact is a simple statement that everyone believes. It is innocent, unless found guilty. A hypothesis is a novel suggestion that no one wants to believe. It is guilty until found effective.”

– Edward Teller, Nuclear Physicist

During my first brainstorming meeting on my first project at McKinsey, this very serious partner, who had a PhD in Physics, looked at me and said, “So, Joe, what are your main hypotheses.” I looked back at him, perplexed, and said, “Ummm, my what?” I was used to people simply asking, “what are your best ideas, opinions, thoughts, etc.” Over time, I began to understand the importance of hypotheses and how it plays an important role in McKinsey’s problem solving of separating ideas and opinions from facts.

What is a Hypothesis?

“Hypothesis” is probably one of the top 5 words used by McKinsey consultants. And, being hypothesis-driven was required to have any success at McKinsey. A hypothesis is an idea or theory, often based on limited data, which is typically the beginning of a thread of further investigation to prove, disprove or improve the hypothesis through facts and empirical data.

The first step in being hypothesis-driven is to focus on the highest potential ideas and theories of how to solve a problem or realize an opportunity.

Let’s go over an example of being hypothesis-driven.

Let’s say you own a website, and you brainstorm ten ideas to improve web traffic, but you don’t have the budget to execute all ten ideas. The first step in being hypothesis-driven is to prioritize the ten ideas based on how much impact you hypothesize they will create.

hypothesis driven example

The second step in being hypothesis-driven is to apply the scientific method to your hypotheses by creating the fact base to prove or disprove your hypothesis, which then allows you to turn your hypothesis into fact and knowledge. Running with our example, you could prove or disprove your hypothesis on the ideas you think will drive the most impact by executing:

1. An analysis of previous research and the performance of the different ideas 2. A survey where customers rank order the ideas 3. An actual test of the ten ideas to create a fact base on click-through rates and cost

While there are many other ways to validate the hypothesis on your prioritization , I find most people do not take this critical step in validating a hypothesis. Instead, they apply bad logic to many important decisions . An idea pops into their head, and then somehow it just becomes a fact.

One of my favorite lousy logic moments was a CEO who stated,

“I’ve never heard our customers talk about price, so the price doesn’t matter with our products , and I’ve decided we’re going to raise prices.”

Luckily, his management team was able to do a survey to dig deeper into the hypothesis that customers weren’t price-sensitive. Well, of course, they were and through the survey, they built a fantastic fact base that proved and disproved many other important hypotheses.

business hypothesis example

Why is being hypothesis-driven so important?

Imagine if medicine never actually used the scientific method. We would probably still be living in a world of lobotomies and bleeding people. Many organizations are still stuck in the dark ages, having built a house of cards on opinions disguised as facts, because they don’t prove or disprove their hypotheses. Decisions made on top of decisions, made on top of opinions, steer organizations clear of reality and the facts necessary to objectively evolve their strategic understanding and knowledge. I’ve seen too many leadership teams led solely by gut and opinion. The problem with intuition and gut is if you don’t ever prove or disprove if your gut is right or wrong, you’re never going to improve your intuition. There is a reason why being hypothesis-driven is the cornerstone of problem solving at McKinsey and every other top strategy consulting firm.

How do you become hypothesis-driven?

Most people are idea-driven, and constantly have hypotheses on how the world works and what they or their organization should do to improve. Though, there is often a fatal flaw in that many people turn their hypotheses into false facts, without actually finding or creating the facts to prove or disprove their hypotheses. These people aren’t hypothesis-driven; they are gut-driven.

The conversation typically goes something like “doing this discount promotion will increase our profits” or “our customers need to have this feature” or “morale is in the toilet because we don’t pay well, so we need to increase pay.” These should all be hypotheses that need the appropriate fact base, but instead, they become false facts, often leading to unintended results and consequences. In each of these cases, to become hypothesis-driven necessitates a different framing.

• Instead of “doing this discount promotion will increase our profits,” a hypothesis-driven approach is to ask “what are the best marketing ideas to increase our profits?” and then conduct a marketing experiment to see which ideas increase profits the most.

• Instead of “our customers need to have this feature,” ask the question, “what features would our customers value most?” And, then conduct a simple survey having customers rank order the features based on value to them.

• Instead of “morale is in the toilet because we don’t pay well, so we need to increase pay,” conduct a survey asking, “what is the level of morale?” what are potential issues affecting morale?” and what are the best ideas to improve morale?”

Beyond, watching out for just following your gut, here are some of the other best practices in being hypothesis-driven:

Listen to Your Intuition

Your mind has taken the collision of your experiences and everything you’ve learned over the years to create your intuition, which are those ideas that pop into your head and those hunches that come from your gut. Your intuition is your wellspring of hypotheses. So listen to your intuition, build hypotheses from it, and then prove or disprove those hypotheses, which will, in turn, improve your intuition. Intuition without feedback will over time typically evolve into poor intuition, which leads to poor judgment, thinking, and decisions.

Constantly Be Curious

I’m always curious about cause and effect. At Sports Authority, I had a hypothesis that customers that received service and assistance as they shopped, were worth more than customers who didn’t receive assistance from an associate. We figured out how to prove or disprove this hypothesis by tying surveys to transactional data of customers, and we found the hypothesis was true, which led us to a broad initiative around improving service. The key is you have to be always curious about what you think does or will drive value, create hypotheses and then prove or disprove those hypotheses.

Validate Hypotheses

You need to validate and prove or disprove hypotheses. Don’t just chalk up an idea as fact. In most cases, you’re going to have to create a fact base utilizing logic, observation, testing (see the section on Experimentation ), surveys, and analysis.

Be a Learning Organization

The foundation of learning organizations is the testing of and learning from hypotheses. I remember my first strategy internship at Mercer Management Consulting when I spent a good part of the summer combing through the results, findings, and insights of thousands of experiments that a banking client had conducted. It was fascinating to see the vastness and depth of their collective knowledge base. And, in today’s world of knowledge portals, it is so easy to disseminate, learn from, and build upon the knowledge created by companies.

NEXT SECTION: DISAGGREGATION

DOWNLOAD STRATEGY PRESENTATION TEMPLATES

THE $150 VALUE PACK - 600 SLIDES 168-PAGE COMPENDIUM OF STRATEGY FRAMEWORKS & TEMPLATES 186-PAGE HR & ORG STRATEGY PRESENTATION 100-PAGE SALES PLAN PRESENTATION 121-PAGE STRATEGIC PLAN & COMPANY OVERVIEW PRESENTATION 114-PAGE MARKET & COMPETITIVE ANALYSIS PRESENTATION 18-PAGE BUSINESS MODEL TEMPLATE

JOE NEWSUM COACHING

Newsum Headshot small

EXECUTIVE COACHING STRATEGY COACHING ELEVATE360 BUSINESS TRANSFORMATION STRATEGY WORKSHOPS LEADERSHIP STRATEGY SURVEY & WORKSHOP STRATEGY & LEADERSHIP TRAINING

THE LEADERSHIP MATURITY MODEL

Explore other types of strategy.

BIG PICTURE WHAT IS STRATEGY? BUSINESS MODEL COMP. ADVANTAGE GROWTH

TARGETS MARKET CUSTOMER GEOGRAPHIC

VALUE PROPOSITION PRODUCT SERVICE PRICING

GO TO MARKET DISTRIBUTION SALES MARKETING

ORGANIZATIONAL ORG DESIGN HR & CULTURE PROCESS PARTNER

EXPLORE THE TOP 100 STRATEGIC LEADERSHIP COMPETENCIES

TYPES OF VALUE MARKET ANALYSIS PROBLEM SOLVING

OPTION CREATION ANALYTICS DECISION MAKING PROCESS TOOLS

PLANNING & PROJECTS PEOPLE LEADERSHIP PERSONAL DEVELOPMENT

sm icons linkedIn In tm

  • How it works

researchprospect post subheader

Hypothesis Testing – A Complete Guide with Examples

Published by Alvin Nicolas at August 14th, 2021 , Revised On October 26, 2023

In statistics, hypothesis testing is a critical tool. It allows us to make informed decisions about populations based on sample data. Whether you are a researcher trying to prove a scientific point, a marketer analysing A/B test results, or a manufacturer ensuring quality control, hypothesis testing plays a pivotal role. This guide aims to introduce you to the concept and walk you through real-world examples.

What is a Hypothesis and a Hypothesis Testing?

A hypothesis is considered a belief or assumption that has to be accepted, rejected, proved or disproved. In contrast, a research hypothesis is a research question for a researcher that has to be proven correct or incorrect through investigation.

What is Hypothesis Testing?

Hypothesis testing  is a scientific method used for making a decision and drawing conclusions by using a statistical approach. It is used to suggest new ideas by testing theories to know whether or not the sample data supports research. A research hypothesis is a predictive statement that has to be tested using scientific methods that join an independent variable to a dependent variable.  

Example: The academic performance of student A is better than student B

Characteristics of the Hypothesis to be Tested

A hypothesis should be:

  • Clear and precise
  • Capable of being tested
  • Able to relate to a variable
  • Stated in simple terms
  • Consistent with known facts
  • Limited in scope and specific
  • Tested in a limited timeframe
  • Explain the facts in detail

What is a Null Hypothesis and Alternative Hypothesis?

A  null hypothesis  is a hypothesis when there is no significant relationship between the dependent and the participants’ independent  variables . 

In simple words, it’s a hypothesis that has been put forth but hasn’t been proved as yet. A researcher aims to disprove the theory. The abbreviation “Ho” is used to denote a null hypothesis.

If you want to compare two methods and assume that both methods are equally good, this assumption is considered the null hypothesis.

Example: In an automobile trial, you feel that the new vehicle’s mileage is similar to the previous model of the car, on average. You can write it as: Ho: there is no difference between the mileage of both vehicles. If your findings don’t support your hypothesis and you get opposite results, this outcome will be considered an alternative hypothesis.

If you assume that one method is better than another method, then it’s considered an alternative hypothesis. The alternative hypothesis is the theory that a researcher seeks to prove and is typically denoted by H1 or HA.

If you support a null hypothesis, it means you’re not supporting the alternative hypothesis. Similarly, if you reject a null hypothesis, it means you are recommending the alternative hypothesis.

Example: In an automobile trial, you feel that the new vehicle’s mileage is better than the previous model of the vehicle. You can write it as; Ha: the two vehicles have different mileage. On average/ the fuel consumption of the new vehicle model is better than the previous model.

If a null hypothesis is rejected during the hypothesis test, even if it’s true, then it is considered as a type-I error. On the other hand, if you don’t dismiss a hypothesis, even if it’s false because you could not identify its falseness, it’s considered a type-II error.

Hire an Expert Researcher

Orders completed by our expert writers are

  • Formally drafted in academic style
  • 100% Plagiarism free & 100% Confidential
  • Never resold
  • Include unlimited free revisions
  • Completed to match exact client requirements

Hire an Expert Researcher

How to Conduct Hypothesis Testing?

Here is a step-by-step guide on how to conduct hypothesis testing.

Step 1: State the Null and Alternative Hypothesis

Once you develop a research hypothesis, it’s important to state it is as a Null hypothesis (Ho) and an Alternative hypothesis (Ha) to test it statistically.

A null hypothesis is a preferred choice as it provides the opportunity to test the theory. In contrast, you can accept the alternative hypothesis when the null hypothesis has been rejected.

Example: You want to identify a relationship between obesity of men and women and the modern living style. You develop a hypothesis that women, on average, gain weight quickly compared to men. Then you write it as: Ho: Women, on average, don’t gain weight quickly compared to men. Ha: Women, on average, gain weight quickly compared to men.

Step 2: Data Collection

Hypothesis testing follows the statistical method, and statistics are all about data. It’s challenging to gather complete information about a specific population you want to study. You need to  gather the data  obtained through a large number of samples from a specific population. 

Example: Suppose you want to test the difference in the rate of obesity between men and women. You should include an equal number of men and women in your sample. Then investigate various aspects such as their lifestyle, eating patterns and profession, and any other variables that may influence average weight. You should also determine your study’s scope, whether it applies to a specific group of population or worldwide population. You can use available information from various places, countries, and regions.

Step 3: Select Appropriate Statistical Test

There are many  types of statistical tests , but we discuss the most two common types below, such as One-sided and two-sided tests.

Note: Your choice of the type of test depends on the purpose of your study 

One-sided Test

In the one-sided test, the values of rejecting a null hypothesis are located in one tail of the probability distribution. The set of values is less or higher than the critical value of the test. It is also called a one-tailed test of significance.

Example: If you want to test that all mangoes in a basket are ripe. You can write it as: Ho: All mangoes in the basket, on average, are ripe. If you find all ripe mangoes in the basket, the null hypothesis you developed will be true.

Two-sided Test

In the two-sided test, the values of rejecting a null hypothesis are located on both tails of the probability distribution. The set of values is less or higher than the first critical value of the test and higher than the second critical value test. It is also called a two-tailed test of significance. 

Example: Nothing can be explicitly said whether all mangoes are ripe in the basket. If you reject the null hypothesis (Ho: All mangoes in the basket, on average, are ripe), then it means all mangoes in the basket are not likely to be ripe. A few mangoes could be raw as well.

Get statistical analysis help at an affordable price

  • An expert statistician will complete your work
  • Rigorous quality checks
  • Confidentiality and reliability
  • Any statistical software of your choice
  • Free Plagiarism Report

Get statistical analysis help at an affordable price

Step 4: Select the Level of Significance

When you reject a null hypothesis, even if it’s true during a statistical hypothesis, it is considered the  significance level . It is the probability of a type one error. The significance should be as minimum as possible to avoid the type-I error, which is considered severe and should be avoided. 

If the significance level is minimum, then it prevents the researchers from false claims. 

The significance level is denoted by  P,  and it has given the value of 0.05 (P=0.05)

If the P-Value is less than 0.05, then the difference will be significant. If the P-value is higher than 0.05, then the difference is non-significant.

Example: Suppose you apply a one-sided test to test whether women gain weight quickly compared to men. You get to know about the average weight between men and women and the factors promoting weight gain.

Step 5: Find out Whether the Null Hypothesis is Rejected or Supported

After conducting a statistical test, you should identify whether your null hypothesis is rejected or accepted based on the test results. It would help if you observed the P-value for this.

Example: If you find the P-value of your test is less than 0.5/5%, then you need to reject your null hypothesis (Ho: Women, on average, don’t gain weight quickly compared to men). On the other hand, if a null hypothesis is rejected, then it means the alternative hypothesis might be true (Ha: Women, on average, gain weight quickly compared to men. If you find your test’s P-value is above 0.5/5%, then it means your null hypothesis is true.

Step 6: Present the Outcomes of your Study

The final step is to present the  outcomes of your study . You need to ensure whether you have met the objectives of your research or not. 

In the discussion section and  conclusion , you can present your findings by using supporting evidence and conclude whether your null hypothesis was rejected or supported.

In the result section, you can summarise your study’s outcomes, including the average difference and P-value of the two groups.

If we talk about the findings, our study your results will be as follows:

Example: In the study of identifying whether women gain weight quickly compared to men, we found the P-value is less than 0.5. Hence, we can reject the null hypothesis (Ho: Women, on average, don’t gain weight quickly than men) and conclude that women may likely gain weight quickly than men.

Did you know in your academic paper you should not mention whether you have accepted or rejected the null hypothesis? 

Always remember that you either conclude to reject Ho in favor of Haor   do not reject Ho . It would help if you never rejected  Ha  or even  accept Ha .

Suppose your null hypothesis is rejected in the hypothesis testing. If you conclude  reject Ho in favor of Haor   do not reject Ho,  then it doesn’t mean that the null hypothesis is true. It only means that there is a lack of evidence against Ho in favour of Ha. If your null hypothesis is not true, then the alternative hypothesis is likely to be true.

Example: We found that the P-value is less than 0.5. Hence, we can conclude reject Ho in favour of Ha (Ho: Women, on average, don’t gain weight quickly than men) reject Ho in favour of Ha. However, rejected in favour of Ha means (Ha: women may likely to gain weight quickly than men)

Frequently Asked Questions

What are the 3 types of hypothesis test.

The 3 types of hypothesis tests are:

  • One-Sample Test : Compare sample data to a known population value.
  • Two-Sample Test : Compare means between two sample groups.
  • ANOVA : Analyze variance among multiple groups to determine significant differences.

What is a hypothesis?

A hypothesis is a proposed explanation or prediction about a phenomenon, often based on observations. It serves as a starting point for research or experimentation, providing a testable statement that can either be supported or refuted through data and analysis. In essence, it’s an educated guess that drives scientific inquiry.

What are null hypothesis?

A null hypothesis (often denoted as H0) suggests that there is no effect or difference in a study or experiment. It represents a default position or status quo. Statistical tests evaluate data to determine if there’s enough evidence to reject this null hypothesis.

What is the probability value?

The probability value, or p-value, is a measure used in statistics to determine the significance of an observed effect. It indicates the probability of obtaining the observed results, or more extreme, if the null hypothesis were true. A small p-value (typically <0.05) suggests evidence against the null hypothesis, warranting its rejection.

What is p value?

The p-value is a fundamental concept in statistical hypothesis testing. It represents the probability of observing a test statistic as extreme, or more so, than the one calculated from sample data, assuming the null hypothesis is true. A low p-value suggests evidence against the null, possibly justifying its rejection.

What is a t test?

A t-test is a statistical test used to compare the means of two groups. It determines if observed differences between the groups are statistically significant or if they likely occurred by chance. Commonly applied in research, there are different t-tests, including independent, paired, and one-sample, tailored to various data scenarios.

When to reject null hypothesis?

Reject the null hypothesis when the test statistic falls into a predefined rejection region or when the p-value is less than the chosen significance level (commonly 0.05). This suggests that the observed data is unlikely under the null hypothesis, indicating evidence for the alternative hypothesis. Always consider the study’s context.

You May Also Like

This article presents the key advantages and disadvantages of secondary research so you can select the most appropriate research approach for your study.

Disadvantages of primary research – It can be expensive, time-consuming and take a long time to complete if it involves face-to-face contact with customers.

What are the different research strategies you can use in your dissertation? Here are some guidelines to help you choose a research strategy that would make your research more credible.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Business Analytics Institute

A Beginner’s Guide to Hypothesis Testing in Business Analytics

  • December 5, 2023
  • Analytics , Statistics

Hypothesis testing is a statistical method used to make decisions about a population based on a sample. It helps business analysts draw conclusions about business metrics and make data-driven decisions. This beginner’s guide will provide an introduction to hypothesis testing and how it is applied in business analytics.

What is a Hypothesis?

A hypothesis is an assumption about a population parameter. It is a tentative statement that proposes a possible relationship between two or more variables.

In statistical terms, a hypothesis is an assertion or conjecture about one or more populations. For example, a business hypothesis could be –

“Our social media advertising results in an increase in sales.”

“Customer ratings of our product have decreased this month compared to last month.”

A hypothesis can be:

  • Null hypothesis (H0) – a statement that there is no difference or no effect.
  • Alternative hypothesis (H1) – a claim about the population that is contradictory to H0.

Hypothesis testing evaluates two mutually exclusive statements (H0 and H1) to determine which statement is best supported by the sample data.

Why Hypothesis Testing is Important in Business

Hypothesis testing allows business analysts to make statistical inferences about a business problem. It is an objective data-driven approach to:

  • Evaluate business metrics against a target value. For example – is the current customer satisfaction score significantly lower than our target of 85%?
  • Compare business metrics across time periods or categories. For example – has website conversion rate increased this month compared to last month?
  • Quantify the impact of business initiatives. For example – did the email marketing campaign result in a significant increase in sales?

Some key benefits of hypothesis testing in business analytics:

  • Supports data-driven decision making with statistical evidence.
  • Helps save costs by making decisions backed by data insights.
  • Enables measurement of success for business initiatives like marketing campaigns, new product launches etc.
  • Provides a structured framework for business metric analysis.
  • Reduces the influence of individual biases in decision making.

By incorporating hypothesis testing in data analysis, businesses can make sound decisions that are supported by statistical evidence.

Steps in Hypothesis Testing

Hypothesis testing involves the following five steps:

1. State the Hypotheses

This involves stating the null and alternate hypotheses. The hypotheses are stated in a way that they are mutually exclusive – if one is true, the other must be false.

Null hypothesis (H0) – represents the status quo, states that there is no effect or no difference.

Alternative hypothesis (H1) – states that there is an effect or a difference.

For example –

H0: The average customer rating this month is the same as last month.

H1: The average customer rating this month is lower than last month.

2. Choose the Significance Level

The significance level (α) is the probability of rejecting H0 when it is actually true. It is the maximum risk we are willing to take in making an incorrect decision.

Typical values are 0.10, 0.05 or 0.01. A lower α indicates lower risk tolerance. For example α = 0.05 indicates only a 5% risk of concluding there is a difference when actually there is none.

3. Select the Sample and Collect Data

The sample should be representative of the population. Data is collected relevant to the hypotheses – for example, customer ratings this month and last month.

4. Analyze the Sample Data

An appropriate statistical test is applied to analyze the sample data. Common tests used are t-tests, z-tests, ANOVA, chi-square etc. The test provides a test statistic that can be compared against critical values to determine statistical significance.

5. Make a Decision

If the test statistic falls in the rejection region, we reject H0 in favor of H1. Otherwise, we fail to reject H0 and conclude there is not enough evidence against it.

The key question is – “Is the sample data unlikely, assuming H0 is true?” If yes, we reject H0.

Types of Hypothesis Tests

There are two main types of hypothesis tests:

1. Parametric Tests

These tests make assumptions about the shape or parameters of the population distribution.

Some examples are:

  • Z-test – Tests a population mean when population standard deviation is known.
  • T-test – Tests a population mean when standard deviation is unknown.
  • F-test – Compares variances from two normal populations.
  • ANOVA – Compares means of two or more populations.

Parametric tests are more powerful as they make use of the distribution characteristics. But the assumptions need to hold true for valid results.

2. Non-parametric Tests

These tests make no assumptions about the exact distribution of the population. They are based on either ranks or frequencies.

  • Chi-square test – Tests if two categorical variables are related.
  • Mann-Whitney U test – Compares medians from two independent groups.
  • Wilcoxon signed-rank test – Compares paired observations or repeated measurements.
  • Kruskal Wallis test – Compares medians from two or more groups.

Non-parametric tests are distribution-free but less powerful than parametric tests. They can be used when assumptions of parametric tests are violated.

The choice of statistical test depends on the hypotheses, data type and other factors.

One-tailed and Two-tailed Hypothesis Tests

Hypothesis tests can be one-tailed or two-tailed:

  • One-tailed test – When H1 specifies a direction. For example: H0: μ = 10 H1: μ > 10 (or μ < 10)
  • Two-tailed test – When H1 simply states ≠, not a specific direction. For example: H0: μ = 10 H1: μ ≠ 10

One-tailed tests have greater power to detect an effect in the specified direction. But we need prior knowledge on the direction of effect for using them.

Two-tailed tests do not assume any direction and are more conservative. They are used when we have no clear prior expectation on the directionality.

Interpreting Hypothesis Test Results

Hypothesis testing results can be interpreted based on:

  • p-value – Probability of obtaining sample results if H0 is true. Small p-value (< α) indicates significant evidence against H0.
  • Confidence intervals – Range of likely values for the population parameter. If it does not contain the H0 value, we reject H0.
  • Test statistic – Standardized value computed from sample data. Compared against critical values to determine statistical significance.
  • Effect size – Quantifies the magnitude or size of effect. Important for interpreting practical significance.

Hypothesis testing indicates whether an effect exists or not. Measures like effect size and confidence intervals provide additional insights on the observed effect.

Common Errors in Hypothesis Testing

Some common errors to watch out for:

  • Having unclear, ambiguous hypotheses.
  • Choosing an inappropriate significance level α.
  • Using the wrong statistical test for data analysis.
  • Interpreting a non-significant result as proof of no effect. Absence of evidence is not evidence of absence.
  • Concluding practical significance from statistical significance. Small p-values don’t always imply practical business impact.
  • Multiple testing without adjustment leading to elevated Type I errors.
  • Stopping data collection prematurely when a significant result is obtained.
  • Overlooking effect sizes, confidence intervals while focusing solely on p-values.

Proper application of hypothesis testing methodology minimizes such errors and improves decision making.

Real-world Example of Hypothesis Testing

Let’s take an example of using hypothesis testing in business analytics:

A retailer wants to test if launching a new ecommerce website has resulted in increased online sales.

The retailer gathers weekly sales data before and after the website launch:

H0: Launching the new website did not increase the average weekly online sales

H1: Launching the new website increased the average weekly online sales

Significance level is chosen as 0.05. Appropriate parametric / non-parametric test is selected based on data. Test results show that the p-value is 0.01, which is less than 0.05.

Therefore, we reject the null hypothesis and conclude that the new website launch has resulted in significantly increased online sales at the 5% significance level.

The analyst also computes a 95% confidence interval for the difference in sales before and after website launch. The retailer uses these insights to make data-backed decisions on marketing budget allocation between traditional and digital channels.

Hypothesis testing provides a formal process for making statistical decisions using sample data. It helps assess business metrics against benchmarks, quantify impact of initiatives and compare performance across time periods or segments. By embedding hypothesis testing in analytics, businesses can derive actionable insights for data-driven decision making.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 22 July 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Hypothesis Testing in Business Analytics – A Beginner’s Guide

img

Introduction  

Organizations must understand how their decisions can impact the business in this data-driven age. Hypothesis testing enables organizations to analyze and examine their decisions’ causes and effects before making important management decisions. Based on research by the Harvard Business School Online, prior to making any decision, organizations like to explore the advantages of hypothesis testing and the investigation of decisions in a proper “laboratory” setting. By performing such tests, organizations can be more confident with their decisions. Read on to learn all about hypothesis testing , o ne of the essential concepts in Business Analytics.  

What Is Hypothesis Testing?  

To learn about hypothesis testing, it is crucial that you first understand what the term hypothesis is.   

A hypothesis statement or hypothesis tries to explain why something happened or what may happen under specific conditions. A hypothesis can also help understand how various variables are connected to each other. These are generally compiled as if-then statements; for example, “If something specific were to happen, then a specific condition will come true and vice versa.” Thus, the hypothesis is an arithmetical method of testing a hypothesis or an assumption that has been stated in the hypothesis.  

Turning into a decision-maker who is driven by data can add several advantages to an organization, such as allowing one to recognize new opportunities to follow and reducing the number of threats. In analytics, a hypothesis is nothing but an assumption or a supposition made about a specific population parameter, such as any measurement or quantity about the population that is set and that can be used as a value to the distribution variable. General examples of parameters used in hypothesis testing are variance and mean. In simpler words, hypothesis testing in business analytics is a method that helps researchers, scientists, or anyone for that matter, test the legitimacy or the authenticity of their hypotheses or claims about real-life or real-world events.  

To understand the example of hypothesis testing in business analytics, consider a restaurant owner interested in learning how adding extra house sauce to their chicken burgers can impact customer satisfaction. Or, you could also consider a social media marketing organization. A hypothesis test can be set up to explain how an increase in labor impacts productivity. Thus, hypothesis testing aims to discover the connection between two or more than two variables in the experimental setting.  

How Does Hypothesis Testing Work?  

Generally, each research begins with a hypothesis; the investigator makes a certain claim and experiments to prove that the claim is false or true. For example, if you claim that students drinking milk before class accomplish tasks better than those who do not, then this is a kind of hypothesis that can be refuted or confirmed using an experiment. There are different kinds of hypotheses. They are:  

  • Simple Hypothesis : Simple hypothesis, also known as a basic hypothesis, proposes that an independent variable is accountable for the corresponding dependent variable. In simpler words, the occurrence of independent variable results in the existence of the dependent variable. Generally, simple hypotheses are thought of as true and they create a causal relationship between the two variables. One example of a simple hypothesis is smoking cigarettes daily leads to cancer.  
  • Complex Hypothesis : This type of hypothesis is also termed a modal. It holds for the relationship between two variables that are independent and result in a dependent variable. This means that the amalgamation of independent variables results in the dependent variables. An example of this kind of hypothesis can be “adults who don’t drink and smoke are less likely to have liver-related problems.  
  • Null Hypothesis : A null hypothesis is created when a researcher thinks that there is no connection between the variables that are being observed. An example of this kind of hypothesis can be “A student’s performance is not impacted if they drink tea or coffee before classes.  
  • Alternative Hypothesis : If a researcher wants to disapprove of a null hypothesis, then the researcher has to develop an opposite assumption—known as an alternative hypothesis. For example, beginning your day with tea instead of coffee can keep you more alert.  
  • Logical Hypothesis: A proposed explanation supported by scant data is called a logical hypothesis. Generally, you wish to test your hypotheses or postulations by converting a logical hypothesis into an empirical hypothesis. For example, waking early helps one to have a productive day.  
  • Empirical Hypothesis : This type of hypothesis is based on real evidence, evidence that is verifiable by observation as opposed to something that is correct in theory or by some kind of reckoning or logic. This kind of hypothesis depends on various variables that can result in specific outcomes. For example, individuals eating more fish can run faster than those eating meat.   
  • Statistical Hypothesis : This kind of hypothesis is most common in systematic investigations that involve a huge target audience. For example, in Louisiana, 45% of students have middle-income parents.  

Four Steps of Hypothesis Testing  

There are four main steps in hypothesis testing in business analytics :  

Step 1: State the Null and Alternate Hypothesis  

After the initial research hypothesis, it is essential to restate it as a null (Ho) hypothesis and an alternate (Ha) hypothesis so that it can be tested mathematically.  

Step 2: Collate Data  

For a test to be valid, it is essential to do some sampling and collate data in a manner designed to test the hypothesis. If your data are not representative, then statistical inferences cannot be made about the population you are trying to analyze.  

Step 3: Perform a Statistical Test  

Various statistical tests are present, but all of them depend on the contrast of within-group variance (how to spread out the data in a group) against between-group variance (how dissimilar the groups are from one another).  

Step 4: Decide to Reject or Accept Your Null Hypothesis  

Based on the result of your statistical test, you need to decide whether you want to accept or reject your null hypothesis.  

Hypothesis Testing in Business   

When we talk about data-driven decision-making, a specific amount of risk can deceive a professional. This could result from flawed observations or thinking inaccurate or incomplete information , or unknown variables. The threat over here is that if key strategic decisions are made on incorrect insights, it can lead to catastrophic outcomes for an organization. The actual importance of hypothesis testing is that it enables professionals to analyze their assumptions and theories before putting them into action. This enables an organization to confirm the accuracy of its analysis before making key decisions.  

Key Considerations for Hypothesis Testing  

Let us look at the following key considerations of hypothesis testing:  

  • Alternative Hypothesis and Null Hypothesis : If a researcher wants to disapprove of a null hypothesis, then the researcher has to develop an opposite assumption—known as an alternative hypothesis. A null hypothesis is created when a researcher thinks that there is no connection between the variables that are being observed.  
  • Significance Level and P-Value : The statistical significance level is generally expressed as a p-value that lies between 0 and 1. The lesser the p-value, the more it suggests that you reject the null hypothesis. A p-value of less than 0.05 (generally ≤ 0.05) is significant statistically.  
  • One-Sided vs. Two-Sided Testing : One-sided tests suggest the possibility of an effect in a single direction only. Two-sided tests test for the likelihood of the effect in two directions—negative and positive. One-sided tests comprise more statistical power to identify an effect in a single direction than a two-sided test with the same significance level and design.   
  • Sampling: For hypothesis testing , you are required to collate a sample of data that has to be examined. In hypothesis testing, an analyst can test a statistical sample with the aim of providing proof of the credibility of the null hypothesis. Statistical analysts can test a hypothesis by examining and measuring a random sample of the population that is being examined.  

Real-World Example of Hypothesis Testing  

The following two examples give a glimpse of the various situations in which hypothesis testing is used in real-world scenarios.  

Example: BioSciences  

Hypothesis tests are frequently used in biological sciences. For example, consider that a biologist is sure that a certain kind of fertilizer will lead to better growth of plants which is at present 10 inches. To test this, the fertilizer is sprayed on the plants in the laboratory for a month. A hypothesis test is then done using the following:  

  • H0: μ = 10 inches (the fertilizer has no effect on the plant growth)  
  • HA: μ > 10 inches (the fertilizer leads to an increase in plant growth)  

Suppose the p-value is lesser than the significance level (e.g., α = .04). In that case, the null hypothesis can be rejected, and it can be concluded that the fertilizer results in increased plant growth.  

Example: Clinical Trials  

Consider an example where a doctor feels that a new medicine can decrease blood sugar in patients. To confirm this, he can measure the sugar of 20 diabetic patients prior to and after administering the new drug for a month. A hypothesis test is then done using the following:  

  • H0: μafter = μbefore (the blood sugar is the same as before and after administering the new drug)  
  • HA: μafter < μbefore (the blood sugar is less after the drug)  

If the p-value is less than the significance level (e.g., α = .04), then the null hypothesis can be rejected, and it can be proven that the new drug leads to reduced blood sugar.  

Conclusion  

Now you are aware of the need for hypotheses in Business Analytics . A hypothesis is not just an assumption— it has to be based on prior knowledge and theories. It also needs to be, which means that you can accept or reject it using scientific research methods (such as observations, experiments, and statistical data analysis). Most genuine Hypothesis testing programs teach you how to use hypothesis testing in real-world scenarios. If you are interested in getting a certificate degree in Integrated Program In Business Analytics , UNext Jigsaw is highly recommended.

 width=

Fill in the details to know more

facebook

PEOPLE ALSO READ

hypothesis in business research examples

Related Articles

hypothesis in business research examples

Understanding the Staffing Pyramid!

May 15, 2023

 width=

From The Eyes Of Emerging Technologies: IPL Through The Ages

April 29, 2023

img

Understanding HR Terminologies!

April 24, 2023

hypothesis in business research examples

How Does HR Work in an Organization?

hypothesis in business research examples

A Brief Overview: Measurement Maturity Model!

April 20, 2023

hypothesis in business research examples

HR Analytics: Use Cases and Examples

hypothesis in business research examples

What Are SOC and NOC In Cyber Security? What’s the Difference?

February 27, 2023

Confidence Intervals in Statistics

Fundamentals of Confidence Interval in Statistics!

February 26, 2023

Cyber security analytics

A Brief Introduction to Cyber Security Analytics

hypothesis in business research examples

Cyber Safe Behaviour In Banking Systems

February 17, 2023

img

Everything Best Of Analytics for 2023: 7 Must Read Articles!

December 26, 2022

hypothesis in business research examples

Best of 2022: 5 Most Popular Cybersecurity Blogs Of The Year

December 22, 2022

hypothesis in business research examples

10 Reasons Why Business Analytics Is Important In Digital Age

February 28, 2023

bivariate analysis

Bivariate Analysis: Beginners Guide | UNext

November 18, 2022

hypothesis in business research examples

Everything You Need to Know About Hypothesis Tests: Chi-Square

November 17, 2022

hypothesis in business research examples

Everything You Need to Know About Hypothesis Tests: Chi-Square, ANOVA

November 15, 2022

share

Are you ready to build your own career?

arrow

Query? Ask Us

hypothesis in business research examples

Enter Your Details ×

9.4 Full Hypothesis Test Examples

Tests on means, example 9.8.

Jeffrey, as an eight-year old, established a mean time of 16.43 seconds for swimming the 25-yard freestyle, with a standard deviation of 0.8 seconds . His dad, Frank, thought that Jeffrey could swim the 25-yard freestyle faster using goggles. Frank bought Jeffrey a new pair of expensive goggles and timed Jeffrey for 15 25-yard freestyle swims . For the 15 swims, Jeffrey's mean time was 16 seconds. Frank thought that the goggles helped Jeffrey to swim faster than the 16.43 seconds. Conduct a hypothesis test using a preset α = 0.05. Assume that the swim times for the 25-yard freestyle are normal.

Set up the Hypothesis Test:

Since the problem is about a mean, this is a test of a single population mean .

H 0 : μ = 16.43   H a : μ < 16.43

For Jeffrey to swim faster, his time will be less than 16.43 seconds. The "<" tells you this is left-tailed.

Determine the distribution needed:

Random variable: X ¯ X ¯ = the mean time to swim the 25-yard freestyle.

Distribution for the test: X ¯ X ¯ is normal (population standard deviation is known: σ = 0.8)

X ¯ ~ N ( μ , σ X n ) X ¯ ~ N ( μ , σ X n ) Therefore, X ¯ ~ N ( 16.43 , 0.8 15 ) X ¯ ~ N ( 16.43 , 0.8 15 )

μ = 16.43 comes from H 0 and not the data. σ = 0.8, and n = 15.

Calculate the p -value using the normal distribution for a mean:

p -value = P ( x ¯ x ¯ < 16) = 0.0187 where the sample mean in the problem is given as 16.

p -value = 0.0187 (This is called the actual level of significance .) The p -value is the area to the left of the sample mean is given as 16.

μ = 16.43 comes from H 0 . Our assumption is μ = 16.43.

Interpretation of the p -value: If H 0 is true , there is a 0.0187 probability (1.87%)that Jeffrey's mean time to swim the 25-yard freestyle is 16 seconds or less. Because a 1.87% chance is small, the mean time of 16 seconds or less is unlikely to have happened randomly. It is a rare event.

Compare α and the p -value:

α = 0.05 p -value = 0.0187 α > p -value

Make a decision: Since α > α > p -value, reject H 0 .

This indicates that you reject the null hypothesis that the mean time to swim the 25-yard freestyle is at least 16.43 seconds.

Conclusion: At the 5% significance level, there is sufficient evidence that Jeffrey's mean time to swim the 25-yard freestyle is less than 16.43 seconds. Thus, based on the sample data, we conclude that Jeffrey swims faster using the new goggles.

The Type I and Type II errors for this problem are as follows: The Type I error is to conclude that Jeffrey swims the 25-yard freestyle, on average, in less than 16.43 seconds when, in fact, he actually swims the 25-yard freestyle, on average, in at least 16.43 seconds. (Reject the null hypothesis when the null hypothesis is true.)

The Type II error is that there is not evidence to conclude that Jeffrey swims the 25-yard freestyle, on average, in less than 16.43 seconds when, in fact, he actually does swim the 25-yard free-style, on average, in less than 16.43 seconds. (Do not reject the null hypothesis when the null hypothesis is false.)

The mean throwing distance of a football for Marco, a high school quarterback, is 40 yards, with a standard deviation of two yards. The team coach tells Marco to adjust his grip to get more distance. The coach records the distances for 20 throws. For the 20 throws, Marco’s mean distance was 45 yards. The coach thought the different grip helped Marco throw farther than 40 yards. Conduct a hypothesis test using a preset α = 0.05. Assume the throw distances for footballs are normal.

First, determine what type of test this is, set up the hypothesis test, find the p -value, sketch the graph, and state your conclusion.

Example 9.9

Jasmine has just begun her new job on the sales force of a very competitive company. In a sample of 16 sales calls it was found that she closed the contract for an average value of 108 dollars with a standard deviation of 12 dollars. Test at 5% significance that the population mean is at least 100 dollars against the alternative that it is less than 100 dollars. Company policy requires that new members of the sales force must exceed an average of $100 per contract during the trial employment period. Can we conclude that Jasmine has met this requirement at the significance level of 95%?

  • H 0 : µ ≤ 100 H a : µ > 100 The null and alternative hypothesis are for the parameter µ because the number of dollars of the contracts is a continuous random variable. Also, this is a one-tailed test because the company has only an interested if the number of dollars per contact is below a particular number not "too high" a number. This can be thought of as making a claim that the requirement is being met and thus the claim is in the alternative hypothesis.
  • Test statistic: t c = x ¯ − µ 0 s n = 108 − 100 ( 12 16 ) = 2.67 t c = x ¯ − µ 0 s n = 108 − 100 ( 12 16 ) = 2.67
  • Critical value: t a = 1.753 t a = 1.753 with n-1 degrees of freedom= 15

The test statistic is a Student's t because the sample size is below 30; therefore, we cannot use the normal distribution. Comparing the calculated value of the test statistic and the critical value of t t ( t a ) ( t a ) at a 5% significance level, we see that the calculated value is in the tail of the distribution. Thus, we conclude that 108 dollars per contract is significantly larger than the hypothesized value of 100 and thus we cannot accept the null hypothesis. There is evidence that supports Jasmine's performance meets company standards.

It is believed that a stock price for a particular company will grow at a rate of $5 per week with a standard deviation of $1. An investor believes the stock won’t grow as quickly. The changes in stock price is recorded for ten weeks and are as follows: $4, $3, $2, $3, $1, $7, $2, $1, $1, $2. Perform a hypothesis test using a 5% level of significance. State the null and alternative hypotheses, state your conclusion, and identify the Type I errors.

Example 9.10

A manufacturer of salad dressings uses machines to dispense liquid ingredients into bottles that move along a filling line. The machine that dispenses salad dressings is working properly when 8 ounces are dispensed. Suppose that the average amount dispensed in a particular sample of 35 bottles is 7.91 ounces with a variance of 0.03 ounces squared, s 2 s 2 . Is there evidence that the machine should be stopped and production wait for repairs? The lost production from a shutdown is potentially so great that management feels that the level of significance in the analysis should be 99%.

Again we will follow the steps in our analysis of this problem.

STEP 1 : Set the Null and Alternative Hypothesis. The random variable is the quantity of fluid placed in the bottles. This is a continuous random variable and the parameter we are interested in is the mean. Our hypothesis therefore is about the mean. In this case we are concerned that the machine is not filling properly. From what we are told it does not matter if the machine is over-filling or under-filling, both seem to be an equally bad error. This tells us that this is a two-tailed test: if the machine is malfunctioning it will be shutdown regardless if it is from over-filling or under-filling. The null and alternative hypotheses are thus:

STEP 2 : Decide the level of significance and draw the graph showing the critical value.

This problem has already set the level of significance at 99%. The decision seems an appropriate one and shows the thought process when setting the significance level. Management wants to be very certain, as certain as probability will allow, that they are not shutting down a machine that is not in need of repair. To draw the distribution and the critical value, we need to know which distribution to use. Because this is a continuous random variable and we are interested in the mean, and the sample size is greater than 30, the appropriate distribution is the normal distribution and the relevant critical value is 2.575 from the normal table or the t-table at 0.005 column and infinite degrees of freedom. We draw the graph and mark these points.

STEP 3 : Calculate sample parameters and the test statistic. The sample parameters are provided, the sample mean is 7.91 and the sample variance is .03 and the sample size is 35. We need to note that the sample variance was provided not the sample standard deviation, which is what we need for the formula. Remembering that the standard deviation is simply the square root of the variance, we therefore know the sample standard deviation, s, is 0.173. With this information we calculate the test statistic as -3.07, and mark it on the graph.

STEP 4 : Compare test statistic and the critical values Now we compare the test statistic and the critical value by placing the test statistic on the graph. We see that the test statistic is in the tail, decidedly greater than the critical value of 2.575. We note that even the very small difference between the hypothesized value and the sample value is still a large number of standard deviations. The sample mean is only 0.08 ounces different from the required level of 8 ounces, but it is 3 plus standard deviations away and thus we cannot accept the null hypothesis.

STEP 5 : Reach a Conclusion

Three standard deviations of a test statistic will guarantee that the test will fail. The probability that anything is within three standard deviations is almost zero. Actually it is 0.0026 on the normal distribution, which is certainly almost zero in a practical sense. Our formal conclusion would be “ At a 99% level of significance we cannot accept the hypothesis that the sample mean came from a distribution with a mean of 8 ounces” Or less formally, and getting to the point, “At a 99% level of significance we conclude that the machine is under filling the bottles and is in need of repair”.

Try It 9.10

A company records the mean time of employees working in a day. The mean comes out to be 475 minutes, with a standard deviation of 45 minutes. A manager recorded times of 20 employees. The times of working were (frequencies are in parentheses) 460(3); 465(2); 470(3); 475(1); 480(6); 485(3); 490(2).

Conduct a hypothesis test using a 2.5% level of significance to determine if the mean time is more than 475 .

Hypothesis Test for Proportions

Just as there were confidence intervals for proportions, or more formally, the population parameter p of the binomial distribution, there is the ability to test hypotheses concerning p .

The population parameter for the binomial is p . The estimated value (point estimate) for p is p′ where p′ = x/n , x is the number of successes in the sample and n is the sample size.

When you perform a hypothesis test of a population proportion p , you take a simple random sample from the population. The conditions for a binomial distribution must be met, which are: there are a certain number n of independent trials meaning random sampling, the outcomes of any trial are binary, success or failure, and each trial has the same probability of a success p . The shape of the binomial distribution needs to be similar to the shape of the normal distribution. To ensure this, the quantities np′ and nq′ must both be greater than five ( np′ > 5 and nq′ > 5). In this case the binomial distribution of a sample (estimated) proportion can be approximated by the normal distribution with μ = np μ = np and σ = npq σ = npq . Remember that q = 1 – p q = 1 – p . There is no distribution that can correct for this small sample bias and thus if these conditions are not met we simply cannot test the hypothesis with the data available at that time. We met this condition when we first were estimating confidence intervals for p .

Again, we begin with the standardizing formula modified because this is the distribution of a binomial.

Substituting p 0 p 0 , the hypothesized value of p , we have:

This is the test statistic for testing hypothesized values of p , where the null and alternative hypotheses take one of the following forms:

Two-tailed test One-tailed test One-tailed test
H : p = p H : p ≤ p H : p ≥ p
H : p ≠ p H : p > p H : p < p

The decision rule stated above applies here also: if the calculated value of Z c shows that the sample proportion is "too many" standard deviations from the hypothesized proportion, the null hypothesis cannot be accepted. The decision as to what is "too many" is pre-determined by the analyst depending on the level of significance required in the test.

Example 9.11

The mortgage department of a large bank is interested in the nature of loans of first-time borrowers. This information will be used to tailor their marketing strategy. They believe that 50% of first-time borrowers take out smaller loans than other borrowers. They perform a hypothesis test to determine if the percentage is the same or different from 50% . They sample 100 first-time borrowers and find 53 of these loans are smaller that the other borrowers. For the hypothesis test, they choose a 5% level of significance.

STEP 1 : Set the null and alternative hypothesis.

H 0 : p = 0.50   H a : p ≠ 0.50

The words "is the same or different from" tell you this is a two-tailed test. The Type I and Type II errors are as follows: The Type I error is to conclude that the proportion of borrowers is different from 50% when, in fact, the proportion is actually 50%. (Reject the null hypothesis when the null hypothesis is true). The Type II error is there is not enough evidence to conclude that the proportion of first time borrowers differs from 50% when, in fact, the proportion does differ from 50%. (You fail to reject the null hypothesis when the null hypothesis is false.)

STEP 2 : Decide the level of significance and draw the graph showing the critical value

The level of significance has been set by the problem at the 5% level. Because this is two-tailed test one-half of the alpha value will be in the upper tail and one-half in the lower tail as shown on the graph. The critical value for the normal distribution at the 95% level of confidence is 1.96. This can easily be found on the student’s t-table at the very bottom at infinite degrees of freedom remembering that at infinity the t-distribution is the normal distribution. Of course the value can also be found on the normal table but you have go looking for one-half of 95 (0.475) inside the body of the table and then read out to the sides and top for the number of standard deviations.

STEP 3 : Calculate the sample parameters and critical value of the test statistic.

The test statistic is a normal distribution, Z, for testing proportions and is:

For this case, the sample of 100 found 53 of these loans were smaller than those of other borrowers. The sample proportion, p′ = 53/100= 0.53 The test question, therefore, is : “Is 0.53 significantly different from .50?” Putting these values into the formula for the test statistic we find that 0.53 is only 0.60 standard deviations away from .50. This is barely off of the mean of the standard normal distribution of zero. There is virtually no difference from the sample proportion and the hypothesized proportion in terms of standard deviations.

STEP 4 : Compare the test statistic and the critical value.

The calculated value is well within the critical values of ± 1.96 standard deviations and thus we cannot reject the null hypothesis. To reject the null hypothesis we need significant evident of difference between the hypothesized value and the sample value. In this case the sample value is very nearly the same as the hypothesized value measured in terms of standard deviations.

STEP 5 : Reach a conclusion

The formal conclusion would be “At a 5% level of significance we cannot reject the null hypothesis that 50% of first-time borrowers take out smaller loans than other borrowers.” Notice the length to which the conclusion goes to include all of the conditions that are attached to the conclusion. Statisticians, for all the criticism they receive, are careful to be very specific even when this seems trivial. Statisticians cannot say more than they know, and the data constrain the conclusion to be within the metes and bounds of the data.

Try It 9.11

A teacher believes that 85% of students in the class will want to go on a field trip to the local zoo. The teacher performs a hypothesis test to determine if the percentage is the same or different from 85%. The teacher samples 50 students and 39 reply that they would want to go to the zoo. For the hypothesis test, use a 1% level of significance.

Example 9.12

Suppose a consumer group suspects that the proportion of households that have three or more cell phones is 30%. A cell phone company has reason to believe that the proportion is not 30%. Before they start a big advertising campaign, they conduct a hypothesis test. Their marketing people survey 150 households with the result that 43 of the households have three or more cell phones.

Here is an abbreviate version of the system to solve hypothesis tests applied to a test on a proportions.

Try It 9.12

Marketers believe that 92% of adults in the United States own a cell phone. A cell phone manufacturer believes that number is actually lower. 200 American adults are surveyed, of which, 174 report having cell phones. Use a 5% level of significance. State the null and alternative hypothesis, find the p -value, state your conclusion, and identify the Type I and Type II errors.

Example 9.13

The National Institute of Standards and Technology provides exact data on conductivity properties of materials. Following are conductivity measurements for 11 randomly selected pieces of a particular type of glass.

1.11; 1.07; 1.11; 1.07; 1.12; 1.08; .98; .98; 1.02; .95; .95 Is there convincing evidence that the average conductivity of this type of glass is greater than one? Use a significance level of 0.05.

Let’s follow a four-step process to answer this statistical question.

  • H 0 : μ ≤ 1
  • H a : μ > 1
  • Plan : We are testing a sample mean without a known population standard deviation with less than 30 observations. Therefore, we need to use a Student's-t distribution. Assume the underlying population is normal.
  • Do the calculations and draw the graph .
  • State the Conclusions : We cannot accept the null hypothesis. It is reasonable to state that the data supports the claim that the average conductivity level is greater than one.

Try It 9.13

The boiling point of a specific liquid is measured for 15 samples, and the boiling points are obtained as follows:

205; 206; 206; 202; 199; 194; 197; 198; 198; 201; 201; 202; 207; 211; 205

Is there convincing evidence that the average boiling point is greater than 200? Use a significance level of 0.1. Assume the population is normal.

Example 9.14

In a study of 420,019 cell phone users, 172 of the subjects developed brain cancer. Test the claim that cell phone users developed brain cancer at a greater rate than that for non-cell phone users (the rate of brain cancer for non-cell phone users is 0.0340%). Since this is a critical issue, use a 0.005 significance level. Explain why the significance level should be so low in terms of a Type I error.

  • H 0 : p ≤ 0.00034
  • H a : p > 0.00034

If we commit a Type I error, we are essentially accepting a false claim. Since the claim describes cancer-causing environments, we want to minimize the chances of incorrectly identifying causes of cancer.

  • We will be testing a sample proportion with x = 172 and n = 420,019. The sample is sufficiently large because we have np' = 420,019(0.00034) = 142.8, nq' = 420,019(0.99966) = 419,876.2, two independent outcomes, and a fixed probability of success p' = 0.00034. Thus we will be able to generalize our results to the population.

Try It 9.14

In a study of 390,000 moisturizer users, 138 of the subjects developed skin diseases. Test the claim that moisturizer users developed skin diseases at a greater rate than that for non-moisturizer users (the rate of skin diseases for non-moisturizer users is 0.041%). Since this is a critical issue, use a 0.005 significance level. Explain why the significance level should be so low in terms of a Type I error.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/introductory-business-statistics-2e/pages/1-introduction
  • Authors: Alexander Holmes, Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Introductory Business Statistics 2e
  • Publication date: Dec 13, 2023
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/introductory-business-statistics-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/introductory-business-statistics-2e/pages/9-4-full-hypothesis-test-examples

© Dec 6, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Research Hypothesis: Good & Bad Examples

hypothesis in business research examples

What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis. 

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with. 

What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper. 

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories. 

Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1. 

Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis. 

Another example for a directional one-tailed alternative hypothesis would be that 

H1: Attending private classes before important exams has a positive effect on performance. 

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

hypothesis in a research paper

How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder: 

What is it that makes dog owners even happier than cat owners? 

Let’s move on to Step 2 and find an answer to that question.

Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.  

Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being . 

Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

Good Hypothesis Examples

Working from home improves job satisfaction.Employees who are allowed to work from home are less likely to quit within 2 years than those who need to come to the office.
Sleep deprivation affects cognition.Students who sleep <5 hours/night don’t perform as well on exams as those who sleep >7 hours/night. 
Animals adapt to their environment.Birds of the same species living on different islands have differently shaped beaks depending on the available food source.
Social media use causes anxiety.Do teenagers who refrain from using social media for 4 weeks show improvements in anxiety symptoms?

Bad Hypothesis Examples

Garlic repels vampires.Participants who eat garlic daily will not be harmed by vampires.Nobody gets harmed by vampires— .
Chocolate is better than vanilla.           No clearly defined variables— .

Tips for Writing a Research Hypothesis

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on… 

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript. 

Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI Proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

  • Prompt Library
  • DS/AI Trends
  • Stats Tools
  • Interview Questions
  • Generative AI
  • Machine Learning
  • Deep Learning

Hypothesis Testing in Business: Examples

hypothesis testing for business - examples

Are you a product manager or data scientist looking for ways to identify and use most appropriate hypothesis testing for understanding business problems and creating solutions for data-driven decision making? Hypothesis testing is a powerful statistical technique that can help you understand problems during exploratory data analysis (EDA) and identify most appropriate hypotheses / analytical solution. In this blog, we will discuss hypothesis testing with examples from business. We’ll also give you tips on how to use it effectively in your own problem-solving journey. With this knowledge, you’ll be able to confidently create hypotheses, run experiments, and analyze the results to derive meaningful conclusions. So let’s get started!

Before going any further, you may want to check out my detailed blog on hypothesis testing – Hypothesis testing steps & examples .

The picture below represents the key steps you can take to identify appropriate hypothesis tests related to your business problem you are trying to solve.

hypothesis testing for business - examples

Table of Contents

Business Objective / Problem Analysis to Asking Key Questions

Here are the steps which you can use to come up with hypothesis tests related to your business problems. You can then use data to perform hypothesis tests and arrive at different conclusions or inferences.

  • Setting / Identifying business objective : First & foremost, you need to have a business objective which you want to achieve. For example, achieve an increase of 10% revenue in the year ahead.
  • Identifying key business divisions / units and products & services : Second step is to identify key departments / divisions and related products & services which can help achieve the business objective. For current example, sales can be increased by increase in sales of products and services. For service based companies, it can be increase in sales of existing services and one or more new services. For products based companies, it could be increase in sales of different products.
  • Identify key personas / stakeholders : For each business division / department, identify key personas or stakeholders who could be accountable for contributing to achievement of business objective. For current example, it could personas / stakeholders who would own the increase in sales of products and / or services.
  • Are the sales of product A, B and C different?
  • Are the sales of product A, B and C similar across all the regions, countries, states, etc.?
  • Are there differences between products and competitors’ products vis-a-vis sales?
  • Are there any differences between customer queries / complaints across different products (A, B, C)?
  • Are there any differences between product usage patterns across different products, and for each product?
  • Are there differences between marketing initiatives run for different products?
  • Are there differences between teams working on different products?

Hypothesis formulation

Once the questions have been asked / raised, you can create hypotheses from these questions in order to arrive at the answers based on data analysis and create strategy / action plan. Lets take a look at one of the question and how you can formulate hypothesis and perform hypothesis testing. We will also talk about data and analytics aspects.

In order to create strategy around increasing sales revenue, it is very important to understand how has been the sales of different products in past and whether the sales have been different for us to dig deeper into the reasons and create some action plan?

The status quo becomes null hypothesis ([latex]H_0[/latex]. In our current analysis, the status quo is that there is no difference between the sales revenue of different products and that each product is doing equally good and selling well with the customers.

[latex]H_0[/latex]: There is no difference between sales revenue of different products.

The new knowledge for which the null hypothesis can be thrown away can be called as alternate hypothesis, [latex]H_a[/latex]. In current example, the new knowledge or alternate hypothesis is that there is a significant difference between the sales revenue of different products.

[latex]H_a[/latex]: There is a significant difference between sales revenue of different products.

Identifying Test Statistics for Hypothesis Testing

Once the hypothesis has been formulated, the next step is to identify the test statistics which can be used to perform the hypothesis test.

We can perform one-way Anova test to check whether there is a difference between sales based on the product. One-way ANOVA test requires calculation of F-statistics . The factor is product and levels are product A, B and C. Read my blog post on one-way ANOVA test to learn about different aspect of this test. One-Way ANOVA Test: Concepts, Formula & Examples

Apart from Hypothesis test and statistics, one can also set the level of significance based on which one can reject the null hypothesis or otherwise. Generally, it is chosen as 0.05.

Gather Data

Once the hypothesis test and statistics gets chosen, next step is to gather data. You can identify the system which holds the sales data and then gather the data from that system for last 1 year.

Perform Hypothesis Testing

Once the data is gathered, you can use Excel tool or any other statistical packages in Python / R and perform hypothesis testing by doing the following:

  • Calculating the value of test statistics
  • Calculate P-value
  • Comparing the P-value with level of significance
  • Reject the null hypothesis or otherwise

In conclusion, hypothesis testing is an essential tool for businesses to make data-driven decisions. It involves identifying a problem or question, formulating a hypothesis, identifying the appropriate test statistics, gathering data, and performing hypothesis testing. By following these steps, businesses can gain valuable insights into their operations, identify areas of improvement, and make informed decisions. It is important to note that hypothesis testing is not a one-time process but rather a continuous effort that businesses must undertake to stay ahead of the competition. Examples of hypothesis testing in business can range from identifying the effectiveness of a new marketing campaign to determining the impact of changes in pricing strategies. By analyzing data and performing hypothesis testing, businesses can determine the significance of these changes and make informed decisions that will improve their bottom line.

Recent Posts

Ajitesh Kumar

  • Completion Model vs Chat Model: Python Examples - June 30, 2024
  • LLM Hosting Strategy, Options & Cost: Examples - June 30, 2024
  • Application Architecture for LLM Applications: Examples - June 25, 2024

Ajitesh Kumar

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

  • Search for:
  • Excellence Awaits: IITs, NITs & IIITs Journey

ChatGPT Prompts (250+)

  • Generate Design Ideas for App
  • Expand Feature Set of App
  • Create a User Journey Map for App
  • Generate Visual Design Ideas for App
  • Generate a List of Competitors for App
  • Completion Model vs Chat Model: Python Examples
  • LLM Hosting Strategy, Options & Cost: Examples
  • Application Architecture for LLM Applications: Examples
  • Python Pickle Security Issues / Risk
  • Pricing Analytics in Banking: Strategies, Examples

Data Science / AI Trends

  • • Prepend any arxiv.org link with talk2 to load the paper into a responsive chat application
  • • Custom LLM and AI Agents (RAG) On Structured + Unstructured Data - AI Brain For Your Organization
  • • Guides, papers, lecture, notebooks and resources for prompt engineering
  • • Common tricks to make LLMs efficient and stable
  • • Machine learning in finance

Free Online Tools

  • Create Scatter Plots Online for your Excel Data
  • Histogram / Frequency Distribution Creation Tool
  • Online Pie Chart Maker Tool
  • Z-test vs T-test Decision Tool
  • Independent samples t-test calculator

Recent Comments

I found it very helpful. However the differences are not too understandable for me

Very Nice Explaination. Thankyiu very much,

in your case E respresent Member or Oraganization which include on e or more peers?

Such a informative post. Keep it up

Thank you....for your support. you given a good solution for me.

hypothesis in business research examples

Verify originality of an essay

Get ideas for your paper

Find top study documents

How to Write a Hypothesis for a Research Paper: Best Hacks and Examples

Updated 27 Jun 2024

The narrative of a research study commences with the formulation of a question. Inquisitive researchers worldwide are constantly posing questions and crafting research hypotheses. The effectiveness of a paper’s conclusion hinges on the quality of every research element. From this guide, you’ll learn how to write a hypothesis for a research paper and find examples that can assist you in grasping the process of crafting a strong text. We aim to clarify the definition and characteristics of a research hypothesis and guide researchers in formulating one effectively. Writing a clear and testable hypothesis is crucial for any research project, and if you're struggling, you might consider the option to pay for essay services to ensure your hypothesis is well-formulated and precise.

What is a research hypothesis?

It is a tentative answer to a research question that has not been tested yet. It should be based on established theories and knowledge and be testable through scientific methods like experiments and data analysis. 

To understand a hypothesis definition and its purpose, one must analyze a scientist's steps when doing research. To address a particular issue, the initial step involves identifying the research question, conducting a preliminary study, and then proceeding to answer the question by conducting experiments and analyzing the observed outcomes. Still, before embarking on the experimental phase, it’s essential to determine the expected results. At this stage, researchers make an informed estimation and formulate a supposition that they aim to confirm or disprove throughout their study.

The essential characteristics of a hypothesis 

Now that you have a brief understanding of what a hypothesis in a research paper  is, let’s examine its key defining characteristics that contribute to its effectiveness:

  • Clear and specific: A good hypothesis is clear, concise, and specific in its formulation. It precisely states the relationship or expected outcome being investigated.
  • Testable: It is testable, meaning it can be empirically examined through observations, experiments, or data analysis. Gathering evidence to support or refute the researcher’s guess should be possible.
  • Grounded in existing knowledge: A good hypothesis in a research paper is based on existing theories, concepts, or empirical evidence. It demonstrates a solid understanding of the relevant literature and builds upon prior knowledge in the field.
  • Falsifiable: It can be potentially proven false. This characteristic allows obtaining data that contradicts the primary assumption, enabling meaningful scientific inquiry.
  • Logical and plausible: A supposition in research is logically reasoned and plausible. It should align with known facts and be supported by sound reasoning and evidence.
  • Relevant and significant: It addresses a meaningful research question and has implications for the field. It should contribute to the existing knowledge base and have practical or theoretical significance.
  • Limited in scope: It is focused and limited in scope. It should address a specific aspect or relationship rather than attempting to explain or predict everything in a broad context.

By embodying these characteristics, a good hypothesis provides a solid foundation for research, guiding the study’s design, data collection, and analysis, ultimately contributing to the generation of valuable scientific knowledge.

What are the sources for building a hypothesis? 

There are several potential sources for developing a good research paper hypothesis. Let’s consider their details and examples:

  • Scientific theories

Hypotheses can stem from existing scientific theories. Suppose we have an established theory in psychology that suggests a positive correlation between sleep quality and cognitive performance. Based on this theory, we can create a statement: 

“If individuals experience better sleep quality, then their cognitive performance will improve compared to those with poorer sleep quality.”

  • Previous studies and experiences

Observations from past studies and current experiences can contribute to formulating suppositions. Let’s say previous studies have shown that a particular herb has anti-inflammatory properties. Building upon this finding, we can formulate the following: 

“If individuals consume the herb extract, then their inflammation levels will decrease compared to a control group.”

  • Similarities among phenomena

Resemblances between different phenomena can inspire hypotheses. Consider a study investigating the effects of exercise on mood. Drawing an analogy from previous research showing that outdoor nature exposure improves mood, a scientist can formulate a guess: 

“If individuals engage in outdoor exercise, then their mood will improve compared to those engaging in indoor exercise.”

  • Empirical observations

Direct observations of phenomena or patterns in the real world can spark the development of ideas. Suppose a researcher observes that learners who study in a quiet environment tend to perform better on exams. This observation can lead to the next statement: 

“If learners study in a quiet environment, then their exam scores will be higher compared to those who study in a noisy environment.”

Transform AI drafts with human editing!

Bring a human touch to your AI-generated drafts. Our expert editors refine your content for just $7/page.

Types of research hypotheses 

They can be classified into one or more of the seven primary categories, depending on the nature of your investigation, a chosen research methodology , and anticipated findings. These categories are not mutually exclusive, meaning a single supposition can belong to multiple types.

  • A simple hypothesis is based on the relationship between two variables: one independent and one dependent. Let’s see a hypothesis example:

“Increased study time leads to improved test scores.”

  • A complex approach involves the relationship between numerous variables (more than two), e.g., two dependent variables and one independent, or vice versa.

“Both exercise frequency and diet quality have a combined effect on weight loss.”

  • A null hypothesis suggests no relationship between variables.

“There is no significant difference in anxiety levels between Group A and Group B.”

  • An alternative hypothesis is used alongside a null one, stating the opposite and asserting that only one of the two ideas can be true.

“The new drug treatment reduces symptoms of depression more effectively than the current standard treatment.”

  • A logical approach relies on a relationship between variables based on reasoning or deduction, lacking actual data or evidence.

“If students receive regular feedback on their assignments, their academic performance will improve.”

  • An empirical (“working”) hypothesis is currently being tested and relies on concrete data.

“Increasing the temperature will accelerate the rate of the chemical reaction.”

  • A statistical approach involves testing a population sample and using statistical evidence to conclude about the whole population. This method tests only a portion of the population and generalizes based on existing data.

“Based on the sample data, there is a significant correlation between sleep duration and memory retention in the population.”

How to write a hypothesis for a research paper step-by-step

  • Search for answers to your questions.  Start by questioning the world around you, exploring why things are the way they are and what causes the phenomena you observe. Follow your curiosity and choose a research topic that genuinely interests you.
  • Do preliminary research.  Gather background information for your outline, depending on the scope of your research. This may involve reading books or performing quick web searches. Focus on gathering the necessary information to prove or disprove your idea.
  • Determine variables.  Define the independent and dependent variables for your research. Consider the factors you have control over and ensure they align with your experiment’s limitations.
  • Formulate an if-then statement.  Create your guess using an if-then format, illustrating the cause-and-effect relationship you intend to test. For example, “If we do morning exercise, then we’ll be healthier.”
  • Gather supportive data.  Conduct experiments to gather data that maintains your idea. Remember, even if your research disproves your supposition, it contributes to the scientific process.
  • Write confidently.  Finally, document your findings in your work for others to access. Writing a thesis requires distinct skills separate from conducting experiments.

Tips on creating a flawless research paper hypothesis

  • Be realistic and feasible: Consider the practicality and limitations of your study. Ensure that your hypothesis is realistic and can be tested within the constraints of your available resources, time, and ethical considerations.
  • Avoid value judgments: Be neutral and objective. Avoid including personal beliefs, value judgments, or subjective opinions. Stick to empirical statements based on evidence.
  • Be concise: Aim for a concise and focused hypothesis. Avoid unnecessary complexity or unnecessary elaboration. Ensure it is succinctly stated in a single or a few sentences.
  • Revise and refine: Continuously revise and refine your content as you gather more information and insights throughout your research process. Be open to modifying or adjusting your hypothesis based on new evidence or unexpected findings.

Some examples to inspire you

By following our guide and tips, you can easily create well-formed hypotheses. To help you get started, we have curated a list of research questions and relevant hypothesis examples.

Research question: Does regular exercise improve cognitive function in older adults?

Hypothesis: If older adults exercise regularly, their cognitive function will improve compared to sedentary ones.

Null hypothesis : No significant difference in cognitive function exists between older adults who exercise regularly and those who lead a sedentary lifestyle.

Research question: Does caffeine consumption affect sleep quality?

Hypothesis: If individuals consume high amounts of caffeine before bedtime, their sleep quality will be negatively impacted compared to those who consume low or no caffeine.

Null hypothesis : There is no significant difference in sleep quality between individuals who consume high amounts of caffeine before bedtime and those who consume low or no caffeine.

Was this helpful?

Thanks for your feedback.

Article author picture

Written by Steven Robinson

Steven Robinson is an academic writing expert with a degree in English literature. His expertise, patient approach, and support empower students to express ideas clearly. On EduBirdie's blog, he provides valuable writing guides on essays, research papers, and other intriguing topics. Enjoys chess in free time.

Related Blog Posts

Learn how to write an introduction for a research paper.

Though introduction to any writing is frequently associated with beginning, it's not that simple for an introduction to a research paper. Here you ...

How to Write a Research Question: Common Types and Winning Examples

The starting point for any investigation is a research question. Still, formulating valid and relevant questions can be challenging for many writer...

Discover how to compose acknowledgements in research paper

This post will help you learn about the use of acknowledgements in research paper and determine how they are composed and why they must be present ...

Join our 150K of happy users

  • Get original papers written according to your instructions
  • Save time for what matters most

Statology

4 Examples of Hypothesis Testing in Real Life

In statistics, hypothesis tests are used to test whether or not some hypothesis about a population parameter is true.

To perform a hypothesis test in the real world, researchers will obtain a random sample from the population and perform a hypothesis test on the sample data, using a null and alternative hypothesis:

  • Null Hypothesis (H 0 ): The sample data occurs purely from chance.
  • Alternative Hypothesis (H A ): The sample data is influenced by some non-random cause.

If the p-value of the hypothesis test is less than some significance level (e.g. α = .05), then we can reject the null hypothesis and conclude that we have sufficient evidence to say that the alternative hypothesis is true.

The following examples provide several situations where hypothesis tests are used in the real world.

Example 1: Biology

Hypothesis tests are often used in biology to determine whether some new treatment, fertilizer, pesticide, chemical, etc. causes increased growth, stamina, immunity, etc. in plants or animals.

For example, suppose a biologist believes that a certain fertilizer will cause plants to grow more during a one-month period than they normally do, which is currently 20 inches. To test this, she applies the fertilizer to each of the plants in her laboratory for one month.

She then performs a hypothesis test using the following hypotheses:

  • H 0 : μ = 20 inches (the fertilizer will have no effect on the mean plant growth)
  • H A : μ > 20 inches (the fertilizer will cause mean plant growth to increase)

If the p-value of the test is less than some significance level (e.g. α = .05), then she can reject the null hypothesis and conclude that the fertilizer leads to increased plant growth.

Example 2: Clinical Trials

Hypothesis tests are often used in clinical trials to determine whether some new treatment, drug, procedure, etc. causes improved outcomes in patients.

For example, suppose a doctor believes that a new drug is able to reduce blood pressure in obese patients. To test this, he may measure the blood pressure of 40 patients before and after using the new drug for one month.

He then performs a hypothesis test using the following hypotheses:

  • H 0 : μ after = μ before (the mean blood pressure is the same before and after using the drug)
  • H A : μ after < μ before (the mean blood pressure is less after using the drug)

If the p-value of the test is less than some significance level (e.g. α = .05), then he can reject the null hypothesis and conclude that the new drug leads to reduced blood pressure.

Example 3: Advertising Spend

Hypothesis tests are often used in business to determine whether or not some new advertising campaign, marketing technique, etc. causes increased sales.

For example, suppose a company believes that spending more money on digital advertising leads to increased sales. To test this, the company may increase money spent on digital advertising during a two-month period and collect data to see if overall sales have increased.

They may perform a hypothesis test using the following hypotheses:

  • H 0 : μ after = μ before (the mean sales is the same before and after spending more on advertising)
  • H A : μ after > μ before (the mean sales increased after spending more on advertising)

If the p-value of the test is less than some significance level (e.g. α = .05), then the company can reject the null hypothesis and conclude that increased digital advertising leads to increased sales.

Example 4: Manufacturing

Hypothesis tests are also used often in manufacturing plants to determine if some new process, technique, method, etc. causes a change in the number of defective products produced.

For example, suppose a certain manufacturing plant wants to test whether or not some new method changes the number of defective widgets produced per month, which is currently 250. To test this, they may measure the mean number of defective widgets produced before and after using the new method for one month.

They can then perform a hypothesis test using the following hypotheses:

  • H 0 : μ after = μ before (the mean number of defective widgets is the same before and after using the new method)
  • H A : μ after ≠ μ before (the mean number of defective widgets produced is different before and after using the new method)

If the p-value of the test is less than some significance level (e.g. α = .05), then the plant can reject the null hypothesis and conclude that the new method leads to a change in the number of defective widgets produced per month.

Additional Resources

Introduction to Hypothesis Testing Introduction to the One Sample t-test Introduction to the Two Sample t-test Introduction to the Paired Samples t-test

Featured Posts

hypothesis in business research examples

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

How Is a Hypothesis Important in Business?

  • Small Business
  • Business Communications & Etiquette
  • Importance of Business Communication
  • ')" data-event="social share" data-info="Pinterest" aria-label="Share on Pinterest">
  • ')" data-event="social share" data-info="Reddit" aria-label="Share on Reddit">
  • ')" data-event="social share" data-info="Flipboard" aria-label="Share on Flipboard">

How to Calculate Start-Up Costs for a Catering Business

What is the difference between primary & secondary data when it comes to market research, challenges in marketing products.

  • How to Use Conjoint Analysis in Pricing Studies
  • How to Write a Marketing Distribution Channel Strategy

Much of running a small business is a gamble, buoyed by boldness, intuition and guts. But wise business leaders also conduct formal and informal research to inform their business decisions. Good research starts with a good hypothesis, which is simply a statement making a prediction based on a set of observations. For example, if you’re considering offering flexible work hours to your employees, you might hypothesize that this policy change will positively affect their productivity and contribute to your bottom line. The ultimate job of the hypothesis in business is to serve as a guidepost to your testing and research methods.

Importance of Hypothesis Testing in Business

Essentially good hypotheses lead decision-makers like you to new and better ways to achieve your business goals. When you need to make decisions such as how much you should spend on advertising or what effect a price increase will have your customer base, it’s easy to make wild assumptions or get lost in analysis paralysis. A business hypothesis solves this problem, because, at the start, it’s based on some foundational information. In all of science, hypotheses are grounded in theory. Theory tells you what you can generally expect from a certain line of inquiry.

A hypothesis based on years of business research in a particular area, then, helps you focus, define and appropriately direct your research. You won’t go on a wild goose chase to prove or disprove it. A hypothesis predicts the relationship between two variables. If you want to study pricing and customer loyalty, you won’t waste your time and resources studying tangential areas.

Marketing Support

One of the most important hypotheses you’ll make in growing your small business is the cost of acquiring a customer. Your viability as a business is founded on ensuring that your customers bring you more money than it costs you to get them in the door. Hypothesizing this number informs not only your pricing strategy but also your marketing efforts and the rest of your overhead expenses. You can also make predictions about the lifetime value of each customer to determine how much marketing you need to do. Businesses frequently attempt to guesstimate how long a customer will stick around and how much sales to each one will contribute to your profit.

In real life, hypotheses are honed and perfected over time through refining of your basic questions, assumptions and research methods, suggests Quickbooks. In addition, you may have more than one hypothesis to explain your observations, such as why your product failed or why morale is sinking in the office.

Forming a Hypothesis

To form a good hypothesis, you should ensure certain criteria are met when making your prediction statements. The hypothesis must be testable as a start, reports Corporate Finance Institute . Don’t make the mistake of trying to prove a tautology, or a hypothesis that is always true. For example, “Our social media strategy will succeed if it’s social or it will fail.” In addition, your hypothesis should be based on the most up-to-date research and knowledge on the subject matter.

Don't Forget to Test It

The most important part of having a hypothesis is determining whether it’s supported by the facts. The scope and formality of your research depend on your research and may simply involve examining the literature, polling your stakeholders or researching other areas. For example, in determining whether to locate your business in a pricey downtown or an exurb with no public transportation, you may look at commuting statistics of your general metropolitan area, the prevalence of carpooling, the socioeconomic status of most of your employees, as well as where your competitors are located.

  • Corporate Finance Institute: Hypothesis Testing

Related Articles

How to know what a customer needs & wants, relationship between research and business decisions, purpose of marketing research, cross-section design of a business research method, marketing strategy for beginners, how to measure concepts in business research for a conceptual model, how to decrease product costs, how to identify the appropriate price strategy, what factors increase the breakeven point, most popular.

  • 1 How to Know What a Customer Needs & Wants
  • 2 Relationship Between Research and Business Decisions
  • 3 Purpose of Marketing Research
  • 4 Cross-Section Design of a Business Research Method

Back to blog home

Hypothesis testing explained in 4 parts, yuzheng sun, phd.

As data scientists, Hypothesis Testing is expected to be well understood, but often not in reality. It is mainly because our textbooks blend two schools of thought – p-value and significance testing vs. hypothesis testing – inconsistently.

For example, some questions are not obvious unless you have thought through them before:

Are power or beta dependent on the null hypothesis?

Can we accept the null hypothesis? Why?

How does MDE change with alpha holding beta constant?

Why do we use standard error in Hypothesis Testing but not the standard deviation?

Why can’t we be specific about the alternative hypothesis so we can properly model it?

Why is the fundamental tradeoff of the Hypothesis Testing about mistake vs. discovery, not about alpha vs. beta?

Addressing this problem is not easy. The topic of Hypothesis Testing is convoluted. In this article, there are 10 concepts that we will introduce incrementally, aid you with visualizations, and include intuitive explanations. After this article, you will have clear answers to the questions above that you truly understand on a first-principle level and explain these concepts well to your stakeholders.

We break this article into four parts.

Set up the question properly using core statistical concepts, and connect them to Hypothesis Testing, while striking a balance between technically correct and simplicity. Specifically, 

We emphasize a clear distinction between the standard deviation and the standard error, and why the latter is used in Hypothesis Testing

We explain fully when can you “accept” a hypothesis, when shall you say “failing to reject” instead of “accept”, and why

Introduce alpha, type I error, and the critical value with the null hypothesis

Introduce beta, type II error, and power with the alternative hypothesis

Introduce minimum detectable effects and the relationship between the factors with power calculations , with a high-level summary and practical recommendations

Part 1 - Hypothesis Testing, the central limit theorem, population, sample, standard deviation, and standard error

In Hypothesis Testing, we begin with a null hypothesis , which generally asserts that there is no effect between our treatment and control groups. Commonly, this is expressed as the difference in means between the treatment and control groups being zero.

The central limit theorem suggests an important property of this difference in means — given a sufficiently large sample size, the underlying distribution of this difference in means will approximate a normal distribution, regardless of the population's original distribution. There are two notes:

1. The distribution of the population for the treatment and control groups can vary, but the observed means (when you observe many samples and calculate many means) are always normally distributed with a large enough sample. Below is a chart, where the n=10 and n=30 correspond to the underlying distribution of the sample means.

Central Limit Theorem

2. Pay attention to “the underlying distribution”. Standard deviation vs. standard error is a potentially confusing concept. Let’s clarify.

Standard deviation vs. Standard error

Let’s declare our null hypothesis as having no treatment effect. Then, to simplify, let’s propose the following normal distribution with a mean of 0 and a standard deviation of 1 as the range of possible outcomes with probabilities associated with this null hypothesis.

Standard Deviation v Standard Error

The language around population, sample, group, and estimators can get confusing. Again, to simplify, let’s forget that the null hypothesis is about the mean estimator, and declare that we can either observe the mean hypothesis once or many times. When we observe it many times, it forms a sample*, and our goal is to make decisions based on this sample.

* For technical folks, the observation is actually about a single sample, many samples are a group, and the difference in groups is the distribution we are talking about as the mean hypothesis. The red curve represents the distribution of the estimator of this difference, and then we can have another sample consisting of many observations of this estimator. In my simplified language, the red curve is the distribution of the estimator, and the blue curve with sample size is the repeated observations of it. If you have a better way to express these concepts without causing confusiongs, please suggest.

This probability density function means if there is one realization from this distribution, the realitization can be anywhere on the x-axis, with the relative likelihood on the y-axis.

If we draw multiple observations , they form a sample . Each observation in this sample follows the property of this underlying distribution – more likely to be close to 0, and equally likely to be on either side, which makes the odds of positive and negative cancel each other out, so the mean of this sample is even more centered around 0.

We use the standard error to represent the error of our “sample mean” . 

The standard error = the standard deviation of the observed sample / sqrt (sample size). 

For a sample size of 30, the standard error is roughly 0.18. Compared with the underlying distribution, the distribution of the sample mean is much narrower.

Standard Deviation and Standard Error 2 Images

In Hypothesis Testing, we try to draw some conclusions – is there a treatment effect or not? – based on a sample. So when we talk about alpha and beta, which are the probabilities of type I and type II errors , we are talking about the probabilities based on the plot of sample means and standard error .

Part 2, The null hypothesis: alpha and the critical value

From Part 1, we stated that a null hypothesis is commonly expressed as the difference in means between the treatment and control groups being zero.

Without loss of generality*, let’s assume the underlying distribution of our null hypothesis is mean 0 and standard deviation 1

Then the sample mean of the null hypothesis is 0 and the standard error of 1/√ n, where n is the sample size.

When the sample size is 30, this distribution has a standard error of ≈0.18 looks like the below. 

Null Hypothesis YZ

*: A note for the technical readers: The null hypothesis is about the difference in means, but here, without complicating things, we made the subtle change to just draw the distribution of this “estimator of this difference in means”. Everything below speaks to this “estimator”.

The reason we have the null hypothesis is that we want to make judgments, particularly whether a  treatment effect exists. But in the world of probabilities, any observation, and any sample mean can happen, with different probabilities. So we need a decision rule to help us quantify our risk of making mistakes.

The decision rule is, let’s set a threshold. When the sample mean is above the threshold, we reject the null hypothesis; when the sample mean is below the threshold, we accept the null hypothesis.

Accepting a hypothesis vs. failing to reject a hypothesis

It’s worth noting that you may have heard of “we never accept a hypothesis, we just fail to reject a hypothesis” and be subconsciously confused by it. The deep reason is that modern textbooks do an inconsistent blend of Fisher’s significance testing and Neyman-Pearson’s Hypothesis Testing definitions and ignore important caveats ( ref ). To clarify:

First of all, we can never “prove” a particular hypothesis given any observations, because there are infinitely many true hypotheses (with different probabilities) given an observation. We will visualize it in Part 3.

Second, “accepting” a hypothesis does not mean that you believe in it, but only that you act as if it were true. So technically, there is no problem with “accepting” a hypothesis.

But, third, when we talk about p-values and confidence intervals, “accepting” the null hypothesis is at best confusing. The reason is that “the p-value above the threshold” just means we failed to reject the null hypothesis. In the strict Fisher’s p-value framework, there is no alternative hypothesis. While we have a clear criterion for rejecting the null hypothesis (p < alpha), we don't have a similar clear-cut criterion for "accepting" the null hypothesis based on beta.

So the dangers in calling “accepting a hypothesis” in the p-value setting are:

Many people misinterpret “accepting” the null hypothesis as “proving” the null hypothesis, which is wrong; 

“Accepting the null hypothesis” is not rigorously defined, and doesn’t speak to the purpose of the test, which is about whether or not we reject the null hypothesis. 

In this article, we will stay consistent within the Neyman-Pearson framework , where “accepting” a hypothesis is legal and necessary. Otherwise, we cannot draw any distributions without acting as if some hypothesis was true.

You don’t need to know the name Neyman-Pearson to understand anything, but pay attention to our language, as we choose our words very carefully to avoid mistakes and confusion.

So far, we have constructed a simple world of one hypothesis as the only truth, and a decision rule with two potential outcomes – one of the outcomes is “reject the null hypothesis when it is true” and the other outcome is “accept the null hypothesis when it is true”. The likelihoods of both outcomes come from the distribution where the null hypothesis is true.

Later, when we introduce the alternative hypothesis and MDE, we will gradually walk into the world of infinitely many alternative hypotheses and visualize why we cannot “prove” a hypothesis.

We save the distinction between the p-value/significance framework vs. Hypothesis Testing in another article where you will have the full picture.

Type I error, alpha, and the critical value

We’re able to construct a distribution of the sample mean for this null hypothesis using the standard error. Since we only have the null hypothesis as the truth of our universe, we can only make one type of mistake – falsely rejecting the null hypothesis when it is true. This is the type I error , and the probability is called alpha . Suppose we want alpha to be 5%. We can calculate the threshold required to make it happen. This threshold is called the critical value . Below is the chart we further constructed with our sample of 30.

Type I Error Alpha Critical Value

In this chart, alpha is the blue area under the curve. The critical value is 0.3. If our sample mean is above 0.3, we reject the null hypothesis. We have a 5% chance of making the type I error.

Type I error: Falsely rejecting the null hypothesis when the null hypothesis is true

Alpha: The probability of making a Type I error

Critical value: The threshold to determine whether the null hypothesis is to be rejected or not

Part 3, The alternative hypothesis: beta and power

You may have noticed in part 2 that we only spoke to Type I error – rejecting the null hypothesis when it is true. What about the Type II error – falsely accepting the null hypothesis when it is not true?

But it is weird to call “accepting” false unless we know the truth. So we need an alternative hypothesis which serves as the alternative truth. 

Alternative hypotheses are theoretical constructs

There is an important concept that most textbooks fail to emphasize – that is, you can have infinitely many alternative hypotheses for a given null hypothesis, we just choose one. None of them are more special or “real” than the others. 

Let’s visualize it with an example. Suppose we observed a sample mean of 0.51, what is the true alternative hypothesis?

Alternative hypotheses theoretical

With this visualization, you can see why we have “infinitely many alternative hypotheses” because, given the observation, there is an infinite number of alternative hypotheses (plus the null hypothesis) that can be true, each with different probabilities. Some are more likely than others, but all are possible.

Remember, alternative hypotheses are a theoretical construct. We choose one particular alternative hypothesis to calculate certain probabilities. By now, we should have more understanding of why we cannot “accept” the null hypothesis given an observation. We can’t prove that the null hypothesis is true, we just fail to accept it given the observation and our pre-determined decision rule. 

We will fully reconcile this idea of picking one alternative hypothesis out of the world of infinite possibilities when we talk about MDE. The idea of “accept” vs. “fail to reject” is deeper, and we won’t cover it fully in this article. We will do so when we have an article about the p-value and the confidence interval.

Type II error and Beta

For the sake of simplicity and easy comparison, let’s choose an alternative hypothesis with a mean of 0.5, and a standard deviation of

1. Again, with a sample size of 30, the standard error ≈0.18. There are now two potential “truths” in our simple universe.

Type II Error and Beta

Remember from the null hypothesis, we want alpha to be 5% so the corresponding critical value is 0.30. We modify our rule as follows:

If the observation is above 0.30, we reject the null hypothesis and accept the alternative hypothesis ; 

If the observation is below 0.30, we accept the null hypothesis and reject the alternative hypothesis .

Reject alternative and accept null

With the introduction of the alternative hypothesis, the alternative “(hypothesized) truth”, we can call “accepting the null hypothesis and rejecting the alternative hypothesis” a mistake – the Type II error. We can also calculate the probability of this mistake. This is called beta, which is illustrated by the red area below.

Null hypothesis alternative hypothesis

From the visualization, we can see that beta is conditional on the alternative hypothesis and the critical value. Let’s elaborate on these two relationships one by one, very explicitly, as both of them are important.

First, Let’s visualize how beta changes with the mean of the alternative hypothesis by setting another alternative hypothesis where mean = 1 instead of 0.5

Sample Size 30 for Null and Alternative Hypothesis

Beta change from 13.7% to 0.0%. Namely, beta is the probability of falsely rejecting a particular alternative hypothesis when we assume it is true. When we assume a different alternative hypothesis is true, we get a different beta. So strictly speaking, beta only speaks to the probability of falsely rejecting a particular alternative hypothesis when it is true . Nothing else. It’s only under other conditions, that “rejecting the alternative hypothesis” implies “accepting” the null hypothesis or “failing to accept the null hypothesis”. We will further elaborate when we talk about p-value and confidence interval in another article. But what we talked about so far is true and enough for understanding power.

Second, there is a relationship between alpha and beta. Namely, given the null hypothesis and the alternative hypothesis, alpha would determine the critical value, and the critical value determines beta. This speaks to the tradeoff between mistake and discovery. 

If we tolerate more alpha, we will have a smaller critical value, and for the same beta, we can detect a smaller alternative hypothesis

If we tolerate more beta, we can also detect a smaller alternative hypothesis. 

In short, if we tolerate more mistakes (either Type I or Type II), we can detect a smaller true effect. Mistake vs. discovery is the fundamental tradeoff of Hypothesis Testing.

So tolerating more mistakes leads to more chance of discovery. This is the concept of MDE that we will elaborate on in part 4.

Finally, we’re ready to define power. Power is an important and fundamental topic in statistical testing, and we’ll explain the concept in three different ways.

Three ways to understand power

First, the technical definition of power is 1−β. It represents that given an alternative hypothesis and given our null, sample size, and decision rule (alpha = 0.05), the probability is that we accept this particular hypothesis. We visualize the yellow area below.

Understand Power Hypothesis

Second, power is really intuitive in its definition. A real-world example is trying to determine the most popular car manufacturer in the world. If I observe one car and see one brand, my observation is not very powerful. But if I observe a million cars, my observation is very powerful. Powerful tests mean that I have a high chance of detecting a true effect.

Third, to illustrate the two concepts concisely, let’s run a visualization by just changing the sample size from 30 to 100 and see how power increases from 86.3% to almost 100%.

Same size from 30 to 100

As the graph shows, we can easily see that power increases with sample size . The reason is that the distribution of both the null hypothesis and the alternative hypothesis became narrower as their sample means got more accurate. We are less likely to make either a type I error (which reduces the critical value) or a type II error.  

Type II error: Failing to reject the null hypothesis when the alternative hypothesis is true

Beta: The probability of making a type II error

Power: The ability of the test to detect a true effect when it’s there

Part 4, Power calculation: MDE

The relationship between mde, alternative hypothesis, and power.

Now, we are ready to tackle the most nuanced definition of them all: Minimum detectable effect (MDE). First, let’s make the sample mean of the alternative hypothesis explicit on the graph with a red dotted line.

Relationship between MDE

What if we keep the same sample size, but want power to be 80%? This is when we recall the previous chapter that “alternative hypotheses are theoretical constructs”. We can have a different alternative that corresponds to 80% power. After some calculations, we discovered that when it’s the alternative hypothesis with mean = 0.45 (if we keep the standard deviation to be 1).

MDE Alternative Hypothesis pt 2

This is where we reconcile the concept of “infinitely many alternative hypotheses” with the concept of minimum detectable delta. Remember that in statistical testing, we want more power. The “ minimum ” in the “ minimum detectable effect”, is the minimum value of the mean of the alternative hypothesis that would give us 80% power. Any alternative hypothesis with a mean to the right of MDE gives us sufficient power.

In other words, there are indeed infinitely many alternative hypotheses to the right of this mean 0.45. The particular alternative hypothesis with a mean of 0.45 gives us the minimum value where power is sufficient. We call it the minimum detectable effect, or MDE.

Not enough power MDE

The complete definition of MDE from scratch

Let’s go through how we derived MDE from the beginning:

We fixed the distribution of sample means of the null hypothesis, and fixed sample size, so we can draw the blue distribution

For our decision rule, we require alpha to be 5%. We derived that the critical value shall be 0.30 to make 5% alpha happen

We fixed the alternative hypothesis to be normally distributed with a standard deviation of 1 so the standard error is 0.18, the mean can be anywhere as there are infinitely many alternative hypotheses

For our decision rule, we require beta to be 20% or less, so our power is 80% or more. 

We derived that the minimum value of the observed mean of the alternative hypothesis that we can detect with our decision rule is 0.45. Any value above 0.45 would give us sufficient power.

How MDE changes with sample size

Now, let’s tie everything together by increasing the sample size, holding alpha and beta constant, and see how MDE changes.

How MDE changes with sample size

Narrower distribution of the sample mean + holding alpha constant -> smaller critical value from 0.3 to 0.16

+ holding beta constant -> MDE decreases from 0.45 to 0.25

This is the other key takeaway:  The larger the sample size, the smaller of an effect we can detect, and the smaller the MDE.

This is a critical takeaway for statistical testing. It suggests that even for companies not with large sample sizes if their treatment effects are large, AB testing can reliably detect it.

Statistical Power Curve

Summary of Hypothesis Testing

Let’s review all the concepts together.

Assuming the null hypothesis is correct:

Alpha: When the null hypothesis is true, the probability of rejecting it

Critical value: The threshold to determine rejecting vs. accepting the null hypothesis

Assuming an alternative hypothesis is correct:

Beta: When the alternative hypothesis is true, the probability of rejecting it

Power: The chance that a real effect will produce significant results

Power calculation:

Minimum detectable effect (MDE): Given sample sizes and distributions, the minimum mean of alternative distribution that would give us the desired alpha and sufficient power (usually alpha = 0.05 and power >= 0.8)

Relationship among the factors, all else equal: Larger sample, more power; Larger sample, smaller MDE

Everything we talk about is under the Neyman-Pearson framework. There is no need to mention the p-value and significance under this framework. Blending the two frameworks is the inconsistency brought by our textbooks. Clarifying the inconsistency and correctly blending them are topics for another day.

Practical recommendations

That’s it. But it’s only the beginning. In practice, there are many crafts in using power well, for example:

Why peeking introduces a behavior bias, and how to use sequential testing to correct it

Why having multiple comparisons affects alpha, and how to use Bonferroni correction

The relationship between sample size, duration of the experiment, and allocation of the experiment?

Treat your allocation as a resource for experimentation, understand when interaction effects are okay, and when they are not okay, and how to use layers to manage

Practical considerations for setting an MDE

Also, in the above examples, we fixed the distribution, but in reality, the variance of the distribution plays an important role. There are different ways of calculating the variance and different ways to reduce variance, such as CUPED, or stratified sampling.

Related resources:

How to calculate power with an uneven split of sample size: https://blog.statsig.com/calculating-sample-sizes-for-a-b-tests-7854d56c2646

Real-life applications: https://blog.statsig.com/you-dont-need-large-sample-sizes-to-run-a-b-tests-6044823e9992

Create a free account

Statsig for startups.

Statsig offers a generous program for early-stage startups who are scaling fast and need a sophisticated experimentation platform.

Build fast?

Try statsig today.

hypothesis in business research examples

Recent Posts

Top 8 common experimentation mistakes and how to fix them.

I discussed 8 A/B testing mistakes with Allon Korem (Bell Statistics) and Tyler VanHaren (Statsig). Learn fixes to improve accuracy and drive better business outcomes.

Introducing Differential Impact Detection

Introducing Differential Impact Detection: Identify how different user groups respond to treatments and gain useful insights from varied experiment results.

Identifying and experimenting with Power Users using Statsig

Identify power users to drive growth and engagement. Learn to pinpoint and leverage these key players with targeted experiments for maximum impact.

How to Ingest Data Into Statsig

Simplify data pipelines with Statsig. Use SDKs, third-party integrations, and Data Warehouse Native Solution for effortless data ingestion at any stage.

A/B Testing performance wins on NestJS API servers

Learn how we use Statsig to enhance our NestJS API servers, reducing request processing time and CPU usage through performance experiments.

An overview of making early decisions on experiments

Learn the risks vs. rewards of making early decisions in experiments and Statsig's techniques to reduce experimentation times and deliver trustworthy results.

How to Generate and Validate Product Hypotheses

hypothesis in business research examples

Every product owner knows that it takes effort to build something that'll cater to user needs. You'll have to make many tough calls if you wish to grow the company and evolve the product so it delivers more value. But how do you decide what to change in the product, your marketing strategy, or the overall direction to succeed? And how do you make a product that truly resonates with your target audience?

There are many unknowns in business, so many fundamental decisions start from a simple "what if?". But they can't be based on guesses, as you need some proof to fill in the blanks reasonably.

Because there's no universal recipe for successfully building a product, teams collect data, do research, study the dynamics, and generate hypotheses according to the given facts. They then take corresponding actions to find out whether they were right or wrong, make conclusions, and most likely restart the process again.

On this page, we thoroughly inspect product hypotheses. We'll go over what they are, how to create hypothesis statements and validate them, and what goes after this step.

What Is a Hypothesis in Product Management?

A hypothesis in product development and product management is a statement or assumption about the product, planned feature, market, or customer (e.g., their needs, behavior, or expectations) that you can put to the test, evaluate, and base your further decisions on . This may, for instance, regard the upcoming product changes as well as the impact they can result in.

A hypothesis implies that there is limited knowledge. Hence, the teams need to undergo testing activities to validate their ideas and confirm whether they are true or false.

What Is a Product Hypothesis?

Hypotheses guide the product development process and may point at important findings to help build a better product that'll serve user needs. In essence, teams create hypothesis statements in an attempt to improve the offering, boost engagement, increase revenue, find product-market fit quicker, or for other business-related reasons.

It's sort of like an experiment with trial and error, yet, it is data-driven and should be unbiased . This means that teams don't make assumptions out of the blue. Instead, they turn to the collected data, conducted market research , and factual information, which helps avoid completely missing the mark. The obtained results are then carefully analyzed and may influence decision-making.

Such experiments backed by data and analysis are an integral aspect of successful product development and allow startups or businesses to dodge costly startup mistakes .

‍ When do teams create hypothesis statements and validate them? To some extent, hypothesis testing is an ongoing process to work on constantly. It may occur during various product development life cycle stages, from early phases like initiation to late ones like scaling.

In any event, the key here is learning how to generate hypothesis statements and validate them effectively. We'll go over this in more detail later on.

Idea vs. Hypothesis Compared

You might be wondering whether ideas and hypotheses are the same thing. Well, there are a few distinctions.

What's the difference between an idea and a hypothesis?

An idea is simply a suggested proposal. Say, a teammate comes up with something you can bring to life during a brainstorming session or pitches in a suggestion like "How about we shorten the checkout process?". You can jot down such ideas and then consider working on them if they'll truly make a difference and improve the product, strategy, or result in other business benefits. Ideas may thus be used as the hypothesis foundation when you decide to prove a concept.

A hypothesis is the next step, when an idea gets wrapped with specifics to become an assumption that may be tested. As such, you can refine the idea by adding details to it. The previously mentioned idea can be worded into a product hypothesis statement like: "The cart abandonment rate is high, and many users flee at checkout. But if we shorten the checkout process by cutting down the number of steps to only two and get rid of four excessive fields, we'll simplify the user journey, boost satisfaction, and may get up to 15% more completed orders".

A hypothesis is something you can test in an attempt to reach a certain goal. Testing isn't obligatory in this scenario, of course, but the idea may be tested if you weigh the pros and cons and decide that the required effort is worth a try. We'll explain how to create hypothesis statements next.

hypothesis in business research examples

How to Generate a Hypothesis for a Product

The last thing those developing a product want is to invest time and effort into something that won't bring any visible results, fall short of customer expectations, or won't live up to their needs. Therefore, to increase the chances of achieving a successful outcome and product-led growth , teams may need to revisit their product development approach by optimizing one of the starting points of the process: learning to make reasonable product hypotheses.

If the entire procedure is structured, this may assist you during such stages as the discovery phase and raise the odds of reaching your product goals and setting your business up for success. Yet, what's the entire process like?

How hypothesis generation and validation works

  • It all starts with identifying an existing problem . Is there a product area that's experiencing a downfall, a visible trend, or a market gap? Are users often complaining about something in their feedback? Or is there something you're willing to change (say, if you aim to get more profit, increase engagement, optimize a process, expand to a new market, or reach your OKRs and KPIs faster)?
  • Teams then need to work on formulating a hypothesis . They put the statement into concise and short wording that describes what is expected to achieve. Importantly, it has to be relevant, actionable, backed by data, and without generalizations.
  • Next, they have to test the hypothesis by running experiments to validate it (for instance, via A/B or multivariate testing, prototyping, feedback collection, or other ways).
  • Then, the obtained results of the test must be analyzed . Did one element or page version outperform the other? Depending on what you're testing, you can look into various merits or product performance metrics (such as the click rate, bounce rate, or the number of sign-ups) to assess whether your prediction was correct.
  • Finally, the teams can make conclusions that could lead to data-driven decisions. For example, they can make corresponding changes or roll back a step.

How Else Can You Generate Product Hypotheses?

Such processes imply sharing ideas when a problem is spotted by digging deep into facts and studying the possible risks, goals, benefits, and outcomes. You may apply various MVP tools like (FigJam, Notion, or Miro) that were designed to simplify brainstorming sessions, systemize pitched suggestions, and keep everyone organized without losing any ideas.

Predictive product analysis can also be integrated into this process, leveraging data and insights to anticipate market trends and consumer preferences, thus enhancing decision-making and product development strategies. This approach fosters a more proactive and informed approach to innovation, ensuring products are not only relevant but also resonate with the target audience, ultimately increasing their chances of success in the market.

Besides, you can settle on one of the many frameworks that facilitate decision-making processes , ideation phases, or feature prioritization . Such frameworks are best applicable if you need to test your assumptions and structure the validation process. These are a few common ones if you're looking toward a systematic approach:

  • Business Model Canvas (used to establish the foundation of the business model and helps find answers to vitals like your value proposition, finding the right customer segment, or the ways to make revenue);
  • Lean Startup framework (the lean startup framework uses a diagram-like format for capturing major processes and can be handy for testing various hypotheses like how much value a product brings or assumptions on personas, the problem, growth, etc.);
  • Design Thinking Process (is all about interactive learning and involves getting an in-depth understanding of the customer needs and pain points, which can be formulated into hypotheses followed by simple prototypes and tests).

Need a hand with product development?

Upsilon's team of pros is ready to share our expertise in building tech products.

hypothesis in business research examples

How to Make a Hypothesis Statement for a Product

Once you've indicated the addressable problem or opportunity and broken down the issue in focus, you need to work on formulating the hypotheses and associated tasks. By the way, it works the same way if you want to prove that something will be false (a.k.a null hypothesis).

If you're unsure how to write a hypothesis statement, let's explore the essential steps that'll set you on the right track.

Making a Product Hypothesis Statement

Step 1: Allocate the Variable Components

Product hypotheses are generally different for each case, so begin by pinpointing the major variables, i.e., the cause and effect . You'll need to outline what you think is supposed to happen if a change or action gets implemented.

Put simply, the "cause" is what you're planning to change, and the "effect" is what will indicate whether the change is bringing in the expected results. Falling back on the example we brought up earlier, the ineffective checkout process can be the cause, while the increased percentage of completed orders is the metric that'll show the effect.

Make sure to also note such vital points as:

  • what the problem and solution are;
  • what are the benefits or the expected impact/successful outcome;
  • which user group is affected;
  • what are the risks;
  • what kind of experiments can help test the hypothesis;
  • what can measure whether you were right or wrong.

Step 2: Ensure the Connection Is Specific and Logical

Mind that generic connections that lack specifics will get you nowhere. So if you're thinking about how to word a hypothesis statement, make sure that the cause and effect include clear reasons and a logical dependency .

Think about what can be the precise and link showing why A affects B. In our checkout example, it could be: fewer steps in the checkout and the removed excessive fields will speed up the process, help avoid confusion, irritate users less, and lead to more completed orders. That's much more explicit than just stating the fact that the checkout needs to be changed to get more completed orders.

Step 3: Decide on the Data You'll Collect

Certainly, multiple things can be used to measure the effect. Therefore, you need to choose the optimal metrics and validation criteria that'll best envision if you're moving in the right direction.

If you need a tip on how to create hypothesis statements that won't result in a waste of time, try to avoid vagueness and be as specific as you can when selecting what can best measure and assess the results of your hypothesis test. The criteria must be measurable and tied to the hypotheses . This can be a realistic percentage or number (say, you expect a 15% increase in completed orders or 2x fewer cart abandonment cases during the checkout phase).

Once again, if you're not realistic, then you might end up misinterpreting the results. Remember that sometimes an increase that's even as little as 2% can make a huge difference, so why make 50% the merit if it's not achievable in the first place?

Step 4: Settle on the Sequence

It's quite common that you'll end up with multiple product hypotheses. Some are more important than others, of course, and some will require more effort and input.

Therefore, just as with the features on your product development roadmap , prioritize your hypotheses according to their impact and importance. Then, group and order them, especially if the results of some hypotheses influence others on your list.

Product Hypothesis Examples

To demonstrate how to formulate your assumptions clearly, here are several more apart from the example of a hypothesis statement given above:

  • Adding a wishlist feature to the cart with the possibility to send a gift hint to friends via email will increase the likelihood of making a sale and bring in additional sign-ups.
  • Placing a limited-time promo code banner stripe on the home page will increase the number of sales in March.
  • Moving up the call to action element on the landing page and changing the button text will increase the click-through rate twice.
  • By highlighting a new way to use the product, we'll target a niche customer segment (i.e., single parents under 30) and acquire 5% more leads. 

hypothesis in business research examples

How to Validate Hypothesis Statements: The Process Explained

There are multiple options when it comes to validating hypothesis statements. To get appropriate results, you have to come up with the right experiment that'll help you test the hypothesis. You'll need a control group or people who represent your target audience segments or groups to participate (otherwise, your results might not be accurate).

‍ What can serve as the experiment you may run? Experiments may take tons of different forms, and you'll need to choose the one that clicks best with your hypothesis goals (and your available resources, of course). The same goes for how long you'll have to carry out the test (say, a time period of two months or as little as two weeks). Here are several to get you started.

Experiments for product hypothesis validation

Feedback and User Testing

Talking to users, potential customers, or members of your own online startup community can be another way to test your hypotheses. You may use surveys, questionnaires, or opt for more extensive interviews to validate hypothesis statements and find out what people think. This assumption validation approach involves your existing or potential users and might require some additional time, but can bring you many insights.

Conduct A/B or Multivariate Tests

One of the experiments you may develop involves making more than one version of an element or page to see which option resonates with the users more. As such, you can have a call to action block with different wording or play around with the colors, imagery, visuals, and other things.

To run such split experiments, you can apply tools like VWO that allows to easily construct alternative designs and split what your users see (e.g., one half of the users will see version one, while the other half will see version two). You can track various metrics and apply heatmaps, click maps, and screen recordings to learn more about user response and behavior. Mind, though, that the key to such tests is to get as many users as you can give the tests time. Don't jump to conclusions too soon or if very few people participated in your experiment.

Build Prototypes and Fake Doors

Demos and clickable prototypes can be a great way to save time and money on costly feature or product development. A prototype also allows you to refine the design. However, they can also serve as experiments for validating hypotheses, collecting data, and getting feedback.

For instance, if you have a new feature in mind and want to ensure there is interest, you can utilize such MVP types as fake doors . Make a short demo recording of the feature and place it on your landing page to track interest or test how many people sign up.

Usability Testing

Similarly, you can run experiments to observe how users interact with the feature, page, product, etc. Usually, such experiments are held on prototype testing platforms with a focus group representing your target visitors. By showing a prototype or early version of the design to users, you can view how people use the solution, where they face problems, or what they don't understand. This may be very helpful if you have hypotheses regarding redesigns and user experience improvements before you move on from prototype to MVP development.

You can even take it a few steps further and build a barebone feature version that people can really interact with, yet you'll be the one behind the curtain to make it happen. There were many MVP examples when companies applied Wizard of Oz or concierge MVPs to validate their hypotheses.

Or you can actually develop some functionality but release it for only a limited number of people to see. This is referred to as a feature flag , which can show really specific results but is effort-intensive. 

hypothesis in business research examples

What Comes After Hypothesis Validation?

Analysis is what you move on to once you've run the experiment. This is the time to review the collected data, metrics, and feedback to validate (or invalidate) the hypothesis.

You have to evaluate the experiment's results to determine whether your product hypotheses were valid or not. For example, if you were testing two versions of an element design, color scheme, or copy, look into which one performed best.

It is crucial to be certain that you have enough data to draw conclusions, though, and that it's accurate and unbiased . Because if you don't, this may be a sign that your experiment needs to be run for some additional time, be altered, or held once again. You won't want to make a solid decision based on uncertain or misleading results, right?

What happens after hypothesis validation

  • If the hypothesis was supported , proceed to making corresponding changes (such as implementing a new feature, changing the design, rephrasing your copy, etc.). Remember that your aim was to learn and iterate to improve.
  • If your hypothesis was proven false , think of it as a valuable learning experience. The main goal is to learn from the results and be able to adjust your processes accordingly. Dig deep to find out what went wrong, look for patterns and things that may have skewed the results. But if all signs show that you were wrong with your hypothesis, accept this outcome as a fact, and move on. This can help you make conclusions on how to better formulate your product hypotheses next time. Don't be too judgemental, though, as a failed experiment might only mean that you need to improve the current hypothesis, revise it, or create a new one based on the results of this experiment, and run the process once more.

On another note, make sure to record your hypotheses and experiment results . Some companies use CRMs to jot down the key findings, while others use something as simple as Google Docs. Either way, this can be your single source of truth that can help you avoid running the same experiments or allow you to compare results over time.

Have doubts about how to bring your product to life?

Upsilon's team of pros can help you build a product most optimally.

Final Thoughts on Product Hypotheses

The hypothesis-driven approach in product development is a great way to avoid uncalled-for risks and pricey mistakes. You can back up your assumptions with facts, observe your target audience's reactions, and be more certain that this move will deliver value.

However, this only makes sense if the validation of hypothesis statements is backed by relevant data that'll allow you to determine whether the hypothesis is valid or not. By doing so, you can be certain that you're developing and testing hypotheses to accelerate your product management and avoiding decisions based on guesswork.

Certainly, a failed experiment may bring you just as much knowledge and findings as one that succeeds. Teams have to learn from their mistakes, boost their hypothesis generation and testing knowledge , and make improvements according to the results of their experiments. This is an ongoing process, of course, as no product can grow if it isn't iterated and improved.

If you're only planning to or are currently building a product, Upsilon can lend you a helping hand. Our team has years of experience providing product development services for growth-stage startups and building MVPs for early-stage businesses , so you can use our expertise and knowledge to dodge many mistakes. Don't be shy to contact us to discuss your needs! 

hypothesis in business research examples

Generative AI Tech Stack: All You Need to Know

How to Get Funding for a Startup Business

How to Get Funding for a Startup Business

Building an AI Chatbot: Types, Tech Stack, and Steps

Building an AI Chatbot: Types, Tech Stack, and Steps

Never miss an update.

hypothesis in business research examples

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • 10 Research Question Examples to Guide Your Research Project

10 Research Question Examples to Guide your Research Project

Published on October 30, 2022 by Shona McCombes . Revised on October 19, 2023.

The research question is one of the most important parts of your research paper , thesis or dissertation . It’s important to spend some time assessing and refining your question before you get started.

The exact form of your question will depend on a few things, such as the length of your project, the type of research you’re conducting, the topic , and the research problem . However, all research questions should be focused, specific, and relevant to a timely social or scholarly issue.

Once you’ve read our guide on how to write a research question , you can use these examples to craft your own.

Research question Explanation
The first question is not enough. The second question is more , using .
Starting with “why” often means that your question is not enough: there are too many possible answers. By targeting just one aspect of the problem, the second question offers a clear path for research.
The first question is too broad and subjective: there’s no clear criteria for what counts as “better.” The second question is much more . It uses clearly defined terms and narrows its focus to a specific population.
It is generally not for academic research to answer broad normative questions. The second question is more specific, aiming to gain an understanding of possible solutions in order to make informed recommendations.
The first question is too simple: it can be answered with a simple yes or no. The second question is , requiring in-depth investigation and the development of an original argument.
The first question is too broad and not very . The second question identifies an underexplored aspect of the topic that requires investigation of various  to answer.
The first question is not enough: it tries to address two different (the quality of sexual health services and LGBT support services). Even though the two issues are related, it’s not clear how the research will bring them together. The second integrates the two problems into one focused, specific question.
The first question is too simple, asking for a straightforward fact that can be easily found online. The second is a more question that requires and detailed discussion to answer.
? dealt with the theme of racism through casting, staging, and allusion to contemporary events? The first question is not  — it would be very difficult to contribute anything new. The second question takes a specific angle to make an original argument, and has more relevance to current social concerns and debates.
The first question asks for a ready-made solution, and is not . The second question is a clearer comparative question, but note that it may not be practically . For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

Note that the design of your research question can depend on what method you are pursuing. Here are a few options for qualitative, quantitative, and statistical research questions.

Type of research Example question
Qualitative research question
Quantitative research question
Statistical research question

Other interesting articles

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, October 19). 10 Research Question Examples to Guide your Research Project. Scribbr. Retrieved July 22, 2024, from https://www.scribbr.com/research-process/research-question-examples/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, writing strong research questions | criteria & examples, how to choose a dissertation topic | 8 steps to follow, evaluating sources | methods & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Editor’s Note: This story is part of Systems Error , a series by CNN As Equals , investigating how your gender shapes your life online. For information about how CNN As Equals is funded and more, check out our FAQs .

Hundreds of young women and girls around the world have said they want much better support to stay safe online, sharing that they regularly face dangers and many have no one informed or powerful enough to turn to for help.

CNN As Equals and NGO Plan International surveyed more than 600 young women and girls aged 13-24 across nine countries worldwide and found that most (75%) have faced harmful content online at some point, with more than one in 10 experiencing it daily or almost daily.

Almost half, with some as young as 13, reported seeing or receiving unwanted sexual images or videos, and a quarter said they had experienced discrimination or hate speech online when sharing the threats they face.

The platforms participants said they experienced these threats on most frequently are Facebook, followed by WhatsApp, then Instagram and TikTok, which are also among the most actively used social platforms worldwide.

The surveys were conducted in Bolivia, Brazil, Burkina Faso, Colombia, Kenya, Malawi, Nepal, Philippines and Timor-Leste. They are not representative of all girls and young women growing up in those countries, but the results highlight the voices and daily experiences that many of these young women face.

When sharing the impact of these dangers, over a third who answered said they were left feeling sad, depressed, stressed or anxious, and the majority of the young women and girls felt they themselves were most responsible for their safety online – often going offline and making their accounts private to cope.

The result is a generation of resilient but resentful young people who feel they should not be solely responsible for their safety. They want better support and resources from governments, authorities, tech companies and their families.

Scroll down to explore their answers.

A further 73 young women and girls were interviewed about the online harassment they experience and asked about solutions in focus groups divided by age range and led by Plan’s country teams in the Philippines, Malawi and Brazil.

Here, many explained they feel that parents and schools are too uninformed to help, reports to platforms are sent to bots and go unanswered, and authorities don’t hold perpetrators adequately accountable.

They want things to change. Here’s how.

Among those who answered questions on solutions that could help ensure their safety, about six in 10 (61%) called for education and awareness programs on digital safety, for example through school and university curricula, to provide this literacy.

But experts warn the burden should not be entirely on girls to protect themselves.

Placing the responsibility on young women and girls is “inherently unfair,” said Hera Hussain, founder and CEO of Chayn, a UK-based tech NGO addressing gender-based abuse globally. “If you are receiving harassing messages, dick pics, and you have to go on reporting each one of them, and then blocking people, that’s so much administrative burden that you as victim and survivor have to take on.”

What girls want for a safer future online

Strict enforcement by platforms and the need for stronger legal measures were selected by over a third of those surveyed about what’s missing to ensure safety, while around a quarter felt that enhanced privacy settings and safe spaces were needed. One in five said there is a need for more accessible and reliable reporting mechanisms or stricter age verification processes.

In focus groups, some participants said they felt isolated, calling for helplines and local support services, and reiterating a need for digital safe spaces. Systemic changes were also called for, such as greater repercussions for people who abuse others, better moderation, improved identity and age checks on social media platforms and the option to report harassment or other harmful content to trained staff instead of bots.

"We don’t know if these people are really listening,” said Lea, a participant in the 17-20-year-old focus group in the Philippines, speaking of the lack of action or response by the tech sector or authorities. Participants were given pseudonyms for anonymity.

Digital resilience training delivered by tech companies themselves was also suggested.

“Those who provide them [training to stay safe online] should be the companies that make the apps… They are responsible for what can happen to us or what we can encounter,” said Reyna, aparticipant 21-24 year-old group, also in the Philippines.

Of the three regions, Africa stood out, with 40% of girls surveyed in Africa reporting feeling unsafe (40%).

‘I was young and scared’: Why girls feel unsafe online

The push for online safety has become a new frontier in the digital era, with international calls growing from civil society organizations, nonprofits and politicians around the world as more children come online.

European Union and UK legislation offers protections for children, though experts and gender equality campaigners argue these laws fall short in addressing gender-based violence and continue to place the burden of responsibility on users.

In the US, Arkansas and Utah were among the first to sign bills focusing on children’s online safety in 2023 and dozens of states have proposed or enacted legislation to regulate social media platforms in recent years. New York passed a children’s act against addictive social media feeds in June, and a Senate bill for children’s online safety is currently in the works.

Among some of the countries where surveys were conducted, the Philippines has legislation specifically targeting the country’s high levels of online child exploitation , and lawmakers in Nepal and Brazil are working on regulations for young people’s digital protection.

Authorities in Malawi have appointed a child’s protection ambassador and help provide train for school leaders, children’s NGOs and other civil society stakeholders on digital safety as part of a strategy for protecting children online.

Despite this growing body of legislation and policy, the new findings by CNN and Plan International show continued gendered abuse on a global scale.

“It has not changed, it is even worse,” said Sheila Estabillo, SAFE Online Project Manager for Plan International Philippines, who hosts online safety sessions for girls in the country.

Research shows online danger is now so commonplace it has become normalized for girls, who face unequal – and typically more sexualized – types of threats compared to boys.

Young women and girls surveyed told CNN and Plan International their most common experience of harmful content was the receipt of unwanted sexual imagery (known as cyberflashing), videos, or messaging.

“[Some people] harass people on social media and they think it’s okay to send something like that without the other’s consent,” said Reyna, in her early-20s, from the Philippines.

About half of the young women and girls surveyed in Africa (55%) reported seeing or receiving unwanted sexual images.

“I started chilling with a guy and he sent me a naked picture and asked me to send my picture too,” said Maureen, a 21-24-year-old in Malawi. The boy threatened to share her profile photo, which he edited to be nude, she said. “I was young and scared, so I was afraid to tell anyone.”

Objectification and sexualization are well-worn experiences for women and girls online, and abuse through cyberflashing and the nonconsensual release of photos, forged images and deepfakes, is becoming more common, said Hussain. “[Online abuse is] completely embedded in all aspects of your life.”

The young women and girls surveyed by CNN and Plan International reported braving other digital dangers on a regular basis, including coming across dubious money-making schemes (43%), targeted hate messages (42%), ways to self-harm (29%), and ways to be very thin through eating disorders (28%). In the Philippines, for example, 47% of participants reported seeing discussions of ways to harm yourself and 45% had seen content about ways to take your own life.

Online money scams have proliferated globally, boosted by financial technology and advancements in artificial intelligence, according to the international crime and policing body INTERPOL. Among participants in the surveys, young women and girls in Africa were most affected by money scams – with half being exposed to scams and a quarter having lost money.

“I just blocked the number and then deleted it,” she says. “I think they should make strict rules that when a person sends you something which is not what you want, they should just block that person and he or she should not use the platform again.”

She also wants platforms to do more to protect girls like her.

“They should have a very strict set of rules that you can only see what you want to see,” she said.

Left hurting ‘psychologically and personally’

The impact on young women and girls surveyed by CNN and Plan International was stark: Among survey participants who shared how seeing harmful content affected them, more than one in three reported feeling sad or depressed, stressed, worried or anxious (35%), and many said they were subsequently more careful online (40%).

Consequences also included reduced confidence and feeling of self-worth, lost sleep, and impact on relationships with loved ones, and around a quarter said they lost trust in online platforms or felt physically unsafe.

Despite sharing content about studying, Daniela said hateful comments about her appearance littered her posts. So, around four years ago, in the throes of the Covid-19 pandemic, she shut her blog down.

“I was suffering with anxiety,” the 24-year-old said. “I felt like I was looking at others and what they are doing and not really living my life. I wanted to stop and start living my life.”

She now controls her online world by keeping her accounts private and not sharing much. “I’ve become ‘low profile,’” she said.

In the focus groups, many related to Daniela’s experience, and shared their frustration that coming offline or turning accounts private to improve their mental health also comes at a cost to them.

Silencing young ‘overwhelmed’ girls

Nearly one in five young women and girls surveyed reported taking a break from the internet entirely to cope with the dangers they face online, and studies show online abuse has a silencing effect on women and girls.

One study by the NGO Girl Effect found girls in five African countries, Jordan, the UK and the US are more likely to block or privatize their accounts and report behavior than boys.

A 2021 study drawing data from two independent large-scale surveys in Norway also found that “targeted women are more likely than targeted men to become more cautious in expressing their opinions publicly.”

I was young and scared, so I was afraid to tell anyone.

CNN and Plan International’s research shows that the “chilling effect” of women in public spaces, such as politics and journalism, in response to online abuse, starts with teen girls, said Professor Gina Neff, executive director of the Minderoo Centre for Technology & Democracy at the University of Cambridge.

“If we’ve got 75% of teen girls saying they have gotten online harassment,” she said, “what happens as they start to develop their careers … professional, outward-facing social media accounts?”

“Blocking and locking” accounts, while dealing with acute danger, are not effective for anyone who wants to have an online persona, said Neff. “We are sending a message that their voices don’t matter and their expectation of being able to be online comes with more risks sometimes than the benefits that they get,” she said.

Fernanda, a 21-year-old participant also from Brazil loves women’s football, but said she is reluctant to engage with online discussions about the sport. “I’m very afraid of commenting on my team’s posts, because I know how toxic the comments are (against girls),” she said adding that taking time offline has helped her deal with the stress.

“When we stay connected for a long time, we feel like, ‘Guys, help, I’m overwhelmed.’”

Where responsibility should lie

A generational gap in understanding online platforms and digital literacy is one reason the young women and girls surveyed and interviewed showed little trust in adults and existing mechanisms to root out abusers and perpetrators.

Mary said one of her classmates, who is transgender, had no one else to turn to after being groomed online. “He mentioned meeting someone last night and earning money from him. I am the only one he told about this because we’re close.”

Estabillo at Plan International Philippines said girls talk to their peers instead because speaking up about child sexual abuse remains a cultural taboo in the Philippines.

“Instead of being helped, they fear being blamed,” Estabillo added.

Experts CNN spoke to stressed the need for tech platforms to take more action.

Current rules and online tools for dealing with ongoing attacks are insufficient, said Neff, as they do not deal with chronic abuse affecting women. “The platform companies have to be held accountable by legislation,” she said.

Proposed laws such as the U.S. Platform Accountability and Transparency Act would mandate researcher access to large platforms’ data – gated by X, for example – which is vital for understanding and alleviating misuse and abuse, and they would also hold platforms to account, said Neff.

A coalition of groups fighting gendered digital abuse in the UK, including Chayn, have also campaigned for platforms to proactively build guards against abuse. Hussain wants to see more platforms prioritize “safety-by-design" and said tech companies are now investing more in controls.

In January 2024, Meta announced new “age-appropriate” restrictions for teen users, automatically limiting “potentially sensitive content” and accounts from their feeds. Both Meta and TikTok also prohibit child sexual exploitation and abuse.

CNN contacted Meta (which owns Facebook, Instagram and WhatsApp) and TikTok for comment about the findings of this research.

Cindy Southworth, Head of Women’s Safety at Meta, said: "We’re continuing to work closely with experts – including Plan International – to better understand the online experience of women and girls and to help make sure they feel good about the time they spend on our apps.”

“This builds on years developing tools, features and policies to help keep them safe, including blocking people from sending images or videos to anyone who doesn’t follow them, testing a new nudity protection feature that will blur potential nudity in DMs, and applying strict rules against bullying, hate speech, and content that encourages suicide, self-harm or eating disorders."

A TikTok spokesperson shared that the platform prevents under-18s seeing sexually suggestive content and prohibits all nudity, pornography and sexually explicit content. It also makes under-16s’ accounts private and unavailable for direct messaging by default, while a pairing tool allows parents to adjust teens’ privacy and content settings. The platform also launched a council for teens to share views on building a safe platform, according to the spokesperson.

But experts warned that platforms have so far failed to outpace spiraling online abuse and harmful content, often implementing safeguards after problems are raised.

Hussain believes a cultural shift is also needed to curb abuse, concluding: “It’s very easy to think of harm as inevitable and unending but it doesn’t have to be.”

How CNN reported this story

CNN As Equals and Plan International collaborated to survey 619 girls and young women and five non-binary people aged 13-24 online through Plan’s country offices in Bolivia, Brazil, Burkina Faso, Colombia, Kenya, Malawi, Nepal, Philippines and Timor-Leste in February 2024. Surveys were shared online across Plan’s networks in these countries for up to one month, inviting girls aged 13-24 to complete them until an adequate sample size was reached.

In the surveys, participants were asked why they go online, what they like to do online, whether they feel safe, what they do if they don’t feel safe, whose responsibility it is to keep them safe, on what platforms they feel least safe, how often they are bothered online, the impact of harms they face and what is lacking or needed to keep them safe online.

The survey is not a scientific poll, or representative of all girls and young women growing up in those countries. But the results highlight the voices and daily experiences of many of these young women face.

These questions were also discussed in a series of focus groups from Brazil, Malawi and the Philippines, with scenarios of the most common harms reported by girls in the surveys were presented and discussed. Participants were also asked for their ideas for solutions to better address and prevent the harms faced by girls online. These took place in March 2024 and participants names were anonymized through pseudonyms chosen by Plan International.

Some figures from the surveys show girls as a percentage of a total who chose one answer from a select range, while others show percentages of girls who chose answers in multiple-choice questions. Regional results include comparisons of differing sample sizes– between South America (203 girls and young women), Africa (240 girls and young women) and Asia (181 girls and young women).

Examples

Experimental Research

Ai generator.

hypothesis in business research examples

Humans are born curious. As babies, we quench our questions by navigating our surroundings with our available senses. Our fascination with the unknown lingers to adulthood that some of us build a career out of trying to discover the mysteries of the universe. To learn about a point of interest, one of the things we do is isolate and replicate the phenomenon in laboratories and controlled environment. Experimental research is a causal investigation into the cause-effect relationships by manipulating all other factors.  You may also see Student Research examples & samples

Experimental research is generally a quantitative research centered on validating or refuting certain claims on causative relationships of matter. We use this method in natural, applied, theoretical, and social sciences, to name a few. This research follows a scientific design that puts a weight on replicability. When the methodology and results are replicable, the study is verifiable by reviewers and critics.

Notable Experiments

We have been conducting experiments for the longest time. Experimental studies done some thousand of years ago prove that unrefined apparatus and limited knowledge, we were already trying to answer the questions of the universe. We had to start somewhere.

Anatomical Anomaly

Even before, societal beliefs have restricted scientific development. This is especially true for modern medicine. Back then, studying and opening cadavers is a punishable crime. Therefore, physicians based their knowledge on the human body on animal dissections. Because animals have a different body organization than humans, this limited what we knew about ourselves. It took actual studies and experiments on the human body to curtail the misinformation and improve medical knowledge.

Reviewing Resemblance

A garden of fuschia and peas helped change our understanding of heredity and inheritable traits. Mendel was curious about why the fuschia plants generate the colors of the flowers the way they do. He crossed varieties of the plant and obtained consistent results. He also tried to cross pea plants and came with repeatable results. The characteristics of the parent plants are passed down to their offsprings to a certain degree of similarity. He also figured out the predictability of certain traits to appear in the offspring. Mendelian genetics explain the laws of inheritance that are still relevant today.

Canine Conditioning 

In the history of psychology research, one experiment will always ring a bell. Pavlov conditioned a dog to expect food when a bell was rung. After repetitions of this approach, the dog started to salivate at the sound of the bell, even when Pavlov didn’t introduce the food. His work on training the reflexes and the mind is in line with the plasticity of the brain to learn and unlearn relationships based on stimuli.

Correlation Vs. Causation

We can opt for an experimental approach to research when we want to determine if the hypothesized cause follows the expected effect. We do this by following a scientific research method and design that emphasizes the replicability of results to limit and reduce biases. By isolating the variables and manipulating treatments, we can establish causation. This is important if we are to find out the relationship between A and B.

In our experiments, we will encounter two or more phenomena, and we might mislabel their connection. There are instances where that relationship is both correlative and causative. What we need to remember is that correlation is not causation. We can say that A causes B when event B is an explicit product of and entirely dependent on event A. Events A and B are correlated when they appear together, but after experimentation, A doesn’t necessarily result in B.

However, it is not enough to say A caused B. Our results are still subject to statistical treatment to determine the validity of the findings and the degree of causation. We still have to ask how much A influences B. Only then can we accept or reject our hypothesis .

Experimental Research Value

Experimental research is a trial-and-error with an educated basis. It lets us determine what works and what doesn’t, and the underlying relationship. In our daily life, we are engaging in pseudo experiments. While cooking, for instance, you taste the dish before you decide to pour additional seasoning. You test first if the food is fine without additives.

In some fields of science, the results of an experiment can be used to generalized a relationship as true for similar, if not all, cases. Experimental research papers make way for the formation of theories. When those theories become unrefuted for a long time, they can become laws that explain universal phenomena.

10+ Experimental Research Examples

Go over the following examples of experimental research papers . They may be able to help you gain a head start in your study or uproot you from where you’re stuck in your experiment.

1. Experimental Research Design Example

Experimental Research Design Example

Size: 465 KB

2. Experimental Data Quality Research Example

Experimental Data Quality Research Example

Size: 318 KB

3. Experimental Research on Labor Market Discrimination

Experimental Research on Labor Market Discrimination

Size: 722 KB

4. Experimental Studies Research Example

Experimental Studies Research

Size: 230 KB

5. Short Description of Experimental Research Example

Short Description of Experimental Research

Size: 280 KB

6. Sample Experimental Design Research Example

Sample Experimental Research

Size: 109 KB

7. Experimental Research on Democracy Example

Experimental Research on Democracy Example

Size: 86 KB

8. Standards for Experimental Research Example

Standards for Experimental Researchs

Size: 141 KB

9. Experimental Research for Evaluation Example

Experimental Research for Evaluation

Size: 87 KB

10. Defense Experimental Research Example

Defense Experimental Research Example

Size: 315 KB

11. Formal Experoimental Research in DOC

Formal Experoimental Research in DOC

How To Start Your Experiment

The best scientists and researchers started with the basics, too. Here are reminders on how you could improve your research writing skills. Who knows, one day, you will join the ranks of world changers with your experimental research report

1. Identify the Problem

To solve a problem, you need to define what it is first. You can begin with identifying the field of research you wish to investigate, then find gaps in knowledge from the related literature. An original work on a timely and relevant issue will help with the approval of your research proposal . After you have read scholarly articles about the topic, you can start narrowing the focus of your research into a specific topic.

2. Design the Experiment

Create a research plan for your intended research with the following notes. The experimental research design ideally employs a probabilistic sampling method to avoid biases from influencing the validity of your work. However, certain experiments call for non-probabilistic sampling techniques. Your experiment should have a control group with ambient conditions or blank treatments. This set up helps you objectively quantify the relationship between A and B.

3. Test the Hypothesis

In performing your experiment, you should have a variable that you would manipulate. The effect of the manipulation will be reflected in the dependent variable. By manipulating the factors that would cause event B, you can determine if A does, in fact, cause B. You can input the raw data into statistical analysis software and tools to see if you can derive a valid conclusion on the relationship between A and B. Correlation or causation and their degree can also be determined by different statistical tests.

4. Publish the Findings

After you have gone through all the efforts in conducting your research, the next step is communicating the findings to the academic community and the public, especially if public and government entities funded the study. You do this by submitting your paper to journals and academic conferences. For what use is the new knowledge you have worked for if you keep the results to yourself?

Experimental research separates science from fiction. Despite criticisms that this method exists in an ideal world, removed from reality, we cannot downsize its merits in the search for knowledge. Because the results are observable, replicable, and appreciable in a real-world sense, this research type will always have room in the development of scientific knowledge and the improvement of man. For as long as man is curious, science will keep growing.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Research: People Still Want to Work. They Just Want Control Over Their Time.

  • Stephanie Tepper
  • Neil Lewis, Jr.

hypothesis in business research examples

It’s a strong predictor for how satisfied they are with their work — and their lives.

To better understand the role that control over one’s time plays in job and life satisfaction, the authors analyzed survey data from a nationally representative sample. They found: 1) People who had greater control over their time had the highest job satisfaction and overall satisfaction with their lives, 2) Those who felt a sense of time scarcity had less satisfaction with their jobs and were less satisfied with their lives, 3) The number of hours people worked was not related to how satisfied people were with their jobs, and 4) For those who had more control over their time, feeling time scarcity did not undermine their job satisfaction as much as it did for those who had less control over their time. Employers should therefore create and tailor flexible work policies to meet diverse employee needs, fostering satisfaction and retention.

Workers — particularly those considered “ knowledge workers ” who are able to do most if not all of their work with a laptop and an internet connection — have been fighting for the right to maintain control over their time for years. While working from home in 2020 and 2021, they demonstrated to their bosses that they are able to maintain, or in some cases even increase , their productivity while working flexibly. Their bosses, on the other hand, have been pulling them in the opposite direction; executives and managers have been fighting to get workers back into the offices that companies are paying a lot of money to lease. This struggle has affected workers and companies alike. Workers quit en masse during a period that became known as “ the Great Resignation ,” and employers who instituted return-to-office mandates have struggled to hire and retain top talent . Now, especially with Gen Z making up an increasing share of the working population and the conversations around hybrid work and returning to the office stagnating, demands for increased flexibility in work arrangements are still top of mind for many employees and job seekers.

  • ST Stephanie Tepper is a behavioral scientist who studies behavioral and policy interventions to reduce economic inequality and promote economic opportunity. She is an Associate Fellow at the U.S. Office of Evaluation Sciences and a Postdoctoral Scholar at Jeb E. Brooks School of Public Policy at Cornell University.
  • NL Dr. Neil Lewis Jr is a behavioral scientist who studies the motivational, behavioral, and equity implications of social interventions and policies. He is a Nancy and Peter Meinig Family Investigator in the Life Sciences at Cornell University and Weill Cornell Medicine, where he is also associate professor of communication, medicine, and public policy.

Partner Center

COMMENTS

  1. A Beginner's Guide to Hypothesis Testing in Business

    3. One-Sided vs. Two-Sided Testing. When it's time to test your hypothesis, it's important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests, or one-tailed and two-tailed tests, respectively. Typically, you'd leverage a one-sided test when you have a strong conviction ...

  2. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  3. What is a Hypothesis

    For example, a hypothesis might be formulated to test the effects of income inequality on crime rates. Business: In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a ...

  4. What is a Research Hypothesis: How to Write it, Types, and Examples

    Here are some good research hypothesis examples: "The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.". "Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.".

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  6. How McKinsey uses Hypotheses in Business & Strategy by McKinsey Alum

    Running with our example, you could prove or disprove your hypothesis on the ideas you think will drive the most impact by executing: 1. An analysis of previous research and the performance of the different ideas 2. A survey where customers rank order the ideas 3. An actual test of the ten ideas to create a fact base on click-through rates and cost

  7. Hypothesis Testing

    There are 5 main steps in hypothesis testing: State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1 ). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis. Present the findings in your results ...

  8. Hypothesis Testing

    Hypothesis testing is a scientific method used for making a decision and drawing conclusions by using a statistical approach. It is used to suggest new ideas by testing theories to know whether or not the sample data supports research. A research hypothesis is a predictive statement that has to be tested using scientific methods that join an ...

  9. A Beginner's Guide to Hypothesis Testing in Business Analytics

    Hypothesis testing evaluates two mutually exclusive statements (H0 and H1) to determine which statement is best supported by the sample data. Why Hypothesis Testing is Important in Business. Hypothesis testing allows business analysts to make statistical inferences about a business problem. It is an objective data-driven approach to:

  10. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  11. Hypothesis Testing: A Step-by-Step Guide With Easy Examples

    Well, there are many ways to write a hypothesis; here are the six most efficient and important steps that will help you craft a strong hypothesis: Step 1: Ask a Question. The first and most important step of writing a hypothesis is deciding upon the questions or assumptions you will implement in your research.

  12. Hypothesis Testing in Business Analytics

    There are four main steps in hypothesis testing in business analytics: Step 1: State the Null and Alternate Hypothesis. After the initial research hypothesis, it is essential to restate it as a null (Ho) hypothesis and an alternate (Ha) hypothesis so that it can be tested mathematically. Step 2: Collate Data.

  13. 9.4 Full Hypothesis Test Examples

    The sample mean is only 0.08 ounces different from the required level of 8 ounces, but it is 3 plus standard deviations away and thus we cannot accept the null hypothesis. STEP 5 : Reach a Conclusion Three standard deviations of a test statistic will guarantee that the test will fail.

  14. How to Write a Research Hypothesis: Good & Bad Examples

    Another example for a directional one-tailed alternative hypothesis would be that. H1: Attending private classes before important exams has a positive effect on performance. Your null hypothesis would then be that. H0: Attending private classes before important exams has no/a negative effect on performance.

  15. Hypothesis Testing in Business: Examples

    Hypothesis testing is a powerful statistical technique that can help you understand problems during exploratory data analysis (EDA) and identify most appropriate hypotheses / analytical solution. In this blog, we will discuss hypothesis testing with examples from business. We'll also give you tips on how to use it effectively in your own ...

  16. How to Write a Hypothesis for a Research Paper + Examples

    Ensure that your hypothesis is realistic and can be tested within the constraints of your available resources, time, and ethical considerations. Avoid value judgments: Be neutral and objective. Avoid including personal beliefs, value judgments, or subjective opinions. Stick to empirical statements based on evidence.

  17. 4 Examples of Hypothesis Testing in Real Life

    Example 1: Biology. Hypothesis tests are often used in biology to determine whether some new treatment, fertilizer, pesticide, chemical, etc. causes increased growth, stamina, immunity, etc. in plants or animals. For example, suppose a biologist believes that a certain fertilizer will cause plants to grow more during a one-month period than ...

  18. How Is a Hypothesis Important in Business?

    A hypothesis based on years of business research in a particular area, then, helps you focus, define and appropriately direct your research. You won't go on a wild goose chase to prove or ...

  19. Hypothesis Testing explained in 4 parts

    Narrower distribution of the sample mean + holding alpha constant -> smaller critical value from 0.3 to 0.16 + holding beta constant -> MDE decreases from 0.45 to 0.25. This is the other key takeaway: The larger the sample size, the smaller of an effect we can detect, and the smaller the MDE. This is a critical takeaway for statistical testing.

  20. Null & Alternative Hypotheses

    A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation ("x affects y because …"). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses.

  21. Product Hypotheses: How to Generate and Validate Them

    Product Hypothesis Examples. To demonstrate how to formulate your assumptions clearly, here are several more apart from the example of a hypothesis statement given above: Adding a wishlist feature to the cart with the possibility to send a gift hint to friends via email will increase the likelihood of making a sale and bring in additional sign-ups.

  22. Non Directional Hypothesis

    Non-Directional Hypothesis Statement Examples in Research. These research hypothesis examples focus on research studies in general, covering a wide range of topics and relationships. For instance, the second example suggests that employee training might be related to workplace productivity, without indicating whether the training would lead to ...

  23. Simple Hypothesis

    Simple vs Complex Hypothesis example. When it comes to scientific research, hypotheses play a pivotal role in guiding investigations. At the core, a hypothesis is a statement about a potential relationship between variables, or an explanation of an occurrence, which is testable.

  24. Experimental Hypothesis

    This hypothesis clearly presents a predicted relationship between the independent variable (herbal tea consumption) and the dependent variable (memory performance on standardized tests). It's testable, specific, and gives direction to the research. 100 Experimental Hypothesis Statement Examples

  25. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  26. Online sexual harassment: Girls and young women across nine ...

    A further 73 young women and girls were interviewed about the online harassment they experience and asked about solutions in focus groups divided by age range and led by Plan's country teams in ...

  27. Causal Hypothesis

    Causal Hypothesis Statement Examples in Research. Research hypothesis often delves into understanding the cause-and-effect relationships between different variables. These causal hypotheses attempt to predict a specific effect if a particular cause is present, making them vital for experimental designs. ... E-commerce & Retail Business Model ...

  28. How to Integrate Cloud, Data, and AI Technologies

    Compared to a sample baseline, these leaders experienced a 60% acceleration in their revenue growth rate (from 7.1% to 11.1% on average) while increasing profitability by 40% (from 14.2 to 19.4 ...

  29. Experimental Research

    Experimental research papers make way for the formation of theories. When those theories become unrefuted for a long time, they can become laws that explain universal phenomena. 10+ Experimental Research Examples. Go over the following examples of experimental research papers. They may be able to help you gain a head start in your study or ...

  30. Research: People Still Want to Work. They Just Want Control Over Their

    To better understand the role that control over one's time plays in job and life satisfaction, the authors analyzed survey data from a nationally representative sample. They found: 1) People who ...