Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Prevent plagiarism. Run a free check.

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

theory of critical thinking

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved April 3, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Critical Thinking

Introduction, general overviews.

  • Importance of Thinking Critically
  • Defining Critical Thinking
  • General Skills
  • Specific Skills
  • Metacognitive Monitoring Skills
  • Critical Thinking Dispositions
  • Teaching Specific Skills
  • Encouraging a Disposition toward Thinking Critically
  • Transfer to Other Domains
  • Metacognitive Monitoring
  • General or Comprehensive Assessments
  • Metacognition Assessments
  • Critical Thinking Disposition Assessments
  • Thinking Critically about Critical Thinking

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Artificial Intelligence, Machine Learning, and Psychology
  • Assessment of Thinking in Educational Settings
  • Human Memory
  • Learning Theory
  • Mindfulness
  • Problem Solving and Decision Making
  • Procrastination
  • Student Success in College
  • Teaching of Psychology
  • Thinking Skills in Educational Settings
  • Women and Science, Technology, Engineering, and Math (STEM)

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Data Visualization
  • Remote Work
  • Workforce Training Evaluation
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Critical Thinking by Heather Butler , Diane Halpern LAST REVIEWED: 26 August 2022 LAST MODIFIED: 29 November 2011 DOI: 10.1093/obo/9780199828340-0019

Critical thinking has been described in many ways, but researchers generally agree that critical thinking involves rational, purposeful, and goal-directed thinking (see Defining Critical Thinking ). Diane F. Halpern defined critical thinking as an attempt to increase the probability of a desired outcome (e.g., making a sound decision, successfully solving a problem) by using certain cognitive skills and strategies. Critical thinking is more than just a collection of skills and strategies: it is a disposition toward engaging with problems. Critical thinkers are flexible, open-minded, persistent, and willing to exert mental energy working on tough problems. Unlike poor thinkers, critical thinkers are willing to admit they have made an error in judgment if confronted with contradictory evidence, and they operate on autopilot much less than poor thinkers (see Critical Thinking Dispositions ). There is good evidence that critical thinking skills and dispositions can be taught (see Teaching Critical Thinking ). This guide includes (a) sources that extol the importance of critical thinking, (b) research that identifies specific critical thinking skills and conceptualizations of critical thinking dispositions, (c) a list of the best practices for teaching critical thinking skills and dispositions, and (d) a review of research into ways of assessing critical thinking skills and dispositions (see Assessments ).

The sources highlighted here include textbooks, literature reviews, and meta-analyses related to critical thinking. These contributions come from both psychological ( Halpern 2003 ; Nisbett 1993 ; Sternberg, et al. 2007 ) and philosophical ( Ennis 1962 , Facione 1990 ) perspectives. Many of these general overviews are textbooks ( Facione 2011b ; Halpern 2003 ; Nisbett 1993 ; Sternberg, et al. 2007 ), while the other sources are review articles or commentaries. Most resources were intended for a general audience, but Sternberg, et al. 2007 was written specifically to address critical thinking in psychology. Those interested in a historical reference are referred to Ennis 1962 , which is credited by some as renewing contemporary interest in critical thinking. Those interested in a more recent conceptualization of critical thinking are referred to Facione 2011a , which is a short introduction to the field of critical thinking that would be appropriate for those new to the field, or Facione 1990 , which summarizes a collaborative definition of critical thinking among philosophers using the Delphi method. Facione 2011b would be a valuable resource for philosophers teaching critical thinking or logic courses to general audiences. For psychologists teaching critical thinking courses to a general audience, Halpern 2003 , an empirically based textbook, covers a wide range of topics; a new edition is expected soon. Fisher 2001 is also intended for general audiences and teaches a wide variety of critical thinking skills. Nisbett 1993 tackles the question of whether critical thinking skills can be taught and provides ample empirical evidence to that end. Sternberg, et al. 2007 is a good resource for psychology students interested in learning how to improve their scientific reasoning skills, a specific set of thinking skills needed by psychology and other science students.

Ennis, Robert H. 1962. A concept of critical thinking: A proposed basis of research in the teaching and evaluation of critical thinking. Harvard Educational Review 32:81–111.

A discussion of how critical thinking is conceptualized from a philosopher’s perspective. Critical of psychology’s definition of critical thinking at the time. Emphasizes twelve aspects of critical thinking.

Facione, Peter A. 1990. Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction; Executive Summary of The Delphi Report . Millbrae, CA: California Academic Press.

Describes the critical thinking movement, definitions of critical thinking agreed upon by philosophers using the Delphi method, the assessment of critical thinking, and how critical thinking can be taught.

Facione, Peter A. 2011a. Critical thinking: What it is and why it counts . Millbrae, CA: Insight Assessment.

This accessible paper defines critical thinking, elaborates on specific critical thinking skills, and discusses what it means to have (or not have) a critical thinking disposition. A distinction is made between system 1 (shallow processing) and system 2 (deeper processing) thinking. Good resource for students new to the field.

Facione, Peter A. 2011b. THINK critically . Upper Saddle River, NJ: Prentice Hall.

Written from a philosophical perspective this critical thinking textbook emphasizes the application of critical thinking to the real world and offers positive examples of critical thinking. Chapters cover inductive, deductive, comparative, ideological, and empirical reasoning

Fisher, Alec. 2001. Critical thinking: An introduction . Cambridge, UK: Cambridge Univ. Press.

Textbook intended for college students discusses various types of reasoning, causality, argument analysis, and decision making. Includes exercises for students and teachers.

Halpern, Diane F. 2003. Thought & knowledge: An introduction to critical thinking . 4th ed. Mahwah, NJ: Lawrence Erlbaum.

This textbook, written by a cognitive psychologist, is grounded in theory and research from the learning sciences and offers practical examples. Chapters include an introduction to the topic and the correlates of critical thinking, memory, thought and language, reasoning, analyzing arguments, thinking as hypothesis testing, likelihood and uncertainty, decision making, development of problem-solving skills, and creative thinking.

Nisbett, Richard E. 1993. Rules for reasoning . Hillsdale, NJ: Lawrence Erlbaum.

This text is rich with empirical evidence that critical thinking skills can be taught to undergraduate and graduate students. Each chapter discusses research on an aspect of reasoning (e.g., statistical reasoning, heuristics, inductive reasoning) with special emphasis on teaching the application of these skills to everyday problems.

Sternberg, Robert J., Henry L. Roediger III, and Diane F. Halpern, eds. 2007. Critical thinking in psychology . New York: Cambridge Univ. Press.

This edited book explores several aspects of critical thinking that are needed to fully understand key topics in psychology such as experiment research, statistical inference, case studies, logical fallacies, and ethical judgments. Experts discuss the critical thinking strategies they engage in. Interesting discussion of historical breakthroughs due to critical thinking.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Psychology »
  • Meet the Editorial Board »
  • Abnormal Psychology
  • Academic Assessment
  • Acculturation and Health
  • Action Regulation Theory
  • Action Research
  • Addictive Behavior
  • Adolescence
  • Adoption, Social, Psychological, and Evolutionary Perspect...
  • Advanced Theory of Mind
  • Affective Forecasting
  • Affirmative Action
  • Ageism at Work
  • Allport, Gordon
  • Alzheimer’s Disease
  • Ambulatory Assessment in Behavioral Science
  • Analysis of Covariance (ANCOVA)
  • Animal Behavior
  • Animal Learning
  • Anxiety Disorders
  • Art and Aesthetics, Psychology of
  • Assessment and Clinical Applications of Individual Differe...
  • Attachment in Social and Emotional Development across the ...
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Adults
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Childre...
  • Attitudinal Ambivalence
  • Attraction in Close Relationships
  • Attribution Theory
  • Authoritarian Personality
  • Bayesian Statistical Methods in Psychology
  • Behavior Therapy, Rational Emotive
  • Behavioral Economics
  • Behavioral Genetics
  • Belief Perseverance
  • Bereavement and Grief
  • Biological Psychology
  • Birth Order
  • Body Image in Men and Women
  • Bystander Effect
  • Categorical Data Analysis in Psychology
  • Childhood and Adolescence, Peer Victimization and Bullying...
  • Clark, Mamie Phipps
  • Clinical Neuropsychology
  • Clinical Psychology
  • Cognitive Consistency Theories
  • Cognitive Dissonance Theory
  • Cognitive Neuroscience
  • Communication, Nonverbal Cues and
  • Comparative Psychology
  • Competence to Stand Trial: Restoration Services
  • Competency to Stand Trial
  • Computational Psychology
  • Conflict Management in the Workplace
  • Conformity, Compliance, and Obedience
  • Consciousness
  • Coping Processes
  • Correspondence Analysis in Psychology
  • Counseling Psychology
  • Creativity at Work
  • Critical Thinking
  • Cross-Cultural Psychology
  • Cultural Psychology
  • Daily Life, Research Methods for Studying
  • Data Science Methods for Psychology
  • Data Sharing in Psychology
  • Death and Dying
  • Deceiving and Detecting Deceit
  • Defensive Processes
  • Depressive Disorders
  • Development, Prenatal
  • Developmental Psychology (Cognitive)
  • Developmental Psychology (Social)
  • Diagnostic and Statistical Manual of Mental Disorders (DSM...
  • Discrimination
  • Dissociative Disorders
  • Drugs and Behavior
  • Eating Disorders
  • Ecological Psychology
  • Educational Settings, Assessment of Thinking in
  • Effect Size
  • Embodiment and Embodied Cognition
  • Emerging Adulthood
  • Emotional Intelligence
  • Empathy and Altruism
  • Employee Stress and Well-Being
  • Environmental Neuroscience and Environmental Psychology
  • Ethics in Psychological Practice
  • Event Perception
  • Evolutionary Psychology
  • Expansive Posture
  • Experimental Existential Psychology
  • Exploratory Data Analysis
  • Eyewitness Testimony
  • Eysenck, Hans
  • Factor Analysis
  • Festinger, Leon
  • Five-Factor Model of Personality
  • Flynn Effect, The
  • Forensic Psychology
  • Forgiveness
  • Friendships, Children's
  • Fundamental Attribution Error/Correspondence Bias
  • Gambler's Fallacy
  • Game Theory and Psychology
  • Geropsychology, Clinical
  • Global Mental Health
  • Habit Formation and Behavior Change
  • Health Psychology
  • Health Psychology Research and Practice, Measurement in
  • Heider, Fritz
  • Heuristics and Biases
  • History of Psychology
  • Human Factors
  • Humanistic Psychology
  • Implicit Association Test (IAT)
  • Industrial and Organizational Psychology
  • Inferential Statistics in Psychology
  • Insanity Defense, The
  • Intelligence
  • Intelligence, Crystallized and Fluid
  • Intercultural Psychology
  • Intergroup Conflict
  • International Classification of Diseases and Related Healt...
  • International Psychology
  • Interviewing in Forensic Settings
  • Intimate Partner Violence, Psychological Perspectives on
  • Introversion–Extraversion
  • Item Response Theory
  • Law, Psychology and
  • Lazarus, Richard
  • Learned Helplessness
  • Learning versus Performance
  • LGBTQ+ Romantic Relationships
  • Lie Detection in a Forensic Context
  • Life-Span Development
  • Locus of Control
  • Loneliness and Health
  • Mathematical Psychology
  • Meaning in Life
  • Mechanisms and Processes of Peer Contagion
  • Media Violence, Psychological Perspectives on
  • Mediation Analysis
  • Memories, Autobiographical
  • Memories, Flashbulb
  • Memories, Repressed and Recovered
  • Memory, False
  • Memory, Human
  • Memory, Implicit versus Explicit
  • Memory in Educational Settings
  • Memory, Semantic
  • Meta-Analysis
  • Metacognition
  • Metaphor, Psychological Perspectives on
  • Microaggressions
  • Military Psychology
  • Mindfulness and Education
  • Minnesota Multiphasic Personality Inventory (MMPI)
  • Money, Psychology of
  • Moral Conviction
  • Moral Development
  • Moral Psychology
  • Moral Reasoning
  • Nature versus Nurture Debate in Psychology
  • Neuroscience of Associative Learning
  • Nonergodicity in Psychology and Neuroscience
  • Nonparametric Statistical Analysis in Psychology
  • Observational (Non-Randomized) Studies
  • Obsessive-Complusive Disorder (OCD)
  • Occupational Health Psychology
  • Olfaction, Human
  • Operant Conditioning
  • Optimism and Pessimism
  • Organizational Justice
  • Parenting Stress
  • Parenting Styles
  • Parents' Beliefs about Children
  • Path Models
  • Peace Psychology
  • Perception, Person
  • Performance Appraisal
  • Personality and Health
  • Personality Disorders
  • Personality Psychology
  • Phenomenological Psychology
  • Placebo Effects in Psychology
  • Play Behavior
  • Positive Psychological Capital (PsyCap)
  • Positive Psychology
  • Posttraumatic Stress Disorder (PTSD)
  • Prejudice and Stereotyping
  • Pretrial Publicity
  • Prisoner's Dilemma
  • Prosocial Behavior
  • Prosocial Spending and Well-Being
  • Protocol Analysis
  • Psycholinguistics
  • Psychological Literacy
  • Psychological Perspectives on Food and Eating
  • Psychology, Political
  • Psychoneuroimmunology
  • Psychophysics, Visual
  • Psychotherapy
  • Psychotic Disorders
  • Publication Bias in Psychology
  • Reasoning, Counterfactual
  • Rehabilitation Psychology
  • Relationships
  • Reliability–Contemporary Psychometric Conceptions
  • Religion, Psychology and
  • Replication Initiatives in Psychology
  • Research Methods
  • Risk Taking
  • Role of the Expert Witness in Forensic Psychology, The
  • Sample Size Planning for Statistical Power and Accurate Es...
  • Schizophrenic Disorders
  • School Psychology
  • School Psychology, Counseling Services in
  • Self, Gender and
  • Self, Psychology of the
  • Self-Construal
  • Self-Control
  • Self-Deception
  • Self-Determination Theory
  • Self-Efficacy
  • Self-Esteem
  • Self-Monitoring
  • Self-Regulation in Educational Settings
  • Self-Report Tests, Measures, and Inventories in Clinical P...
  • Sensation Seeking
  • Sex and Gender
  • Sexual Minority Parenting
  • Sexual Orientation
  • Signal Detection Theory and its Applications
  • Simpson's Paradox in Psychology
  • Single People
  • Single-Case Experimental Designs
  • Skinner, B.F.
  • Sleep and Dreaming
  • Small Groups
  • Social Class and Social Status
  • Social Cognition
  • Social Neuroscience
  • Social Support
  • Social Touch and Massage Therapy Research
  • Somatoform Disorders
  • Spatial Attention
  • Sports Psychology
  • Stanford Prison Experiment (SPE): Icon and Controversy
  • Stereotype Threat
  • Stereotypes
  • Stress and Coping, Psychology of
  • Subjective Wellbeing Homeostasis
  • Taste, Psychological Perspectives on
  • Terror Management Theory
  • Testing and Assessment
  • The Concept of Validity in Psychological Assessment
  • The Neuroscience of Emotion Regulation
  • The Reasoned Action Approach and the Theories of Reasoned ...
  • The Weapon Focus Effect in Eyewitness Memory
  • Theory of Mind
  • Therapies, Person-Centered
  • Therapy, Cognitive-Behavioral
  • Time Perception
  • Trait Perspective
  • Trauma Psychology
  • Twin Studies
  • Type A Behavior Pattern (Coronary Prone Personality)
  • Unconscious Processes
  • Video Games and Violent Content
  • Virtues and Character Strengths
  • Women and Science, Technology, Engineering, and Math (STEM...
  • Women, Psychology of
  • Work Well-Being
  • Wundt, Wilhelm
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|81.177.182.159]
  • 81.177.182.159

Logo for OPEN OKSTATE

1 Introduction to Critical Thinking

I. what is c ritical t hinking [1].

Critical thinking is the ability to think clearly and rationally about what to do or what to believe.  It includes the ability to engage in reflective and independent thinking. Someone with critical thinking skills is able to do the following:

  • Understand the logical connections between ideas.
  • Identify, construct, and evaluate arguments.
  • Detect inconsistencies and common mistakes in reasoning.
  • Solve problems systematically.
  • Identify the relevance and importance of ideas.
  • Reflect on the justification of one’s own beliefs and values.

Critical thinking is not simply a matter of accumulating information. A person with a good memory and who knows a lot of facts is not necessarily good at critical thinking. Critical thinkers are able to deduce consequences from what they know, make use of information to solve problems, and to seek relevant sources of information to inform themselves.

Critical thinking should not be confused with being argumentative or being critical of other people. Although critical thinking skills can be used in exposing fallacies and bad reasoning, critical thinking can also play an important role in cooperative reasoning and constructive tasks. Critical thinking can help us acquire knowledge, improve our theories, and strengthen arguments. We can also use critical thinking to enhance work processes and improve social institutions.

Some people believe that critical thinking hinders creativity because critical thinking requires following the rules of logic and rationality, whereas creativity might require breaking those rules. This is a misconception. Critical thinking is quite compatible with thinking “out-of-the-box,” challenging consensus views, and pursuing less popular approaches. If anything, critical thinking is an essential part of creativity because we need critical thinking to evaluate and improve our creative ideas.

II. The I mportance of C ritical T hinking

Critical thinking is a domain-general thinking skill. The ability to think clearly and rationally is important whatever we choose to do. If you work in education, research, finance, management or the legal profession, then critical thinking is obviously important. But critical thinking skills are not restricted to a particular subject area. Being able to think well and solve problems systematically is an asset for any career.

Critical thinking is very important in the new knowledge economy.  The global knowledge economy is driven by information and technology. One has to be able to deal with changes quickly and effectively. The new economy places increasing demands on flexible intellectual skills, and the ability to analyze information and integrate diverse sources of knowledge in solving problems. Good critical thinking promotes such thinking skills, and is very important in the fast-changing workplace.

Critical thinking enhances language and presentation skills. Thinking clearly and systematically can improve the way we express our ideas. In learning how to analyze the logical structure of texts, critical thinking also improves comprehension abilities.

Critical thinking promotes creativity. To come up with a creative solution to a problem involves not just having new ideas. It must also be the case that the new ideas being generated are useful and relevant to the task at hand. Critical thinking plays a crucial role in evaluating new ideas, selecting the best ones and modifying them if necessary.

Critical thinking is crucial for self-reflection. In order to live a meaningful life and to structure our lives accordingly, we need to justify and reflect on our values and decisions. Critical thinking provides the tools for this process of self-evaluation.

Good critical thinking is the foundation of science and democracy. Science requires the critical use of reason in experimentation and theory confirmation. The proper functioning of a liberal democracy requires citizens who can think critically about social issues to inform their judgments about proper governance and to overcome biases and prejudice.

Critical thinking is a   metacognitive skill . What this means is that it is a higher-level cognitive skill that involves thinking about thinking. We have to be aware of the good principles of reasoning, and be reflective about our own reasoning. In addition, we often need to make a conscious effort to improve ourselves, avoid biases, and maintain objectivity. This is notoriously hard to do. We are all able to think but to think well often requires a long period of training. The mastery of critical thinking is similar to the mastery of many other skills. There are three important components: theory, practice, and attitude.

III. Improv ing O ur T hinking S kills

If we want to think correctly, we need to follow the correct rules of reasoning. Knowledge of theory includes knowledge of these rules. These are the basic principles of critical thinking, such as the laws of logic, and the methods of scientific reasoning, etc.

Also, it would be useful to know something about what not to do if we want to reason correctly. This means we should have some basic knowledge of the mistakes that people make. First, this requires some knowledge of typical fallacies. Second, psychologists have discovered persistent biases and limitations in human reasoning. An awareness of these empirical findings will alert us to potential problems.

However, merely knowing the principles that distinguish good and bad reasoning is not enough. We might study in the classroom about how to swim, and learn about the basic theory, such as the fact that one should not breathe underwater. But unless we can apply such theoretical knowledge through constant practice, we might not actually be able to swim.

Similarly, to be good at critical thinking skills it is necessary to internalize the theoretical principles so that we can actually apply them in daily life. There are at least two ways to do this. One is to perform lots of quality exercises. These exercises don’t just include practicing in the classroom or receiving tutorials; they also include engaging in discussions and debates with other people in our daily lives, where the principles of critical thinking can be applied. The second method is to think more deeply about the principles that we have acquired. In the human mind, memory and understanding are acquired through making connections between ideas.

Good critical thinking skills require more than just knowledge and practice. Persistent practice can bring about improvements only if one has the right kind of motivation and attitude. The following attitudes are not uncommon, but they are obstacles to critical thinking:

  • I prefer being given the correct answers rather than figuring them out myself.
  • I don’t like to think a lot about my decisions as I rely only on gut feelings.
  • I don’t usually review the mistakes I have made.
  • I don’t like to be criticized.

To improve our thinking we have to recognize the importance of reflecting on the reasons for belief and action. We should also be willing to engage in debate, break old habits, and deal with linguistic complexities and abstract concepts.

The  California Critical Thinking Disposition Inventory  is a psychological test that is used to measure whether people are disposed to think critically. It measures the seven different thinking habits listed below, and it is useful to ask ourselves to what extent they describe the way we think:

  • Truth-Seeking—Do you try to understand how things really are? Are you interested in finding out the truth?
  • Open-Mindedness—How receptive are you to new ideas, even when you do not intuitively agree with them? Do you give new concepts a fair hearing?
  • Analyticity—Do you try to understand the reasons behind things? Do you act impulsively or do you evaluate the pros and cons of your decisions?
  • Systematicity—Are you systematic in your thinking? Do you break down a complex problem into parts?
  • Confidence in Reasoning—Do you always defer to other people? How confident are you in your own judgment? Do you have reasons for your confidence? Do you have a way to evaluate your own thinking?
  • Inquisitiveness—Are you curious about unfamiliar topics and resolving complicated problems? Will you chase down an answer until you find it?
  • Maturity of Judgment—Do you jump to conclusions? Do you try to see things from different perspectives? Do you take other people’s experiences into account?

Finally, as mentioned earlier, psychologists have discovered over the years that human reasoning can be easily affected by a variety of cognitive biases. For example, people tend to be over-confident of their abilities and focus too much on evidence that supports their pre-existing opinions. We should be alert to these biases in our attitudes towards our own thinking.

IV. Defining Critical Thinking

There are many different definitions of critical thinking. Here we list some of the well-known ones. You might notice that they all emphasize the importance of clarity and rationality. Here we will look at some well-known definitions in chronological order.

1) Many people trace the importance of critical thinking in education to the early twentieth-century American philosopher John Dewey. But Dewey did not make very extensive use of the term “critical thinking.” Instead, in his book  How We Think (1910), he argued for the importance of what he called “reflective thinking”:

…[when] the ground or basis for a belief is deliberately sought and its adequacy to support the belief examined. This process is called reflective thought; it alone is truly educative in value…

Active, persistent and careful consideration of any belief or supposed form of knowledge in light of the grounds that support it, and the further conclusions to which it tends, constitutes reflective thought.

There is however one passage from How We Think where Dewey explicitly uses the term “critical thinking”:

The essence of critical thinking is suspended judgment; and the essence of this suspense is inquiry to determine the nature of the problem before proceeding to attempts at its solution. This, more than any other thing, transforms mere inference into tested inference, suggested conclusions into proof.

2) The  Watson-Glaser Critical Thinking Appraisal  (1980) is a well-known psychological test of critical thinking ability. The authors of this test define critical thinking as:

…a composite of attitudes, knowledge and skills. This composite includes: (1) attitudes of inquiry that involve an ability to recognize the existence of problems and an acceptance of the general need for evidence in support of what is asserted to be true; (2) knowledge of the nature of valid inferences, abstractions, and generalizations in which the weight or accuracy of different kinds of evidence are logically determined; and (3) skills in employing and applying the above attitudes and knowledge.

3) A very well-known and influential definition of critical thinking comes from philosopher and professor Robert Ennis in his work “A Taxonomy of Critical Thinking Dispositions and Abilities” (1987):

Critical thinking is reasonable reflective thinking that is focused on deciding what to believe or do.

4) The following definition comes from a statement written in 1987 by the philosophers Michael Scriven and Richard Paul for the  National Council for Excellence in Critical Thinking (link), an organization promoting critical thinking in the US:

Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. It entails the examination of those structures or elements of thought implicit in all reasoning: purpose, problem, or question-at-issue, assumptions, concepts, empirical grounding; reasoning leading to conclusions, implications and consequences, objections from alternative viewpoints, and frame of reference.

The following excerpt from Peter A. Facione’s “Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction” (1990) is quoted from a report written for the American Philosophical Association:

We understand critical thinking to be purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations upon which that judgment is based. CT is essential as a tool of inquiry. As such, CT is a liberating force in education and a powerful resource in one’s personal and civic life. While not synonymous with good thinking, CT is a pervasive and self-rectifying human phenomenon. The ideal critical thinker is habitually inquisitive, well-informed, trustful of reason, open-minded, flexible, fairminded in evaluation, honest in facing personal biases, prudent in making judgments, willing to reconsider, clear about issues, orderly in complex matters, diligent in seeking relevant information, reasonable in the selection of criteria, focused in inquiry, and persistent in seeking results which are as precise as the subject and the circumstances of inquiry permit. Thus, educating good critical thinkers means working toward this ideal. It combines developing CT skills with nurturing those dispositions which consistently yield useful insights and which are the basis of a rational and democratic society.

V. Two F eatures of C ritical T hinking

A. how not what .

Critical thinking is concerned not with what you believe, but rather how or why you believe it. Most classes, such as those on biology or chemistry, teach you what to believe about a subject matter. In contrast, critical thinking is not particularly interested in what the world is, in fact, like. Rather, critical thinking will teach you how to form beliefs and how to think. It is interested in the type of reasoning you use when you form your beliefs, and concerns itself with whether you have good reasons to believe what you believe. Therefore, this class isn’t a class on the psychology of reasoning, which brings us to the second important feature of critical thinking.

B. Ought N ot Is ( or Normative N ot Descriptive )

There is a difference between normative and descriptive theories. Descriptive theories, such as those provided by physics, provide a picture of how the world factually behaves and operates. In contrast, normative theories, such as those provided by ethics or political philosophy, provide a picture of how the world should be. Rather than ask question such as why something is the way it is, normative theories ask how something should be. In this course, we will be interested in normative theories that govern our thinking and reasoning. Therefore, we will not be interested in how we actually reason, but rather focus on how we ought to reason.

In the introduction to this course we considered a selection task with cards that must be flipped in order to check the validity of a rule. We noted that many people fail to identify all the cards required to check the rule. This is how people do in fact reason (descriptive). We then noted that you must flip over two cards. This is how people ought to reason (normative).

  • Section I-IV are taken from http://philosophy.hku.hk/think/ and are in use under the creative commons license. Some modifications have been made to the original content. ↵

Critical Thinking Copyright © 2019 by Brian Kim is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

University of Louisville

  • Programs & Services
  • Delphi Center

Ideas to Action (i2a)

  • Paul-Elder Critical Thinking Framework

Critical thinking is that mode of thinking – about any subject, content, or problem — in which the thinker improves the quality of his or her thinking by skillfully taking charge of the structures inherent in thinking and imposing intellectual standards upon them. (Paul and Elder, 2001). The Paul-Elder framework has three components:

  • The elements of thought (reasoning)
  • The  intellectual standards that should be applied to the elements of reasoning
  • The intellectual traits associated with a cultivated critical thinker that result from the consistent and disciplined application of the intellectual standards to the elements of thought

Graphic Representation of Paul-Elder Critical Thinking Framework

According to Paul and Elder (1997), there are two essential dimensions of thinking that students need to master in order to learn how to upgrade their thinking. They need to be able to identify the "parts" of their thinking, and they need to be able to assess their use of these parts of thinking.

Elements of Thought (reasoning)

The "parts" or elements of thinking are as follows:

  • All reasoning has a purpose
  • All reasoning is an attempt to figure something out, to settle some question, to solve some problem
  • All reasoning is based on assumptions
  • All reasoning is done from some point of view
  • All reasoning is based on data, information and evidence
  • All reasoning is expressed through, and shaped by, concepts and ideas
  • All reasoning contains inferences or interpretations by which we draw conclusions and give meaning to data
  • All reasoning leads somewhere or has implications and consequences

Universal Intellectual Standards

The intellectual standards that are to these elements are used to determine the quality of reasoning. Good critical thinking requires having a command of these standards. According to Paul and Elder (1997 ,2006), the ultimate goal is for the standards of reasoning to become infused in all thinking so as to become the guide to better and better reasoning. The intellectual standards include:

Intellectual Traits

Consistent application of the standards of thinking to the elements of thinking result in the development of intellectual traits of:

  • Intellectual Humility
  • Intellectual Courage
  • Intellectual Empathy
  • Intellectual Autonomy
  • Intellectual Integrity
  • Intellectual Perseverance
  • Confidence in Reason
  • Fair-mindedness

Characteristics of a Well-Cultivated Critical Thinker

Habitual utilization of the intellectual traits produce a well-cultivated critical thinker who is able to:

  • Raise vital questions and problems, formulating them clearly and precisely
  • Gather and assess relevant information, using abstract ideas to interpret it effectively
  • Come to well-reasoned conclusions and solutions, testing them against relevant criteria and standards;
  • Think open-mindedly within alternative systems of thought, recognizing and assessing, as need be, their assumptions, implications, and practical consequences; and
  • Communicate effectively with others in figuring out solutions to complex problems

Paul, R. and Elder, L. (2010). The Miniature Guide to Critical Thinking Concepts and Tools. Dillon Beach: Foundation for Critical Thinking Press.

  • SACS & QEP
  • Planning and Implementation
  • What is Critical Thinking?
  • Why Focus on Critical Thinking?
  • Culminating Undergraduate Experience
  • Community Engagement
  • Frequently Asked Questions
  • What is i2a?

Copyright © 2012 - University of Louisville , Delphi Center

Bookmark this page

  • Content Is Thinking, Thinking is Content
  • Critical Thinking in Every Domain of Knowledge and Belief
  • Using Intellectual Standards to Assess Student Reasoning
  • Open-minded inquiry
  • Valuable Intellectual Traits
  • Universal Intellectual Standards
  • Thinking With Concepts
  • The Analysis & Assessment of Thinking
  • Glossary of Critical Thinking Terms
  • Distinguishing Between Inert Information, Activated Ignorance, Activated Knowledge
  • Critical Thinking: Identifying the Targets
  • Distinguishing Between Inferences and Assumptions

Critical Thinking Development: A Stage Theory

  • Becoming a Critic Of Your Thinking
  • Bertrand Russell on Critical Thinking

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

For full copies of this and many other critical thinking articles, books, videos, and more, join us at the Center for Critical Thinking Community Online - the world's leading online community dedicated to critical thinking!   Also featuring interactive learning activities, study groups, and even a social media component, this learning platform will change your conception of intellectual development.

SEP logo

  • Table of Contents
  • New in this Archive
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment. Political and business leaders endorse its importance.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o'clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68-69; 1933: 91-92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot's position, it must appear to project far out in front of the boat. Morevoer, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69-70; 1933: 92-93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond line from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009), others on the resulting judgment (Facione 1990a), and still others on the subsequent emotive response (Siegel 1988).

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in frequency in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the frequency of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Critical thinking dispositions can usefully be divided into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started) (Facione 1990a: 25). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), and Black (2012).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work.

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? Abrami et al. (2015) found that in the experimental and quasi-experimental studies that they analyzed dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), and Bailin et al. (1999b).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Casserly, Megan, 2012, “The 10 Skills That Will Get You Hired in 2013”, Forbes , Dec. 10, 2012. Available at https://www.forbes.com/sites/meghancasserly/2012/12/10/the-10-skills-that-will-get-you-a-job-in-2013/#79e7ff4e633d ; accessed 2017 11 06.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; accessed 2017 09 26.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; accessed 2018 04 09.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; accessed 2018 04 14.
  • Dumke, Glenn S., 1980, Chancellor’s Executive Order 338 , Long Beach, CA: California State University, Chancellor’s Office. Available at https://www.calstate.edu/eo/EO-338.pdf ; accessed 2017 11 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”. Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; accessed 2017 12 02.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://drive.google.com/file/d/0BzUoP_pmwy1gdEpCR05PeW9qUzA/view ; accessed 2017 12 01.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • Obama, Barack, 2014, State of the Union Address , January 28, 2014. [ Obama 2014 available online ]
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Information available at http://www.ocr.org.uk/qualifications/as-a-level-gce-critical-thinking-h052-h452/ ; accessed 2017 10 12.
  • OECD [Organization for Economic Cooperation and Development] Centre for Educational Research and Innovation, 2018, Fostering and Assessing Students’ Creative and Critical Thinking Skills in Higher Education , Paris: OECD. Available at http://www.oecd.org/education/ceri/Fostering-and-assessing-students-creative-and-critical-thinking-skills-in-higher-education.pdf ; accessed 2018 04 22.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; accessed 2017 11 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; accessed 2017 11 29.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2011, Curriculum for the Compulsory School, Preschool Class and the Recreation Centre , Stockholm: Ordförrådet AB. Available at http://malmo.se/download/18.29c3b78a132728ecb52800034181/pdf2687.pdf ; accessed 2017 11 16.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up this entry topic at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Center for Teaching Thinking (CTT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach (criticalTHINKING.net)
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2018 by David Hitchcock < hitchckd @ mcmaster . ca >

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

Stanford Center for the Study of Language and Information

The Stanford Encyclopedia of Philosophy is copyright © 2016 by The Metaphysics Research Lab , Center for the Study of Language and Information (CSLI), Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

  • Open access
  • Published: 03 April 2024

Application of flipped classroom teaching method based on ADDIE concept in clinical teaching for neurology residents

  • Juan Zhang 1 ,
  • Hong Chen 2 ,
  • Xie Wang 2 ,
  • Xiaofeng Huang 1 &
  • Daojun Xie 1  

BMC Medical Education volume  24 , Article number:  366 ( 2024 ) Cite this article

124 Accesses

Metrics details

As an important medical personnel training system in China, standardized residency training plays an important role in enriching residents’ clinical experience, improving their ability to communicate with patients and their clinical expertise. The difficulty of teaching neurology lies in the fact that there are many types of diseases, complicated conditions, and strong specialisation, which puts higher requirements on residents’ independent learning ability, the cultivation of critical thinking, and the learning effect. Based on the concept of ADDIE (Analysis-Design-Development-Implementation-Evaluation), this study combines the theory and clinical practice of flipped classroom teaching method to evaluate the teaching effect, so as to provide a basis and reference for the implementation of flipped classroom in the future of neurology residency training teaching.

The participants of the study were 90 neurology residents in standardised training in our hospital in the classes of 2019 and 2020. A total of 90 residents were divided into a control group and an observation group of 45 cases each using the random number table method. The control group used traditional teaching methods, including problem based learning (PBL), case-based learning (CBL), and lecture-based learning (LBL). The observation group adopted the flipped classroom teaching method based on the ADDIE teaching concept. A unified assessment of the learning outcomes of the residents was conducted before they left the department in the fourth week, including the assessment of theoretical and skill knowledge, the assessment of independent learning ability, the assessment of critical thinking ability, and the assessment of clinical practice ability. Finally, the overall quality of teaching was assessed.

The theoretical and clinical skills assessment scores achieved by the observation group were significantly higher than those of the control group, and the results were statistically significant ( P  < 0.001). The scores of independent learning ability and critical thinking ability of the observation group were better than those of the control group, showing statistically significant differences ( P  < 0.001). The observation group was better than the control group in all indicators in terms of Mini-Cex score ( P  < 0.05). In addition, the observation group had better teaching quality compared to the control group ( P  < 0.001).

Based on the concept of ADDIE combined with flipped classroom teaching method can effectively improve the teaching effect of standardized training of neurology residents, and had a positive effect on the improvement of residents’ autonomous learning ability, critical thinking ability, theoretical knowledge and clinical comprehensive ability.

Peer Review reports

Introduction

As an important medical education system, the standardized residency training system is of great significance in China’s clinical medical training system [ 1 – 2 ]. In order to continuously improve the clinical medical talent training system and build a talent training system with clinical medical characteristics, China began to implement the resident standardized training system in 2014. Under the standardized clinical teaching plan, residents can achieve the requirements and objectives of multidisciplinary training required by the primary professional title through rotational learning and clinical teaching evaluation among various departments [ 3 ]. The implementation of the system not only greatly improves the professional ability of clinical medical staff, but also effectively saves medical resources and costs. However, neurology diseases are relatively abstruse and complex, with many critical diseases and strong professionalism, which requires physicians to have better autonomous learning ability, richer knowledge reserve and clinical emergency problem-solving ability.

The ADDIE model consists of five components: analysis, design, development, implementation, and evaluation [ 4 ]. The ADDIE teaching theory, as a new type of teaching theory, focuses on the needs and goals of the students. It allows the teacher to be the decision maker for learning [ 5 ], to set and develop the necessary learning steps and to implement them effectively by analysing the main learning objectives of the students and taking into account the students’ own realities. Learning effectiveness is checked through appropriate clinical teaching practice sessions to assess whether the learning requirements have been met, and it helps students to enhance their understanding of the learning content. It not only improves the educator’s ability to teach, but most importantly, the effectiveness of the students’ learning is also improved. Gagne instructional design method is mainly composed of nine learning events, such as training attention, informing learner of objectives, stimulating recall of prior learning, presenting stimulus, and providing learning guidance [ 6 ]. Compared with Gagne teaching design method, ADDIE model teaching method has the advantages of simple steps and easy implementation, and is often used in medical education design. Lucia et al. [ 7 ] used ADDIE model to develop the basic life support course in the process of adult cardiac arrest related surgery. Under the guidance of this theory, it not only realized the technical innovation in cardiopulmonary resuscitation education and systematization, but also had important positive significance for medical education. Maya et al. [ 8 ] developed and implemented the covid-19 elective course for pediatric residents by using the idea of ADDIE teaching. As an effective teaching method, this course provides necessary disaster response and flexible education for pediatric residents. Therefore, the teaching concept plays an important role in medical education.

Flipped classroom [ 9 ] was first popularised in the United States, where people advocated homework to replace the classroom learning format, and has gradually been applied to the medical education business in recent years [ 10 ]. It is different from traditional teaching. As an emerging mode of teaching, it advocates a student-centred approach, whereby the teacher prepares teaching videos or materials through an online platform and sends the materials to the students in a uniform manner before the students arrange their own study plan and time [ 11 – 12 ]. Therefore, this model is not limited by time and place, and students can learn according to their own situation and their own speed. When encountering difficult points, students can also watch the video repeatedly, interact and discuss with other students, or organise the questions and feedback them to the teacher for one-by-one answers.

Therefore, the flipped classroom teaching method based on AddIE teaching concept can formulate and implement the corresponding learning and training plan in combination with the clinical teaching needs of standardized training of neurology residents and the actual situation at this stage, encourage students to independently arrange learning time, and give the initiative of learning to students, so as to overcome the disadvantages of tight classroom time, heavy tasks, and students’ inability to study and think deeply in traditional medical teaching, which has a positive effect on the cultivation of students’ autonomous learning ability, the formation of critical thinking ability, and the improvement of professional knowledge and clinical comprehensive ability. Mini-CEX (Mini clinical exercise assessment) is considered to be an effective method for evaluating the clinical ability and teaching function of residents [ 13 ]. In this study, the theoretical and technical knowledge, autonomous learning ability and critical thinking ability were evaluated and scored, and the clinical comprehensive ability of residents was evaluated by mini CEX method, so as to provide a comprehensive and objective evaluation for clinical teaching results. This study is an exploration of medical clinical education mode, in order to provide reference for clinical teaching mode of standardized training of residents.

Materials and methods

Study design.

A prospective controlled experimental design of research was used in this study.

Participants

The participants of the study were 90 residents of the classes of 2019 and 2020 participating in the standardized residency training in the Department of Neurology of our hospital. Random number table method was used to divide 90 residents into control group and observation group with 45 residents in each group. There were 21 males and 24 females in the control group, aged 23–28 (25.40 ± 2.78) years. The observation group consisted of 23 males and 22 females, aged 22–27 (24.37 ± 2.59) years. All subjects signed an informed consent form. By comparing the general data of the residents in both groups, the results suggested no statistical significance ( p  > 0.05).

Training methods

Both groups of residents underwent a one-month standardized residency training in the Department of Neurology. During the training period, the instructors trained the residents according to the standardized residency training syllabus, which mainly included theoretical learning and skills operation. The two groups of teachers were.

randomly assigned and the quality of teaching was monitored by the department head.

Control group

The group adopted traditional teaching methods, including problem-based learning (PBL), case-based learning (CBL) and lecture based learning (LBL). PBL refers to a problem-oriented teaching method in which students seek solutions around problems [ 14 ]. CBL refers to the case-based teaching method, that is, to design cases according to teaching objectives, take teachers as the leading role, and let students think, analyze and discuss [ 15 ]. LBL refers to the traditional teaching method [ 16 ]. In the first week of enrollment, teachers will conduct unified enrollment assessment, enrollment education and popularization of basic knowledge of Neurology. The second week is mainly based on the traditional LBL teaching method, mainly for common diseases in the Department of Neurology, including ward round, bedside physical examination, auxiliary examination analysis, and putting forward the diagnosis basis and treatment plan. In the third week, CBL teaching method is mainly used to consolidate the knowledge learned through case study. In the fourth week, PBL teaching method is mainly used to promote problem learning and knowledge understanding by asking and answering questions. The learning outcomes were evaluated before leaving the department four weeks later. The detailed process was shown in Fig.  1 .

figure 1

Flow chart of resident training process for two groups

Observation group

This group adopted the flipped classroom teaching method based on the ADDIE teaching concept. The training content of the first week was the same as that of the control group. From the second to the fourth week, the flipped classroom teaching method based on the ADDIE teaching concept was adopted, with a total of 38 class hours. By analysing the content of the syllabus and the actual situation of the subjects, we designed and developed a characteristic and targeted teaching programme and implemented it, and conducted a unified assessment of the learning outcomes before the residents left the department in the fourth week. The concrete programme is shown in Table  1 .

Step 1: composition of the teaching team

The members of the teaching team included a department head, 10 neurology lead teachers, and two non-neurology ADDIE specialists. The department chair is responsible for overseeing the overall quality of teaching, and the instructors are responsible for the teaching and learning of all students and the assessment of their outcomes. The ADDIE experts integrate the ADDIE concepts into the clinical learning curriculum plan of the standardised residency training according to the specific arrangement and actual situation of the curriculum.

Step 2: setting of teaching objectives

The teaching objectives of standardised training for neurology residents mainly include the following aspects: (1) To understand and master common neurological diseases and their diagnosis and treatment processes, such as migraine, tension headache, benign paroxysmal positional vertigo, peripheral facial palsy, Parkinson’s disease, posterior circulation ischemia, cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage, epilepsy, etc.; (2) To understand and master systematic physical examination of the neurological system methods; (3) Proficiency in performing skillful operations related to neurological diseases, including lumbar puncture, etc.; (4) Familiarity with the management process of common neurological emergencies, including acute-phase cerebral infarction, acute-phase cerebral haemorrhage, and epileptic status persistent, etc.; and (5) Improvement of the resident’s ability of communicating with the team, collaborating with the team, communicating with the patients and the ability of dealing with the emergency problems on a temporary basis.

Step 3: concrete teaching plan

With the unanimous agreement and unremitting efforts of the teaching team, the curriculum and methodology for the standardised training of residents in the flipped classroom based on the ADDIE teaching concept was finalised. The teaching plan will be carried out in 5 steps, as shown in Table  1 .

Step 4: implementation of flipped classroom teaching method based on ADDIE teaching philosophy

Project analysis.

The final teaching task of this training mainly includes two aspects: (1) To complete all the teaching objectives set above; (2) To improve the residents’ comprehensive clinical ability in the process. Before the start of the training through the questionnaire form of the resident’s knowledge base of neurological specialities for the initial assessment, which helps to understand the current learning situation of the students, in order to facilitate the tailored teaching. At the same time, the main teaching tasks and teaching objectives were combined to analyse the specific form and content of the project, so as to develop a more practical and targeted programme.

Project design

The specific content of the project mainly includes: (1) Admission assessment: after admission to the department, all residents will conduct a unified admission mission and popularise the basic knowledge of neurology; (2) Flipped classroom teaching method: before the class, the leading teacher will analyse and sort out the common neurology diseases and their diagnosis and treatment processes according to the disease types based on the requirements of the syllabus, make a good teaching plan, and study a disease type at a time. Teachers will send teaching resources including PPT, video, cases, literature, etc. to the social platform. At the same time, they put forward the content and requirements to be mastered, and put forward 3–5 questions for students to think about in accordance with the focus of the teaching. Students can arrange their own study time, group themselves and have group discussions to try to solve the problems, and they can also ask questions to the teaching staff through the social platform at any time. Students can choose to go to the library or check the relevant literature on the Internet to expand their knowledge. In this session, knowledge transfer is completed; (3) Bedside practice teaching: the teacher communicates with the patient in advance, so that the students can conduct bedside questioning of medical history, physical examination, auxiliary examination and analysis. The diagnosis and diagnostic basis are proposed, and the teacher observes and assists the whole process.

Project development

After the teacher has finished the theoretical learning and practical teaching, he/she will ask targeted questions, pointing out what the students have done well and what needs to be improved in the process of questioning and treating the patients. At the same time, specific learning tasks are assigned for different students. Students are encouraged to report to the teacher about the patient’s condition and treatment plan, and propose their own treatment ideas. They are also allowed to ask the teacher any questions or problems that they cannot solve during the consultation. This teaching method is of great significance for students to master the theoretical knowledge of diseases and cultivate their clinical thinking.

Project implementation

Through the teaching team’s development of a specific and detailed teaching programme, methods such as entrance examination, flipped classroom teaching method, bedside practical teaching, and special case discussion were adopted. When encountering problems, students take the initiative to consult the literature and information or solve the problems independently through group discussion. If the problem cannot be solved, the students will seek help from the teachers, in order to practice students’ independent learning, teamwork and clinical diagnosis and treatment thinking ability.

Programme assessment

Students are assessed on their theoretical and professional skills knowledge at the end of the programme training. Students’ independent learning ability, critical thinking ability, clinical practice ability are assessed using relevant assessment methods, and finally the overall teaching quality is assessed, after which the teacher comments and summarises the results of the assessment.

Observation indicators

Theory and skill knowledge assessment.

This assessment includes two parts: theory and skill operation. The theoretical assessment mainly consists of the basic knowledge of neurology and the diagnosis and treatment process and medication of common neurology diseases. Skill operation involves lumbar puncture, thoracentesis, abdominal puncture, cardiopulmonary resuscitation, and other necessary items. The theory and skill operation parts were each worth 50 points, totalling 100 points. Unified assessment and grading will be conducted by the teachers.

Self-directed learning ability assessment scale

After the fourth week of training, the self-learning ability assessment form [ 17 ] was used to assess residents’ self-learning ability. The main contents include self motivation belief and objective behavior. Self motivation belief also includes self motivation (5 items) and learning belief (3 items). Objective behavior mainly includes four aspects: making learning goals and plans (4 items), self-monitoring and adjustment (7 items), obtaining and processing information (4 items) and communication and cooperation ability (7 items). The Likert scale [ 18 ] is used for a 5-level response system, which includes 5 levels of “completely non compliant”, “basically non compliant”, “average”, “basically compliant”, and “completely compliant”. The corresponding scores are 1 point, 2 point, 3 point, 4 point, and 5 point, with a total score of 150 points. The level of the score is positively correlated with the strength of autonomous learning ability. The Cronbach’s alpha coefficient was 0.929, the split half reliability was 0.892, and the content validity index was 0.970, indicating that the scale has good internal consistency, reliability and validity.

Critical thinking skills assessment scale

The Critical Thinking Skills Assessment Scale [ 19 ], which consists of seven dimensions, namely, truth-seeking, open-mindedness, analytical ability, and systematisation, with 10 items for each dimension, was used for the assessment at the end of the fourth week of training. A 6-point scale was used, ranging from “Strongly Disagree” to “Strongly Agree”, with scores ranging from 1 to 6, and the opposite for negative responses. The total score of the scale is 70–420, where ≤ 210 indicates negative performance, 211–279 indicates neutral performance, 280–349 indicates positive performance, and ≥ 350 indicates strong critical thinking skills. The Cronbach’s alpha coefficient was 0.90, the content validity index was 0.89, and the reliability was 0.90, indicating that the internal consistency, reliability and validity were good.

Clinical practice competence assessment

Clinical practice competence was assessed at the end of the fourth week of training using the mini-CEX scale [ 20 ], which included the following seven aspects: medical interview, physical examination, humanistic care, clinical diagnosis, communication skills, organisational effectiveness, and overall performance. Each aspect is rated from 1 to 9: 1 to 3 as “unqualified”; 4 to 6 as “qualified”; and 7 to 9 as “excellent”. The Cronbach’s alpha coefficient of the scale was 0.780, and the split-half reliability coefficient was 0.842, indicating that the internal consistency and reliability of the scale were relatively high.

Teaching quality assessment

Teaching quality assessment was conducted at the end of the fourth week of assessment, using the teaching quality assessment scale [ 21 ]. The specific content includes five aspects: teaching attitude, teaching method, teaching content, teaching characteristics, and teaching effect. The Likert 5-point scale was used, and the rating was positively correlated with the quality of teaching. The Cronbach’s alpha coefficient was 0.85 and the reliability was 0.83, which showed good reliability and validity.

Data analysis

SPSS 23.0 statistical software was used to analyse the data. Measurement information was expressed as mean ± standard deviation ( \( \bar x \pm \,S \) ), and t-test was used for comparison between groups. Comparison of the unordered data between the two groups was performed using the χ2 test, or Fisher’s exact method. p -value < 0.05 was considered a statistically significant difference.

The scores and statistical analysis results of theory, skill assessment, self-learning ability assessment, critical thinking ability assessment of the two groups of students were shown in Table  2 . The results of mini CEX assessment and statistical analysis were shown in Table  3 . The results of teaching quality assessment and statistical analysis were shown in Table  4 .

The standardised training of residents is an important medical personnel training system in China. It is a key link in the training of high-quality residents, which requires clinicians to have not only solid clinical expertise, but also noble medical character to better serve patients in outpatient and inpatient medical work. In recent years, due to the continuous development of China’s economic level, people’s demand for health is also increasing. Neurological system diseases are diverse, and certain diseases such as acute cerebrovascular disease, epilepsy, central nervous system infections, acute disseminated encephalomyelitis, Guillain-Barré, etc., have an acute onset and a rapid change in condition, which requires neurology residents to accurately identify and manage certain neurological emergencies and serious illnesses at an early stage. It puts forward higher requirements on the basic quality of neurology residents and brings more challenges to the clinical teaching of standardised neurology residency training. Therefore, the traditional teaching methods can no longer meet the current teaching requirements put forward under the new situation and new policies. Only by continuously improving and innovating the clinical teaching methods and improving the quality of teaching can the professional quality construction and training quality of residents be improved [ 22 ].

This study found that through four weeks’ teaching assessment, the theoretical and clinical skills assessment scores of the observation group were significantly higher than those of the control group, and the results were statistically significant ( P  < 0.001). Meanwhile, the scores of autonomous learning ability and critical thinking ability of the observation group were also better than those of the control group, with statistically significant differences ( P  < 0.001). In terms of Mini-Cex assessment, the observation group had better scores than the control group both in medical interview and physical examination ( P  < 0.01) and in humanistic care, clinical diagnosis, communication skills, organisational effectiveness, and overall performance ( P  < 0.05). In addition, the observation group also had higher scores compared to the control group regarding the quality of teaching in this study ( P  < 0.001). Previous studies have shown that the ADDIE concept can be applied to the design of clinical ethics education programmes and can be an effective tool for healthcare education, providing an established structure for the development of educational programmes [ 23 ]. Saeidnia [ 24 ] et al. used the ADDIE model to develop and design an educational application for COVID-19 self-prevention, self-care educational application to help people learn self-care skills at home during isolation, which can be used as an effective tool against COVID-19 to some extent. For the sake of reducing postoperative complications of breast cancer, Aydin [ 25 ] and others designed and developed a mobile application to support self-care of patients after breast cancer surgery with the support of the ADDIE model concept, which can provide professional medical guidance and advice for postoperative patients and is widely used in both education and clinical settings. Therefore, the ADDIE model concept has not only achieved better outcomes in the design of medical education, but also played a positive role in all aspects of disease prevention guidance and postoperative care.

As a flexible, targeted and effective new teaching method, flipped classroom method has been studied by many scholars in the field of basic medicine and clinical education. Pual [ 26 ] et al. found that the flipped classroom method was more effective for teaching clinical skills by comparing the two methods of course implementation, flipped teaching and online teaching. Du [ 27 ] and others found that a fully online flipped classroom approach increased classroom participation and adequate student-faculty interaction in distance education, and improved overall medical student exam pass rates during the COVID-19 pandemic, with better teaching and learning outcomes. Sierra [ 28 ] and others found that the flipped classroom method achieved better teaching and learning outcomes in a cardiology residency training programme, with higher acceptance among participants and teachers, and improved physicians’ assessment scores compared to traditional and virtual model teaching methods. Meanwhile, the Mini-CEX method was used in this study to assess the overall clinical competence of residents. This method, as a formative assessment, can not only provide a more accurate and comprehensive assessment of physicians’ comprehensive clinical competence, but also effectively promote physicians’ learning and growth [ 29 – 30 ]. Objective structured clinical examination(OSCE), as a method of evaluating students’ clinical comprehensive ability, understanding and application by simulating clinical scenarios, is widely used in the pre internship training of Undergraduates’ professional clinical practice skills [ 31 ]. Compared with OSCE, Mini-CEX is not limited by site and time, and it is time-consuming, simple and comprehensive. It can more systematically and comprehensively evaluate students’ clinical comprehensive ability [ 32 – 33 ]. Therefore, Mini-CEX is selected as the main clinical evaluation method in this study. Khalafi [ 34 ] et al. found that the use of Mini-CEX as a formative assessment method had a significant impact on the improvement of clinical skills of nursing anaesthesia students. Shafqat [ 35 ] et al. assessed the validity and feasibility of Mini-CEX by adopting it as a direct observation to assess its effectiveness and feasibility in an undergraduate medical curriculum. The study found that the altered method was effective in measuring student competence, improving clinical and diagnostic skills of medical students, and enhancing teacher-student interaction.

This study found that using ADDIE concept combined with flipped classroom teaching method, residents’ autonomous learning ability, critical thinking ability, theoretical knowledge and clinical comprehensive ability were improved. Analyze the potential causes: ADDIE, as a comprehensive medical teaching design concept, mainly includes five dimensions: analysis, design, development, implementation and evaluation. First, it systematically analyzes the specific clinical teaching needs and combines them with the current actual situation of students. On this basis, it flexibly sets the teaching plan, especially with the flipped classroom method, and pays attention to student-centered, This is quite different from the teacher centered concept in traditional teaching methods. This method encourages students to use their spare time to study independently through the text and video materials distributed by the teacher platform to meet the personalized needs of each student. At the same time, students actively explore the problems raised and encountered by teachers, which not only stimulate students’ interest in learning, but also greatly improve students’ autonomous learning and independent thinking ability. Furthermore, students’ collaborative discussion of problems and teachers’ in-depth explanation promoted the formation of students’ critical thinking, improved students’ learning effect and classroom efficiency, and improved students’ clinical comprehensive ability.

Limitations and recommendations

Although this study achieved some clinical teaching value, we still have many shortcomings. First, the limited number of residency trainers resulted in an insufficient sample size for this study, which may have an impact on the results. Second, due to the limitations of the residency training syllabus and policy, the training in this study was conducted for only one month, in fact, the training of speciality knowledge and talent development often need more sufficient time. Third, the study only used the Mini-CEX to assess the residents’ comprehensive clinical competence, and the scale selection in this area is relatively homogeneous, which may have an impact on the real assessment results. Therefore, in the future, we will expand the sample size, giving more reasonable and sufficient time for teaching training and knowledge digestion and assimilation, by using multiple scales to conduct in-depth assessment in various aspects, with a view to obtaining more reliable and persuasive results, which will provide reference for the teaching of specialised clinical medicine.

Based on the ADDIE concept combined with flipped classroom teaching method, this study conducted research in the residency training and found that compared with the traditional teaching method, the new teaching concept combined with flipped classroom teaching method can effectively improve the autonomous learning ability, critical thinking ability, theoretical knowledge and clinical comprehensive ability of neurology residents, and had better teaching quality. In clinical medical education, we should actively conform to modern teaching ideas. On the basis of traditional teaching, we should actively integrate new ideas and methods, give full play to the advantages of different teaching methods, so as to continuously improve the teaching efficiency and quality.

Data availability

The datasets used and/or analysed in this study are available from the corresponding author upon reasonable request.

Hongxing L, Yan S, Lianshuang Z, et al. The practice of professional degree postgraduate education of clinical medicine under the background of the reform of the medical education Cooperatio. Contin Med Educ. 2018;32(12):16–8.

Google Scholar  

Shilin F, Chang G, Guanlin L, et al. The investigation of the training model in four-in-one professional Master’s degree of medicine. China Contin Med Educ. 2018;10(35):34–7.

Man Z, Dayu S, Lulu Z, et al. Study on the evaluation indeses system of clinical instructors by clinical professional postgraduates under the dualtrack system mode. Med Educ Res Prac. 2018;26(6):957–61.

Boling E, Easterling WV, Hardré PL, Howard CD, Roman TA. ADDIE: perspectives in transition. Educational Technology. 2011;51(5):34–8.

Hsu T, Lee-Hsieh J, Turton MA, Cheng S. Using the ADDIE model to develop online continuing education courses on caring for nurses in Taiwan. J Contin Educ Nurs. 2014;45(3):124–131. https://doi.org/10.3928/00220124-20140219-04

Woo WH. Using Gagne’s instructional model in phlebotomy education. Adv Med Educ Pract. 2016;7:511–6. https://doi.org/10.2147/AMEP.S1103 . Published 2016 Aug 31.

Article   Google Scholar  

Tobase L, Peres HHC, Almeida DM, Tomazini EAS, Ramos MB, Polastri TF. Instructional design in the development of an online course on basic life support. Rev Esc Enferm USP. 2018;51:e03288. Published 2018 Mar 26. https://doi.org/10.1590/S1980-220X2016043303288

MS, Lo CB, Scherzer DJ, et al. The COVID-19 elective for pediatric residents: learning about systems-based practice during a pandemic. Cureus. 2021;13(2):e13085. https://doi.org/10.7759/cureus.13085 . Published 2021 Feb 2.

Pierce R, Fox J. Vodcasts and active-learning exercises in a flipped classroom model of a renal pharmacotherapy module. Am J Pharm Educ. 2012;76(10):196.

Bergmann J, Sams A. Remixing chemistry class. Learn Lead Technol. 2008;36(4):24–7.

Mehta NB, Hull AL, Young JB, Stoller JK. Just imagine: new paradigms for medical education. Acad Med. 2013;88(10):1418–23.

Ramnanan CJ, Pound LD. Advances in medical education and practice: student perceptions of the flipped classroom. Adv Med Educ Pract. 2017;8:63–73.

Norcini JJ, Blank LL, Duffy FD, Fortna GS. The mini-CEX: a method for assessing clinical skills. Ann Intern Med. 2003;138:476–81. https://doi.org/10.7326/0003-4819-138-6-200303180-00012

Zhang J, Xie DJ, Bao YC et al. The application of goal setting theory combined with PBL teaching mode in clinical teaching of neurology [J]. J Clin Chin Med. 2017;29(06):946–8. https://doi.org/10.16448/j.cjtcm.2017.0316 (Chinese).

Zhang J, Xie DJ, Huang XF, et al. The application of PAD combined with CBL teaching method in neurology teaching [J]. Chin Med Records. 2023;24(06):98–101..(Chinese).

Liu CX, Ouyang WW, Wang XW, Chen D, Jiang ZL. Comparing hybrid problem-based and lecture learning (PBL + LBL) with LBL pedagogy on clinical curriculum learning for medical students in China: a meta-analysis of randomized controlled trials. Med (Baltim). 2020;99(16):e19687. https://doi.org/10.1097/MD.0000000000019687

Wang Xiaodan T, Gangqin W, Suzhen, et al. Construction of the self-study ability assessment scale for medical students [J]. Chin J Health Psychol. 2014;22(7):1034–7. (Chinese).

Fang Bao. Analysis of the influencing factors on the effectiveness of the likert rating scale survey results [J]. J Shiyan Vocat Tech Coll. 2009;22(2):25–8..(Chinese).

Meici P, Guocheng W, Jile C, et al. Research on the reliability and validity of the critical thinking ability measurement scale [J]. Chin J Nurs. 2004;39(9):7–10.

YUSUF L, AHMED A, YASMIN R. Educational impact of mini-clinical evaluation exercise: a game changer[J]. Pak J Med Sci. 2018;34(2):405–11.

Zhou Tong X, Ling W, Dongmei et al. The application of the teaching model based on CDIO concept in the practice teaching of cardiovascular nursing. Chin Gen Med. 2022;(09):1569–72.

Li Q, Shuguang L. Analysis and reflection on the standardized training of 24 hour responsible physicians [J]. China Health Manage. 2016;33(5):374–6. (Chinese).

Kim S, Choi S, Seo M, Kim DR, Lee K. Designing a clinical ethics education program for nurses based on the ADDIE model. Res Theory Nurs Pract. 2020;34(3):205–222. https://doi.org/10.1891/RTNP-D-19-00135

Saeidnia HR, Kozak M, Ausloos M, et al. Development of a mobile app for self-care against COVID-19 using the analysis, design, development, implementation, and evaluation (ADDIE) model: methodological study. JMIR Form Res. 2022;6(9):e39718. Published 2022 Sep 13. https://doi.org/10.1891/RTNP-D-19-0013510.2196/39718

Aydin A, Gürsoy A, Karal H. Mobile care app development process: using the ADDIE model to manage symptoms after breast cancer surgery (step 1). Discov Oncol. 2023;14(1):63. https://doi.org/10.1007/s12672-023-00676-5 . Published 2023 May 9.

Paul A, Leung D, Salas RME, et al. Comparative effectiveness study of flipped classroom versus online-only instruction of clinical reasoning for medical students. Med Educ Online. 2023;28(1):2142358. https://doi.org/10.1080/10872981.2022.2142358

Du J, Chen X, Wang T, Zhao J, Li K. The effectiveness of the fully online flipped classroom for nursing undergraduates during the COVID-19: historical control study. Nurs Open. 2023;10(8):5766–5776. https://doi.org/10.1002/nop2.1757

Sierra-Fernández CR, Alejandra HD, Trevethan-Cravioto SA, Azar-Manzur FJ, Mauricio LM, Garnica-Geronimo LR. Flipped learning as an educational model in a cardiology residency program. BMC Med Educ. 2023;23(1):510. Published 2023 Jul 17. https://doi.org/10.1186/s12909-023-04439-2

Jamenis SC, Pharande S, Potnis S, Kapoor P. Use of mini clinical evaluation exercise as a tool to assess the orthodontic postgraduate students. J Indian Orthod Soc. 2020;54(1):39–43.

Devaprasad PS. Introduction of mini clinical evaluation exercise as an assessment tool for M.B.B.S. Interns in the Department of Orthopaedics. Indian J Orthop. 2023;57(5):714–717. Published 2023 Apr 9. https://doi.org/10.1007/s43465-023-00866-x

Hatala R, Marr S, Cuncic C, et al. Modifcation of an OSCE format to enhance patient continuity in a high-stakes assessment of clinical performance. BMC Med Educ. 2011;11:23.

Niu L, Mei Y, Xu X et al. A novel strategy combining Mini-CEX and OSCE to assess standardized training of professional postgraduates in department of prosthodontics. BMC Med Educ. 2022;22(1):888. Published 2022 Dec 22. https://doi.org/10.1186/s12909-022-03956-w

örwald AC, Lahner FM, Mooser B, et al. Influences on the implementation of Mini-CEX and DOPS for postgraduate medical trainees’ learning: a grounded theory study. Med Teach. 2019;41(4):448–56. https://doi.org/10.1080/0142159X.2018.1497784

Khalafi A, Sharbatdar Y, Khajeali N, Haghighizadeh MH, Vaziri M. Improvement of the clinical skills of nurse anesthesia students using mini-clinical evaluation exercises in Iran: a randomized controlled study. J Educ Eval Health Prof. 2023;20(12). https://doi.org/10.3352/jeehp.2023.20.12

Shafqat S, Tejani I, Ali M, Tariq H, Sabzwari S. Feasibility and effectiveness of mini-clinical evaluation exercise (Mini-CEX) in an undergraduate medical program: a study from Pakistan. Cureus. 2022;14(9):e29563. Published 2022 Sep 25. https://doi.org/10.7759/cureus.29563

Download references

Acknowledgements

The authors would like to thank all the faculty members of the Department of Neurology of the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine for their support of the clinical teaching programme for standardized residency training.

This study was funded by the National Natural Foundation of China under the National Science Foundation of China (Grant No. 82274493) and Scientific Research Project of Higher Education Institutions in Anhui Province (Grant No. 2023AH050791).

Author information

Authors and affiliations.

Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, China

Juan Zhang, Xiaofeng Huang & Daojun Xie

The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, China

Hong Chen & Xie Wang

You can also search for this author in PubMed   Google Scholar

Contributions

JZ wrote the manuscript. JZ and HC collected the data. HC, XW, XH obtained and analysed the data. DX revised the manuscript for intellectual content. JZ confirmed the authenticity of all original data. All authors had read and approved the final manuscript.

Corresponding author

Correspondence to Juan Zhang .

Ethics declarations

Ethical approval and consent to participate.

All procedures performed in the study involving human participants were in accordance with institutional and/or national research council ethical standards and in accordance with the 1964 Declaration of Helsinki and its subsequent amendments or similar ethical standards. All participants signed an informed consent form. All experimental protocols were approved by the Ethics Committee of the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Zhang, J., Chen, H., Wang, X. et al. Application of flipped classroom teaching method based on ADDIE concept in clinical teaching for neurology residents. BMC Med Educ 24 , 366 (2024). https://doi.org/10.1186/s12909-024-05343-z

Download citation

Received : 26 September 2023

Accepted : 23 March 2024

Published : 03 April 2024

DOI : https://doi.org/10.1186/s12909-024-05343-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • ADDIE teaching model
  • Flipped classroom
  • Standardized training for residents

BMC Medical Education

ISSN: 1472-6920

theory of critical thinking

IMAGES

  1. Critical Thinking

    theory of critical thinking

  2. Critical Thinking Skills

    theory of critical thinking

  3. Critical Thinking Definition, Skills, and Examples

    theory of critical thinking

  4. How to promote Critical Thinking Skills

    theory of critical thinking

  5. 6 Main Types of Critical Thinking Skills (With Examples)

    theory of critical thinking

  6. Critical Thinking: From Theory to Teaching

    theory of critical thinking

VIDEO

  1. Critical Thinking: an introduction (1/8)

  2. Exercise 20 (Syllogisms)

  3. Exercise 32 (Syllogisms)

  4. Exercise 54 (Syllogisms)

  5. Exercise 36 (Syllogisms)

  6. Exercise 80 (Syllogisms)

COMMENTS

  1. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  2. Critical thinking

    Critical thinking, in educational theory, mode of cognition using deliberative reasoning and impartial scrutiny of information to arrive at a possible solution to a problem. From the perspective of educators, critical thinking encompasses both a set of logical skills that can be taught and a.

  3. Critical Thinking

    Critical Theory refers to a way of doing philosophy that involves a moral critique of culture. A "critical" theory, in this sense, is a theory that attempts to disprove or discredit a widely held or influential idea or way of thinking in society. Thus, critical race theorists and critical gender theorists offer critiques of traditional ...

  4. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  5. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  6. Critical Thinking

    Diane F. Halpern defined critical thinking as an attempt to increase the probability of a desired outcome (e.g., making a sound decision, successfully solving a problem) by using certain cognitive skills and strategies. Critical thinking is more than just a collection of skills and strategies: it is a disposition toward engaging with problems.

  7. Revisiting the origin of critical thinking

    Abstract. There are two popular views regarding the origin of critical thinking: (1) The concept of critical thinking began with Socrates and his Socratic method of questioning. (2) The term 'critical thinking' was first introduced by John Dewey in 1910 in his book How We Think. This paper argues that both claims are incorrect.

  8. Introduction to Critical Thinking

    Critical thinking is very important in the new knowledge economy. ... Theory. If we want to think correctly, we need to follow the correct rules of reasoning. Knowledge of theory includes knowledge of these rules. These are the basic principles of critical thinking, such as the laws of logic, and the methods of scientific reasoning, etc. ...

  9. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  10. PDF CRITICAL THINKING: CONCEPTUAL FRAMEWORK

    Critical thinking was associated with encouraging a suspicious attitude along with developing individual reflective skills, such as logical reasoning and personal judgement. At the same time, there was an argue on whether critical thinking was the general ability that could be taught as a separate subject or whether it needed to be

  11. A Brief History of the Idea of Critical Thinking

    The intellectual roots of critical thinking are as ancient as its etymology, traceable, ultimately, to the teaching practice and vision of Socrates 2,500 years ago who discovered by a method of probing questioning that people could not rationally justify their confident claims to knowledge. Confused meanings, inadequate evidence, or self ...

  12. Critical Thinking Steps, Stages & Examples

    Critical thinking theory reflects the process of objectivity or considering information outside of bias and personal beliefs. There are stages of critical thinking that reflect the level at which ...

  13. PDF Critical Thinking and Critical Literacy: Mutually Exclusive?

    Critical thinking is widely recognised as a core skill to both univer-sity learning (Vardi, 2013) and work place readiness (Fullan & Scott, 2014). Moreover, critical thinking is integral to lifelong learning and intellectual development: arguably the goal of most tertiary insti-tutions in general. However, research has shown that many univer ...

  14. How to think effectively: Six stages of critical thinking

    Key Takeaways. Researchers propose six levels of critical thinkers: Unreflective thinkers, Challenged thinkers, Beginning thinkers, Practicing thinkers, Advanced thinkers, and Master thinkers. The ...

  15. Paul-Elder Critical Thinking Framework

    Critical thinking is that mode of thinking - about any subject, content, or problem — in which the thinker improves the quality of his or her thinking by skillfully taking charge of the structures inherent in thinking and imposing intellectual standards upon them. (Paul and Elder, 2001). The Paul-Elder framework has three components:

  16. Critical Thinking Development: A Stage Theory

    In this paper we shall set out a stage theory based on the nearly twenty years of research of the Center for Critical Thinking and explain some of the theory's implications for instruction. We shall be brief, concise, and to the point in our explanation with minimal theoretical elaboration. Furthermore, we believe that the "practicality ...

  17. PDF Leading Critically: A Grounded Theory of Applied Critical Thinking in

    A Look at Critical Thinking Critical thinking has many definitions (i.e., Ennis, 1962; 1987; 1991). Ennis (1993) suggests the following definition is more in accord with contemporary usage: "Critical thinking is reasonable reflective thinking focused on deciding what to believe or do" (p. l80). Inasmuch as Ennis proposed this definition, he did

  18. Critical Thinking

    Critical thinking is the process of thinking about ideas or situations in order to understand them fully, identify their implications, make a judgement, and/or guide decision making. Critical thinking includes skills such as questioning, predicting, analysing, synthesizing, examining opinions, identifying values and issues, detecting bias, and ...

  19. Critical Reflection: John Dewey's Relational View of Transformative

    Recent works have suggested that we may gain new insights about the conditions for critical reflection by re-examining some of the theories that helped inspire the field's founding (e.g. Fleming, 2018; Fleming et al., 2019; Raikou & Karalis, 2020).Along those lines, this article re-examines parts of the work of John Dewey, a theorist widely recognized to have influenced Mezirow's thinking.

  20. Critical Theory (Frankfurt School)

    4. Critical Theories Today. Marx defined critical theory as the "self-clarification of the struggles and wishes of the age" (Marx 1843). The vitality of this approach to critical theory depends on continually taking up this task in new social contexts, as the first generation of the Frankfurt School did.

  21. The Theory of Critical Thinking: Question, Analyze, Reflect, Debate

    Start developing better critical thinking skills today by reading How to Think Critically! This is the sixth book in the "The Critical Thinker" series as listed below: Elements of Critical Thinking: A Fundamental Guide to Effective Decision Making, Deep Analysis, Intelligent Reasoning, and Independent Thinking

  22. Critical Thinking

    Critical Thinking. First published Sat Jul 21, 2018. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the ...

  23. Application of flipped classroom teaching method based on ADDIE concept

    Critical thinking skills assessment scale. The Critical Thinking Skills Assessment Scale , which consists of seven dimensions, namely, truth-seeking, open-mindedness, analytical ability, and systematisation, with 10 items for each dimension, was used for the assessment at the end of the fourth week of training. A 6-point scale was used, ranging ...