Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case-Control Study? | Definition & Examples

What Is a Case-Control Study? | Definition & Examples

Published on February 4, 2023 by Tegan George . Revised on June 22, 2023.

A case-control study is an experimental design that compares a group of participants possessing a condition of interest to a very similar group lacking that condition. Here, the participants possessing the attribute of study, such as a disease, are called the “case,” and those without it are the “control.”

It’s important to remember that the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

Table of contents

When to use a case-control study, examples of case-control studies, advantages and disadvantages of case-control studies, other interesting articles, frequently asked questions.

Case-control studies are a type of observational study often used in fields like medical research, environmental health, or epidemiology. While most observational studies are qualitative in nature, case-control studies can also be quantitative , and they often are in healthcare settings. Case-control studies can be used for both exploratory and explanatory research , and they are a good choice for studying research topics like disease exposure and health outcomes.

A case-control study may be a good fit for your research if it meets the following criteria.

  • Data on exposure (e.g., to a chemical or a pesticide) are difficult to obtain or expensive.
  • The disease associated with the exposure you’re studying has a long incubation period or is rare or under-studied (e.g., AIDS in the early 1980s).
  • The population you are studying is difficult to contact for follow-up questions (e.g., asylum seekers).

Retrospective cohort studies use existing secondary research data, such as medical records or databases, to identify a group of people with a common exposure or risk factor and to observe their outcomes over time. Case-control studies conduct primary research , comparing a group of participants possessing a condition of interest to a very similar group lacking that condition in real time.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Case-control studies are common in fields like epidemiology, healthcare, and psychology.

You would then collect data on your participants’ exposure to contaminated drinking water, focusing on variables such as the source of said water and the duration of exposure, for both groups. You could then compare the two to determine if there is a relationship between drinking water contamination and the risk of developing a gastrointestinal illness. Example: Healthcare case-control study You are interested in the relationship between the dietary intake of a particular vitamin (e.g., vitamin D) and the risk of developing osteoporosis later in life. Here, the case group would be individuals who have been diagnosed with osteoporosis, while the control group would be individuals without osteoporosis.

You would then collect information on dietary intake of vitamin D for both the cases and controls and compare the two groups to determine if there is a relationship between vitamin D intake and the risk of developing osteoporosis. Example: Psychology case-control study You are studying the relationship between early-childhood stress and the likelihood of later developing post-traumatic stress disorder (PTSD). Here, the case group would be individuals who have been diagnosed with PTSD, while the control group would be individuals without PTSD.

Case-control studies are a solid research method choice, but they come with distinct advantages and disadvantages.

Advantages of case-control studies

  • Case-control studies are a great choice if you have any ethical considerations about your participants that could preclude you from using a traditional experimental design .
  • Case-control studies are time efficient and fairly inexpensive to conduct because they require fewer subjects than other research methods .
  • If there were multiple exposures leading to a single outcome, case-control studies can incorporate that. As such, they truly shine when used to study rare outcomes or outbreaks of a particular disease .

Disadvantages of case-control studies

  • Case-control studies, similarly to observational studies, run a high risk of research biases . They are particularly susceptible to observer bias , recall bias , and interviewer bias.
  • In the case of very rare exposures of the outcome studied, attempting to conduct a case-control study can be very time consuming and inefficient .
  • Case-control studies in general have low internal validity  and are not always credible.

Case-control studies by design focus on one singular outcome. This makes them very rigid and not generalizable , as no extrapolation can be made about other outcomes like risk recurrence or future exposure threat. This leads to less satisfying results than other methodological choices.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

A case-control study differs from a cohort study because cohort studies are more longitudinal in nature and do not necessarily require a control group .

While one may be added if the investigator so chooses, members of the cohort are primarily selected because of a shared characteristic among them. In particular, retrospective cohort studies are designed to follow a group of people with a common exposure or risk factor over time and observe their outcomes.

Case-control studies, in contrast, require both a case group and a control group, as suggested by their name, and usually are used to identify risk factors for a disease by comparing cases and controls.

A case-control study differs from a cross-sectional study because case-control studies are naturally retrospective in nature, looking backward in time to identify exposures that may have occurred before the development of the disease.

On the other hand, cross-sectional studies collect data on a population at a single point in time. The goal here is to describe the characteristics of the population, such as their age, gender identity, or health status, and understand the distribution and relationships of these characteristics.

Cases and controls are selected for a case-control study based on their inherent characteristics. Participants already possessing the condition of interest form the “case,” while those without form the “control.”

Keep in mind that by definition the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

The strength of the association between an exposure and a disease in a case-control study can be measured using a few different statistical measures , such as odds ratios (ORs) and relative risk (RR).

No, case-control studies cannot establish causality as a standalone measure.

As observational studies , they can suggest associations between an exposure and a disease, but they cannot prove without a doubt that the exposure causes the disease. In particular, issues arising from timing, research biases like recall bias , and the selection of variables lead to low internal validity and the inability to determine causality.

Sources in this article

We strongly encourage students to use sources in their work. You can cite our article (APA Style) or take a deep dive into the articles below.

George, T. (2023, June 22). What Is a Case-Control Study? | Definition & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/methodology/case-control-study/
Schlesselman, J. J. (1982). Case-Control Studies: Design, Conduct, Analysis (Monographs in Epidemiology and Biostatistics, 2) (Illustrated). Oxford University Press.

Is this article helpful?

Tegan George

Tegan George

Other students also liked, what is an observational study | guide & examples, control groups and treatment groups | uses & examples, cross-sectional study | definition, uses & examples, what is your plagiarism score.

Study Design 101: Case Control Study

  • Case Report
  • Case Control Study
  • Cohort Study
  • Randomized Controlled Trial
  • Practice Guideline
  • Systematic Review
  • Meta-Analysis
  • Helpful Formulas
  • Finding Specific Study Types

A study that compares patients who have a disease or outcome of interest (cases) with patients who do not have the disease or outcome (controls), and looks back retrospectively to compare how frequently the exposure to a risk factor is present in each group to determine the relationship between the risk factor and the disease.

Case control studies are observational because no intervention is attempted and no attempt is made to alter the course of the disease. The goal is to retrospectively determine the exposure to the risk factor of interest from each of the two groups of individuals: cases and controls. These studies are designed to estimate odds.

Case control studies are also known as "retrospective studies" and "case-referent studies."

  • Good for studying rare conditions or diseases
  • Less time needed to conduct the study because the condition or disease has already occurred
  • Lets you simultaneously look at multiple risk factors
  • Useful as initial studies to establish an association
  • Can answer questions that could not be answered through other study designs

Disadvantages

  • Retrospective studies have more problems with data quality because they rely on memory and people with a condition will be more motivated to recall risk factors (also called recall bias).
  • Not good for evaluating diagnostic tests because it's already clear that the cases have the condition and the controls do not
  • It can be difficult to find a suitable control group

Design pitfalls to look out for

Care should be taken to avoid confounding, which arises when an exposure and an outcome are both strongly associated with a third variable. Controls should be subjects who might have been cases in the study but are selected independent of the exposure. Cases and controls should also not be "over-matched."

Is the control group appropriate for the population? Does the study use matching or pairing appropriately to avoid the effects of a confounding variable? Does it use appropriate inclusion and exclusion criteria?

Fictitious Example

There is a suspicion that zinc oxide, the white non-absorbent sunscreen traditionally worn by lifeguards is more effective at preventing sunburns that lead to skin cancer than absorbent sunscreen lotions. A case-control study was conducted to investigate if exposure to zinc oxide is a more effective skin cancer prevention measure. The study involved comparing a group of former lifeguards that had developed cancer on their cheeks and noses (cases) to a group of lifeguards without this type of cancer (controls) and assess their prior exposure to zinc oxide or absorbent sunscreen lotions.

This study would be retrospective in that the former lifeguards would be asked to recall which type of sunscreen they used on their face and approximately how often. This could be either a matched or unmatched study, but efforts would need to be made to ensure that the former lifeguards are of the same average age, and lifeguarded for a similar number of seasons and amount of time per season.

Real-life Examples

Boubekri, M., Cheung, I., Reid, K., Wang, C., & Zee, P. (2014). Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine, 10 (6), 603-611. https://doi.org/10.5664/jcsm.3780

This pilot study explored the impact of exposure to daylight on the health of office workers (measuring well-being and sleep quality subjectively, and light exposure, activity level and sleep-wake patterns via actigraphy). Individuals with windows in their workplaces had more light exposure, longer sleep duration, and more physical activity. They also reported a better scores in the areas of vitality and role limitations due to physical problems, better sleep quality and less sleep disturbances.

Togha, M., Razeghi Jahromi, S., Ghorbani, Z., Martami, F., & Seifishahpar, M. (2018). Serum Vitamin D Status in a Group of Migraine Patients Compared With Healthy Controls: A Case-Control Study. Headache, 58 (10), 1530-1540. https://doi.org/10.1111/head.13423

This case-control study compared serum vitamin D levels in individuals who experience migraine headaches with their matched controls. Studied over a period of thirty days, individuals with higher levels of serum Vitamin D was associated with lower odds of migraine headache.

Related Formulas

  • Odds ratio in an unmatched study
  • Odds ratio in a matched study

Related Terms

A patient with the disease or outcome of interest.

Confounding

When an exposure and an outcome are both strongly associated with a third variable.

A patient who does not have the disease or outcome.

Matched Design

Each case is matched individually with a control according to certain characteristics such as age and gender. It is important to remember that the concordant pairs (pairs in which the case and control are either both exposed or both not exposed) tell us nothing about the risk of exposure separately for cases or controls.

Observed Assignment

The method of assignment of individuals to study and control groups in observational studies when the investigator does not intervene to perform the assignment.

Unmatched Design

The controls are a sample from a suitable non-affected population.

Now test yourself!

1. Case Control Studies are prospective in that they follow the cases and controls over time and observe what occurs.

a) True b) False

2. Which of the following is an advantage of Case Control Studies?

a) They can simultaneously look at multiple risk factors. b) They are useful to initially establish an association between a risk factor and a disease or outcome. c) They take less time to complete because the condition or disease has already occurred. d) b and c only e) a, b, and c

Evidence Pyramid - Navigation

  • Meta- Analysis
  • Case Reports
  • << Previous: Case Report
  • Next: Cohort Study >>

Creative Commons License

  • Last Updated: Sep 25, 2023 10:59 AM
  • URL: https://guides.himmelfarb.gwu.edu/studydesign101

GW logo

  • Himmelfarb Intranet
  • Privacy Notice
  • Terms of Use
  • GW is committed to digital accessibility. If you experience a barrier that affects your ability to access content on this page, let us know via the Accessibility Feedback Form .
  • Himmelfarb Health Sciences Library
  • 2300 Eye St., NW, Washington, DC 20037
  • Phone: (202) 994-2962
  • [email protected]
  • https://himmelfarb.gwu.edu

What Is A Case Control Study?

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A case-control study is a research method where two groups of people are compared – those with the condition (cases) and those without (controls). By looking at their past, researchers try to identify what factors might have contributed to the condition in the ‘case’ group.

Explanation

A case-control study looks at people who already have a certain condition (cases) and people who don’t (controls). By comparing these two groups, researchers try to figure out what might have caused the condition. They look into the past to find clues, like habits or experiences, that are different between the two groups.

The “cases” are the individuals with the disease or condition under study, and the “controls” are similar individuals without the disease or condition of interest.

The controls should have similar characteristics (i.e., age, sex, demographic, health status) to the cases to mitigate the effects of confounding variables .

Case-control studies identify any associations between an exposure and an outcome and help researchers form hypotheses about a particular population.

Researchers will first identify the two groups, and then look back in time to investigate which subjects in each group were exposed to the condition.

If the exposure is found more commonly in the cases than the controls, the researcher can hypothesize that the exposure may be linked to the outcome of interest.

Case Control Study

Figure: Schematic diagram of case-control study design. Kenneth F. Schulz and David A. Grimes (2002) Case-control studies: research in reverse . The Lancet Volume 359, Issue 9304, 431 – 434

Quick, inexpensive, and simple

Because these studies use already existing data and do not require any follow-up with subjects, they tend to be quicker and cheaper than other types of research. Case-control studies also do not require large sample sizes.

Beneficial for studying rare diseases

Researchers in case-control studies start with a population of people known to have the target disease instead of following a population and waiting to see who develops it. This enables researchers to identify current cases and enroll a sufficient number of patients with a particular rare disease.

Useful for preliminary research

Case-control studies are beneficial for an initial investigation of a suspected risk factor for a condition. The information obtained from cross-sectional studies then enables researchers to conduct further data analyses to explore any relationships in more depth.

Limitations

Subject to recall bias.

Participants might be unable to remember when they were exposed or omit other details that are important for the study. In addition, those with the outcome are more likely to recall and report exposures more clearly than those without the outcome.

Difficulty finding a suitable control group

It is important that the case group and the control group have almost the same characteristics, such as age, gender, demographics, and health status.

Forming an accurate control group can be challenging, so sometimes researchers enroll multiple control groups to bolster the strength of the case-control study.

Do not demonstrate causation

Case-control studies may prove an association between exposures and outcomes, but they can not demonstrate causation.

A case-control study is an observational study where researchers analyzed two groups of people (cases and controls) to look at factors associated with particular diseases or outcomes.

Below are some examples of case-control studies:
  • Investigating the impact of exposure to daylight on the health of office workers (Boubekri et al., 2014).
  • Comparing serum vitamin D levels in individuals who experience migraine headaches with their matched controls (Togha et al., 2018).
  • Analyzing correlations between parental smoking and childhood asthma (Strachan and Cook, 1998).
  • Studying the relationship between elevated concentrations of homocysteine and an increased risk of vascular diseases (Ford et al., 2002).
  • Assessing the magnitude of the association between Helicobacter pylori and the incidence of gastric cancer (Helicobacter and Cancer Collaborative Group, 2001).
  • Evaluating the association between breast cancer risk and saturated fat intake in postmenopausal women (Howe et al., 1990).

Frequently asked questions

1. what’s the difference between a case-control study and a cross-sectional study.

Case-control studies are different from cross-sectional studies in that case-control studies compare groups retrospectively while cross-sectional studies analyze information about a population at a specific point in time.

In  cross-sectional studies , researchers are simply examining a group of participants and depicting what already exists in the population.

2. What’s the difference between a case-control study and a longitudinal study?

Case-control studies compare groups retrospectively, while longitudinal studies can compare groups either retrospectively or prospectively.

In a  longitudinal study , researchers monitor a population over an extended period of time, and they can be used to study developmental shifts and understand how certain things change as we age.

In addition, case-control studies look at a single subject or a single case, whereas longitudinal studies can be conducted on a large group of subjects.

3. What’s the difference between a case-control study and a retrospective cohort study?

Case-control studies are retrospective as researchers begin with an outcome and trace backward to investigate exposure; however, they differ from retrospective cohort studies.

In a  retrospective cohort study , researchers examine a group before any of the subjects have developed the disease, then examine any factors that differed between the individuals who developed the condition and those who did not.

Thus, the outcome is measured after exposure in retrospective cohort studies, whereas the outcome is measured before the exposure in case-control studies.

Boubekri, M., Cheung, I., Reid, K., Wang, C., & Zee, P. (2014). Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. Journal of Clinical Sleep Medicine: JCSM: Official Publication of the American Academy of Sleep Medicine, 10 (6), 603-611.

Ford, E. S., Smith, S. J., Stroup, D. F., Steinberg, K. K., Mueller, P. W., & Thacker, S. B. (2002). Homocyst (e) ine and cardiovascular disease: a systematic review of the evidence with special emphasis on case-control studies and nested case-control studies. International journal of epidemiology, 31 (1), 59-70.

Helicobacter and Cancer Collaborative Group. (2001). Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut, 49 (3), 347-353.

Howe, G. R., Hirohata, T., Hislop, T. G., Iscovich, J. M., Yuan, J. M., Katsouyanni, K., … & Shunzhang, Y. (1990). Dietary factors and risk of breast cancer: combined analysis of 12 case—control studies. JNCI: Journal of the National Cancer Institute, 82 (7), 561-569.

Lewallen, S., & Courtright, P. (1998). Epidemiology in practice: case-control studies. Community eye health, 11 (28), 57–58.

Strachan, D. P., & Cook, D. G. (1998). Parental smoking and childhood asthma: longitudinal and case-control studies. Thorax, 53 (3), 204-212.

Tenny, S., Kerndt, C. C., & Hoffman, M. R. (2021). Case Control Studies. In StatPearls . StatPearls Publishing.

Togha, M., Razeghi Jahromi, S., Ghorbani, Z., Martami, F., & Seifishahpar, M. (2018). Serum Vitamin D Status in a Group of Migraine Patients Compared With Healthy Controls: A Case-Control Study. Headache, 58 (10), 1530-1540.

Further Information

  • Schulz, K. F., & Grimes, D. A. (2002). Case-control studies: research in reverse. The Lancet, 359(9304), 431-434.
  • What is a case-control study?

Print Friendly, PDF & Email

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed, case control studies, affiliations.

  • 1 University of Nebraska Medical Center
  • 2 Spectrum Health/Michigan State University College of Human Medicine
  • PMID: 28846237
  • Bookshelf ID: NBK448143

A case-control study is a type of observational study commonly used to look at factors associated with diseases or outcomes. The case-control study starts with a group of cases, which are the individuals who have the outcome of interest. The researcher then tries to construct a second group of individuals called the controls, who are similar to the case individuals but do not have the outcome of interest. The researcher then looks at historical factors to identify if some exposure(s) is/are found more commonly in the cases than the controls. If the exposure is found more commonly in the cases than in the controls, the researcher can hypothesize that the exposure may be linked to the outcome of interest.

For example, a researcher may want to look at the rare cancer Kaposi's sarcoma. The researcher would find a group of individuals with Kaposi's sarcoma (the cases) and compare them to a group of patients who are similar to the cases in most ways but do not have Kaposi's sarcoma (controls). The researcher could then ask about various exposures to see if any exposure is more common in those with Kaposi's sarcoma (the cases) than those without Kaposi's sarcoma (the controls). The researcher might find that those with Kaposi's sarcoma are more likely to have HIV, and thus conclude that HIV may be a risk factor for the development of Kaposi's sarcoma.

There are many advantages to case-control studies. First, the case-control approach allows for the study of rare diseases. If a disease occurs very infrequently, one would have to follow a large group of people for a long period of time to accrue enough incident cases to study. Such use of resources may be impractical, so a case-control study can be useful for identifying current cases and evaluating historical associated factors. For example, if a disease developed in 1 in 1000 people per year (0.001/year) then in ten years one would expect about 10 cases of a disease to exist in a group of 1000 people. If the disease is much rarer, say 1 in 1,000,0000 per year (0.0000001/year) this would require either having to follow 1,000,0000 people for ten years or 1000 people for 1000 years to accrue ten total cases. As it may be impractical to follow 1,000,000 for ten years or to wait 1000 years for recruitment, a case-control study allows for a more feasible approach.

Second, the case-control study design makes it possible to look at multiple risk factors at once. In the example above about Kaposi's sarcoma, the researcher could ask both the cases and controls about exposures to HIV, asbestos, smoking, lead, sunburns, aniline dye, alcohol, herpes, human papillomavirus, or any number of possible exposures to identify those most likely associated with Kaposi's sarcoma.

Case-control studies can also be very helpful when disease outbreaks occur, and potential links and exposures need to be identified. This study mechanism can be commonly seen in food-related disease outbreaks associated with contaminated products, or when rare diseases start to increase in frequency, as has been seen with measles in recent years.

Because of these advantages, case-control studies are commonly used as one of the first studies to build evidence of an association between exposure and an event or disease.

In a case-control study, the investigator can include unequal numbers of cases with controls such as 2:1 or 4:1 to increase the power of the study.

Disadvantages and Limitations

The most commonly cited disadvantage in case-control studies is the potential for recall bias. Recall bias in a case-control study is the increased likelihood that those with the outcome will recall and report exposures compared to those without the outcome. In other words, even if both groups had exactly the same exposures, the participants in the cases group may report the exposure more often than the controls do. Recall bias may lead to concluding that there are associations between exposure and disease that do not, in fact, exist. It is due to subjects' imperfect memories of past exposures. If people with Kaposi's sarcoma are asked about exposure and history (e.g., HIV, asbestos, smoking, lead, sunburn, aniline dye, alcohol, herpes, human papillomavirus), the individuals with the disease are more likely to think harder about these exposures and recall having some of the exposures that the healthy controls.

Case-control studies, due to their typically retrospective nature, can be used to establish a correlation between exposures and outcomes, but cannot establish causation . These studies simply attempt to find correlations between past events and the current state.

When designing a case-control study, the researcher must find an appropriate control group. Ideally, the case group (those with the outcome) and the control group (those without the outcome) will have almost the same characteristics, such as age, gender, overall health status, and other factors. The two groups should have similar histories and live in similar environments. If, for example, our cases of Kaposi's sarcoma came from across the country but our controls were only chosen from a small community in northern latitudes where people rarely go outside or get sunburns, asking about sunburn may not be a valid exposure to investigate. Similarly, if all of the cases of Kaposi's sarcoma were found to come from a small community outside a battery factory with high levels of lead in the environment, then controls from across the country with minimal lead exposure would not provide an appropriate control group. The investigator must put a great deal of effort into creating a proper control group to bolster the strength of the case-control study as well as enhance their ability to find true and valid potential correlations between exposures and disease states.

Similarly, the researcher must recognize the potential for failing to identify confounding variables or exposures, introducing the possibility of confounding bias, which occurs when a variable that is not being accounted for that has a relationship with both the exposure and outcome. This can cause us to accidentally be studying something we are not accounting for but that may be systematically different between the groups.

Copyright © 2024, StatPearls Publishing LLC.

PubMed Disclaimer

Conflict of interest statement

Disclosure: Steven Tenny declares no relevant financial relationships with ineligible companies.

Disclosure: Connor Kerndt declares no relevant financial relationships with ineligible companies.

Disclosure: Mary Hoffman declares no relevant financial relationships with ineligible companies.

  • Introduction
  • Issues of Concern
  • Clinical Significance
  • Enhancing Healthcare Team Outcomes
  • Review Questions

Similar articles

  • Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K, Williams J, Qi YP, Gutman J, Yeung L, Mai C, Finkelstain J, Mehta S, Pons-Duran C, Menéndez C, Moraleda C, Rogers L, Daniels K, Green P. Crider K, et al. Cochrane Database Syst Rev. 2022 Feb 1;2(2022):CD014217. doi: 10.1002/14651858.CD014217. Cochrane Database Syst Rev. 2022. PMID: 36321557 Free PMC article.
  • Epidemiology Of Study Design. Munnangi S, Boktor SW. Munnangi S, et al. 2023 Apr 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. 2023 Apr 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 29262004 Free Books & Documents.
  • Risk factors for Kaposi's sarcoma in HIV-positive subjects in Uganda. Ziegler JL, Newton R, Katongole-Mbidde E, Mbulataiye S, De Cock K, Wabinga H, Mugerwa J, Katabira E, Jaffe H, Parkin DM, Reeves G, Weiss R, Beral V. Ziegler JL, et al. AIDS. 1997 Nov;11(13):1619-26. doi: 10.1097/00002030-199713000-00011. AIDS. 1997. PMID: 9365767
  • The epidemiology of classic, African, and immunosuppressed Kaposi's sarcoma. Wahman A, Melnick SL, Rhame FS, Potter JD. Wahman A, et al. Epidemiol Rev. 1991;13:178-99. doi: 10.1093/oxfordjournals.epirev.a036068. Epidemiol Rev. 1991. PMID: 1765111 Review.
  • Epidemiology of Kaposi's sarcoma. Beral V. Beral V. Cancer Surv. 1991;10:5-22. Cancer Surv. 1991. PMID: 1821323 Review.
  • Setia MS. Methodology Series Module 2: Case-control Studies. Indian J Dermatol. 2016 Mar-Apr;61(2):146-51. - PMC - PubMed
  • Sedgwick P. Bias in observational study designs: case-control studies. BMJ. 2015 Jan 30;350:h560. - PubMed
  • Groenwold RHH, van Smeden M. Efficient Sampling in Unmatched Case-Control Studies When the Total Number of Cases and Controls Is Fixed. Epidemiology. 2017 Nov;28(6):834-837. - PubMed

Publication types

  • Search in PubMed
  • Search in MeSH
  • Add to Search

Related information

Linkout - more resources, full text sources.

  • NCBI Bookshelf

Research Materials

  • NCI CPTC Antibody Characterization Program

Miscellaneous

  • NCI CPTAC Assay Portal

book cover photo

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

  • En español – ExME
  • Em português – EME

Case-control and Cohort studies: A brief overview

Posted on 6th December 2017 by Saul Crandon

Man in suit with binoculars

Introduction

Case-control and cohort studies are observational studies that lie near the middle of the hierarchy of evidence . These types of studies, along with randomised controlled trials, constitute analytical studies, whereas case reports and case series define descriptive studies (1). Although these studies are not ranked as highly as randomised controlled trials, they can provide strong evidence if designed appropriately.

Case-control studies

Case-control studies are retrospective. They clearly define two groups at the start: one with the outcome/disease and one without the outcome/disease. They look back to assess whether there is a statistically significant difference in the rates of exposure to a defined risk factor between the groups. See Figure 1 for a pictorial representation of a case-control study design. This can suggest associations between the risk factor and development of the disease in question, although no definitive causality can be drawn. The main outcome measure in case-control studies is odds ratio (OR) .

case study control experiment

Figure 1. Case-control study design.

Cases should be selected based on objective inclusion and exclusion criteria from a reliable source such as a disease registry. An inherent issue with selecting cases is that a certain proportion of those with the disease would not have a formal diagnosis, may not present for medical care, may be misdiagnosed or may have died before getting a diagnosis. Regardless of how the cases are selected, they should be representative of the broader disease population that you are investigating to ensure generalisability.

Case-control studies should include two groups that are identical EXCEPT for their outcome / disease status.

As such, controls should also be selected carefully. It is possible to match controls to the cases selected on the basis of various factors (e.g. age, sex) to ensure these do not confound the study results. It may even increase statistical power and study precision by choosing up to three or four controls per case (2).

Case-controls can provide fast results and they are cheaper to perform than most other studies. The fact that the analysis is retrospective, allows rare diseases or diseases with long latency periods to be investigated. Furthermore, you can assess multiple exposures to get a better understanding of possible risk factors for the defined outcome / disease.

Nevertheless, as case-controls are retrospective, they are more prone to bias. One of the main examples is recall bias. Often case-control studies require the participants to self-report their exposure to a certain factor. Recall bias is the systematic difference in how the two groups may recall past events e.g. in a study investigating stillbirth, a mother who experienced this may recall the possible contributing factors a lot more vividly than a mother who had a healthy birth.

A summary of the pros and cons of case-control studies are provided in Table 1.

case study control experiment

Table 1. Advantages and disadvantages of case-control studies.

Cohort studies

Cohort studies can be retrospective or prospective. Retrospective cohort studies are NOT the same as case-control studies.

In retrospective cohort studies, the exposure and outcomes have already happened. They are usually conducted on data that already exists (from prospective studies) and the exposures are defined before looking at the existing outcome data to see whether exposure to a risk factor is associated with a statistically significant difference in the outcome development rate.

Prospective cohort studies are more common. People are recruited into cohort studies regardless of their exposure or outcome status. This is one of their important strengths. People are often recruited because of their geographical area or occupation, for example, and researchers can then measure and analyse a range of exposures and outcomes.

The study then follows these participants for a defined period to assess the proportion that develop the outcome/disease of interest. See Figure 2 for a pictorial representation of a cohort study design. Therefore, cohort studies are good for assessing prognosis, risk factors and harm. The outcome measure in cohort studies is usually a risk ratio / relative risk (RR).

case study control experiment

Figure 2. Cohort study design.

Cohort studies should include two groups that are identical EXCEPT for their exposure status.

As a result, both exposed and unexposed groups should be recruited from the same source population. Another important consideration is attrition. If a significant number of participants are not followed up (lost, death, dropped out) then this may impact the validity of the study. Not only does it decrease the study’s power, but there may be attrition bias – a significant difference between the groups of those that did not complete the study.

Cohort studies can assess a range of outcomes allowing an exposure to be rigorously assessed for its impact in developing disease. Additionally, they are good for rare exposures, e.g. contact with a chemical radiation blast.

Whilst cohort studies are useful, they can be expensive and time-consuming, especially if a long follow-up period is chosen or the disease itself is rare or has a long latency.

A summary of the pros and cons of cohort studies are provided in Table 2.

case study control experiment

The Strengthening of Reporting of Observational Studies in Epidemiology Statement (STROBE)

STROBE provides a checklist of important steps for conducting these types of studies, as well as acting as best-practice reporting guidelines (3). Both case-control and cohort studies are observational, with varying advantages and disadvantages. However, the most important factor to the quality of evidence these studies provide, is their methodological quality.

  • Song, J. and Chung, K. Observational Studies: Cohort and Case-Control Studies .  Plastic and Reconstructive Surgery.  2010 Dec;126(6):2234-2242.
  • Ury HK. Efficiency of case-control studies with multiple controls per case: Continuous or dichotomous data .  Biometrics . 1975 Sep;31(3):643–649.
  • von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative.  The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.   Lancet 2007 Oct;370(9596):1453-14577. PMID: 18064739.

' src=

Saul Crandon

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

No Comments on Case-control and Cohort studies: A brief overview

' src=

Very well presented, excellent clarifications. Has put me right back into class, literally!

' src=

Very clear and informative! Thank you.

' src=

very informative article.

' src=

Thank you for the easy to understand blog in cohort studies. I want to follow a group of people with and without a disease to see what health outcomes occurs to them in future such as hospitalisations, diagnoses, procedures etc, as I have many health outcomes to consider, my questions is how to make sure these outcomes has not occurred before the “exposure disease”. As, in cohort studies we are looking at incidence (new) cases, so if an outcome have occurred before the exposure, I can leave them out of the analysis. But because I am not looking at a single outcome which can be checked easily and if happened before exposure can be left out. I have EHR data, so all the exposure and outcome have occurred. my aim is to check the rates of different health outcomes between the exposed)dementia) and unexposed(non-dementia) individuals.

' src=

Very helpful information

' src=

Thanks for making this subject student friendly and easier to understand. A great help.

' src=

Thanks a lot. It really helped me to understand the topic. I am taking epidemiology class this winter, and your paper really saved me.

Happy new year.

' src=

Wow its amazing n simple way of briefing ,which i was enjoyed to learn this.its very easy n quick to pick ideas .. Thanks n stay connected

' src=

Saul you absolute melt! Really good work man

' src=

am a student of public health. This information is simple and well presented to the point. Thank you so much.

' src=

very helpful information provided here

' src=

really thanks for wonderful information because i doing my bachelor degree research by survival model

' src=

Quite informative thank you so much for the info please continue posting. An mph student with Africa university Zimbabwe.

' src=

Thank you this was so helpful amazing

' src=

Apreciated the information provided above.

' src=

So clear and perfect. The language is simple and superb.I am recommending this to all budding epidemiology students. Thanks a lot.

' src=

Great to hear, thank you AJ!

' src=

I have recently completed an investigational study where evidence of phlebitis was determined in a control cohort by data mining from electronic medical records. We then introduced an intervention in an attempt to reduce incidence of phlebitis in a second cohort. Again, results were determined by data mining. This was an expedited study, so there subjects were enrolled in a specific cohort based on date(s) of the drug infused. How do I define this study? Thanks so much.

' src=

thanks for the information and knowledge about observational studies. am a masters student in public health/epidemilogy of the faculty of medicines and pharmaceutical sciences , University of Dschang. this information is very explicit and straight to the point

' src=

Very much helpful

Subscribe to our newsletter

You will receive our monthly newsletter and free access to Trip Premium.

Related Articles

""

Cluster Randomized Trials: Concepts

This blog summarizes the concepts of cluster randomization, and the logistical and statistical considerations while designing a cluster randomized controlled trial.

""

Expertise-based Randomized Controlled Trials

This blog summarizes the concepts of Expertise-based randomized controlled trials with a focus on the advantages and challenges associated with this type of study.

""

An introduction to different types of study design

Conducting successful research requires choosing the appropriate study design. This article describes the most common types of designs conducted by researchers.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Case Control Study: Definition, Benefits & Examples

By Jim Frost 2 Comments

What is a Case Control Study?

A case control study is a retrospective, observational study that compares two existing groups. Researchers form these groups based on the existence of a condition in the case group and the lack of that condition in the control group. They evaluate the differences in the histories between these two groups looking for factors that might cause a disease.

Photograph of medical scientist at work.

By evaluating differences in exposure to risk factors between the case and control groups, researchers can learn which factors are associated with the medical condition.

For example, medical researchers study disease X and use a case-control study design to identify risk factors. They create two groups using available medical records from hospitals. Individuals with disease X are in the case group, while those without it are in the control group. If the case group has more exposure to a risk factor than the control group, that exposure is a potential cause for disease X. However, case-control studies establish only correlation and not causation. Be aware of spurious correlations!

Case-control studies are observational studies because researchers do not control the risk factors—they only observe them. They are retrospective studies because the scientists create the case and control groups after the outcomes for the subjects (e.g., disease vs. no disease) are known.

This post explains the benefits and limitations of case-control studies, controlling confounders, and analyzing and interpreting the results. I close with an example case control study showing how to calculate and interpret the results.

Learn more about Experimental Design: Definition, Types, and Examples .

Related posts : Observational Studies Explained and Control Groups in Experiments

Benefits of a Case Control Study

A case control study is a relatively quick and simple design. They frequently use existing patient data, and the experimenters form the groups after the outcomes are known. Researchers do not conduct an experiment. Instead, they look for differences between the case and control groups that are potential risk factors for the condition. Small groups and individual facilities can conduct case-control studies, unlike other more intensive types of experiments.

Case-control studies are perfect for evaluating outbreaks and rare conditions. Researchers simply need to let a sufficient number of known cases accumulate in an established database. The alternative would be to select a large random sample and hope that the condition afflicts it eventually.

A case control study can provide rapid results during outbreaks where the researchers need quick answers. They are ideal for the preliminary investigation phase, where scientists screen potential risk factors. As such, they can point the way for more thorough, time-consuming, and expensive studies. They are especially beneficial when the current state of science knows little about the connection between risk factors and the medical condition. And when you need to identify potential risk factors quickly!

Cohort studies are another type of observational study that are similar to case-control studies, but there are some important differences. To learn more, read my post about Cohort Studies .

Limitations of a Case Control Study

Because case-control studies are observational, they cannot establish causality and provide lower quality evidence than other experimental designs, such as randomized controlled trials . Additionally, as you’ll see in the next section, this type of study is susceptible to confounding variables unless experimenters correctly match traits between the two groups.

A case-control study typically depends on health records. If the necessary data exist in sources available to the researchers, all is good. However, the investigation becomes more complicated if the data are not readily available.

Case-control studies can incorporate biases from the underlying data sources. For example, researchers frequently obtain patient data from hospital records. The population of hospital patients is likely to differ from the general population. Even the control patients are in the hospital for some reason—they likely have serious health problems. Consequently, the subjects in case-control studies are likely to differ from the general population, which reduces the generalizability of the results.

A case-control study cannot estimate incidence or prevalence rates for the disease. The data from these studies do not allow you to calculate the probability of a new person contracting the condition in a given period nor how common it is in the population. This limitation occurs because case-control studies do not use a representative sample.

Case-control studies cannot determine the time between exposure and onset of the medical condition. In fact, case-control studies cannot reliably assess each subject’s exposure to risk factors over time. Longitudinal studies, such as prospective cohort studies, can better make those types of assessment.

Related post : Causation versus Correlation in Statistics

Use Matching to Control Confounders

Because case-control studies are observational studies, they are particularly vulnerable to confounding variables and spurious correlations . A confounder correlates with both the risk factor and the outcome variable. Because observational studies don’t use random assignment to equalize confounders between the case and control groups, they can become unbalanced and affect the results.

Unfortunately, confounders can be the actual cause of the medical condition rather than the risk factor that the researchers identify. If a case-control study does not account for confounding variables, it can bias the results and make them untrustworthy.

Case-control studies typically use trait matching to control confounders. This technique involves selecting study participants for the case and control groups with similar characteristics, which helps equalize the groups for potential confounders. Equalizing confounders limits their impact on the results.

Ultimately, the goal is to create case and control groups that have equal risks for developing the condition/disease outside the risk factors the researchers are explicitly assessing. Matching facilitates valid comparisons between the two groups because the controls are similar to cases. The researchers use subject-area knowledge to identify characteristics that are critical to match.

Note that you cannot assess matching variables as potential risk factors. You’ve intentionally equalized them across the case and control groups and, consequently, they do not correlate with the condition. Hence, do not use the risk factors you want to evaluate as trait matching variables.

Learn more about confounding variables .

Statistical Analysis of a Case Control Study

Researchers frequently include two controls for each case to increase statistical power for a case-control study. Adding even more controls per case provides few statistical benefits, so studies usually do not use more than a 2:1 control to case ratio.

For statistical results, case-control studies typically produce an odds ratio for each potential risk factor. The equation below shows how to calculate an odds ratio for a case-control study.

Equation for an odds ratio in a case-control study.

Notice how this ratio takes the exposure odds in the case group and divides it by the exposure odds in the control group. Consequently, it quantifies how much higher the odds of exposure are among cases than the controls.

In general, odds ratios greater than one flag potential risk factors because they indicate that exposure was higher in the case group than in the control group. Furthermore, higher ratios signify stronger associations between exposure and the medical condition.

An odds ratio of one indicates that exposure was the same in the case and control groups. Nothing to see here!

Ratios less than one might identify protective factors.

Learn more about Understanding Ratios .

Now, let’s bring this to life with an example!

Example Odds Ratio in a Case-Control Study

The Kent County Health Department in Michigan conducted a case-control study in 2005 for a company lunch that produced an outbreak of vomiting and diarrhea. Out of multiple lunch ingredients, researchers found the following exposure rates for lettuce consumption.

53 33
1 7

By plugging these numbers into the equation, we can calculate the odds ratio for lettuce in this case-control study.

Example odds ratio calculations for a case-control study.

The study determined that the odds ratio for lettuce is 11.2.

This ratio indicates that those with symptoms were 11.2 times more likely to have eaten lettuce than those without symptoms. These results raise a big red flag for contaminated lettuce being the culprit!

Learn more about Odds Ratios.

Epidemiology in Practice: Case-Control Studies (NIH)

Interpreting Results of Case-Control Studies (CDC)

Share this:

case study control experiment

Reader Interactions

' src=

January 18, 2022 at 7:56 am

Great post, thanks for writing it!

Is it possible to test an odds ration for statistical significance?

' src=

January 18, 2022 at 7:41 pm

Hi Michael,

Thanks! And yes, you can test for significance. To learn more about that, read my post about odds ratios , where I discuss p-values and confidence intervals.

Comments and Questions Cancel reply

Case-Control Study: Definition, Real Life Examples

Design of Experiments > Case-Control Study

What is a Case-Control Study?

A case-control study is a retrospective study that looks back in time to find the relative risk between a specific exposure (e.g. second hand tobacco smoke) and an outcome (e.g. cancer). A control group of people who do not have the disease or who did not experience the event is used for comparison. The goal is figure out the relationship between risk factors and disease or outcome and estimate the odds of an individual getting a disease or experiencing an event.

Case-control studies have four main steps:

  • The study begins by enrolling people who already have a certain disease or outcome.
  • A second control group of similar size is sampled, preferably from a population identical in every way except that they don’t have the disease or condition being studied. They should not be selected because of an exposure status.
  • People are asked about their exposure to risk factors.
  • Finally, an odds ratio is calculated.
  • Non-matched case-control study: this is the simplest form. Find a person with the disease and enroll them in the study. Then enroll a control and determine their exposure status.
  • Matched case-control: Find a person with the disease and enroll them in the study. Match the person for some characteristic (e.g. sex, age, weight) with a control. This can eliminate or minimize confounding variables . However, it generally results in a longer study; the more characteristics being “matched”, the longer the study takes.

Advantages and Disadvantages

Advantages A case-control study is often the best choice for rare conditions or diseases . Let’s say 10 people in Duval county in Florida had a particularly rare disease. Random sampling for a cohort study would involve large numbers of people and may not pick up any of the diseased people at all. With a case-control study, all 10 people who have the disease can be identified (assuming they are in a medical database) and enrolled in the study. Random sampling could then be used on the non-diseased population to form the control group. Other Advantages :

  • Short term study that doesn’t require waiting for events to happen, as they have already occurred.
  • Inexpensive.
  • Multiple risk factors can be studied at the same time.
  • Quickly establishes associations between risk factors and disease. This can be especially useful with disease outbreaks, as causes can be identified with small sample sizes.
  • Stronger than cross-sectional studies for establishing causation.

Disadvantages :

  • Control groups can be difficult to find.
  • Results can easily be tainted by recall bias , where people with the disease or condition are more likely to remember past details compared to people who don’t have the disease or condition.
  • Is weaker than a cohort study for establishing causation.
  • Usually not generalizable .

Examples from Real Life

  • This study for non-Hodgkin lymphoma found a connection between the disease and inflammatory disorders like Sjögrens, Celiac and rheumatoid arthritis.
  • This study investigated how increased consumption of fruits and vegetables protects against Cervical Intraepithelial Neoplasia.
  • This INTERHEART study looked at second hand tobacco smoke and increased risk of myocardial infarction.

Case Study vs. Experiment

What's the difference.

Case studies and experiments are both research methods used in various fields to gather data and draw conclusions. However, they differ in their approach and purpose. A case study involves in-depth analysis of a particular individual, group, or situation, aiming to provide a detailed understanding of a specific phenomenon. On the other hand, an experiment involves manipulating variables and observing the effects on a sample population, aiming to establish cause-and-effect relationships. While case studies provide rich qualitative data, experiments provide quantitative data that can be statistically analyzed. Ultimately, the choice between these methods depends on the research question and the desired outcomes.

AttributeCase StudyExperiment
Research MethodQualitativeQuantitative
ObjectiveDescriptiveCausal
Sample SizeSmallLarge
Controlled VariablesLess controlledHighly controlled
Manipulation of VariablesNot manipulatedManipulated
Data CollectionObservations, interviews, surveysMeasurements, surveys, experiments
Data AnalysisQualitative analysisStatistical analysis
GeneralizabilityLess generalizableMore generalizable
TimeframeLongerShorter

Further Detail

Introduction.

When conducting research, there are various methods available to gather data and analyze phenomena. Two commonly used approaches are case study and experiment. While both methods aim to provide insights and answers to research questions, they differ in their design, implementation, and the type of data they generate. In this article, we will explore the attributes of case study and experiment, highlighting their strengths and limitations.

A case study is an in-depth investigation of a particular individual, group, or phenomenon. It involves collecting and analyzing detailed information from multiple sources, such as interviews, observations, documents, and archival records. Case studies are often used in social sciences, psychology, and business research to gain a deep understanding of complex and unique situations.

One of the key attributes of a case study is its ability to provide rich and detailed data. Researchers can gather a wide range of information, allowing for a comprehensive analysis of the case. This depth of data enables researchers to explore complex relationships, identify patterns, and generate new hypotheses.

Furthermore, case studies are particularly useful when studying rare or unique phenomena. Since they focus on specific cases, they can provide valuable insights into situations that are not easily replicated or observed in controlled experiments. This attribute makes case studies highly relevant in fields where generalizability is not the primary goal.

However, it is important to note that case studies have limitations. Due to their qualitative nature, the findings may lack generalizability to broader populations or contexts. The small sample size and the subjective interpretation of data can also introduce bias. Additionally, case studies are time-consuming and resource-intensive, requiring extensive data collection and analysis.

An experiment is a research method that involves manipulating variables and measuring their effects on outcomes. It aims to establish cause-and-effect relationships by controlling and manipulating independent variables while keeping other factors constant. Experiments are commonly used in natural sciences, psychology, and medicine to test hypotheses and determine the impact of specific interventions or treatments.

One of the key attributes of an experiment is its ability to establish causal relationships. By controlling variables and randomly assigning participants to different conditions, researchers can confidently attribute any observed effects to the manipulated variables. This attribute allows for strong internal validity, making experiments a powerful tool for drawing causal conclusions.

Moreover, experiments often provide quantitative data, allowing for statistical analysis and objective comparisons. This attribute enhances the precision and replicability of findings, enabling researchers to draw more robust conclusions. The ability to replicate experiments also contributes to the cumulative nature of scientific knowledge.

However, experiments also have limitations. They are often conducted in controlled laboratory settings, which may limit the generalizability of findings to real-world contexts. Ethical considerations may also restrict the manipulation of certain variables or the use of certain interventions. Additionally, experiments can be time-consuming and costly, especially when involving large sample sizes or long-term follow-ups.

While case studies and experiments have distinct attributes, they can complement each other in research. Case studies provide in-depth insights and a rich understanding of complex phenomena, while experiments offer controlled conditions and the ability to establish causal relationships. By combining these methods, researchers can gain a more comprehensive understanding of the research question at hand.

When deciding between case study and experiment, researchers should consider the nature of their research question, the available resources, and the desired level of control and generalizability. Case studies are particularly suitable when exploring unique or rare phenomena, aiming for depth rather than breadth, and when resources allow for extensive data collection and analysis. On the other hand, experiments are ideal for establishing causal relationships, testing specific hypotheses, and when control over variables is crucial.

In conclusion, case study and experiment are two valuable research methods with their own attributes and limitations. Both approaches contribute to the advancement of knowledge in various fields, and their selection depends on the research question, available resources, and desired outcomes. By understanding the strengths and weaknesses of each method, researchers can make informed decisions and conduct rigorous and impactful research.

Comparisons may contain inaccurate information about people, places, or facts. Please report any issues.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Descriptive Research and Case Studies

Learning objectives.

  • Explain the importance and uses of descriptive research, especially case studies, in studying abnormal behavior

Types of Research Methods

There are many research methods available to psychologists in their efforts to understand, describe, and explain behavior and the cognitive and biological processes that underlie it. Some methods rely on observational techniques. Other approaches involve interactions between the researcher and the individuals who are being studied—ranging from a series of simple questions; to extensive, in-depth interviews; to well-controlled experiments.

The three main categories of psychological research are descriptive, correlational, and experimental research. Research studies that do not test specific relationships between variables are called descriptive, or qualitative, studies . These studies are used to describe general or specific behaviors and attributes that are observed and measured. In the early stages of research, it might be difficult to form a hypothesis, especially when there is not any existing literature in the area. In these situations designing an experiment would be premature, as the question of interest is not yet clearly defined as a hypothesis. Often a researcher will begin with a non-experimental approach, such as a descriptive study, to gather more information about the topic before designing an experiment or correlational study to address a specific hypothesis. Descriptive research is distinct from correlational research , in which psychologists formally test whether a relationship exists between two or more variables. Experimental research goes a step further beyond descriptive and correlational research and randomly assigns people to different conditions, using hypothesis testing to make inferences about how these conditions affect behavior. It aims to determine if one variable directly impacts and causes another. Correlational and experimental research both typically use hypothesis testing, whereas descriptive research does not.

Each of these research methods has unique strengths and weaknesses, and each method may only be appropriate for certain types of research questions. For example, studies that rely primarily on observation produce incredible amounts of information, but the ability to apply this information to the larger population is somewhat limited because of small sample sizes. Survey research, on the other hand, allows researchers to easily collect data from relatively large samples. While surveys allow results to be generalized to the larger population more easily, the information that can be collected on any given survey is somewhat limited and subject to problems associated with any type of self-reported data. Some researchers conduct archival research by using existing records. While existing records can be a fairly inexpensive way to collect data that can provide insight into a number of research questions, researchers using this approach have no control on how or what kind of data was collected.

Correlational research can find a relationship between two variables, but the only way a researcher can claim that the relationship between the variables is cause and effect is to perform an experiment. In experimental research, which will be discussed later, there is a tremendous amount of control over variables of interest. While performing an experiment is a powerful approach, experiments are often conducted in very artificial settings, which calls into question the validity of experimental findings with regard to how they would apply in real-world settings. In addition, many of the questions that psychologists would like to answer cannot be pursued through experimental research because of ethical concerns.

The three main types of descriptive studies are case studies, naturalistic observation, and surveys.

Clinical or Case Studies

Psychologists can use a detailed description of one person or a small group based on careful observation.  Case studies  are intensive studies of individuals and have commonly been seen as a fruitful way to come up with hypotheses and generate theories. Case studies add descriptive richness. Case studies are also useful for formulating concepts, which are an important aspect of theory construction. Through fine-grained knowledge and description, case studies can fully specify the causal mechanisms in a way that may be harder in a large study.

Sigmund Freud   developed  many theories from case studies (Anna O., Little Hans, Wolf Man, Dora, etc.). F or example, he conducted a case study of a man, nicknamed “Rat Man,”  in which he claimed that this patient had been cured by psychoanalysis.  T he nickname derives from the fact that among the patient’s many compulsions, he had an obsession with nightmarish fantasies about rats. 

Today, more commonly, case studies reflect an up-close, in-depth, and detailed examination of an individual’s course of treatment. Case studies typically include a complete history of the subject’s background and response to treatment. From the particular client’s experience in therapy, the therapist’s goal is to provide information that may help other therapists who treat similar clients.

Case studies are generally a single-case design, but can also be a multiple-case design, where replication instead of sampling is the criterion for inclusion. Like other research methodologies within psychology, the case study must produce valid and reliable results in order to be useful for the development of future research. Distinct advantages and disadvantages are associated with the case study in psychology.

A commonly described limit of case studies is that they do not lend themselves to generalizability . The other issue is that the case study is subject to the bias of the researcher in terms of how the case is written, and that cases are chosen because they are consistent with the researcher’s preconceived notions, resulting in biased research. Another common problem in case study research is that of reconciling conflicting interpretations of the same case history.

Despite these limitations, there are advantages to using case studies. One major advantage of the case study in psychology is the potential for the development of novel hypotheses of the  cause of abnormal behavior   for later testing. Second, the case study can provide detailed descriptions of specific and rare cases and help us study unusual conditions that occur too infrequently to study with large sample sizes. The major disadvantage is that case studies cannot be used to determine causation, as is the case in experimental research, where the factors or variables hypothesized to play a causal role are manipulated or controlled by the researcher. 

Link to Learning: Famous Case Studies

Some well-known case studies that related to abnormal psychology include the following:

  • Harlow— Phineas Gage
  • Breuer & Freud (1895)— Anna O.
  • Cleckley’s case studies: on psychopathy ( The Mask of Sanity ) (1941) and multiple personality disorder ( The Three Faces of Eve ) (1957)
  • Freud and  Little Hans
  • Freud and the  Rat Man
  • John Money and the  John/Joan case
  • Genie (feral child)
  • Piaget’s studies
  • Rosenthal’s book on the  murder of Kitty Genovese
  • Washoe (sign language)
  • Patient H.M.

Naturalistic Observation

If you want to understand how behavior occurs, one of the best ways to gain information is to simply observe the behavior in its natural context. However, people might change their behavior in unexpected ways if they know they are being observed. How do researchers obtain accurate information when people tend to hide their natural behavior? As an example, imagine that your professor asks everyone in your class to raise their hand if they always wash their hands after using the restroom. Chances are that almost everyone in the classroom will raise their hand, but do you think hand washing after every trip to the restroom is really that universal?

This is very similar to the phenomenon mentioned earlier in this module: many individuals do not feel comfortable answering a question honestly. But if we are committed to finding out the facts about handwashing, we have other options available to us.

Suppose we send a researcher to a school playground to observe how aggressive or socially anxious children interact with peers. Will our observer blend into the playground environment by wearing a white lab coat, sitting with a clipboard, and staring at the swings? We want our researcher to be inconspicuous and unobtrusively positioned—perhaps pretending to be a school monitor while secretly recording the relevant information. This type of observational study is called naturalistic observation : observing behavior in its natural setting. To better understand peer exclusion, Suzanne Fanger collaborated with colleagues at the University of Texas to observe the behavior of preschool children on a playground. How did the observers remain inconspicuous over the duration of the study? They equipped a few of the children with wireless microphones (which the children quickly forgot about) and observed while taking notes from a distance. Also, the children in that particular preschool (a “laboratory preschool”) were accustomed to having observers on the playground (Fanger, Frankel, & Hazen, 2012).

woman in black leather jacket sitting on concrete bench

It is critical that the observer be as unobtrusive and as inconspicuous as possible: when people know they are being watched, they are less likely to behave naturally. For example, psychologists have spent weeks observing the behavior of homeless people on the streets, in train stations, and bus terminals. They try to ensure that their naturalistic observations are unobtrusive, so as to minimize interference with the behavior they observe. Nevertheless, the presence of the observer may distort the behavior that is observed, and this must be taken into consideration (Figure 1).

The greatest benefit of naturalistic observation is the validity, or accuracy, of information collected unobtrusively in a natural setting. Having individuals behave as they normally would in a given situation means that we have a higher degree of ecological validity, or realism, than we might achieve with other research approaches. Therefore, our ability to generalize the findings of the research to real-world situations is enhanced. If done correctly, we need not worry about people modifying their behavior simply because they are being observed. Sometimes, people may assume that reality programs give us a glimpse into authentic human behavior. However, the principle of inconspicuous observation is violated as reality stars are followed by camera crews and are interviewed on camera for personal confessionals. Given that environment, we must doubt how natural and realistic their behaviors are.

The major downside of naturalistic observation is that they are often difficult to set up and control. Although something as simple as observation may seem like it would be a part of all research methods, participant observation is a distinct methodology that involves the researcher embedding themselves into a group in order to study its dynamics. For example, Festinger, Riecken, and Shacter (1956) were very interested in the psychology of a particular cult. However, this cult was very secretive and wouldn’t grant interviews to outside members. So, in order to study these people, Festinger and his colleagues pretended to be cult members, allowing them access to the behavior and psychology of the cult. Despite this example, it should be noted that the people being observed in a participant observation study usually know that the researcher is there to study them. [1]

Another potential problem in observational research is observer bias . Generally, people who act as observers are closely involved in the research project and may unconsciously skew their observations to fit their research goals or expectations. To protect against this type of bias, researchers should have clear criteria established for the types of behaviors recorded and how those behaviors should be classified. In addition, researchers often compare observations of the same event by multiple observers, in order to test inter-rater reliability : a measure of reliability that assesses the consistency of observations by different observers.

Often, psychologists develop surveys as a means of gathering data. Surveys are lists of questions to be answered by research participants, and can be delivered as paper-and-pencil questionnaires, administered electronically, or conducted verbally (Figure 3). Generally, the survey itself can be completed in a short time, and the ease of administering a survey makes it easy to collect data from a large number of people.

Surveys allow researchers to gather data from larger samples than may be afforded by other research methods . A sample is a subset of individuals selected from a population , which is the overall group of individuals that the researchers are interested in. Researchers study the sample and seek to generalize their findings to the population.

A sample online survey reads, “Dear visitor, your opinion is important to us. We would like to invite you to participate in a short survey to gather your opinions and feedback on your news consumption habits. The survey will take approximately 10-15 minutes. Simply click the “Yes” button below to launch the survey. Would you like to participate?” Two buttons are labeled “yes” and “no.”

There is both strength and weakness in surveys when compared to case studies. By using surveys, we can collect information from a larger sample of people. A larger sample is better able to reflect the actual diversity of the population, thus allowing better generalizability. Therefore, if our sample is sufficiently large and diverse, we can assume that the data we collect from the survey can be generalized to the larger population with more certainty than the information collected through a case study. However, given the greater number of people involved, we are not able to collect the same depth of information on each person that would be collected in a case study.

Another potential weakness of surveys is something we touched on earlier in this module: people do not always give accurate responses. They may lie, misremember, or answer questions in a way that they think makes them look good. For example, people may report drinking less alcohol than is actually the case.

Any number of research questions can be answered through the use of surveys. One real-world example is the research conducted by Jenkins, Ruppel, Kizer, Yehl, and Griffin (2012) about the backlash against the U.S. Arab-American community following the terrorist attacks of September 11, 2001. Jenkins and colleagues wanted to determine to what extent these negative attitudes toward Arab-Americans still existed nearly a decade after the attacks occurred. In one study, 140 research participants filled out a survey with 10 questions, including questions asking directly about the participant’s overt prejudicial attitudes toward people of various ethnicities. The survey also asked indirect questions about how likely the participant would be to interact with a person of a given ethnicity in a variety of settings (such as, “How likely do you think it is that you would introduce yourself to a person of Arab-American descent?”). The results of the research suggested that participants were unwilling to report prejudicial attitudes toward any ethnic group. However, there were significant differences between their pattern of responses to questions about social interaction with Arab-Americans compared to other ethnic groups: they indicated less willingness for social interaction with Arab-Americans compared to the other ethnic groups. This suggested that the participants harbored subtle forms of prejudice against Arab-Americans, despite their assertions that this was not the case (Jenkins et al., 2012).

Think it Over

Research has shown that parental depressive symptoms are linked to a number of negative child outcomes. A classmate of yours is interested in  the associations between parental depressive symptoms and actual child behaviors in everyday life [2] because this associations remains largely unknown. After reading this section, what do you think is the best way to better understand such associations? Which method might result in the most valid data?

clinical or case study:  observational research study focusing on one or a few people

correlational research:  tests whether a relationship exists between two or more variables

descriptive research:  research studies that do not test specific relationships between variables; they are used to describe general or specific behaviors and attributes that are observed and measured

experimental research:  tests a hypothesis to determine cause-and-effect relationships

generalizability:  inferring that the results for a sample apply to the larger population

inter-rater reliability:  measure of agreement among observers on how they record and classify a particular event

naturalistic observation:  observation of behavior in its natural setting

observer bias:  when observations may be skewed to align with observer expectations

population:  overall group of individuals that the researchers are interested in

sample:  subset of individuals selected from the larger population

survey:  list of questions to be answered by research participants—given as paper-and-pencil questionnaires, administered electronically, or conducted verbally—allowing researchers to collect data from a large number of people

CC Licensed Content, Shared Previously

  • Descriptive Research and Case Studies . Authored by : Sonja Ann Miller for Lumen Learning.  Provided by : Lumen Learning.  License :  CC BY-SA: Attribution-ShareAlike
  • Approaches to Research.  Authored by : OpenStax College.  Located at :  http://cnx.org/contents/[email protected]:iMyFZJzg@5/Approaches-to-Research .  License :  CC BY: Attribution .  License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Descriptive Research.  Provided by : Boundless.  Located at :  https://www.boundless.com/psychology/textbooks/boundless-psychology-textbook/researching-psychology-2/types-of-research-studies-27/descriptive-research-124-12659/ .  License :  CC BY-SA: Attribution-ShareAlike
  • Case Study.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Case_study .  License :  CC BY-SA: Attribution-ShareAlike
  • Rat man.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Rat_Man#Legacy .  License :  CC BY-SA: Attribution-ShareAlike
  • Case study in psychology.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Case_study_in_psychology .  License :  CC BY-SA: Attribution-ShareAlike
  • Research Designs.  Authored by : Christie Napa Scollon.  Provided by : Singapore Management University.  Located at :  https://nobaproject.com/modules/research-designs#reference-6 .  Project : The Noba Project.  License :  CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Single subject design.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Single-subject_design .  License :  CC BY-SA: Attribution-ShareAlike
  • Single subject research.  Provided by : Wikipedia.  Located at :  https://en.wikipedia.org/wiki/Single-subject_research#A-B-A-B .  License :  Public Domain: No Known Copyright
  • Pills.  Authored by : qimono.  Provided by : Pixabay.  Located at :  https://pixabay.com/illustrations/pill-capsule-medicine-medical-1884775/ .  License :  CC0: No Rights Reserved
  • ABAB Design.  Authored by : Doc. Yu.  Provided by : Wikimedia.  Located at :  https://commons.wikimedia.org/wiki/File:A-B-A-B_Design.png .  License :  CC BY-SA: Attribution-ShareAlike
  • Scollon, C. N. (2020). Research designs. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/acxb2thy ↵
  • Slatcher, R. B., & Trentacosta, C. J. (2011). A naturalistic observation study of the links between parental depressive symptoms and preschoolers' behaviors in everyday life. Journal of family psychology : JFP : journal of the Division of Family Psychology of the American Psychological Association (Division 43), 25(3), 444–448. https://doi.org/10.1037/a0023728 ↵

Descriptive Research and Case Studies Copyright © by Meredith Palm is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

case study control experiment

  • NIH Grants & Funding
  • Blog Policies

NIH Extramural Nexus

case study control experiment

Case Study in Research Integrity: Alcohol and Harassment

There was that bottle of champagne in the breakroom – to be opened when a paper is accepted. Or you heard a colleague’s plan to take a special guest speaker out to dinner at the local watering hole. And, then there were those recruiting events with prospective students that sometimes ended with a happy hour. As many of us have experienced, alcohol may often be part of lab events, conferences, or other related activities. But the presence of alcohol is not an excuse to check professionalism at the door. Here, we are spotlighting this issue to encourage members of the scientific community to consider the potential risks that alcohol can have on the research environment.

Unfortunately, over the past several years we have seen numerous instances where alcohol may have contributed to inappropriate behavior and sexual harassment in the context of scientific research. We are presenting a few case studies below, which are adapted in part from real situations where we worked in tandem with the recipient institutions to address the concerns.

  • A postdoctoral fellow sexually assaulted a graduate student after a lab event where alcohol was provided. This fellow was terminated from the institution (who was the recipient of the NIH grant ), and the graduate student was provided with information about how to report to law enforcement. Additionally, the recipient institution directed the principal investigator (PI) to limit alcohol at lab events, as drinking contributed to the abuse.
  • A PI at a prestigious scientific conference got severely intoxicated and sexually harassed a postdoctoral fellow. Because the conference organizers made their safety plan widely available and known, the fellow knew who to contact and how to report it. The PI was subsequently removed, an action outline in a safety plan the conference organizers had in place to protect their attendees. And, the PIs institution decided to remove the person from NIH grants, an action that NIH thought appropriate.
  • A lab head repeatedly encouraged and pressured their junior staff to drink alcohol and made inappropriate sexual comments while on travel. The institution removed the lab head from serving as PI on NIH awards, prohibited them from applying for new funding, and placed restrictions on travel and the use of alcohol at lab-related events. The institution also identified a new co-mentor for the junior scientists, engaged an external coach to work with the lab head on professional behavior, and began conducting quarterly climate assessments of the lab. NIH also requested regular updates from the recipient institution on their progress.
  • A lab head sent abusive emails to colleagues and staff. The institution also determined that the lab head was keeping alcohol in the office and working while under the influence, which may have contributed to the inappropriate communications. The recipient institution subsequently put their employee on administrative leave for several months. Upon their return to the lab, the institution also appointed a co-Director to provide additional oversight and mentoring.  

The National Academies reiterated in their 2019 report that organizational tolerance of alcohol use increases the chance of sexual or gender harassment (see also these articles from 2007 , 2005 , and 2002 ). Their report adds that such permissiveness leads some people to avoid lab related social events that involve alcohol. Furthermore, a 2019 report from an Advisory Committee to the NIH Director working group retold a story from a graduate student who was a target of sexual harassment where alcohol was involved.

This type of behavior in a professional setting violates grant policies and can even rise to a criminal offense. We are disheartened to receive reports about such unacceptable behavior, and we note that in the majority of these cases the recipient institution has taken serious actions in consultation with NIH. Based on the severity of the non-compliance, such actions included suspending personnel, removing principal investigators from NIH awards, placing restrictions around alcohol use at lab-related events, and imposing restrictions on travel and conference attendance.

While responsible inclusion of alcohol in celebrations or social outings may not pose a problem, researchers and their institutions should be mindful of how alcohol can contribute to unprofessional behaviors and sexual harassment. Also, keep in mind that purchasing alcoholic beverages is not an allowable grant-associated expense .

Relatedly, NIH-sponsored conferences must have approved safety plans . The strategies discussed in those plans aim to promote safe environments through communicating with attendees, documenting allegations and resulting actions, and other relevant steps to ensure a safe and respectful environment (see also this All About Grants podcast ). If someone at the conference is harassed, and whether or not alcohol was involved, they should feel empowered and protected to report the incident.

In our continued effort to make research environments safe , collectively we must be cognizant of situations that precipitate inappropriate behavior. Nobody should be bullied or pressured if they do not want to have a drink. All social events that include alcohol should also offer non-alcohol containing beverages for those choosing not to drink alcohol. Staff should feel comfortable attending social activities. There should not be an undercurrent or expectation to engage in activities counter to the individual’s personal choices or beliefs. For resources about what constitutes alcohol misuse and how to seek help, please see Rethinking Drinking and the Treatment Navigator  from the National Institute on Alcohol Abuse and Alcoholism.

Please also visit our website to inform us if you have any concerns that harassment, discrimination, or other inappropriate conduct may be affecting NIH supported research. You can remain anonymous. More on how to ensure safe and respectful workplaces is available on this podcast .

RELATED NEWS

I would urge the author to consider reframing contents of this article to reflect decades of research indicating that sexual assault, while often involving alcohol, is a an issue of power. Blaming alcohol, as the article suggests, for sexual assaults without recognizing the role power plays in the assault risks abuses continuing, if not exacerbating, since alcohol quashes the personal and social responsibilities of consent. Frankly, this is an embarrassing article to have on the NIH website, and I’d recommend the scholar learn from women in the fields of domestic violence and sexual assault research before publishing future research on the subject.

We appreciate your point about considering how power imbalances may contribute to harassment. Appropriately recognizing and addressing that issue is something we take seriously to ensure that NIH-supported research is conducted in safe and respectful workplaces. The following post may also be of interest: https://nexus.od.nih.gov/all/2023/07/17/case-study-in-research-integrity-banned-from-supervising-cant-go-in-lab-but-no-impact-on-nih-funded-research/

Prevention is the key! Rules of conduct must be out in place and followed.

Before submitting your comment, please review our blog comment policies.

Your email address will not be published. Required fields are marked *

Sustainable e-waste management in higher education institutions: case study of Ho Chi Minh City University of Technology

  • Original Paper
  • Published: 14 September 2024

Cite this article

case study control experiment

  • T. Q. Thao 1 , 2 ,
  • T. H. Hanh 1 , 2 &
  • N. N. Huy   ORCID: orcid.org/0000-0002-2918-7935 1 , 2  

The global concern for e-waste necessitates comprehensive research, especially in educational institutions. This paper examines the case study of Ho Chi Minh City University of Technology (HCMUT), examining the generation, flow, and potential environmental impact of e-waste from 2024 to 2034. The research incorporates life cycle inventory (LCI) and material flow analysis (MFA) to estimate the volume and composition of obsolete electronic and electrical equipment (EEE). The study reveals a substantial increase in discarded devices at HCMUT, aligning with campus expansions. E-waste is estimated to generated 1.5 times from 16,792 kg in 2024 to 25,230 kg in 2034, emphasizing the urgency for effective waste management. MFA models delineate the flow of e-waste materials, emphasizing the need for targeted recycling measures. The examination of specific EEE types (projectors, computers, air conditioners, and lamps) reveals varying recyclability proportions, necessitating tailored management strategies. The absence of a specific e-waste management law in Vietnam, coupled with manual and unsafe processing practices, contributes to environmental and health hazards. The paper emphasizes the imperative for sustainable practices in higher education institutions (HEIs) and presents HCMUT's case as pivotal. The university's commitment to sustainable development is highlighted, underscoring the importance of integrating e-waste management into broader environmental strategies. As HEIs globally struggle with e-waste challenges, the study proposes a framework for effective management, incorporating LCI and MFA for informed decision-making. The results provide valuable insights for developing practical and sustainable e-waste management measures, guiding HEIs toward minimizing environmental impact while fostering a culture of responsible e-waste practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

case study control experiment

Source: compiled from Huisman ( 2008 ); Cheung et al. ( 2017 ); (Nguyen 2018 )

case study control experiment

Source: HCMUT Department of Equipment Management

case study control experiment

Explore related subjects

  • Environmental Chemistry

Availability of data and materials

All data generated or analyzed during this study are included in this published article. The other datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ahirwar R, Tripathi AK (2021) E-waste management: a review of recycling process, environmental and occupational health hazards, and potential solutions. Environ Nanotechnol Monitor Manag 15:100409

CAS   Google Scholar  

Arushanyan Y, Björklund A, Eriksson O, Finnveden G, Ljunggren Söderman M, Sundqvist J-O, Stenmarck Å (2017) Environmental assessment of possible future waste management scenarios. Energies 10(2):247. https://doi.org/10.3390/en10020247

Article   CAS   Google Scholar  

Berchin II, de Aguiar Dutra AR (2021) How do higher education institutions promote sustainable development? A Literature Review. Sustain Develop 29(6):1204–1222. https://doi.org/10.1002/sd.2219

Article   Google Scholar  

Cheung CW, Berger M, Finkbeiner M (2017) Comparative life cycle assessment of re-use and replacement for video projectors. Int J Life Cycle Assess 23(1):82–94. https://doi.org/10.1007/s11367-017-1301-3

Chibunna JB, Siwar C, Begum RA, Mohamed AF (2012) The challenges of e-waste management among institutions: a case study of ukm. Procedia Soc Behav Sci 59:644–649

Cravioto J, Yasunaga R, Yamasue E (2017) Comparative analysis of average time of use of home appliances. Procedia CIRP 61:657–662. https://doi.org/10.1016/j.procir.2016.11.248

Cuong N (2013) E-waste: disposal increasing—recycling is not enough. In: E-waste. DONRE, Ho Chi Minh City

Davis G, Wolski M (2009) E-waste and the sustainable organisation: Griffith university’s approach to e-waste. Int J Sustain High Educ 10(1):21–32

Dominguez C, Orehounig K, Carmeliet J (2021) Understanding the path towards a clean energy transition and post-electrification patterns of rural households. Energy Sustain Dev 61:46–64

Findler F, Schönherr N, Lozano R, Reider D, Martinuzzi A (2019) The impacts of higher education institutions on sustainable development: a review and conceptualization. Int J Sustain High Educ 20(1):23–38

Forti V, Balde CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020: Quantities, flows and the circular economy potential

GSO (2024) Vietnam General Statistics Office-GSO: University and college education. https://www.gso.gov.vn/en/education/

HCMUT (2020–2023) Student enrollment plan. Ho Chi Minh City University of Technology—National University (HCMUT)

HCMUT (2024) Official portal of Ho Chi Minh City University of Technology - Vietnam National University Ho Chi Minh City. https://hcmut.edu.vn/en

He H, Reynolds CJ, Hadjikakou M, Holyoak N, Boland J (2020) Quantification of indirect waste generation and treatment arising from australian household consumption: a waste input-output analysis. J Clean Prod 258:120935

Huisman J (2008) 2008 review of directive 2002/96 on waste electrical and electronic equipment (weee), final report

Ismail H, Hanafiah MM (2021) Evaluation of e-waste management systems in malaysia using life cycle assessment and material flow analysis. J Clean Prod 308:127358

Karkour S, Ihara T, Kuwayama T, Yamaguchi K, Itsubo N (2021) Life cycle assessment of residential air conditioners considering the benefits of their use: a case study in indonesia. Energies 14(2):447

Kullmann F, Markewitz P, Stolten D, Robinius M (2021) Combining the worlds of energy systems and material flow analysis: a review. Energy, Sustainability and Society 11(1):1–22

Kumar P, Shrihari S (2007) Estimation and material flow analysis of waste electrical and electronic equipment (weee)–a case study of mangalore city, karnataka, india. In: Proceedings of the international conference on sustainable solid waste management, Chennai, India. pp 5–7

Li J, Just RE (2018) Modeling household energy consumption and adoption of energy efficient technology. Energy Econ 72:404–415. https://doi.org/10.1016/j.eneco.2018.04.019

Li Y, Fei Y, Zhang X-B, Qin P (2019) Household appliance ownership and income inequality: evidence from micro data in china. China Econ Rev 56:101309

Lin S, Ali MU, Zheng C, Cai Z, Wong MH (2022) Toxic chemicals from uncontrolled e-waste recycling: exposure, body burden, health impact. J Hazard Mater 426:127792

Liu K, Tan Q, Yu J, Wang M (2023) A global perspective on e-waste recycling. Circ Econ 2(1):100028. https://doi.org/10.1016/j.cec.2023.100028

MET (2022) Higher education statistics for the 2021—2022 school year. Ministry of education and training

MONRE (2011) Vietnam's 2011 national environment report. Ministry of natural resource and environment

Network GE (2022) The growing environmental risks of e-waste. Un environment programme

Nguyen D-Q, Ha VH, Eiji Y, Huynh TH (2017) Material flows from electronic waste: understanding the shortages for extended producer responsibility implementation in vietnam. Procedia CIRP 61:651–656. https://doi.org/10.1016/j.procir.2016.11.184

Nguyen DQ (2018) Impact assessment of the extended production responsibility implementation in vietnam: a study on electronic waste management. Vietnam J Sci Technol. https://doi.org/10.15625/2525-2518/54/2a/11908 .

OECD (2008) Measuring material flows and resource productivity: Full guide. I. Available from http://www.oecd.org/environment/indicators-modelling-outlooks/MFA-Guide.pdf

OQA (2016) Aun-qa self-assessment report. In: Office QA (Ed.). Ho Chi Minh City University of Technology—National University (HCMUT)

Rautela R, Arya S, Vishwakarma S, Lee J, Kim K-H, Kumar S (2021) E-waste management and its effects on the environment and human health. Sci Total Environ 773:145623

Rotter VS, Chancerel P, Schill WP (2009) Implementing individual producer responsibility (ipr) under the european weee directive-experiences in germany. In: Sustainable systems and technology, 2009. ISSST'09. IEEE International Symposium on. IEEE: pp 1–6

Thang NT (2017) Country chapter—state of the 3rs in asia and the pacific: The socialist republic of vietnam

Thomas L (2000) Extended producer responsibility in cleaner production. Lund University

Tran CD, Salhofer SP (2018) Analysis of recycling structures for e-waste in vietnam. J Mater Cycles Waste Manage 20(1):110–126. https://doi.org/10.1007/s10163-016-0549-1

UNEP (2007) E-waste volume i: Inventory assessment manual. Osaka: division of technology, industry and economics. Int Environ Technol Centre United Nations Environ Programme

Verma AK (2020) E-wastes and their impact on environment and public health. Int J Appl Res

Viruega Sevilla D, Francisco López A, Bello Bugallo P (2022) The role of a hazardous waste intermediate management plant in the circularity of products. Sustainability. https://doi.org/10.3390/su14031241

Yaashikaa P, Priyanka B, Kumar PS, Karishma S, Jeevanantham S, Indraganti S (2022) A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. Chemosphere 287:132230

Ylä-Mella J, Keiski RL, Pongrácz E (2022) End-of-use vs. end-of-life: When do consumer electronics become waste? Resources, 11(2): 18

Download references

Acknowledgements

We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this study.

Author information

Authors and affiliations.

Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Vietnam

T. Q. Thao, T. H. Hanh & N. N. Huy

Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam

You can also search for this author in PubMed   Google Scholar

Contributions

TQT conceived, designed, and supervised the study and prepared the first draft manuscript. THH collected and processed data. NNH prepared and revised the whole manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. N. Huy .

Ethics declarations

Conflict of interest.

The authors declare that they have no competing interests.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Thao, T.Q., Hanh, T.H. & Huy, N.N. Sustainable e-waste management in higher education institutions: case study of Ho Chi Minh City University of Technology. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-06012-w

Download citation

Received : 02 April 2024

Revised : 09 August 2024

Accepted : 19 August 2024

Published : 14 September 2024

DOI : https://doi.org/10.1007/s13762-024-06012-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sustainable campus
  • Sustainability
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Observational Studies: Cohort and Case-Control Studies

Jae w. song.

1 Research Fellow, Section of Plastic Surgery, Department of Surgery The University of Michigan Health System; Ann Arbor, MI

Kevin C. Chung

2 Professor of Surgery, Section of Plastic Surgery, Department of Surgery The University of Michigan Health System; Ann Arbor, MI

Observational studies are an important category of study designs. To address some investigative questions in plastic surgery, randomized controlled trials are not always indicated or ethical to conduct. Instead, observational studies may be the next best method to address these types of questions. Well-designed observational studies have been shown to provide results similar to randomized controlled trials, challenging the belief that observational studies are second-rate. Cohort studies and case-control studies are two primary types of observational studies that aid in evaluating associations between diseases and exposures. In this review article, we describe these study designs, methodological issues, and provide examples from the plastic surgery literature.

Because of the innovative nature of the specialty, plastic surgeons are frequently confronted with a spectrum of clinical questions by patients who inquire about “best practices.” It is thus essential that plastic surgeons know how to critically appraise the literature to understand and practice evidence-based medicine (EBM) and also contribute to the effort by carrying out high-quality investigations. 1 Well-designed randomized controlled trials (RCTs) have held the pre-eminent position in the hierarchy of EBM as level I evidence ( Table 1 ). However, RCT methodology, which was first developed for drug trials, can be difficult to conduct for surgical investigations. 3 Instead, well-designed observational studies, recognized as level II or III evidence, can play an important role in deriving evidence for plastic surgery. Results from observational studies are often criticized for being vulnerable to influences by unpredictable confounding factors. However, recent work has challenged this notion, showing comparable results between observational studies and RCTs. 4 , 5 Observational studies can also complement RCTs in hypothesis generation, establishing questions for future RCTs, and defining clinical conditions.

Levels of Evidence Based Medicine

Level of
Evidence
Qualifying Studies
IHigh-quality, multicenter or single-center, randomized controlled trial with adequate power; or systematic review of these studies
IILesser quality, randomized controlled trial; prospective cohort study; or systematic review of these studies
IIIRetrospective comparative study; case-control study; or systematic review of these studies
IVCase-series
VExpert opinion; case report or clinical example; or evidence based on physiology, bench research, or “first principles”

From REF 1 .

Observational studies fall under the category of analytic study designs and are further sub-classified as observational or experimental study designs ( Figure 1 ). The goal of analytic studies is to identify and evaluate causes or risk factors of diseases or health-related events. The differentiating characteristic between observational and experimental study designs is that in the latter, the presence or absence of undergoing an intervention defines the groups. By contrast, in an observational study, the investigator does not intervene and rather simply “observes” and assesses the strength of the relationship between an exposure and disease variable. 6 Three types of observational studies include cohort studies, case-control studies, and cross-sectional studies ( Figure 1 ). Case-control and cohort studies offer specific advantages by measuring disease occurrence and its association with an exposure by offering a temporal dimension (i.e. prospective or retrospective study design). Cross-sectional studies, also known as prevalence studies, examine the data on disease and exposure at one particular time point ( Figure 2 ). 6 Because the temporal relationship between disease occurrence and exposure cannot be established, cross-sectional studies cannot assess the cause and effect relationship. In this review, we will primarily discuss cohort and case-control study designs and related methodologic issues.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0001.jpg

Analytic Study Designs. Adapted with permission from Joseph Eisenberg, Ph.D.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0002.jpg

Temporal Design of Observational Studies: Cross-sectional studies are known as prevalence studies and do not have an inherent temporal dimension. These studies evaluate subjects at one point in time, the present time. By contrast, cohort studies can be either retrospective (latin derived prefix, “retro” meaning “back, behind”) or prospective (greek derived prefix, “pro” meaning “before, in front of”). Retrospective studies “look back” in time contrasting with prospective studies, which “look ahead” to examine causal associations. Case-control study designs are also retrospective and assess the history of the subject for the presence or absence of an exposure.

COHORT STUDY

The term “cohort” is derived from the Latin word cohors . Roman legions were composed of ten cohorts. During battle each cohort, or military unit, consisting of a specific number of warriors and commanding centurions, were traceable. The word “cohort” has been adopted into epidemiology to define a set of people followed over a period of time. W.H. Frost, an epidemiologist from the early 1900s, was the first to use the word “cohort” in his 1935 publication assessing age-specific mortality rates and tuberculosis. 7 The modern epidemiological definition of the word now means a “group of people with defined characteristics who are followed up to determine incidence of, or mortality from, some specific disease, all causes of death, or some other outcome.” 7

Study Design

A well-designed cohort study can provide powerful results. In a cohort study, an outcome or disease-free study population is first identified by the exposure or event of interest and followed in time until the disease or outcome of interest occurs ( Figure 3A ). Because exposure is identified before the outcome, cohort studies have a temporal framework to assess causality and thus have the potential to provide the strongest scientific evidence. 8 Advantages and disadvantages of a cohort study are listed in Table 2 . 2 , 9 Cohort studies are particularly advantageous for examining rare exposures because subjects are selected by their exposure status. Additionally, the investigator can examine multiple outcomes simultaneously. Disadvantages include the need for a large sample size and the potentially long follow-up duration of the study design resulting in a costly endeavor.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0003.jpg

Cohort and Case-Control Study Designs

Advantages and Disadvantages of the Cohort Study

  Gather data regarding sequence of events; can assess causality
  Examine multiple outcomes for a given exposure
  Good for investigating rare exposures
  Can calculate rates of disease in exposed and unexposed individuals over time (e.g. incidence, relative risk)
  Large numbers of subjects are required to study rare exposures
  Susceptible to selection bias
  May be expensive to conduct
  May require long durations for follow-up
  Maintaining follow-up may be difficult
  Susceptible to loss to follow-up or withdrawals
  Susceptible to recall bias or information bias
  Less control over variables

Cohort studies can be prospective or retrospective ( Figure 2 ). Prospective studies are carried out from the present time into the future. Because prospective studies are designed with specific data collection methods, it has the advantage of being tailored to collect specific exposure data and may be more complete. The disadvantage of a prospective cohort study may be the long follow-up period while waiting for events or diseases to occur. Thus, this study design is inefficient for investigating diseases with long latency periods and is vulnerable to a high loss to follow-up rate. Although prospective cohort studies are invaluable as exemplified by the landmark Framingham Heart Study, started in 1948 and still ongoing, 10 in the plastic surgery literature this study design is generally seen to be inefficient and impractical. Instead, retrospective cohort studies are better indicated given the timeliness and inexpensive nature of the study design.

Retrospective cohort studies, also known as historical cohort studies, are carried out at the present time and look to the past to examine medical events or outcomes. In other words, a cohort of subjects selected based on exposure status is chosen at the present time, and outcome data (i.e. disease status, event status), which was measured in the past, are reconstructed for analysis. The primary disadvantage of this study design is the limited control the investigator has over data collection. The existing data may be incomplete, inaccurate, or inconsistently measured between subjects. 2 However, because of the immediate availability of the data, this study design is comparatively less costly and shorter than prospective cohort studies. For example, Spear and colleagues examined the effect of obesity and complication rates after undergoing the pedicled TRAM flap reconstruction by retrospectively reviewing 224 pedicled TRAM flaps in 200 patients over a 10-year period. 11 In this example, subjects who underwent the pedicled TRAM flap reconstruction were selected and categorized into cohorts by their exposure status: normal/underweight, overweight, or obese. The outcomes of interest were various flap and donor site complications. The findings revealed that obese patients had a significantly higher incidence of donor site complications, multiple flap complications, and partial flap necrosis than normal or overweight patients. An advantage of the retrospective study design analysis is the immediate access to the data. A disadvantage is the limited control over the data collection because data was gathered retrospectively over 10-years; for example, a limitation reported by the authors is that mastectomy flap necrosis was not uniformly recorded for all subjects. 11

An important distinction lies between cohort studies and case-series. The distinguishing feature between these two types of studies is the presence of a control, or unexposed, group. Contrasting with epidemiological cohort studies, case-series are descriptive studies following one small group of subjects. In essence, they are extensions of case reports. Usually the cases are obtained from the authors' experiences, generally involve a small number of patients, and more importantly, lack a control group. 12 There is often confusion in designating studies as “cohort studies” when only one group of subjects is examined. Yet, unless a second comparative group serving as a control is present, these studies are defined as case-series. The next step in strengthening an observation from a case-series is selecting appropriate control groups to conduct a cohort or case-control study, the latter which is discussed in the following section about case-control studies. 9

Methodological Issues

Selection of subjects in cohort studies.

The hallmark of a cohort study is defining the selected group of subjects by exposure status at the start of the investigation. A critical characteristic of subject selection is to have both the exposed and unexposed groups be selected from the same source population ( Figure 4 ). 9 Subjects who are not at risk for developing the outcome should be excluded from the study. The source population is determined by practical considerations, such as sampling. Subjects may be effectively sampled from the hospital, be members of a community, or from a doctor's individual practice. A subset of these subjects will be eligible for the study.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0005.jpg

Levels of Subject Selection. Adapted from Ref 9 .

Attrition Bias (Loss to follow-up)

Because prospective cohort studies may require long follow-up periods, it is important to minimize loss to follow-up. Loss to follow-up is a situation in which the investigator loses contact with the subject, resulting in missing data. If too many subjects are loss to follow-up, the internal validity of the study is reduced. A general rule of thumb requires that the loss to follow-up rate not exceed 20% of the sample. 6 Any systematic differences related to the outcome or exposure of risk factors between those who drop out and those who stay in the study must be examined, if possible, by comparing individuals who remain in the study and those who were loss to follow-up or dropped out. It is therefore important to select subjects who can be followed for the entire duration of the cohort study. Methods to minimize loss to follow-up are listed in Table 3 .

Methods to Minimize Loss to Follow-Up

 Exclude subjects likely to be lost
  Planning to move
  Non-committal
 Obtain information to allow future tracking
  Collect subject's contact information (e.g. mailing addresses, telephone numbers, and email addresses)
  Collect social security and/or Medicare numbers
 Maintain periodic contact
  By telephone: may require calls during the weekends and/or evenings
  By mail: repeated mailings by e-mail or with stamped, self-addressed return envelopes
  Other: newsletters or token gifts with study logo

Adapted from REF 2 .

CASE-CONTROL STUDIES

Case-control studies were historically borne out of interest in disease etiology. The conceptual basis of the case-control study is similar to taking a history and physical; the diseased patient is questioned and examined, and elements from this history taking are knitted together to reveal characteristics or factors that predisposed the patient to the disease. In fact, the practice of interviewing patients about behaviors and conditions preceding illness dates back to the Hippocratic writings of the 4 th century B.C. 7

Reasons of practicality and feasibility inherent in the study design typically dictate whether a cohort study or case-control study is appropriate. This study design was first recognized in Janet Lane-Claypon's study of breast cancer in 1926, revealing the finding that low fertility rate raises the risk of breast cancer. 13 , 14 In the ensuing decades, case-control study methodology crystallized with the landmark publication linking smoking and lung cancer in the 1950s. 15 Since that time, retrospective case-control studies have become more prominent in the biomedical literature with more rigorous methodological advances in design, execution, and analysis.

Case-control studies identify subjects by outcome status at the outset of the investigation. Outcomes of interest may be whether the subject has undergone a specific type of surgery, experienced a complication, or is diagnosed with a disease ( Figure 3B ). Once outcome status is identified and subjects are categorized as cases, controls (subjects without the outcome but from the same source population) are selected. Data about exposure to a risk factor or several risk factors are then collected retrospectively, typically by interview, abstraction from records, or survey. Case-control studies are well suited to investigate rare outcomes or outcomes with a long latency period because subjects are selected from the outset by their outcome status. Thus in comparison to cohort studies, case-control studies are quick, relatively inexpensive to implement, require comparatively fewer subjects, and allow for multiple exposures or risk factors to be assessed for one outcome ( Table 4 ). 2 , 9

Advantages and Disadvantages of the Case-Control Study

 Good for examining rare outcomes or outcomes with long latency
 Relatively quick to conduct
 Relatively inexpensive
 Requires comparatively few subjects
 Existing records can be used
 Multiple exposures or risk factors can be examined
 Susceptible to recall bias or information bias
 Difficult to validate information
 Control of extraneous variables may be incomplete
 Selection of an appropriate comparison group may be difficult
 Rates of disease in exposed and unexposed individuals cannot be determined

An example of a case-control investigation is by Zhang and colleagues who examined the association of environmental and genetic factors associated with rare congenital microtia, 16 which has an estimated prevalence of 0.83 to 17.4 in 10,000. 17 They selected 121 congenital microtia cases based on clinical phenotype, and 152 unaffected controls, matched by age and sex in the same hospital and same period. Controls were of Hans Chinese origin from Jiangsu, China, the same area from where the cases were selected. This allowed both the controls and cases to have the same genetic background, important to note given the investigated association between genetic factors and congenital microtia. To examine environmental factors, a questionnaire was administered to the mothers of both cases and controls. The authors concluded that adverse maternal health was among the main risk factors for congenital microtia, specifically maternal disease during pregnancy (OR 5.89, 95% CI 2.36-14.72), maternal toxicity exposure during pregnancy (OR 4.76, 95% CI 1.66-13.68), and resident area, such as living near industries associated with air pollution (OR 7.00, 95% CI 2.09-23.47). 16 A case-control study design is most efficient for this investigation, given the rarity of the disease outcome. Because congenital microtia is thought to have multifactorial causes, an additional advantage of the case-control study design in this example is the ability to examine multiple exposures and risk factors.

Selection of Cases

Sampling in a case-control study design begins with selecting the cases. In a case-control study, it is imperative that the investigator has explicitly defined inclusion and exclusion criteria prior to the selection of cases. For example, if the outcome is having a disease, specific diagnostic criteria, disease subtype, stage of disease, or degree of severity should be defined. Such criteria ensure that all the cases are homogenous. Second, cases may be selected from a variety of sources, including hospital patients, clinic patients, or community subjects. Many communities maintain registries of patients with certain diseases and can serve as a valuable source of cases. However, despite the methodologic convenience of this method, validity issues may arise. For example, if cases are selected from one hospital, identified risk factors may be unique to that single hospital. This methodological choice may weaken the generalizability of the study findings. Another example is choosing cases from the hospital versus the community; most likely cases from the hospital sample will represent a more severe form of the disease than those in the community. 2 Finally, it is also important to select cases that are representative of cases in the target population to strengthen the study's external validity ( Figure 4 ). Potential reasons why cases from the original target population eventually filter through and are available as cases (study participants) for a case-control study are illustrated in Figure 5 .

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0006.jpg

Levels of Case Selection. Adapted from Ref 2 .

Selection of Controls

Selecting the appropriate group of controls can be one of the most demanding aspects of a case-control study. An important principle is that the distribution of exposure should be the same among cases and controls; in other words, both cases and controls should stem from the same source population. The investigator may also consider the control group to be an at-risk population, with the potential to develop the outcome. Because the validity of the study depends upon the comparability of these two groups, cases and controls should otherwise meet the same inclusion criteria in the study.

A case-control study design that exemplifies this methodological feature is by Chung and colleagues, who examined maternal cigarette smoking during pregnancy and the risk of newborns developing cleft lip/palate. 18 A salient feature of this study is the use of the 1996 U.S. Natality database, a population database, from which both cases and controls were selected. This database provides a large sample size to assess newborn development of cleft lip/palate (outcome), which has a reported incidence of 1 in 1000 live births, 19 and also enabled the investigators to choose controls (i.e., healthy newborns) that were generalizable to the general population to strengthen the study's external validity. A significant relationship with maternal cigarette smoking and cleft lip/palate in the newborn was reported in this study (adjusted OR 1.34, 95% CI 1.36-1.76). 18

Matching is a method used in an attempt to ensure comparability between cases and controls and reduces variability and systematic differences due to background variables that are not of interest to the investigator. 8 Each case is typically individually paired with a control subject with respect to the background variables. The exposure to the risk factor of interest is then compared between the cases and the controls. This matching strategy is called individual matching. Age, sex, and race are often used to match cases and controls because they are typically strong confounders of disease. 20 Confounders are variables associated with the risk factor and may potentially be a cause of the outcome. 8 Table 5 lists several advantages and disadvantages with a matching design.

Advantages and Disadvantages for Using a Matching Strategy

AdvantagesDisadvantages
Eliminate influence of measurable confounders (e.g. age, sex)May be time-consuming and expensive
Eliminate influence of confounders that are difficult to measureDecision to match and confounding variables to match upon are decided at the outset of the study
May be a sampling convenience, making it easier to select the controls in a case-control studyMatched variables cannot be examined in the study
May improve study efficiency (i.e. smaller sample size)Requires a matched analysis
Vulnerable to overmatching: when matching variable has some relationship with the outcome

Multiple Controls

Investigations examining rare outcomes may have a limited number of cases to select from, whereas the source population from which controls can be selected is much larger. In such scenarios, the study may be able to provide more information if multiple controls per case are selected. This method increases the “statistical power” of the investigation by increasing the sample size. The precision of the findings may improve by having up to about three or four controls per case. 21 - 23

Bias in Case-Control Studies

Evaluating exposure status can be the Achilles heel of case-control studies. Because information about exposure is typically collected by self-report, interview, or from recorded information, it is susceptible to recall bias, interviewer bias, or will rely on the completeness or accuracy of recorded information, respectively. These biases decrease the internal validity of the investigation and should be carefully addressed and reduced in the study design. Recall bias occurs when a differential response between cases and controls occurs. The common scenario is when a subject with disease (case) will unconsciously recall and report an exposure with better clarity due to the disease experience. Interviewer bias occurs when the interviewer asks leading questions or has an inconsistent interview approach between cases and controls. A good study design will implement a standardized interview in a non-judgemental atmosphere with well-trained interviewers to reduce interviewer bias. 9

The STROBE Statement: The Strengthening the Reporting of Observational Studies in Epidemiology Statement

In 2004, the first meeting of the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) group took place in Bristol, UK. 24 The aim of the group was to establish guidelines on reporting observational research to improve the transparency of the methods, thereby facilitating the critical appraisal of a study's findings. A well-designed but poorly reported study is disadvantaged in contributing to the literature because the results and generalizability of the findings may be difficult to assess. Thus a 22-item checklist was generated to enhance the reporting of observational studies across disciplines. 25 , 26 This checklist is also located at the following website: www.strobe-statement.org . This statement is applicable to cohort studies, case-control studies, and cross-sectional studies. In fact, 18 of the checklist items are common to all three types of observational studies, and 4 items are specific to each of the 3 specific study designs. In an effort to provide specific guidance to go along with this checklist, an “explanation and elaboration” article was published for users to better appreciate each item on the checklist. 27 Plastic surgery investigators should peruse this checklist prior to designing their study and when they are writing up the report for publication. In fact, some journals now require authors to follow the STROBE Statement. A list of participating journals can be found on this website: http://www.strobe-statement.org./index.php?id=strobe-endorsement .

Due to the limitations in carrying out RCTs in surgical investigations, observational studies are becoming more popular to investigate the relationship between exposures, such as risk factors or surgical interventions, and outcomes, such as disease states or complications. Recognizing that well-designed observational studies can provide valid results is important among the plastic surgery community, so that investigators can both critically appraise and appropriately design observational studies to address important clinical research questions. The investigator planning an observational study can certainly use the STROBE statement as a tool to outline key features of a study as well as coming back to it again at the end to enhance transparency in methodology reporting.

Acknowledgments

Supported in part by a Midcareer Investigator Award in Patient-Oriented Research (K24 AR053120) from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (to Dr. Kevin C. Chung).

None of the authors has a financial interest in any of the products, devices, or drugs mentioned in this manuscript.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

IMAGES

  1. Case-control studies: research in reverse

    case study control experiment

  2. The design of a case control study

    case study control experiment

  3. PPT

    case study control experiment

  4. PPT

    case study control experiment

  5. Overview of the Case Study Experiment

    case study control experiment

  6. Differences between cross-sectional, case-control, and cohort study

    case study control experiment

VIDEO

  1. Case control studies simplified

  2. Control: Inverted Pendulum Experiment (Lectures on Advanced Control Systems)

  3. Case Study: Control Fire Protection- BladeRUNNER Retrofit Floor- Waste Fire Collar

  4. Cascade Control Strategy, Process Dynamics and Control by Ankur Bansal ~ The Gate Coach

  5. Motor powered Gyroscope Experiment

  6. Case Control vs Cohort study designs: comparisons

COMMENTS

  1. What Is a Case-Control Study?

    Case-control studies are a type of observational study often used in fields like medical research, environmental health, or epidemiology. While most observational studies are qualitative in nature, case-control studies can also be quantitative, and they often are in healthcare settings. Case-control studies can be used for both exploratory and ...

  2. Case Control Studies

    A case-control study is a type of observational study commonly used to look at factors associated with diseases or outcomes.[1] The case-control study starts with a group of cases, which are the individuals who have the outcome of interest. The researcher then tries to construct a second group of individuals called the controls, who are similar to the case individuals but do not have the ...

  3. Study Design 101: Case Control Study

    Case control studies are observational because no intervention is attempted and no attempt is made to alter the course of the disease. The goal is to retrospectively determine the exposure to the risk factor of interest from each of the two groups of individuals: cases and controls. These studies are designed to estimate odds.

  4. Case-control study

    A case-control study (also known as case-referent study) is a type of observational study in which two existing groups differing in outcome are identified and compared on the basis of some supposed causal attribute. Case-control studies are often used to identify factors that may contribute to a medical condition by comparing subjects who ...

  5. Research Design: Case-Control Studies

    Characteristics of Case-Control Studies. How do case-control studies fit into classifications of research design described in an earlier article? 1 Case-control studies are empirical studies that are based on samples, not individual cases or case series. They are cross-sectional because cases and controls are identified and evaluated for caseness, historical exposures, and confounding ...

  6. A Practical Overview of Case-Control Studies in Clinical Practice

    Abstract. Case-control studies are one of the major observational study designs for performing clinical research. The advantages of these study designs over other study designs are that they are relatively quick to perform, economical, and easy to design and implement. Case-control studies are particularly appropriate for studying disease ...

  7. Methodology Series Module 2: Case-control Studies

    Case-Control study design is a type of observational study. In this design, participants are selected for the study based on their outcome status. Thus, some participants have the outcome of interest (referred to as cases), whereas others do not have the outcome of interest (referred to as controls). The investigator then assesses the exposure ...

  8. A Practical Overview of Case-Control Studies in Clinical Practice

    General Overview of Case-Control Studies. In observational studies, also called epidemiologic studies, the primary objective is to discover and quantify an association between exposures and the outcome of interest, in hopes of drawing causal inference. Observational studies can have a retrospective study design, a prospective design, a cross ...

  9. Case Control Study: Definition & Examples

    Examples. A case-control study is an observational study where researchers analyzed two groups of people (cases and controls) to look at factors associated with particular diseases or outcomes. Below are some examples of case-control studies: Investigating the impact of exposure to daylight on the health of office workers (Boubekri et al., 2014).

  10. Case Control Studies

    A case-control study is a type of observational study commonly used to look at factors associated with diseases or outcomes. The case-control study starts with a group of cases, which are the individuals who have the outcome of interest. The researcher then tries to construct a second group of individuals called the controls, who are similar to ...

  11. PDF Case-control studies: an efficient study design

    Case-control studies: an efficient study design ... Case-control studies: research in reverse. Lancet. 2002;359:431-4. 10. Pearl J, McKenzie D. The Book of Why. The New Science of

  12. Case-control and Cohort studies: A brief overview

    Introduction. Case-control and cohort studies are observational studies that lie near the middle of the hierarchy of evidence. These types of studies, along with randomised controlled trials, constitute analytical studies, whereas case reports and case series define descriptive studies (1). Although these studies are not ranked as highly as ...

  13. Case Control Study: Definition, Benefits & Examples

    Related posts: Observational Studies Explained and Control Groups in Experiments. Benefits of a Case Control Study. A case control study is a relatively quick and simple design. They frequently use existing patient data, and the experimenters form the groups after the outcomes are known. Researchers do not conduct an experiment.

  14. A Practical Overview of Case-Control Studies in Clinical Practice

    Case-control studies are one of the major observational study designs for performing clinical research. The advantages of these study designs over other study designs are that they are relatively quick to perform, economical, and easy to design and implement. Case-control studies are particularly appropriate for studying disease outbreaks, rare diseases, or outcomes of interest.

  15. Case-control study in medical research: Uses and limitations

    A case-control study is a type of medical research investigation often used to help determine the cause of a disease, particularly when investigating a disease outbreak or rare condition.

  16. Case-Control Study: Definition, Real Life Examples

    Design of Experiments > Case-Control Study. What is a Case-Control Study? A case-control study is a retrospective study that looks back in time to find the relative risk between a specific exposure (e.g. second hand tobacco smoke) and an outcome (e.g. cancer). A control group of people who do not have the disease or who did not experience the event is used for comparison.

  17. Case Study vs. Experiment

    A case study involves in-depth analysis of a particular individual, group, or situation, aiming to provide a detailed understanding of a specific phenomenon. On the other hand, an experiment involves manipulating variables and observing the effects on a sample population, aiming to establish cause-and-effect relationships.

  18. An Introduction to the Fundamentals of Cohort and Case-Control Studies

    Design. In a case-control study, a number of cases and noncases (controls) are identified, and the occurrence of one or more prior exposures is compared between groups to evaluate drug-outcome associations (Figure 1). A case-control study runs in reverse relative to a cohort study. 21 As such, study inception occurs when a patient ...

  19. Descriptive Research and Case Studies

    Explain the importance and uses of descriptive research, especially case studies, in studying abnormal behavior; ... In experimental research, which will be discussed later, there is a tremendous amount of control over variables of interest. While performing an experiment is a powerful approach, experiments are often conducted in very ...

  20. Oxidative Stress in Depression: A Case-control Study of Serum MDA

    Our study was a case-control cross-sectional hospital-based study type with a purposive sampling method. Hence, the results need to be more generalizable to the community. ... The research arena of MDD biomarkers is deprived by a meager understanding of MDD etiopathogenesis, the disorder's vast heterogeneity, uncommon co-morbidities, and ...

  21. Case Control

    Case control studies are observational because no intervention is attempted and no attempt is made to alter the course of the disease. The goal is to retrospectively determine the exposure to the risk factor of interest from each of the two groups of individuals: cases and controls. These studies are designed to estimate odds.

  22. Case Study in Research Integrity: Alcohol and Harassment

    Unfortunately, over the past several years we have seen numerous instances where alcohol may have contributed to inappropriate behavior and sexual harassment in the context of scientific research. We are presenting a few case studies below, which are adapted in part from real situations where we worked in tandem with the recipient institutions ...

  23. Epidemiology in Practice: Case-Control Studies

    Introduction. A case-control study is designed to help determine if an exposure is associated with an outcome (i.e., disease or condition of interest). In theory, the case-control study can be described simply. First, identify the cases (a group known to have the outcome) and the controls (a group known to be free of the outcome).

  24. A Practical Overview of Case-Control Studies in Clinical Practice

    Case-control studies are one of the major observational study designs for performing clinical research. The advantages of these study designs over other study designs are that they are relatively quick to perform, economical, and easy to design and implement. Case-control studies are particularly appropriate for studying disease outbreaks, rare ...

  25. A case controlled study of risk factors for metastatic squamous cell

    A retrospective case-control study in a single institution of 3576 cases of organ transplants were identified from January 1991 to July 2022. A cohort of metastatic cancer patients and two randomly generated age and organ matched control cohorts were identified. 16 SOTR patients developed metastatic cSCC. ... Research reported in this ...

  26. Design and data analysis case-controlled study in clinical research

    Introduction. Clinicians think of case-control study when they want to ascertain association between one clinical condition and an exposure or when a researcher wants to compare patients with disease exposed to the risk factors to non-exposed control group. In other words, case-control study compares subjects who have disease or outcome (cases ...

  27. Sustainable e-waste management in higher education institutions: case

    The global concern for e-waste necessitates comprehensive research, especially in educational institutions. This paper examines the case study of Ho Chi Minh City University of Technology (HCMUT), examining the generation, flow, and potential environmental impact of e-waste from 2024 to 2034. The research incorporates life cycle inventory (LCI) and material flow analysis (MFA) to estimate the ...

  28. Observational Studies: Cohort and Case-Control Studies

    Cohort studies and case-control studies are two primary types of observational studies that aid in evaluating associations between diseases and exposures. In this review article, we describe these study designs, methodological issues, and provide examples from the plastic surgery literature. Keywords: observational studies, case-control study ...