The 3 Required Parts of a Hypothesis: Understanding the Basics
- by Brian Thomas
- October 4, 2024
Have you ever wondered what it takes to create a hypothesis? Whether you’re a student delving into scientific research or just curious about the world around you, understanding the key components of a hypothesis is essential. In this blog post, we’ll explore the three required parts of a hypothesis, breaking down their importance and providing real-world examples along the way.
A hypothesis serves as the foundation of any scientific investigation , allowing researchers to form predictions and test their ideas. But what are these three essential elements that make up a hypothesis? How do you develop a hypothesis that is effective and meaningful? Join us as we unravel the mysteries of hypothesis writing and explore the stages of hypothesis testing. By the end of this post, you’ll be equipped with the knowledge to craft your own hypotheses and embark on exciting scientific endeavors. So let’s dive in!
What Are the 3 Essential Components of a Hypothesis?
When it comes to hypotheses, the three key components are like the three musketeers of scientific inquiry. Each element plays an important role in shaping the hypothesis and guiding the research process. So, let’s dive into the three essential parts of a hypothesis and unravel their roles, shall we?
The Sneaky Subject: “If”
The first amigo of our hypothesis trio is the sneaky subject “If.” This little word sets the stage for your hypothesis, introducing the condition or factor you are exploring in your research. It’s like the Sherlock Holmes of hypotheses, searching for clues and connections. Without the “If,” our hypothesis would be as lost as a penguin in the Sahara.
The Clever Connection: “Then”
Ah, the clever companion “Then” joins the hypothesis party! This element helps you establish the expected outcome based on your “If” condition. It’s the bridge that connects your hypothesis to the results you hope to find. Think of it as the conductor of a symphony, orchestrating the relationship between the “If” and the “Then” in harmonious scientific fashion.
The Mighty Explanation: “Because”
Last but certainly not least, we have the mighty explanation “Because.” This component adds depth and substance to your hypothesis by providing a rationale or reason for your expected outcome. It’s like the wise old sage who imparts wisdom and knowledge. With the “Because” in place, your hypothesis transforms from a mere statement into a well-grounded prediction.
Putting It All Together
Now that we’ve met the three essential parts of a hypothesis, let’s see how they work together in a hypothetical example:
If eating chocolate leads to increased happiness, then individuals who consume chocolate daily because they have lower stress levels will report higher levels of satisfaction and well-being.
In this example, the “If” identifies the condition being explored (eating chocolate), the “Then” predicts the expected outcome (higher levels of satisfaction and well-being), and the “Because” provides the rationale (lower stress levels). It’s like a mini science equation, where each element contributes to the overall hypothesis.
Hypotheses are like the backbone of scientific research, guiding the direction and purpose of investigations. By understanding the three essential components – the sneaky “If,” clever “Then,” and mighty “Because” – you’re equipped to construct robust hypotheses that withstand the scrutiny of the scientific world. So, go forth and let your hypotheses shine like beacons of knowledge in the vast sea of research!
Remember, the next time you encounter a hypothesis, you’ll know its secret formula: “If” + “Then” + “Because” = scientific awesomeness!
FAQ: What are the 3 Required Parts of a Hypothesis?
Welcome to our comprehensive FAQ-style guide on hypotheses! If you’ve ever wondered about the key components of a hypothesis or how to develop one for your research paper, you’ve come to the right place. In this FAQ, we’ll address common questions and provide you with the information you need in a friendly, engaging, and even humorous way. So, grab a cup of coffee and let’s dive in!
What are the Requirements for a Hypothesis
A hypothesis is an essential part of the scientific method, serving as a description of the expected outcome of a research study. It must meet a few requirements to be considered valid:
Clear and Testable : A hypothesis should be formulated in a way that allows it to be empirically tested or proved wrong. Fuzzy or ambiguous hypotheses won’t hold up under scrutiny, so precision is key.
Based on Existing Knowledge : Your hypothesis should be grounded in previous research or observations. It should build upon what is already known in the field, helping to advance scientific understanding.
Specific and Measurable : A good hypothesis needs to be specific and measurable, allowing for objective evaluation. Vague statements won’t cut it – scientists want something concrete to sink their teeth into.
What Makes a Valid Hypothesis? 3 Things!
A valid hypothesis possesses three crucial characteristics, which we’ll explore in detail:
Dependent and Independent Variables : To create a valid hypothesis, you need to identify the dependent and independent variables. The dependent variable is the outcome you’re investigating, while the independent variable is the one manipulated to measure its effect on the dependent variable. This relationship forms the core of your hypothesis.
Directional Statement : Your hypothesis should include a directional statement that predicts the expected outcome of your research. Will the independent variable have a positive, negative, or no effect on the dependent variable? Don’t be shy – make a bold prediction!
Testability : A hypothesis must be testable through experiments or observations. This means you need to design a method to gather data and analyze whether it supports or refutes your hypothesis. It’s all about putting your hypothesis to the test and embracing scientific scrutiny.
What is a Hypothesis Example
Let’s put theory into practice with an example: – Hypothesis: “Increasing the amount of sunlight exposure will lead to faster plant growth.” – In this example, the dependent variable is plant growth, while the independent variable is the amount of sunlight exposure. The hypothesis is clear, testable, and includes a directional statement. Now go out there and test it with your green thumbs!
What are the Main Characteristics of a Hypothesis
A good hypothesis possesses several key characteristics. Take a look at these essential traits:
Precise : A hypothesis should be clear and unambiguous to avoid misinterpretation or confusion. Leave no room for doubt!
Falsifiable : For a hypothesis to be valid, it must be capable of being disproven or proven wrong. It should be open to testing and potential refutation.
Relevant : It’s important for a hypothesis to be relevant to the research question or problem at hand. It should address a specific aspect and contribute to the existing body of knowledge.
Logical : Logical coherence is crucial in a hypothesis. There should be a clear connection between the proposed relationship of variables and any supporting evidence or rationale.
What’s a Research Hypothesis
A research hypothesis is a statement formulated to predict a possible outcome of a research study. It serves as a proposed explanation or prediction based on existing knowledge and sets the groundwork for further investigation. Research hypotheses help guide scientific research and provide a clear focus for researchers to explore.
How Do You Write a Hypothesis for a Research Paper
When writing a hypothesis for a research paper, remember these steps:
Identify the Variables : Determine the dependent and independent variables in your study. The dependent variable is the outcome you’re interested in, while the independent variable is the one you’re manipulating.
Formulate a Question : Based on your research and variables, frame a clear and specific research question that links the variables together.
Craft a Statement : Turn your research question into a statement that predicts the relationship between the variables. Make it precise, testable, and include a directional statement.
Revise and Refine : Review your hypothesis for clarity, testability, and logical coherence. Refine it until it accurately represents your research expectations.
Research papers thrive on solid hypotheses, so take the time to craft yours with care!
What are Three Types of Scientific Studies
Scientific studies come in different flavors, each serving a unique purpose:
Observational Studies : These studies involve observing and analyzing existing data or phenomena without manipulating variables. They help identify associations or relationships but can’t establish causation.
Experimental Studies : Experimental studies involve manipulating variables to observe their effects on the dependent variable. These studies allow for causal relationships to be established.
Descriptive Studies : Descriptive studies seek to describe characteristics or behaviors within a population. They often involve surveys, interviews, or observations to collect data.
Consider the nature of your research to determine which type of study is most appropriate for your hypothesis.
How Do You Develop a Research Hypothesis
Developing a research hypothesis requires careful consideration and planning. Follow these steps:
Review Existing Literature : Familiarize yourself with the relevant research already conducted in your field. What questions remain unanswered? What potential gaps can you address?
Identify Variables : Determine the key variables involved in your study. Specify the independent and dependent variables that establish the relationship to be tested.
Formulate a Hypothesis : Create a clear and testable hypothesis that predicts the expected outcome. Make sure it aligns with previous research, is specific, and includes a directional statement.
Refine and Iterate : Continuously refine and iterate your hypothesis as you gather more information and insights. Adapt it based on feedback, new findings, or emerging theories.
Developing a research hypothesis is an iterative process that requires thoughtfulness and adaptability. Embrace the journey!
What are the Needs of Hypothesis in Research
Hypotheses play a vital role in the research process. Here are the key needs they fulfill:
Focus : Hypotheses provide a clear focus for research efforts by highlighting the expected outcome and guiding the investigation.
Testability : Hypotheses allow researchers to design experiments and collect data to test their predictions. This allows for objective evaluation and validation.
Advancement of Knowledge : By formulating hypotheses, researchers contribute to the existing body of knowledge in their field. They add new insights and build upon previous work.
Logic and Coherence : Hypotheses drive research by providing a logical framework and rationale for conducting the study. They ensure that research efforts are purposeful and well-grounded.
What are Types of Hypothesis
Hypotheses can fall into different categories based on their nature and purpose. Here are a few common types:
Null Hypothesis : The null hypothesis states that there is no significant relationship between the variables under investigation. Researchers aim to reject this hypothesis to support their alternative hypothesis.
Alternative Hypothesis : The alternative hypothesis reflects the researcher’s prediction of a specific relationship between variables. It’s the opposite of the null hypothesis and what researchers hope to support.
Directional Hypothesis : A directional hypothesis predicts the direction of the relationship between variables. It specifies whether the effect will be positive or negative, leaving no room for ambiguity.
Non-Directional Hypothesis : In contrast, a non-directional hypothesis simply predicts that a relationship exists between variables, without specifying the direction.
Consider the specific context of your research to determine the most appropriate type of hypothesis to formulate.
What are the Stages of Hypothesis
The hypothesis goes through several stages in the research process:
Formulation : In this initial stage, the researcher identifies the research question, variables, and constructs a hypothesis to guide the investigation.
Design : The hypothesis helps determine the research design and methodology. It guides the selection of variables, sample size, data collection methods, and statistical analyses.
Testing : During this stage, the researcher collects and analyzes data to evaluate the hypothesis. Statistical tests are often used to determine if the data supports or refutes the hypothesis.
Conclusion : Based on the analysis of the data, the researcher draws conclusions about the hypothesis. The hypothesis is either supported or rejected, leading to further research or new questions.
Remember, the hypothesis is not a one-time thing. It evolves throughout the research process, integrating new knowledge and findings.
What is the Process of Hypothesis Testing
Hypothesis testing involves a systematic process to assess the validity of a hypothesis. Here’s a simplified overview:
State the Hypotheses : Clearly articulate the null and alternative hypotheses based on your research question and expected outcomes.
Collect Data : Gather relevant data through surveys, observations, or experiments, depending on your research design.
Analyze Data : Apply appropriate statistical analyses to your data, comparing it to the expected outcomes.
Determine Significance : Assess the statistical significance of your findings. If the p-value is below a predetermined threshold (often 0.05), you can reject the null hypothesis and support the alternative hypothesis.
Draw Conclusions : Based on the analysis, draw conclusions regarding the hypothesis and its implications for your research.
Remember, hypothesis testing is a crucial step in the scientific process, providing evidence to support or refute theories.
How Many Steps are Required to Conduct a Hypothesis Testing
Hypothesis testing typically involves the following four steps:
Formulate Hypotheses : Articulate the null and alternative hypotheses that reflect your research question and predicted outcomes accurately.
Choose a Significance Level : Determine the desired level of significance (usually 0.05), representing the probability of obtaining results as extreme as those observed, assuming the null hypothesis is true.
Collect and Analyze Data : Gather data through experiments or observations, then analyze it using appropriate statistical tests, such as t-tests or chi-square tests.
Interpret Results : Evaluate the results and determine whether the data supports or refutes the null hypothesis. Consider the p-value, confidence intervals, and effect size when interpreting results.
Don’t let these steps intimidate you – they are the building blocks of scientific inquiry and help ensure robust conclusions.
What are the Key Characteristics of a Good Hypothesis
A good hypothesis possesses several key characteristics worth mentioning:
Testability : A hypothesis needs to be testable through empirical evidence, allowing researchers to gather data and substantiate it scientifically.
Specificity : A good hypothesis is precise and specific, leaving no room for ambiguity or misinterpretation. It focuses on a well-defined relationship between variables.
Relevance : A hypothesis should address a relevant research question or problem, contributing to the existing knowledge base in the field.
Logical Coherence : There should be a logical connection between the proposed relationship and any supporting evidence or theoretical framework.
Keep these characteristics in mind when crafting your hypothesis, and you’ll be well on your way to conducting sound research.
What are the 4 Steps of Hypothesis Testing
State the Hypotheses : Clearly articulate the null and alternative hypotheses, representing the current understanding and the researcher’s prediction, respectively.
Determine the Test Statistic : Select an appropriate test statistic based on the research question and type of data you’re analyzing.
Calculate the p-value : Calculate the p-value, which represents the probability of obtaining results as extreme as those observed, assuming the null hypothesis is true.
Conclusion : Compare the calculated p-value to the predefined significance level to determine whether to reject or fail to reject the null hypothesis. Make sure to interpret the results in the context of your research question.
These steps form the backbone of hypothesis testing, allowing you to draw meaningful conclusions based on statistical evidence.
Congratulations on making it to the end of our FAQ on the three required parts of a hypothesis! We’ve covered everything from the requirements of a hypothesis to types of hypotheses and even the stages of hypothesis testing. Armed with this knowledge, you’re ready to tackle your research projects with confidence. Remember, hypotheses are the backbone of scientific inquiry, so take your time to craft them, test them, and embrace the exciting process of discovery. Happy researching!
Disclaimer: This article is for informational purposes only and should not be considered as professional advice. Always consult with a qualified researcher before conducting any experiments or research studies.
- hypothesis testing
- independent variables
- mere statement
- null hypothesis
- observations
- research process
- research study
- scientific research
Brian Thomas
You may also like, what percentage of the population has a credit score over 825, led lights and blurred vision: debunking the myths.
- by Mr. Gilbert Preston
Texas Roadhouse Ribs: A Meat Lover’s Guide to the Best Ribs in Town
- by Donna Gonzalez
What Ore Gives the Most XP in Minecraft
- by Laura Rodriguez
Are Dried Fruit OK for Squirrels?
Personality types: unraveling the mystery of shyness in the mbti world.
- by Daniel Taylor
2.4 Developing a Hypothesis
Learning objectives.
- Distinguish between a theory and a hypothesis.
- Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
- Understand the characteristics of a good hypothesis.
Theories and Hypotheses
Before describing how to develop a hypothesis it is imporant to distinguish betwee a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition. He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.
Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.
A hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observation before we can develop a broader theory.
Theories and hypotheses always have this if-then relationship. “ If drive theory is correct, then cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.
But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this question is an interesting one on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.
Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [1] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the number of examples they bring to mind and the other was that people base their judgments on how easily they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.
Theory Testing
The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method (although this term is much more likely to be used by philosophers of science than by scientists themselves). A researcher begins with a set of phenomena and either constructs a theory to explain or interpret them or chooses an existing theory to work with. He or she then makes a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researcher then conducts an empirical study to test the hypothesis. Finally, he or she reevaluates the theory in light of the new results and revises it if necessary. This process is usually conceptualized as a cycle because the researcher can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As Figure 2.2 shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.
Figure 2.2 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.
As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [2] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans (Zajonc & Sales, 1966) [3] in many other studies afterward).
Incorporating Theory into Your Research
When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.
To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.
Characteristics of a Good Hypothesis
There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use inductive reasoning which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that really it does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.
Key Takeaways
- A theory is broad in nature and explains larger bodies of data. A hypothesis is more specific and makes a prediction about the outcome of a particular study.
- Working with theories is not “icing on the cake.” It is a basic ingredient of psychological research.
- Like other scientists, psychologists use the hypothetico-deductive method. They construct theories to explain or interpret phenomena (or work with existing theories), derive hypotheses from their theories, test the hypotheses, and then reevaluate the theories in light of the new results.
- Practice: Find a recent empirical research report in a professional journal. Read the introduction and highlight in different colors descriptions of theories and hypotheses.
- Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61 , 195–202. ↵
- Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach. Journal of Personality and Social Psychology, 13 , 83–92. ↵
- Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵
Share This Book
- Increase Font Size
What is Hypothesis? Definition, Meaning, Characteristics, Sources
- Post last modified: 10 January 2022
- Reading time: 18 mins read
- Post category: Research Methodology
- What is Hypothesis?
Hypothesis is a prediction of the outcome of a study. Hypotheses are drawn from theories and research questions or from direct observations. In fact, a research problem can be formulated as a hypothesis. To test the hypothesis we need to formulate it in terms that can actually be analysed with statistical tools.
As an example, if we want to explore whether using a specific teaching method at school will result in better school marks (research question), the hypothesis could be that the mean school marks of students being taught with that specific teaching method will be higher than of those being taught using other methods.
In this example, we stated a hypothesis about the expected differences between groups. Other hypotheses may refer to correlations between variables.
Table of Content
- 1 What is Hypothesis?
- 2 Hypothesis Definition
- 3 Meaning of Hypothesis
- 4.1 Conceptual Clarity
- 4.2 Need of empirical referents
- 4.3 Hypothesis should be specific
- 4.4 Hypothesis should be within the ambit of the available research techniques
- 4.5 Hypothesis should be consistent with the theory
- 4.6 Hypothesis should be concerned with observable facts and empirical events
- 4.7 Hypothesis should be simple
- 5.1 Observation
- 5.2 Analogies
- 5.4 State of Knowledge
- 5.5 Culture
- 5.6 Continuity of Research
- 6.1 Null Hypothesis
- 6.2 Alternative Hypothesis
Thus, to formulate a hypothesis, we need to refer to the descriptive statistics (such as the mean final marks), and specify a set of conditions about these statistics (such as a difference between the means, or in a different example, a positive or negative correlation). The hypothesis we formulate applies to the population of interest.
The null hypothesis makes a statement that no difference exists (see Pyrczak, 1995, pp. 75-84).
Hypothesis Definition
A hypothesis is ‘a guess or supposition as to the existence of some fact or law which will serve to explain a connection of facts already known to exist.’ – J. E. Creighton & H. R. Smart
Hypothesis is ‘a proposition not known to be definitely true or false, examined for the sake of determining the consequences which would follow from its truth.’ – Max Black
Hypothesis is ‘a proposition which can be put to a test to determine validity and is useful for further research.’ – W. J. Goode and P. K. Hatt
A hypothesis is a proposition, condition or principle which is assumed, perhaps without belief, in order to draw out its logical consequences and by this method to test its accord with facts which are known or may be determined. – Webster’s New International Dictionary of the English Language (1956)
Meaning of Hypothesis
From the above mentioned definitions of hypothesis, its meaning can be explained in the following ways.
- At the primary level, a hypothesis is the possible and probable explanation of the sequence of happenings or data.
- Sometimes, hypothesis may emerge from an imagination, common sense or a sudden event.
- Hypothesis can be a probable answer to the research problem undertaken for study. 4. Hypothesis may not always be true. It can get disproven. In other words, hypothesis need not always be a true proposition.
- Hypothesis, in a sense, is an attempt to present the interrelations that exist in the available data or information.
- Hypothesis is not an individual opinion or community thought. Instead, it is a philosophical means which is to be used for research purpose. Hypothesis is not to be considered as the ultimate objective; rather it is to be taken as the means of explaining scientifically the prevailing situation.
The concept of hypothesis can further be explained with the help of some examples. Lord Keynes, in his theory of national income determination, made a hypothesis about the consumption function. He stated that the consumption expenditure of an individual or an economy as a whole is dependent on the level of income and changes in a certain proportion.
Later, this proposition was proved in the statistical research carried out by Prof. Simon Kuznets. Matthus, while studying the population, formulated a hypothesis that population increases faster than the supply of food grains. Population studies of several countries revealed that this hypothesis is true.
Validation of the Malthus’ hypothesis turned it into a theory and when it was tested in many other countries it became the famous Malthus’ Law of Population. It thus emerges that when a hypothesis is tested and proven, it becomes a theory. The theory, when found true in different times and at different places, becomes the law. Having understood the concept of hypothesis, few hypotheses can be formulated in the areas of commerce and economics.
- Population growth moderates with the rise in per capita income.
- Sales growth is positively linked with the availability of credit.
- Commerce education increases the employability of the graduate students.
- High rates of direct taxes prompt people to evade taxes.
- Good working conditions improve the productivity of employees.
- Advertising is the most effecting way of promoting sales than any other scheme.
- Higher Debt-Equity Ratio increases the probability of insolvency.
- Economic reforms in India have made the public sector banks more efficient and competent.
- Foreign direct investment in India has moved in those sectors which offer higher rate of profit.
- There is no significant association between credit rating and investment of fund.
Characteristics of Hypothesis
Not all the hypotheses are good and useful from the point of view of research. It is only a few hypotheses satisfying certain criteria that are good, useful and directive in the research work undertaken. The characteristics of such a useful hypothesis can be listed as below:
Conceptual Clarity
Need of empirical referents, hypothesis should be specific, hypothesis should be within the ambit of the available research techniques, hypothesis should be consistent with the theory, hypothesis should be concerned with observable facts and empirical events, hypothesis should be simple.
The concepts used while framing hypothesis should be crystal clear and unambiguous. Such concepts must be clearly defined so that they become lucid and acceptable to everyone. How are the newly developed concepts interrelated and how are they linked with the old one is to be very clear so that the hypothesis framed on their basis also carries the same clarity.
A hypothesis embodying unclear and ambiguous concepts can to a great extent undermine the successful completion of the research work.
A hypothesis can be useful in the research work undertaken only when it has links with some empirical referents. Hypothesis based on moral values and ideals are useless as they cannot be tested. Similarly, hypothesis containing opinions as good and bad or expectation with respect to something are not testable and therefore useless.
For example, ‘current account deficit can be lowered if people change their attitude towards gold’ is a hypothesis encompassing expectation. In case of such a hypothesis, the attitude towards gold is something which cannot clearly be described and therefore a hypothesis which embodies such an unclean thing cannot be tested and proved or disproved. In short, the hypothesis should be linked with some testable referents.
For the successful conduction of research, it is necessary that the hypothesis is specific and presented in a precise manner. Hypothesis which is general, too ambitious and grandiose in scope is not to be made as such hypothesis cannot be easily put to test. A hypothesis is to be based on such concepts which are precise and empirical in nature. A hypothesis should give a clear idea about the indicators which are to be used.
For example, a hypothesis that economic power is increasingly getting concentrated in a few hands in India should enable us to define the concept of economic power. It should be explicated in terms of measurable indicator like income, wealth, etc. Such specificity in the formulation of a hypothesis ensures that the research is practicable and significant.
While framing the hypothesis, the researcher should be aware of the available research techniques and should see that the hypothesis framed is testable on the basis of them. In other words, a hypothesis should be researchable and for this it is important that a due thought has been given to the methods and techniques which can be used to measure the concepts and variables embodied in the hypothesis.
It does not however mean that hypotheses which are not testable with the available techniques of research are not to be made. If the problem is too significant and therefore the hypothesis framed becomes too ambitious and complex, it’s testing becomes possible with the development of new research techniques or the hypothesis itself leads to the development of new research techniques.
A hypothesis must be related to the existing theory or should have a theoretical orientation. The growth of knowledge takes place in the sequence of facts, hypothesis, theory and law or principles. It means the hypothesis should have a correspondence with the existing facts and theory.
If the hypothesis is related to some theory, the research work will enable us to support, modify or refute the existing theory. Theoretical orientation of the hypothesis ensures that it becomes scientifically useful. According to Prof. Goode and Prof. Hatt, research work can contribute to the existing knowledge only when the hypothesis is related with some theory.
This enables us to explain the observed facts and situations and also verify the framed hypothesis. In the words of Prof. Cohen and Prof. Nagel, “hypothesis must be formulated in such a manner that deduction can be made from it and that consequently a decision can be reached as to whether it does or does not explain the facts considered.”
If the research work based on a hypothesis is to be successful, it is necessary that the later is as simple and easy as possible. An ambition of finding out something new may lead the researcher to frame an unrealistic and unclear hypothesis. Such a temptation is to be avoided. Framing a simple, easy and testable hypothesis requires that the researcher is well acquainted with the related concepts.
Sources of Hypothesis
Hypotheses can be derived from various sources. Some of the sources is given below:
Observation
State of knowledge, continuity of research.
Hypotheses can be derived from observation from the observation of price behavior in a market. For example the relationship between the price and demand for an article is hypothesized.
Analogies are another source of useful hypotheses. Julian Huxley has pointed out that casual observations in nature or in the framework of another science may be a fertile source of hypotheses. For example, the hypotheses that similar human types or activities may be found in similar geophysical regions come from plant ecology.
This is one of the main sources of hypotheses. It gives direction to research by stating what is known logical deduction from theory lead to new hypotheses. For example, profit / wealth maximization is considered as the goal of private enterprises. From this assumption various hypotheses are derived’.
An important source of hypotheses is the state of knowledge in any particular science where formal theories exist hypotheses can be deduced. If the hypotheses are rejected theories are scarce hypotheses are generated from conception frameworks.
Another source of hypotheses is the culture on which the researcher was nurtured. Western culture has induced the emergence of sociology as an academic discipline over the past decade, a large part of the hypotheses on American society examined by researchers were connected with violence. This interest is related to the considerable increase in the level of violence in America.
The continuity of research in a field itself constitutes an important source of hypotheses. The rejection of some hypotheses leads to the formulation of new ones capable of explaining dependent variables in subsequent research on the same subject.
Null and Alternative Hypothesis
Null hypothesis.
The hypothesis that are proposed with the intent of receiving a rejection for them are called Null Hypothesis . This requires that we hypothesize the opposite of what is desired to be proved. For example, if we want to show that sales and advertisement expenditure are related, we formulate the null hypothesis that they are not related.
Similarly, if we want to conclude that the new sales training programme is effective, we formulate the null hypothesis that the new training programme is not effective, and if we want to prove that the average wages of skilled workers in town 1 is greater than that of town 2, we formulate the null hypotheses that there is no difference in the average wages of the skilled workers in both the towns.
Since we hypothesize that sales and advertisement are not related, new training programme is not effective and the average wages of skilled workers in both the towns are equal, we call such hypotheses null hypotheses and denote them as H 0 .
Alternative Hypothesis
Rejection of null hypotheses leads to the acceptance of alternative hypothesis . The rejection of null hypothesis indicates that the relationship between variables (e.g., sales and advertisement expenditure) or the difference between means (e.g., wages of skilled workers in town 1 and town 2) or the difference between proportions have statistical significance and the acceptance of the null hypotheses indicates that these differences are due to chance.
As already mentioned, the alternative hypotheses specify that values/relation which the researcher believes hold true. The alternative hypotheses can cover a whole range of values rather than a single point. The alternative hypotheses are denoted by H 1 .
Business Ethics
( Click on Topic to Read )
- What is Ethics?
- What is Business Ethics?
- Values, Norms, Beliefs and Standards in Business Ethics
- Indian Ethos in Management
- Ethical Issues in Marketing
- Ethical Issues in HRM
- Ethical Issues in IT
- Ethical Issues in Production and Operations Management
- Ethical Issues in Finance and Accounting
- What is Corporate Governance?
- What is Ownership Concentration?
- What is Ownership Composition?
- Types of Companies in India
- Internal Corporate Governance
- External Corporate Governance
- Corporate Governance in India
- What is Enterprise Risk Management (ERM)?
- What is Assessment of Risk?
- What is Risk Register?
- Risk Management Committee
Corporate social responsibility (CSR)
- Theories of CSR
- Arguments Against CSR
- Business Case for CSR
- Importance of CSR in India
- Drivers of Corporate Social Responsibility
- Developing a CSR Strategy
- Implement CSR Commitments
- CSR Marketplace
- CSR at Workplace
- Environmental CSR
- CSR with Communities and in Supply Chain
- Community Interventions
- CSR Monitoring
- CSR Reporting
- Voluntary Codes in CSR
- What is Corporate Ethics?
Lean Six Sigma
- What is Six Sigma?
- What is Lean Six Sigma?
- Value and Waste in Lean Six Sigma
- Six Sigma Team
- MAIC Six Sigma
- Six Sigma in Supply Chains
- What is Binomial, Poisson, Normal Distribution?
- What is Sigma Level?
- What is DMAIC in Six Sigma?
- What is DMADV in Six Sigma?
- Six Sigma Project Charter
- Project Decomposition in Six Sigma
- Critical to Quality (CTQ) Six Sigma
- Process Mapping Six Sigma
- Flowchart and SIPOC
- Gage Repeatability and Reproducibility
- Statistical Diagram
- Lean Techniques for Optimisation Flow
- Failure Modes and Effects Analysis (FMEA)
- What is Process Audits?
- Six Sigma Implementation at Ford
- IBM Uses Six Sigma to Drive Behaviour Change
- Research Methodology
- What is Research?
Sampling Method
- Research Methods
Data Collection in Research
- Methods of Collecting Data
- Application of Business Research
Levels of Measurement
- What is Sampling?
- Hypothesis Testing
- Research Report
- What is Management?
- Planning in Management
- Decision Making in Management
- What is Controlling?
- What is Coordination?
- What is Staffing?
- Organization Structure
- What is Departmentation?
- Span of Control
- What is Authority?
- Centralization vs Decentralization
- Organizing in Management
- Schools of Management Thought
- Classical Management Approach
- Is Management an Art or Science?
- Who is a Manager?
Operations Research
- What is Operations Research?
- Operation Research Models
- Linear Programming
- Linear Programming Graphic Solution
- Linear Programming Simplex Method
- Linear Programming Artificial Variable Technique
- Duality in Linear Programming
- Transportation Problem Initial Basic Feasible Solution
- Transportation Problem Finding Optimal Solution
- Project Network Analysis with Critical Path Method
- Project Network Analysis Methods
- Project Evaluation and Review Technique (PERT)
- Simulation in Operation Research
- Replacement Models in Operation Research
Operation Management
- What is Strategy?
- What is Operations Strategy?
- Operations Competitive Dimensions
- Operations Strategy Formulation Process
- What is Strategic Fit?
- Strategic Design Process
- Focused Operations Strategy
- Corporate Level Strategy
- Expansion Strategies
- Stability Strategies
- Retrenchment Strategies
- Competitive Advantage
- Strategic Choice and Strategic Alternatives
- What is Production Process?
- What is Process Technology?
- What is Process Improvement?
- Strategic Capacity Management
- Production and Logistics Strategy
- Taxonomy of Supply Chain Strategies
- Factors Considered in Supply Chain Planning
- Operational and Strategic Issues in Global Logistics
- Logistics Outsourcing Strategy
- What is Supply Chain Mapping?
- Supply Chain Process Restructuring
- Points of Differentiation
- Re-engineering Improvement in SCM
- What is Supply Chain Drivers?
- Supply Chain Operations Reference (SCOR) Model
- Customer Service and Cost Trade Off
- Internal and External Performance Measures
- Linking Supply Chain and Business Performance
- Netflix’s Niche Focused Strategy
- Disney and Pixar Merger
- Process Planning at Mcdonald’s
Service Operations Management
- What is Service?
- What is Service Operations Management?
- What is Service Design?
- Service Design Process
- Service Delivery
- What is Service Quality?
- Gap Model of Service Quality
- Juran Trilogy
- Service Performance Measurement
- Service Decoupling
- IT Service Operation
- Service Operations Management in Different Sector
Procurement Management
- What is Procurement Management?
- Procurement Negotiation
- Types of Requisition
- RFX in Procurement
- What is Purchasing Cycle?
- Vendor Managed Inventory
- Internal Conflict During Purchasing Operation
- Spend Analysis in Procurement
- Sourcing in Procurement
- Supplier Evaluation and Selection in Procurement
- Blacklisting of Suppliers in Procurement
- Total Cost of Ownership in Procurement
- Incoterms in Procurement
- Documents Used in International Procurement
- Transportation and Logistics Strategy
- What is Capital Equipment?
- Procurement Process of Capital Equipment
- Acquisition of Technology in Procurement
- What is E-Procurement?
- E-marketplace and Online Catalogues
- Fixed Price and Cost Reimbursement Contracts
- Contract Cancellation in Procurement
- Ethics in Procurement
- Legal Aspects of Procurement
- Global Sourcing in Procurement
- Intermediaries and Countertrade in Procurement
Strategic Management
- What is Strategic Management?
- What is Value Chain Analysis?
- Mission Statement
- Business Level Strategy
- What is SWOT Analysis?
- What is Competitive Advantage?
- What is Vision?
- What is Ansoff Matrix?
- Prahalad and Gary Hammel
- Strategic Management In Global Environment
- Competitor Analysis Framework
- Competitive Rivalry Analysis
- Competitive Dynamics
- What is Competitive Rivalry?
- Five Competitive Forces That Shape Strategy
- What is PESTLE Analysis?
- Fragmentation and Consolidation Of Industries
- What is Technology Life Cycle?
- What is Diversification Strategy?
- What is Corporate Restructuring Strategy?
- Resources and Capabilities of Organization
- Role of Leaders In Functional-Level Strategic Management
- Functional Structure In Functional Level Strategy Formulation
- Information And Control System
- What is Strategy Gap Analysis?
- Issues In Strategy Implementation
- Matrix Organizational Structure
- What is Strategic Management Process?
Supply Chain
- What is Supply Chain Management?
- Supply Chain Planning and Measuring Strategy Performance
- What is Warehousing?
- What is Packaging?
- What is Inventory Management?
- What is Material Handling?
- What is Order Picking?
- Receiving and Dispatch, Processes
- What is Warehouse Design?
- What is Warehousing Costs?
You Might Also Like
Sampling process and characteristics of good sample design, what is sample size determination, formula, determining,, data processing in research, what is research design features, components, what is descriptive research types, features, data analysis in research, what is parametric tests types: z-test, t-test, f-test, measures of relationship, what is causal research advantages, disadvantages, how to perform, leave a reply cancel reply.
You must be logged in to post a comment.
World's Best Online Courses at One Place
We’ve spent the time in finding, so you can spend your time in learning
Digital Marketing
Personal growth.
IMAGES