Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CORRESPONDENCE
  • 08 February 2022

New Delhi: air-quality warning system cuts peak pollution

  • Sachin D. Ghude 0 ,
  • Rajesh Kumar 1 ,
  • Gaurav Govardhan 2 ,
  • Chinmay Jena 3 ,
  • Ravi S. Nanjundiah 4 &
  • M. Rajeevan 5

Indian Institute of Tropical Meteorology, Pune, India. Ministry of Earth Sciences, New Delhi, India.

You can also search for this author in PubMed   Google Scholar

National Center for Atmospheric Research, Boulder, Colorado, USA.

India Meteorology Department, Delhi, India. Ministry of Earth Science, New Delhi, India.

Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India.

Ministry of Earth Sciences, Delhi, India.

A sophisticated early-warning and decision-support system is minimizing air-pollution events in and around the Indian capital of New Delhi. This system helped to cut the city’s pollution peak last November by 18–22%.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

Nature 602 , 211 (2022)

doi: https://doi.org/10.1038/d41586-022-00332-y

Competing Interests

The authors declare no competing interests.

Related Articles

See more letters to the editor

  • Environmental sciences
  • Research data

UN plastics treaty: don’t let lobbyists drown out researchers

UN plastics treaty: don’t let lobbyists drown out researchers

Editorial 17 APR 24

Environmental drivers of increased ecosystem respiration in a warming tundra

Environmental drivers of increased ecosystem respiration in a warming tundra

Article 17 APR 24

It’s time to talk about the hidden human cost of the green transition

Correspondence 16 APR 24

Researchers want a ‘nutrition label’ for academic-paper facts

Researchers want a ‘nutrition label’ for academic-paper facts

Nature Index 17 APR 24

Adopt universal standards for study adaptation to boost health, education and social-science research

Correspondence 02 APR 24

How AI is being used to accelerate clinical trials

How AI is being used to accelerate clinical trials

Nature Index 13 MAR 24

delhi air pollution research paper

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Estimation of Air Pollution in Delhi Using Machine Learning Techniques

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Analyzing the Patterns of Delhi’s Air Pollution

  • Conference paper
  • First Online: 03 December 2019
  • Cite this conference paper

Book cover

  • Shally Sharma 38 &
  • Sandeep Mathur 38  

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 612))

602 Accesses

3 Citations

In recent years, air pollution is a big problem for various countries including India. Particularly in Delhi, NCR falls under a highly polluted city. Various measures and policies have been taken by the state government to improve the situation. Air degradation is responsible for various useful issues in urban areas. Overall, Delhi’s air sullying status has changed the degree to which toxin dimensions and control measures were taken to decrease them. This paper provides evidenced-based learning on the status of air pollution in Delhi, and its impact on flourishing and control measures has begun. The urban air database produced in September 2011 by the World Prosperity Relationship revealed that Delhi had beaten the ludicrous PM 10 limit by 10 times at 198 μg/ m3 for all intents and purposes. Clearly, indoor contamination and outdoor contamination in Delhi were associated with vehicle transmissions and mechanical tasks. Delhi air quality and morbidity spotlights found that all-standard reason transience and awfulness stretched out with prolonged air contamination. Delhi made sense of how the city’s air tainting element can be lowered over the last 10 years. In this research work reasons of this high contamination, the earth has been contributed point by point information investigation has been accounted for on the results of these means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Central Pollution Control Board Website. www.cpcb.nic.in

National Air Quality Index by CPCB

Google Scholar  

Centre for Science & Environment website. www.cseindia.org

The Energy and Resources Institute (TERI) website. www.teriin.org

http://www.censusindia.gov.in/2011-provresults/data_files/delhi/0_PDFC-Paper-1-2011%20NCT%20of%20Delhi_9.pdf

Cropper ML, Simon NB, Alberini A, Sharma PK (1997) The health effects of air pollution in Delhi, India. The World Bank Development Research Group

White paper on pollution in Delhi with an action plan (1997). Ministry of Environment & Forests, Government of India

World Health Organisation (2006) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide, and sulfur dioxide, Global update 2005. Summary of risk assessment

Available from. http://www.who.int/phe/health_topics/outdoorair/databases/en

Goyal R, Khare M (2011) Indo air quality modeling for PM 10, PM 2.5, PM 2.5, and PM 1.0 in naturally ventilated classrooms of an urban Indian school building. Environ Monit Assess

Kumar A, Scott CC (2009) Lead loadings in household dust in Delhi. India. Indoor Air 19(5):414–420

Article   Google Scholar  

Kumar A, Phadke KM, Tajne DS, Hasan MZ (2001) Increase in inhalable particulates’ concentration by commercial and industrial activities in the ambient air of a select Indian metropolis. Environ Sci Technol 35(3):487–492

Balachandran S, Meena BR, Khillare PS (2000) Particle size distribution and its elemental composition in the ambient air of Delhi. Environ Int 26(1–2):49–54

Epidemiological Study on Effect of Air Pollution on Human Health (Adults) in Delhi, Environmental Health Series: EHS/1/2008. Central Pollution Control Board, Ministry of Environment & Forests, Government of India. Aug 2008

Chhabra SK, Chhabra P, Rajpal S, Gupta RK (2001) Ambient air pollution and chronic respiratory morbidity in Delhi. Arch Environ Health 56(1):58–64

Agarwal R, Jayaraman G, Anand S, Marimuthu P (2006) Assessing respiratory morbidity through pollution status and meteorological conditions for Delhi. Environ Monit Assess 114(1–3):489–504

Jayaraman G (2008) Air pollution and associated respiratory morbidity in Delhi. Health Care Manag Sci 11(2):132–138

Article   MathSciNet   Google Scholar  

Firdaus G, Ahmad A (2011) Indoor air pollution and self-reported diseases—a case study of NCT of Delhi. Indoor Air 21(5):410–416

Kumar R, Nagar JK, Kumar H, Kushwah AS, Meena M, Kumar P et al (2008) Indoor air pollution and respiratory function of children in Ashok Vihar, Delhi: an exposure-response study. Asia Pac J Public Health 20(1):36–48

Kulshreshtha P, Khare M, Seetharaman P (2008) Indoor air quality assessment in and around urban slums of Delhi city. India. Indoor Air 18(6):488–498

Saksena S, Singh PB, Prasad RK, Prasad R, Malhotra P, Joshi V et al (2003) Exposure of infants to outdoor and indoor air pollution in low-income urban areas—a case study of Delhi. J Expo Anal Environ Epidemiol 13(3):219

Sharma S, Sethi GR, Rohtagi A, Chaudhary A, Shankar R, Bapna JS et al (1998) Indoor air quality and acute lower respiratory infection in Indian urban slums. Environ Health Perspect 106(5):291–297

Kumar R, Nagar JK, Kumar H, Kushwah AS, Meena M, Kumar P et al (2007) Association of indoor and outdoor air pollutant level with respiratory problems among children in an industrial area of Delhi, India. Arch Environ Occup Health 62(2):75–80

Siddique S, Banerjee M, Ray MR, Lahiri T (2011) Attention-deficit hyperactivity disorder in children chronically exposed to high level of vehicular pollution. Eur J Pediatr 170(7):923–929

Kalra V, Chitralekha KT, Dua T, Pandey RM, Gupta Y (2003) Blood lead levels and risk factors for lead toxicity in children from schools and an urban slum in Delhi. J Trop Pediatr 49(2):121–123

Agarwal KS, Mughal MZ, Upadhyay P, Berry JL, Mawer EB, Puliyel JM (2002) The impact of atmospheric pollution on vitamin D status of infants and toddlers in Delhi. India. Arch Dis Child 87(2):111–113

Rajaratnam U, Sehgal M, Nairy S, Patnayak RC, Chhabra SK, Kilnani, et al (2011) HEI health review committee. Time-series study on air pollution and mortality in Delhi. Res Rep Health Eff Inst

Nidhi JG (2007) Air quality and respiratory health in Delhi. Environ Monit Assess 135(1–3):313–325

Pande JN, Bhatta N, Biswas D, Pandey RM, Ahluwalia G, Siddaramaiah NH et al (2002) Outdoor air pollution and emergency room visits at a hospital in Delhi, Indian. J Chest Dis Allied Sci 44(1):13–20

Foster A, Kumar N (2011) Health effects of air quality regulations in Delhi, India. Atmos Environ 45(9):1675–1683

Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D et al (2009) Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 375(9705):1930–1943

Download references

Author information

Authors and affiliations.

Amity Institute of Information Technology, Amity University, Noida, India

Shally Sharma & Sandeep Mathur

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sandeep Mathur .

Editor information

Editors and affiliations.

Bharati Vidyapeeth’s College of Engineering, New Delhi, Delhi, India

Vanita Jain

Gopal Chaudhary

Gazi University, Ankara, Turkey

M. Cengiz Taplamacioglu

Indian Institute of Technology Mumbai, Mumbai, Maharashtra, India

M. S. Agarwal

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper.

Sharma, S., Mathur, S. (2020). Analyzing the Patterns of Delhi’s Air Pollution. In: Jain, V., Chaudhary, G., Taplamacioglu, M., Agarwal, M. (eds) Advances in Data Sciences, Security and Applications. Lecture Notes in Electrical Engineering, vol 612. Springer, Singapore. https://doi.org/10.1007/978-981-15-0372-6_3

Download citation

DOI : https://doi.org/10.1007/978-981-15-0372-6_3

Published : 03 December 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-15-0371-9

Online ISBN : 978-981-15-0372-6

eBook Packages : Intelligent Technologies and Robotics Intelligent Technologies and Robotics (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Public Health

Environmental and Health Impacts of Air Pollution: A Review

Ioannis manisalidis.

1 Delphis S.A., Kifisia, Greece

2 Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece

Elisavet Stavropoulou

3 Centre Hospitalier Universitaire Vaudois (CHUV), Service de Médicine Interne, Lausanne, Switzerland

Agathangelos Stavropoulos

4 School of Social and Political Sciences, University of Glasgow, Glasgow, United Kingdom

Eugenia Bezirtzoglou

One of our era's greatest scourges is air pollution, on account not only of its impact on climate change but also its impact on public and individual health due to increasing morbidity and mortality. There are many pollutants that are major factors in disease in humans. Among them, Particulate Matter (PM), particles of variable but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous system dysfunctions, and cancer. Despite the fact that ozone in the stratosphere plays a protective role against ultraviolet irradiation, it is harmful when in high concentration at ground level, also affecting the respiratory and cardiovascular system. Furthermore, nitrogen oxide, sulfur dioxide, Volatile Organic Compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) are all considered air pollutants that are harmful to humans. Carbon monoxide can even provoke direct poisoning when breathed in at high levels. Heavy metals such as lead, when absorbed into the human body, can lead to direct poisoning or chronic intoxication, depending on exposure. Diseases occurring from the aforementioned substances include principally respiratory problems such as Chronic Obstructive Pulmonary Disease (COPD), asthma, bronchiolitis, and also lung cancer, cardiovascular events, central nervous system dysfunctions, and cutaneous diseases. Last but not least, climate change resulting from environmental pollution affects the geographical distribution of many infectious diseases, as do natural disasters. The only way to tackle this problem is through public awareness coupled with a multidisciplinary approach by scientific experts; national and international organizations must address the emergence of this threat and propose sustainable solutions.

Approach to the Problem

The interactions between humans and their physical surroundings have been extensively studied, as multiple human activities influence the environment. The environment is a coupling of the biotic (living organisms and microorganisms) and the abiotic (hydrosphere, lithosphere, and atmosphere).

Pollution is defined as the introduction into the environment of substances harmful to humans and other living organisms. Pollutants are harmful solids, liquids, or gases produced in higher than usual concentrations that reduce the quality of our environment.

Human activities have an adverse effect on the environment by polluting the water we drink, the air we breathe, and the soil in which plants grow. Although the industrial revolution was a great success in terms of technology, society, and the provision of multiple services, it also introduced the production of huge quantities of pollutants emitted into the air that are harmful to human health. Without any doubt, the global environmental pollution is considered an international public health issue with multiple facets. Social, economic, and legislative concerns and lifestyle habits are related to this major problem. Clearly, urbanization and industrialization are reaching unprecedented and upsetting proportions worldwide in our era. Anthropogenic air pollution is one of the biggest public health hazards worldwide, given that it accounts for about 9 million deaths per year ( 1 ).

Without a doubt, all of the aforementioned are closely associated with climate change, and in the event of danger, the consequences can be severe for mankind ( 2 ). Climate changes and the effects of global planetary warming seriously affect multiple ecosystems, causing problems such as food safety issues, ice and iceberg melting, animal extinction, and damage to plants ( 3 , 4 ).

Air pollution has various health effects. The health of susceptible and sensitive individuals can be impacted even on low air pollution days. Short-term exposure to air pollutants is closely related to COPD (Chronic Obstructive Pulmonary Disease), cough, shortness of breath, wheezing, asthma, respiratory disease, and high rates of hospitalization (a measurement of morbidity).

The long-term effects associated with air pollution are chronic asthma, pulmonary insufficiency, cardiovascular diseases, and cardiovascular mortality. According to a Swedish cohort study, diabetes seems to be induced after long-term air pollution exposure ( 5 ). Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders ( 3 ), leading to infant mortality or chronic disease in adult age ( 6 ).

National reports have mentioned the increased risk of morbidity and mortality ( 1 ). These studies were conducted in many places around the world and show a correlation between daily ranges of particulate matter (PM) concentration and daily mortality. Climate shifts and global planetary warming ( 3 ) could aggravate the situation. Besides, increased hospitalization (an index of morbidity) has been registered among the elderly and susceptible individuals for specific reasons. Fine and ultrafine particulate matter seems to be associated with more serious illnesses ( 6 ), as it can invade the deepest parts of the airways and more easily reach the bloodstream.

Air pollution mainly affects those living in large urban areas, where road emissions contribute the most to the degradation of air quality. There is also a danger of industrial accidents, where the spread of a toxic fog can be fatal to the populations of the surrounding areas. The dispersion of pollutants is determined by many parameters, most notably atmospheric stability and wind ( 6 ).

In developing countries ( 7 ), the problem is more serious due to overpopulation and uncontrolled urbanization along with the development of industrialization. This leads to poor air quality, especially in countries with social disparities and a lack of information on sustainable management of the environment. The use of fuels such as wood fuel or solid fuel for domestic needs due to low incomes exposes people to bad-quality, polluted air at home. It is of note that three billion people around the world are using the above sources of energy for their daily heating and cooking needs ( 8 ). In developing countries, the women of the household seem to carry the highest risk for disease development due to their longer duration exposure to the indoor air pollution ( 8 , 9 ). Due to its fast industrial development and overpopulation, China is one of the Asian countries confronting serious air pollution problems ( 10 , 11 ). The lung cancer mortality observed in China is associated with fine particles ( 12 ). As stated already, long-term exposure is associated with deleterious effects on the cardiovascular system ( 3 , 5 ). However, it is interesting to note that cardiovascular diseases have mostly been observed in developed and high-income countries rather than in the developing low-income countries exposed highly to air pollution ( 13 ). Extreme air pollution is recorded in India, where the air quality reaches hazardous levels. New Delhi is one of the more polluted cities in India. Flights in and out of New Delhi International Airport are often canceled due to the reduced visibility associated with air pollution. Pollution is occurring both in urban and rural areas in India due to the fast industrialization, urbanization, and rise in use of motorcycle transportation. Nevertheless, biomass combustion associated with heating and cooking needs and practices is a major source of household air pollution in India and in Nepal ( 14 , 15 ). There is spatial heterogeneity in India, as areas with diverse climatological conditions and population and education levels generate different indoor air qualities, with higher PM 2.5 observed in North Indian states (557–601 μg/m 3 ) compared to the Southern States (183–214 μg/m 3 ) ( 16 , 17 ). The cold climate of the North Indian areas may be the main reason for this, as longer periods at home and more heating are necessary compared to in the tropical climate of Southern India. Household air pollution in India is associated with major health effects, especially in women and young children, who stay indoors for longer periods. Chronic obstructive respiratory disease (CORD) and lung cancer are mostly observed in women, while acute lower respiratory disease is seen in young children under 5 years of age ( 18 ).

Accumulation of air pollution, especially sulfur dioxide and smoke, reaching 1,500 mg/m3, resulted in an increase in the number of deaths (4,000 deaths) in December 1952 in London and in 1963 in New York City (400 deaths) ( 19 ). An association of pollution with mortality was reported on the basis of monitoring of outdoor pollution in six US metropolitan cities ( 20 ). In every case, it seems that mortality was closely related to the levels of fine, inhalable, and sulfate particles more than with the levels of total particulate pollution, aerosol acidity, sulfur dioxide, or nitrogen dioxide ( 20 ).

Furthermore, extremely high levels of pollution are reported in Mexico City and Rio de Janeiro, followed by Milan, Ankara, Melbourne, Tokyo, and Moscow ( 19 ).

Based on the magnitude of the public health impact, it is certain that different kinds of interventions should be taken into account. Success and effectiveness in controlling air pollution, specifically at the local level, have been reported. Adequate technological means are applied considering the source and the nature of the emission as well as its impact on health and the environment. The importance of point sources and non-point sources of air pollution control is reported by Schwela and Köth-Jahr ( 21 ). Without a doubt, a detailed emission inventory must record all sources in a given area. Beyond considering the above sources and their nature, topography and meteorology should also be considered, as stated previously. Assessment of the control policies and methods is often extrapolated from the local to the regional and then to the global scale. Air pollution may be dispersed and transported from one region to another area located far away. Air pollution management means the reduction to acceptable levels or possible elimination of air pollutants whose presence in the air affects our health or the environmental ecosystem. Private and governmental entities and authorities implement actions to ensure the air quality ( 22 ). Air quality standards and guidelines were adopted for the different pollutants by the WHO and EPA as a tool for the management of air quality ( 1 , 23 ). These standards have to be compared to the emissions inventory standards by causal analysis and dispersion modeling in order to reveal the problematic areas ( 24 ). Inventories are generally based on a combination of direct measurements and emissions modeling ( 24 ).

As an example, we state here the control measures at the source through the use of catalytic converters in cars. These are devices that turn the pollutants and toxic gases produced from combustion engines into less-toxic pollutants by catalysis through redox reactions ( 25 ). In Greece, the use of private cars was restricted by tracking their license plates in order to reduce traffic congestion during rush hour ( 25 ).

Concerning industrial emissions, collectors and closed systems can keep the air pollution to the minimal standards imposed by legislation ( 26 ).

Current strategies to improve air quality require an estimation of the economic value of the benefits gained from proposed programs. These proposed programs by public authorities, and directives are issued with guidelines to be respected.

In Europe, air quality limit values AQLVs (Air Quality Limit Values) are issued for setting off planning claims ( 27 ). In the USA, the NAAQS (National Ambient Air Quality Standards) establish the national air quality limit values ( 27 ). While both standards and directives are based on different mechanisms, significant success has been achieved in the reduction of overall emissions and associated health and environmental effects ( 27 ). The European Directive identifies geographical areas of risk exposure as monitoring/assessment zones to record the emission sources and levels of air pollution ( 27 ), whereas the USA establishes global geographical air quality criteria according to the severity of their air quality problem and records all sources of the pollutants and their precursors ( 27 ).

In this vein, funds have been financing, directly or indirectly, projects related to air quality along with the technical infrastructure to maintain good air quality. These plans focus on an inventory of databases from air quality environmental planning awareness campaigns. Moreover, pollution measures of air emissions may be taken for vehicles, machines, and industries in urban areas.

Technological innovation can only be successful if it is able to meet the needs of society. In this sense, technology must reflect the decision-making practices and procedures of those involved in risk assessment and evaluation and act as a facilitator in providing information and assessments to enable decision makers to make the best decisions possible. Summarizing the aforementioned in order to design an effective air quality control strategy, several aspects must be considered: environmental factors and ambient air quality conditions, engineering factors and air pollutant characteristics, and finally, economic operating costs for technological improvement and administrative and legal costs. Considering the economic factor, competitiveness through neoliberal concepts is offering a solution to environmental problems ( 22 ).

The development of environmental governance, along with technological progress, has initiated the deployment of a dialogue. Environmental politics has created objections and points of opposition between different political parties, scientists, media, and governmental and non-governmental organizations ( 22 ). Radical environmental activism actions and movements have been created ( 22 ). The rise of the new information and communication technologies (ICTs) are many times examined as to whether and in which way they have influenced means of communication and social movements such as activism ( 28 ). Since the 1990s, the term “digital activism” has been used increasingly and in many different disciplines ( 29 ). Nowadays, multiple digital technologies can be used to produce a digital activism outcome on environmental issues. More specifically, devices with online capabilities such as computers or mobile phones are being used as a way to pursue change in political and social affairs ( 30 ).

In the present paper, we focus on the sources of environmental pollution in relation to public health and propose some solutions and interventions that may be of interest to environmental legislators and decision makers.

Sources of Exposure

It is known that the majority of environmental pollutants are emitted through large-scale human activities such as the use of industrial machinery, power-producing stations, combustion engines, and cars. Because these activities are performed at such a large scale, they are by far the major contributors to air pollution, with cars estimated to be responsible for approximately 80% of today's pollution ( 31 ). Some other human activities are also influencing our environment to a lesser extent, such as field cultivation techniques, gas stations, fuel tanks heaters, and cleaning procedures ( 32 ), as well as several natural sources, such as volcanic and soil eruptions and forest fires.

The classification of air pollutants is based mainly on the sources producing pollution. Therefore, it is worth mentioning the four main sources, following the classification system: Major sources, Area sources, Mobile sources, and Natural sources.

Major sources include the emission of pollutants from power stations, refineries, and petrochemicals, the chemical and fertilizer industries, metallurgical and other industrial plants, and, finally, municipal incineration.

Indoor area sources include domestic cleaning activities, dry cleaners, printing shops, and petrol stations.

Mobile sources include automobiles, cars, railways, airways, and other types of vehicles.

Finally, natural sources include, as stated previously, physical disasters ( 33 ) such as forest fire, volcanic erosion, dust storms, and agricultural burning.

However, many classification systems have been proposed. Another type of classification is a grouping according to the recipient of the pollution, as follows:

Air pollution is determined as the presence of pollutants in the air in large quantities for long periods. Air pollutants are dispersed particles, hydrocarbons, CO, CO 2 , NO, NO 2 , SO 3 , etc.

Water pollution is organic and inorganic charge and biological charge ( 10 ) at high levels that affect the water quality ( 34 , 35 ).

Soil pollution occurs through the release of chemicals or the disposal of wastes, such as heavy metals, hydrocarbons, and pesticides.

Air pollution can influence the quality of soil and water bodies by polluting precipitation, falling into water and soil environments ( 34 , 36 ). Notably, the chemistry of the soil can be amended due to acid precipitation by affecting plants, cultures, and water quality ( 37 ). Moreover, movement of heavy metals is favored by soil acidity, and metals are so then moving into the watery environment. It is known that heavy metals such as aluminum are noxious to wildlife and fishes. Soil quality seems to be of importance, as soils with low calcium carbonate levels are at increased jeopardy from acid rain. Over and above rain, snow and particulate matter drip into watery ' bodies ( 36 , 38 ).

Lastly, pollution is classified following type of origin:

Radioactive and nuclear pollution , releasing radioactive and nuclear pollutants into water, air, and soil during nuclear explosions and accidents, from nuclear weapons, and through handling or disposal of radioactive sewage.

Radioactive materials can contaminate surface water bodies and, being noxious to the environment, plants, animals, and humans. It is known that several radioactive substances such as radium and uranium concentrate in the bones and can cause cancers ( 38 , 39 ).

Noise pollution is produced by machines, vehicles, traffic noises, and musical installations that are harmful to our hearing.

The World Health Organization introduced the term DALYs. The DALYs for a disease or health condition is defined as the sum of the Years of Life Lost (YLL) due to premature mortality in the population and the Years Lost due to Disability (YLD) for people living with the health condition or its consequences ( 39 ). In Europe, air pollution is the main cause of disability-adjusted life years lost (DALYs), followed by noise pollution. The potential relationships of noise and air pollution with health have been studied ( 40 ). The study found that DALYs related to noise were more important than those related to air pollution, as the effects of environmental noise on cardiovascular disease were independent of air pollution ( 40 ). Environmental noise should be counted as an independent public health risk ( 40 ).

Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, etc.) are produced.

Pollutants harm our environment either by increasing levels above normal or by introducing harmful toxic substances. Primary pollutants are directly produced from the above sources, and secondary pollutants are emitted as by-products of the primary ones. Pollutants can be biodegradable or non-biodegradable and of natural origin or anthropogenic, as stated previously. Moreover, their origin can be a unique source (point-source) or dispersed sources.

Pollutants have differences in physical and chemical properties, explaining the discrepancy in their capacity for producing toxic effects. As an example, we state here that aerosol compounds ( 41 – 43 ) have a greater toxicity than gaseous compounds due to their tiny size (solid or liquid) in the atmosphere; they have a greater penetration capacity. Gaseous compounds are eliminated more easily by our respiratory system ( 41 ). These particles are able to damage lungs and can even enter the bloodstream ( 41 ), leading to the premature deaths of millions of people yearly. Moreover, the aerosol acidity ([H+]) seems to considerably enhance the production of secondary organic aerosols (SOA), but this last aspect is not supported by other scientific teams ( 38 ).

Climate and Pollution

Air pollution and climate change are closely related. Climate is the other side of the same coin that reduces the quality of our Earth ( 44 ). Pollutants such as black carbon, methane, tropospheric ozone, and aerosols affect the amount of incoming sunlight. As a result, the temperature of the Earth is increasing, resulting in the melting of ice, icebergs, and glaciers.

In this vein, climatic changes will affect the incidence and prevalence of both residual and imported infections in Europe. Climate and weather affect the duration, timing, and intensity of outbreaks strongly and change the map of infectious diseases in the globe ( 45 ). Mosquito-transmitted parasitic or viral diseases are extremely climate-sensitive, as warming firstly shortens the pathogen incubation period and secondly shifts the geographic map of the vector. Similarly, water-warming following climate changes leads to a high incidence of waterborne infections. Recently, in Europe, eradicated diseases seem to be emerging due to the migration of population, for example, cholera, poliomyelitis, tick-borne encephalitis, and malaria ( 46 ).

The spread of epidemics is associated with natural climate disasters and storms, which seem to occur more frequently nowadays ( 47 ). Malnutrition and disequilibration of the immune system are also associated with the emerging infections affecting public health ( 48 ).

The Chikungunya virus “took the airplane” from the Indian Ocean to Europe, as outbreaks of the disease were registered in Italy ( 49 ) as well as autochthonous cases in France ( 50 ).

An increase in cryptosporidiosis in the United Kingdom and in the Czech Republic seems to have occurred following flooding ( 36 , 51 ).

As stated previously, aerosols compounds are tiny in size and considerably affect the climate. They are able to dissipate sunlight (the albedo phenomenon) by dispersing a quarter of the sun's rays back to space and have cooled the global temperature over the last 30 years ( 52 ).

Air Pollutants

The World Health Organization (WHO) reports on six major air pollutants, namely particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Air pollution can have a disastrous effect on all components of the environment, including groundwater, soil, and air. Additionally, it poses a serious threat to living organisms. In this vein, our interest is mainly to focus on these pollutants, as they are related to more extensive and severe problems in human health and environmental impact. Acid rain, global warming, the greenhouse effect, and climate changes have an important ecological impact on air pollution ( 53 ).

Particulate Matter (PM) and Health

Studies have shown a relationship between particulate matter (PM) and adverse health effects, focusing on either short-term (acute) or long-term (chronic) PM exposure.

Particulate matter (PM) is usually formed in the atmosphere as a result of chemical reactions between the different pollutants. The penetration of particles is closely dependent on their size ( 53 ). Particulate Matter (PM) was defined as a term for particles by the United States Environmental Protection Agency ( 54 ). Particulate matter (PM) pollution includes particles with diameters of 10 micrometers (μm) or smaller, called PM 10 , and extremely fine particles with diameters that are generally 2.5 micrometers (μm) and smaller.

Particulate matter contains tiny liquid or solid droplets that can be inhaled and cause serious health effects ( 55 ). Particles <10 μm in diameter (PM 10 ) after inhalation can invade the lungs and even reach the bloodstream. Fine particles, PM 2.5 , pose a greater risk to health ( 6 , 56 ) ( Table 1 ).

Penetrability according to particle size.

Multiple epidemiological studies have been performed on the health effects of PM. A positive relation was shown between both short-term and long-term exposures of PM 2.5 and acute nasopharyngitis ( 56 ). In addition, long-term exposure to PM for years was found to be related to cardiovascular diseases and infant mortality.

Those studies depend on PM 2.5 monitors and are restricted in terms of study area or city area due to a lack of spatially resolved daily PM 2.5 concentration data and, in this way, are not representative of the entire population. Following a recent epidemiological study by the Department of Environmental Health at Harvard School of Public Health (Boston, MA) ( 57 ), it was reported that, as PM 2.5 concentrations vary spatially, an exposure error (Berkson error) seems to be produced, and the relative magnitudes of the short- and long-term effects are not yet completely elucidated. The team developed a PM 2.5 exposure model based on remote sensing data for assessing short- and long-term human exposures ( 57 ). This model permits spatial resolution in short-term effects plus the assessment of long-term effects in the whole population.

Moreover, respiratory diseases and affection of the immune system are registered as long-term chronic effects ( 58 ). It is worth noting that people with asthma, pneumonia, diabetes, and respiratory and cardiovascular diseases are especially susceptible and vulnerable to the effects of PM. PM 2.5 , followed by PM 10 , are strongly associated with diverse respiratory system diseases ( 59 ), as their size permits them to pierce interior spaces ( 60 ). The particles produce toxic effects according to their chemical and physical properties. The components of PM 10 and PM 2.5 can be organic (polycyclic aromatic hydrocarbons, dioxins, benzene, 1-3 butadiene) or inorganic (carbon, chlorides, nitrates, sulfates, metals) in nature ( 55 ).

Particulate Matter (PM) is divided into four main categories according to type and size ( 61 ) ( Table 2 ).

Types and sizes of particulate Matter (PM).

Gas contaminants include PM in aerial masses.

Particulate contaminants include contaminants such as smog, soot, tobacco smoke, oil smoke, fly ash, and cement dust.

Biological Contaminants are microorganisms (bacteria, viruses, fungi, mold, and bacterial spores), cat allergens, house dust and allergens, and pollen.

Types of Dust include suspended atmospheric dust, settling dust, and heavy dust.

Finally, another fact is that the half-lives of PM 10 and PM 2.5 particles in the atmosphere is extended due to their tiny dimensions; this permits their long-lasting suspension in the atmosphere and even their transfer and spread to distant destinations where people and the environment may be exposed to the same magnitude of pollution ( 53 ). They are able to change the nutrient balance in watery ecosystems, damage forests and crops, and acidify water bodies.

As stated, PM 2.5 , due to their tiny size, are causing more serious health effects. These aforementioned fine particles are the main cause of the “haze” formation in different metropolitan areas ( 12 , 13 , 61 ).

Ozone Impact in the Atmosphere

Ozone (O 3 ) is a gas formed from oxygen under high voltage electric discharge ( 62 ). It is a strong oxidant, 52% stronger than chlorine. It arises in the stratosphere, but it could also arise following chain reactions of photochemical smog in the troposphere ( 63 ).

Ozone can travel to distant areas from its initial source, moving with air masses ( 64 ). It is surprising that ozone levels over cities are low in contrast to the increased amounts occuring in urban areas, which could become harmful for cultures, forests, and vegetation ( 65 ) as it is reducing carbon assimilation ( 66 ). Ozone reduces growth and yield ( 47 , 48 ) and affects the plant microflora due to its antimicrobial capacity ( 67 , 68 ). In this regard, ozone acts upon other natural ecosystems, with microflora ( 69 , 70 ) and animal species changing their species composition ( 71 ). Ozone increases DNA damage in epidermal keratinocytes and leads to impaired cellular function ( 72 ).

Ground-level ozone (GLO) is generated through a chemical reaction between oxides of nitrogen and VOCs emitted from natural sources and/or following anthropogenic activities.

Ozone uptake usually occurs by inhalation. Ozone affects the upper layers of the skin and the tear ducts ( 73 ). A study of short-term exposure of mice to high levels of ozone showed malondialdehyde formation in the upper skin (epidermis) but also depletion in vitamins C and E. It is likely that ozone levels are not interfering with the skin barrier function and integrity to predispose to skin disease ( 74 ).

Due to the low water-solubility of ozone, inhaled ozone has the capacity to penetrate deeply into the lungs ( 75 ).

Toxic effects induced by ozone are registered in urban areas all over the world, causing biochemical, morphologic, functional, and immunological disorders ( 76 ).

The European project (APHEA2) focuses on the acute effects of ambient ozone concentrations on mortality ( 77 ). Daily ozone concentrations compared to the daily number of deaths were reported from different European cities for a 3-year period. During the warm period of the year, an observed increase in ozone concentration was associated with an increase in the daily number of deaths (0.33%), in the number of respiratory deaths (1.13%), and in the number of cardiovascular deaths (0.45%). No effect was observed during wintertime.

Carbon Monoxide (CO)

Carbon monoxide is produced by fossil fuel when combustion is incomplete. The symptoms of poisoning due to inhaling carbon monoxide include headache, dizziness, weakness, nausea, vomiting, and, finally, loss of consciousness.

The affinity of carbon monoxide to hemoglobin is much greater than that of oxygen. In this vein, serious poisoning may occur in people exposed to high levels of carbon monoxide for a long period of time. Due to the loss of oxygen as a result of the competitive binding of carbon monoxide, hypoxia, ischemia, and cardiovascular disease are observed.

Carbon monoxide affects the greenhouses gases that are tightly connected to global warming and climate. This should lead to an increase in soil and water temperatures, and extreme weather conditions or storms may occur ( 68 ).

However, in laboratory and field experiments, it has been seen to produce increased plant growth ( 78 ).

Nitrogen Oxide (NO 2 )

Nitrogen oxide is a traffic-related pollutant, as it is emitted from automobile motor engines ( 79 , 80 ). It is an irritant of the respiratory system as it penetrates deep in the lung, inducing respiratory diseases, coughing, wheezing, dyspnea, bronchospasm, and even pulmonary edema when inhaled at high levels. It seems that concentrations over 0.2 ppm produce these adverse effects in humans, while concentrations higher than 2.0 ppm affect T-lymphocytes, particularly the CD8+ cells and NK cells that produce our immune response ( 81 ).It is reported that long-term exposure to high levels of nitrogen dioxide can be responsible for chronic lung disease. Long-term exposure to NO 2 can impair the sense of smell ( 81 ).

However, systems other than respiratory ones can be involved, as symptoms such as eye, throat, and nose irritation have been registered ( 81 ).

High levels of nitrogen dioxide are deleterious to crops and vegetation, as they have been observed to reduce crop yield and plant growth efficiency. Moreover, NO 2 can reduce visibility and discolor fabrics ( 81 ).

Sulfur Dioxide (SO 2 )

Sulfur dioxide is a harmful gas that is emitted mainly from fossil fuel consumption or industrial activities. The annual standard for SO 2 is 0.03 ppm ( 82 ). It affects human, animal, and plant life. Susceptible people as those with lung disease, old people, and children, who present a higher risk of damage. The major health problems associated with sulfur dioxide emissions in industrialized areas are respiratory irritation, bronchitis, mucus production, and bronchospasm, as it is a sensory irritant and penetrates deep into the lung converted into bisulfite and interacting with sensory receptors, causing bronchoconstriction. Moreover, skin redness, damage to the eyes (lacrimation and corneal opacity) and mucous membranes, and worsening of pre-existing cardiovascular disease have been observed ( 81 ).

Environmental adverse effects, such as acidification of soil and acid rain, seem to be associated with sulfur dioxide emissions ( 83 ).

Lead is a heavy metal used in different industrial plants and emitted from some petrol motor engines, batteries, radiators, waste incinerators, and waste waters ( 84 ).

Moreover, major sources of lead pollution in the air are metals, ore, and piston-engine aircraft. Lead poisoning is a threat to public health due to its deleterious effects upon humans, animals, and the environment, especially in the developing countries.

Exposure to lead can occur through inhalation, ingestion, and dermal absorption. Trans- placental transport of lead was also reported, as lead passes through the placenta unencumbered ( 85 ). The younger the fetus is, the more harmful the toxic effects. Lead toxicity affects the fetal nervous system; edema or swelling of the brain is observed ( 86 ). Lead, when inhaled, accumulates in the blood, soft tissue, liver, lung, bones, and cardiovascular, nervous, and reproductive systems. Moreover, loss of concentration and memory, as well as muscle and joint pain, were observed in adults ( 85 , 86 ).

Children and newborns ( 87 ) are extremely susceptible even to minimal doses of lead, as it is a neurotoxicant and causes learning disabilities, impairment of memory, hyperactivity, and even mental retardation.

Elevated amounts of lead in the environment are harmful to plants and crop growth. Neurological effects are observed in vertebrates and animals in association with high lead levels ( 88 ).

Polycyclic Aromatic Hydrocarbons(PAHs)

The distribution of PAHs is ubiquitous in the environment, as the atmosphere is the most important means of their dispersal. They are found in coal and in tar sediments. Moreover, they are generated through incomplete combustion of organic matter as in the cases of forest fires, incineration, and engines ( 89 ). PAH compounds, such as benzopyrene, acenaphthylene, anthracene, and fluoranthene are recognized as toxic, mutagenic, and carcinogenic substances. They are an important risk factor for lung cancer ( 89 ).

Volatile Organic Compounds(VOCs)

Volatile organic compounds (VOCs), such as toluene, benzene, ethylbenzene, and xylene ( 90 ), have been found to be associated with cancer in humans ( 91 ). The use of new products and materials has actually resulted in increased concentrations of VOCs. VOCs pollute indoor air ( 90 ) and may have adverse effects on human health ( 91 ). Short-term and long-term adverse effects on human health are observed. VOCs are responsible for indoor air smells. Short-term exposure is found to cause irritation of eyes, nose, throat, and mucosal membranes, while those of long duration exposure include toxic reactions ( 92 ). Predictable assessment of the toxic effects of complex VOC mixtures is difficult to estimate, as these pollutants can have synergic, antagonistic, or indifferent effects ( 91 , 93 ).

Dioxins originate from industrial processes but also come from natural processes, such as forest fires and volcanic eruptions. They accumulate in foods such as meat and dairy products, fish and shellfish, and especially in the fatty tissue of animals ( 94 ).

Short-period exhibition to high dioxin concentrations may result in dark spots and lesions on the skin ( 94 ). Long-term exposure to dioxins can cause developmental problems, impairment of the immune, endocrine and nervous systems, reproductive infertility, and cancer ( 94 ).

Without any doubt, fossil fuel consumption is responsible for a sizeable part of air contamination. This contamination may be anthropogenic, as in agricultural and industrial processes or transportation, while contamination from natural sources is also possible. Interestingly, it is of note that the air quality standards established through the European Air Quality Directive are somewhat looser than the WHO guidelines, which are stricter ( 95 ).

Effect of Air Pollution on Health

The most common air pollutants are ground-level ozone and Particulates Matter (PM). Air pollution is distinguished into two main types:

Outdoor pollution is the ambient air pollution.

Indoor pollution is the pollution generated by household combustion of fuels.

People exposed to high concentrations of air pollutants experience disease symptoms and states of greater and lesser seriousness. These effects are grouped into short- and long-term effects affecting health.

Susceptible populations that need to be aware of health protection measures include old people, children, and people with diabetes and predisposing heart or lung disease, especially asthma.

As extensively stated previously, according to a recent epidemiological study from Harvard School of Public Health, the relative magnitudes of the short- and long-term effects have not been completely clarified ( 57 ) due to the different epidemiological methodologies and to the exposure errors. New models are proposed for assessing short- and long-term human exposure data more successfully ( 57 ). Thus, in the present section, we report the more common short- and long-term health effects but also general concerns for both types of effects, as these effects are often dependent on environmental conditions, dose, and individual susceptibility.

Short-term effects are temporary and range from simple discomfort, such as irritation of the eyes, nose, skin, throat, wheezing, coughing and chest tightness, and breathing difficulties, to more serious states, such as asthma, pneumonia, bronchitis, and lung and heart problems. Short-term exposure to air pollution can also cause headaches, nausea, and dizziness.

These problems can be aggravated by extended long-term exposure to the pollutants, which is harmful to the neurological, reproductive, and respiratory systems and causes cancer and even, rarely, deaths.

The long-term effects are chronic, lasting for years or the whole life and can even lead to death. Furthermore, the toxicity of several air pollutants may also induce a variety of cancers in the long term ( 96 ).

As stated already, respiratory disorders are closely associated with the inhalation of air pollutants. These pollutants will invade through the airways and will accumulate at the cells. Damage to target cells should be related to the pollutant component involved and its source and dose. Health effects are also closely dependent on country, area, season, and time. An extended exposure duration to the pollutant should incline to long-term health effects in relation also to the above factors.

Particulate Matter (PMs), dust, benzene, and O 3 cause serious damage to the respiratory system ( 97 ). Moreover, there is a supplementary risk in case of existing respiratory disease such as asthma ( 98 ). Long-term effects are more frequent in people with a predisposing disease state. When the trachea is contaminated by pollutants, voice alterations may be remarked after acute exposure. Chronic obstructive pulmonary disease (COPD) may be induced following air pollution, increasing morbidity and mortality ( 99 ). Long-term effects from traffic, industrial air pollution, and combustion of fuels are the major factors for COPD risk ( 99 ).

Multiple cardiovascular effects have been observed after exposure to air pollutants ( 100 ). Changes occurred in blood cells after long-term exposure may affect cardiac functionality. Coronary arteriosclerosis was reported following long-term exposure to traffic emissions ( 101 ), while short-term exposure is related to hypertension, stroke, myocardial infracts, and heart insufficiency. Ventricle hypertrophy is reported to occur in humans after long-time exposure to nitrogen oxide (NO 2 ) ( 102 , 103 ).

Neurological effects have been observed in adults and children after extended-term exposure to air pollutants.

Psychological complications, autism, retinopathy, fetal growth, and low birth weight seem to be related to long-term air pollution ( 83 ). The etiologic agent of the neurodegenerative diseases (Alzheimer's and Parkinson's) is not yet known, although it is believed that extended exposure to air pollution seems to be a factor. Specifically, pesticides and metals are cited as etiological factors, together with diet. The mechanisms in the development of neurodegenerative disease include oxidative stress, protein aggregation, inflammation, and mitochondrial impairment in neurons ( 104 ) ( Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is fpubh-08-00014-g0001.jpg

Impact of air pollutants on the brain.

Brain inflammation was observed in dogs living in a highly polluted area in Mexico for a long period ( 105 ). In human adults, markers of systemic inflammation (IL-6 and fibrinogen) were found to be increased as an immediate response to PNC on the IL-6 level, possibly leading to the production of acute-phase proteins ( 106 ). The progression of atherosclerosis and oxidative stress seem to be the mechanisms involved in the neurological disturbances caused by long-term air pollution. Inflammation comes secondary to the oxidative stress and seems to be involved in the impairment of developmental maturation, affecting multiple organs ( 105 , 107 ). Similarly, other factors seem to be involved in the developmental maturation, which define the vulnerability to long-term air pollution. These include birthweight, maternal smoking, genetic background and socioeconomic environment, as well as education level.

However, diet, starting from breast-feeding, is another determinant factor. Diet is the main source of antioxidants, which play a key role in our protection against air pollutants ( 108 ). Antioxidants are free radical scavengers and limit the interaction of free radicals in the brain ( 108 ). Similarly, genetic background may result in a differential susceptibility toward the oxidative stress pathway ( 60 ). For example, antioxidant supplementation with vitamins C and E appears to modulate the effect of ozone in asthmatic children homozygous for the GSTM1 null allele ( 61 ). Inflammatory cytokines released in the periphery (e.g., respiratory epithelia) upregulate the innate immune Toll-like receptor 2. Such activation and the subsequent events leading to neurodegeneration have recently been observed in lung lavage in mice exposed to ambient Los Angeles (CA, USA) particulate matter ( 61 ). In children, neurodevelopmental morbidities were observed after lead exposure. These children developed aggressive and delinquent behavior, reduced intelligence, learning difficulties, and hyperactivity ( 109 ). No level of lead exposure seems to be “safe,” and the scientific community has asked the Centers for Disease Control and Prevention (CDC) to reduce the current screening guideline of 10 μg/dl ( 109 ).

It is important to state that impact on the immune system, causing dysfunction and neuroinflammation ( 104 ), is related to poor air quality. Yet, increases in serum levels of immunoglobulins (IgA, IgM) and the complement component C3 are observed ( 106 ). Another issue is that antigen presentation is affected by air pollutants, as there is an upregulation of costimulatory molecules such as CD80 and CD86 on macrophages ( 110 ).

As is known, skin is our shield against ultraviolet radiation (UVR) and other pollutants, as it is the most exterior layer of our body. Traffic-related pollutants, such as PAHs, VOCs, oxides, and PM, may cause pigmented spots on our skin ( 111 ). On the one hand, as already stated, when pollutants penetrate through the skin or are inhaled, damage to the organs is observed, as some of these pollutants are mutagenic and carcinogenic, and, specifically, they affect the liver and lung. On the other hand, air pollutants (and those in the troposphere) reduce the adverse effects of ultraviolet radiation UVR in polluted urban areas ( 111 ). Air pollutants absorbed by the human skin may contribute to skin aging, psoriasis, acne, urticaria, eczema, and atopic dermatitis ( 111 ), usually caused by exposure to oxides and photochemical smoke ( 111 ). Exposure to PM and cigarette smoking act as skin-aging agents, causing spots, dyschromia, and wrinkles. Lastly, pollutants have been associated with skin cancer ( 111 ).

Higher morbidity is reported to fetuses and children when exposed to the above dangers. Impairment in fetal growth, low birth weight, and autism have been reported ( 112 ).

Another exterior organ that may be affected is the eye. Contamination usually comes from suspended pollutants and may result in asymptomatic eye outcomes, irritation ( 112 ), retinopathy, or dry eye syndrome ( 113 , 114 ).

Environmental Impact of Air Pollution

Air pollution is harming not only human health but also the environment ( 115 ) in which we live. The most important environmental effects are as follows.

Acid rain is wet (rain, fog, snow) or dry (particulates and gas) precipitation containing toxic amounts of nitric and sulfuric acids. They are able to acidify the water and soil environments, damage trees and plantations, and even damage buildings and outdoor sculptures, constructions, and statues.

Haze is produced when fine particles are dispersed in the air and reduce the transparency of the atmosphere. It is caused by gas emissions in the air coming from industrial facilities, power plants, automobiles, and trucks.

Ozone , as discussed previously, occurs both at ground level and in the upper level (stratosphere) of the Earth's atmosphere. Stratospheric ozone is protecting us from the Sun's harmful ultraviolet (UV) rays. In contrast, ground-level ozone is harmful to human health and is a pollutant. Unfortunately, stratospheric ozone is gradually damaged by ozone-depleting substances (i.e., chemicals, pesticides, and aerosols). If this protecting stratospheric ozone layer is thinned, then UV radiation can reach our Earth, with harmful effects for human life (skin cancer) ( 116 ) and crops ( 117 ). In plants, ozone penetrates through the stomata, inducing them to close, which blocks CO 2 transfer and induces a reduction in photosynthesis ( 118 ).

Global climate change is an important issue that concerns mankind. As is known, the “greenhouse effect” keeps the Earth's temperature stable. Unhappily, anthropogenic activities have destroyed this protecting temperature effect by producing large amounts of greenhouse gases, and global warming is mounting, with harmful effects on human health, animals, forests, wildlife, agriculture, and the water environment. A report states that global warming is adding to the health risks of poor people ( 119 ).

People living in poorly constructed buildings in warm-climate countries are at high risk for heat-related health problems as temperatures mount ( 119 ).

Wildlife is burdened by toxic pollutants coming from the air, soil, or the water ecosystem and, in this way, animals can develop health problems when exposed to high levels of pollutants. Reproductive failure and birth effects have been reported.

Eutrophication is occurring when elevated concentrations of nutrients (especially nitrogen) stimulate the blooming of aquatic algae, which can cause a disequilibration in the diversity of fish and their deaths.

Without a doubt, there is a critical concentration of pollution that an ecosystem can tolerate without being destroyed, which is associated with the ecosystem's capacity to neutralize acidity. The Canada Acid Rain Program established this load at 20 kg/ha/yr ( 120 ).

Hence, air pollution has deleterious effects on both soil and water ( 121 ). Concerning PM as an air pollutant, its impact on crop yield and food productivity has been reported. Its impact on watery bodies is associated with the survival of living organisms and fishes and their productivity potential ( 121 ).

An impairment in photosynthetic rhythm and metabolism is observed in plants exposed to the effects of ozone ( 121 ).

Sulfur and nitrogen oxides are involved in the formation of acid rain and are harmful to plants and marine organisms.

Last but not least, as mentioned above, the toxicity associated with lead and other metals is the main threat to our ecosystems (air, water, and soil) and living creatures ( 121 ).

In 2018, during the first WHO Global Conference on Air Pollution and Health, the WHO's General Director, Dr. Tedros Adhanom Ghebreyesus, called air pollution a “silent public health emergency” and “the new tobacco” ( 122 ).

Undoubtedly, children are particularly vulnerable to air pollution, especially during their development. Air pollution has adverse effects on our lives in many different respects.

Diseases associated with air pollution have not only an important economic impact but also a societal impact due to absences from productive work and school.

Despite the difficulty of eradicating the problem of anthropogenic environmental pollution, a successful solution could be envisaged as a tight collaboration of authorities, bodies, and doctors to regularize the situation. Governments should spread sufficient information and educate people and should involve professionals in these issues so as to control the emergence of the problem successfully.

Technologies to reduce air pollution at the source must be established and should be used in all industries and power plants. The Kyoto Protocol of 1997 set as a major target the reduction of GHG emissions to below 5% by 2012 ( 123 ). This was followed by the Copenhagen summit, 2009 ( 124 ), and then the Durban summit of 2011 ( 125 ), where it was decided to keep to the same line of action. The Kyoto protocol and the subsequent ones were ratified by many countries. Among the pioneers who adopted this important protocol for the world's environmental and climate “health” was China ( 3 ). As is known, China is a fast-developing economy and its GDP (Gross Domestic Product) is expected to be very high by 2050, which is defined as the year of dissolution of the protocol for the decrease in gas emissions.

A more recent international agreement of crucial importance for climate change is the Paris Agreement of 2015, issued by the UNFCCC (United Nations Climate Change Committee). This latest agreement was ratified by a plethora of UN (United Nations) countries as well as the countries of the European Union ( 126 ). In this vein, parties should promote actions and measures to enhance numerous aspects around the subject. Boosting education, training, public awareness, and public participation are some of the relevant actions for maximizing the opportunities to achieve the targets and goals on the crucial matter of climate change and environmental pollution ( 126 ). Without any doubt, technological improvements makes our world easier and it seems difficult to reduce the harmful impact caused by gas emissions, we could limit its use by seeking reliable approaches.

Synopsizing, a global prevention policy should be designed in order to combat anthropogenic air pollution as a complement to the correct handling of the adverse health effects associated with air pollution. Sustainable development practices should be applied, together with information coming from research in order to handle the problem effectively.

At this point, international cooperation in terms of research, development, administration policy, monitoring, and politics is vital for effective pollution control. Legislation concerning air pollution must be aligned and updated, and policy makers should propose the design of a powerful tool of environmental and health protection. As a result, the main proposal of this essay is that we should focus on fostering local structures to promote experience and practice and extrapolate these to the international level through developing effective policies for sustainable management of ecosystems.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

IM is employed by the company Delphis S.A. The remaining authors declare that the present review paper was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Air pollution in Delhi, India: It's status and association with respiratory diseases

Affiliation.

  • 1 Department of Environmental Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
  • PMID: 36126064
  • PMCID: PMC9488831
  • DOI: 10.1371/journal.pone.0274444

The policymakers need research studies indicating the role of different pollutants with morbidity for polluted cities to install a strategic air quality management system. This study critically assessed the air pollution of Delhi for 2016-18 to found out the role of air pollutants in respiratory morbidity under the ICD-10, J00-J99. The critical assessment of Delhi air pollution was done using various approaches. The mean PM2.5 and PM10 concentrations during the measurement period exceeded both national and international standards by a wide margin. Time series charts indicated the interdependence of PM2.5 and PM10 and connection with hospital visits due to respiratory diseases. Violin plots showed that daily respiratory disease hospital visits increased during the winter and autumn seasons. The winter season was the worst from the city's air pollution point of view, as revealed by frequency analyses. The single and multi-pollutant GAM models indicated that short-term exposure to PM10 and SO2 led to increased hospital visits due to respiratory diseases. Per 10 units increase in concentrations of PM10 brought the highest increase in hospital visits of 0.21% (RR: 1.00, 95% CI: 1.001, 1.002) at lag0-6 days. This study found the robust effect of SO2 persisted in Delhi from lag0 to lag4 days and lag01 to lag06 days for single and cumulative lag day effects, respectively. While every 10 μg m-3 increase of SO2 concentrations on the same day (lag0) led to 32.59% (RR: 1.33, 95% CI: 1.09, 1.61) rise of hospital visits, the cumulative concentration of lag0-1 led to 37.21% (RR: 1.37, 95% CI:1.11, 1.70) rise in hospital visits which further increased to even 83.33% (RR: 1.83, 95% CI:1.35, 2.49) rise at a lag0-6 cumulative concentration in Delhi. The role of SO2 in inducing respiratory diseases is worrying as India is now the largest anthropogenic SO2 emitter in the world.

Publication types

  • Research Support, Non-U.S. Gov't
  • Air Pollutants* / adverse effects
  • Air Pollutants* / analysis
  • Air Pollution* / adverse effects
  • Air Pollution* / analysis
  • Environmental Pollutants* / analysis
  • India / epidemiology
  • Particulate Matter / adverse effects
  • Particulate Matter / analysis
  • Respiration Disorders* / epidemiology
  • Respiration Disorders* / etiology
  • Air Pollutants
  • Environmental Pollutants
  • Particulate Matter

Grants and funding

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Air pollution in Delhi, India: It’s status and association with respiratory diseases

Roles Investigation, Methodology, Software, Validation, Writing – original draft, Writing – review & editing

Affiliation Department of Environmental Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand

ORCID logo

Roles Conceptualization, Methodology, Supervision, Visualization

* E-mail: [email protected]

  • Abhishek Dutta, 
  • Wanida Jinsart

PLOS

  • Published: September 20, 2022
  • https://doi.org/10.1371/journal.pone.0274444
  • Reader Comments

Fig 1

The policymakers need research studies indicating the role of different pollutants with morbidity for polluted cities to install a strategic air quality management system. This study critically assessed the air pollution of Delhi for 2016–18 to found out the role of air pollutants in respiratory morbidity under the ICD-10, J00-J99. The critical assessment of Delhi air pollution was done using various approaches. The mean PM 2.5 and PM 10 concentrations during the measurement period exceeded both national and international standards by a wide margin. Time series charts indicated the interdependence of PM 2.5 and PM 10 and connection with hospital visits due to respiratory diseases. Violin plots showed that daily respiratory disease hospital visits increased during the winter and autumn seasons. The winter season was the worst from the city’s air pollution point of view, as revealed by frequency analyses. The single and multi-pollutant GAM models indicated that short-term exposure to PM 10 and SO 2 led to increased hospital visits due to respiratory diseases. Per 10 units increase in concentrations of PM 10 brought the highest increase in hospital visits of 0.21% (RR: 1.00, 95% CI: 1.001, 1.002) at lag0-6 days. This study found the robust effect of SO 2 persisted in Delhi from lag0 to lag4 days and lag01 to lag06 days for single and cumulative lag day effects, respectively. While every 10 μg m -3 increase of SO 2 concentrations on the same day (lag0) led to 32.59% (RR: 1.33, 95% CI: 1.09, 1.61) rise of hospital visits, the cumulative concentration of lag0-1 led to 37.21% (RR: 1.37, 95% CI:1.11, 1.70) rise in hospital visits which further increased to even 83.33% (RR: 1.83, 95% CI:1.35, 2.49) rise at a lag0-6 cumulative concentration in Delhi. The role of SO 2 in inducing respiratory diseases is worrying as India is now the largest anthropogenic SO 2 emitter in the world.

Citation: Dutta A, Jinsart W (2022) Air pollution in Delhi, India: It’s status and association with respiratory diseases. PLoS ONE 17(9): e0274444. https://doi.org/10.1371/journal.pone.0274444

Editor: Yangyang Xu, Texas A&M University, UNITED STATES

Received: October 1, 2021; Accepted: August 29, 2022; Published: September 20, 2022

Copyright: © 2022 Dutta, Jinsart. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: Data Availability: Air quality data of Delhi that support the findings of this study are owned by the Central Pollution Control Board (CPCB). For further information about the air quality data please visit https://cpcb.nic.in/real-time-air-qulity-data/ or https://app.cpcbccr.com/ccr/#/dashboard-emergency-stats . Meteorological data of Delhi can be obtained from the Regional Meteorological Centre, India Meteorological Department ( https://rmcnewdelhi.imd.gov.in/ ). Both for data and permission to use the data, please contact the Deputy Director General of Meteorology (DDGM), Regional Meteorological Centre, Lodi Road, New Delhi – 110003 via E-mail: [email protected] . Daily hospital visit data between the years 2016 and 2018 for respiratory diseases (ICD-10) J00-J99, used in this study, were collected from Vardhman Mahavir Medical College Safdarjung hospital, Ansari Nagar East, New Delhi. For data and permission to use data please contact the Medical Superintendent M.S. Office, New OPD Building, Safdarjung Hospital, New Delhi-110 029.Tel (011-26190763), e mail: [email protected] .

Funding: This study was supported by the Graduate School Thesis Grant GCUGR1225632064D, Chulalongkorn University, Bangkok, Thailand. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

1. Introduction

Time and again, the policymakers felt the requirements of understanding the status of air pollution in growing cities and association of short-term air pollution exposures spanning one or a few days on morbidity. This is particularly more relevant for the world’s fast-growing cities to accrue benefits of sustainable development. Epidemiological studies conducted in the past in cities held air pollution responsible for inducing different health hazards. The quasi-poison regression model within over-dispersed Generalized Additive Model (GAM) has been very handy for many researchers for exploring the association of air pollution with different morbidity and mortality [ 1 – 6 ]. In a time series where the respondent variable depends on the nonlinear relationship of independent variables, GAM model finds its best applicability. In GAM, the nonlinear confounders can be controlled using smooth functions to correctly estimate the best connection between dependent and independent variables [ 7 – 12 ]. Accordingly, researchers used the GAM model extensively to indicate the role of air pollution in causing health effects for US and European cities [ 13 , 14 ].

Chinese and Indian cities frequently grabbed the world’s attention because of increasing air pollution and reported health effects on city dwellers. Indian cities were in the limelight because of the uncontrollable nature of air pollution in already declared polluted cities. Different Chinese cities have been put under strict scanners by the researchers who continuously reported or updated the policymakers on air pollution and health hazards so that policy-level initiatives may defuse the situation. Recently Lu et al. [ 15 ] reported that research ably supported the polluted Chinese cities to progress in air pollution control and place the much-needed strategic air quality management system. Another recent article indicated that out of 31 research papers published during 2010–2020 investigating the role of different air pollutants on the health of city dwellers using the GAM model, the majority, i.e., 17 were in the backdrop of Chinese cities and 3 for Indian cities [ 16 ]. GAM successfully explored the role of different pollutants in establishing their relationships with different types of respiratory morbidity/mortality for 21 cities of China, India, Iran, Brazil. Denmark and Kuwait ( S1 Table ). Zhao et al. [ 17 ], using GAM, reported that Dongguan city dwellers in China faced the threat of enhanced respiratory diseases due to short term exposure to CO. Song et al. [ 18 ] found respiratory diseases amongst the children of Shijiazhuang city of China due to PM 10 , SO 2 , NO 2 presence in the air. Cai et al. [ 19 ], studied the total respiratory diseases mortality of Shenzhen, China, and linked them with PM 2.5 presence in ambient air through GAM modelling. Liang et al. [ 20 ] used GAM model to indicate a direct relationship between pulmonary disease in Beijing with air pollution. Very recently Wang et al. [ 21 ] confirmed the role of particulate matter (PM) with pneumonia hospitalizations of children in Hefei, China.

Delhi, the capital city of India, is the second most populated and one of the most polluted cities in the world and should be the obvious choice for pollution and health hazard research. The recent air quality report of IQ Air has ranked Delhi first out of the air-polluted capital cities of 106 countries based on PM 2.5 concentration [ 22 ]. According to WHO, Delhi is the sixth-worst polluted city amongst 13 notable other Indian cities. Indeed, the city-dwellers had terrible times when PM 2.5 of Delhi stood at 440 μg m -3 during October 2019, i.e., 12 times the US recommended level. Past studied blamed the huge transport sector with the largest vehicle stock of the country as the critical emission source [ 23 – 27 ]. Chen et al. [ 28 ] demonstrated that local transport emissions and neighboring states contributed dominantly to PM 2.5 and O 3 concentration strengthening in Delhi. Sreekanth et al. [ 29 ] found high PM 2.5 pollution persists across all the seasons in Delhi despite pollution control efforts in vogue. In the pan-Indian context, air pollution significantly contributed to morbidity and premature mortality in India for a long time [ 30 ]. Sharma et al. [ 31 ] reviewed 234 journal papers and noted the knowledge gaps in connecting hospital admissions of patients with air pollution of Delhi. Balyan et al. [ 32 ] also noted that a deeper understanding of ambient pollutants at the city level and their effect on morbidity was lacking.

Against the background above, the primary objective of this paper to explore the environmental data of Delhi for confirming the poor air quality status of the city and, after that, assess the role of air pollutants with morbidity (respiratory diseases) through the application of the GAM model. A more profound grasp of the city air quality and influences of ambient air pollution on respiratory diseases is much needed. Such studies may provide all critical information for initiating actions to curb air pollution, health risk, developing public health policies, and above all, a strategic environmental management system for Delhi.

2. Study location

As a highly populated and polluted city, Delhi provides an opportunity to apply the GAM model for ascertaining how much the prevailing air pollution is responsible for respiratory diseases of the city dwellers. Delhi has spread over 1,483 km 2 and a population size of about 11 million per the 2011 census study. With time Delhi emerged as a significant city of the country so far as commerce, industry, medical service, and education are concerned. As per Köppen’s climate classification, Delhi’s climate is extreme with five seasons. The summer is scorching (April–June), while winter is freezing (December-January). The average temperature range during the summer is between 25°C to 45°C, while the winter temperature range is between 22°C to 5°C [ 33 ]. The comfortable season spring prevails from February to March, and autumn runs from mid-September to late November. The rainy monsoon season spans almost three months, starting from July. Air pollution varies across seasons due to the influence of climatic conditions [ 34 ].

3. Materials and methods

3.1. air pollution data.

Daily average data for three years, January 2016 to December 2018, (1096 data points) of key air pollutants were collected from the State Pollution Control Board (SPCB), Delhi. The pollutants were sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), carbon monoxide (CO), particulate meter 10 micrometers or less (PM 10 ), and particulate meter 2.5 micrometers or less (PM 2.5 ) as recorded by 11 NAMP (National Air Quality Monitoring Programme) stations of the city as shown in Fig 1 and S2 Table .

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0274444.g001

3.2. Meteorological data

Time series meteorological data for 1 January 2016–31 December 2018 were collected from Regional Meteorological Department located in Delhi. The data were of a total of 1096 days and included daily average temperature (T), daily average relative humidity (RH), daily average wind speed (WS), and daily rainfall (RF). The collected meteorological and air monitoring data will be adequate to estimate the confounding effect of meteorological conditions on morbidity related to respiratory diseases using GAM model.

3.3. Hospital visit data

We considered respiratory diseases covered by J00-J99 under the ICD-10 classification system. Data related to daily hospital outpatient visits of patients for respiratory diseases under International Classification of Diseases-10 (ICD-10), J00-J99 for 2016–2018 (1096 days) were collected from Safdarjung Medical College and Hospital (SMCH) of Delhi. The SMCH had its existence from pre-independence days of India and now functioning under the Ministry of Health and Family Welfare, Government of India. SMCH has many different specialties and super specialty departments, and Respiratory Medicine (RM) is one. Fig 1 shows that all the 11 air pollution monitoring stations considered in this study are located within a road distance of 12 km from SMCH. The hospital records contained information related visit date of patients, age, gender, and final medical diagnosis for each patient. The patient data were grouped age-wise under three categories (i) elderly people (more than or equal to 65 years), (ii) middle-aged (45–64 years), and (iii) young (less than or equal to 44 years). For hospital data collection formal request letter was submitted to the hospital authority. As the data were old data without identifiers and not having any possibility of ascertaining the identities of the individuals to whom the data belong, the hospital waived IRB approval.

3.4. Methods of analysis

3.4.1 summary statistics and analysis of time series..

Summary statistics of climatic variables, air pollutants, and hospital visits of the patients such as mean, standard deviation, maximum, minimum, and different quartiles were computed using the SPSS 25 version of the software. Daily hospital visit counts for three years (2016–2018) in SMCH were structured based on the patient’s age, sex, and visit dates. Violin plots were developed for three air pollutants (PM 10 , PM 2.5 , and CO), two climatic variables (T, RH), and hospital visits of patients regarding five seasons of Delhi, indicating the distribution of data prevailing in the city during different seasons. Violin plots have been drawn with XLSTAT statistical software. Time series plots were developed using the SPSS 25 version of the software with time dimensions on the horizontal axis and hospital visits, pollutants and, meteorological variables on the vertical coordinate axes to shed light on the data distribution for three years.

3.4.2 Frequency analysis.

The seasonal distribution of PM 2.5 and PM 10 concentrations in Delhi during 2016–18 has been done by frequency analysis [ 35 ]. Under frequency analysis, first, the city level average concentrations of PM per day were calculated by averaging the concentration of 11 monitoring stations. Then, PM concentrations (both for PM 10 and PM 2.5 ), i.e., number of per day observations for the period 2016–18 falling under six categories like 0–25, 25–50, 50–100, 100–200, 200–300, and more than 300 μg m -3 worked out. So, the three-year period (2016–18) data or 1096 observations were segregated session-wise for each of the six categories, and the frequency of their appearances was then expressed in percentage terms. The calculations were done with the help of data analysis ’ToolPak’ of excel. As per the air quality index (AQI) Of India, the range 0–100 is considered a good category, 100–200 as moderate, 200–300 as poor, and above 300 as very poor or severe.

3.4.3 Correlation analysis.

To understand the interrelationship between climatic variables and air pollutants data for Delhi (2016–2018), we executed Pearson correlation analysis using SPSS version 25.0 (SPSS Inc., Chicago, IL, USA) software. The coefficients of correlations were established between daily meteorological variables and air pollutants for Delhi. The correlation coefficients at p < .01 were accepted as statistically significant [ 36 ]. For better visualization, correlation matrix plots have been drawn with R software’s ’corrplot’ package.

3.4.4 Generalized Additive Models (GAM).

delhi air pollution research paper

The respective coefficients of pollutants of the multi-pollutant and single-pollutant GAM models, found out as regression model output, were the inputs in deriving the relative risk (RR) of hospital visits due to one unit rise of each modelled air pollutants in the ambient air.

Past studies have shown that the air pollutants remain in the ambient air and create lingering effects on morbidity. Accordingly, we have considered pollutant concentrations for a single day and multiple days in the study. We tested the lingering effects of air pollution for single-day lags and cumulative lag days. Single-day lag (lag0) means air pollutant concentrations on the same day of the hospital visit, while lag6 indicates air pollutant concentrations of 6 days before the hospital visit. Similarly, for cumulative concentrations of pollutants lag0-1indicate the mean of pollutant concentration of the current day and previous day of the hospital visit (i.e., 2 days mean). Similarly, lag 0–2 indicates the mean of current day pollutant concentration, 1 day before and 2 days before the visit (i.e. 3 days mean). In the same way, lag0-3, lag0-4, lag0-5, and lag0-6 means 4 days, 5 days, 6 days, and 7 days mean pollutant concentrations, respectively. We used single lags of 0, 1, 2, 3, 5, and 5 days (lag0–lag 5) and cumulative lags of 0–1, 0–2, 0–3, 0–4, 0–5, and 0–6 days (lag 0–1 to lag0-6) to explore the lag pattern of health effects in the multi pollutants and single pollutant models. The R software with "mgcv" package (version 4.0.2) was applied to construct the GAM models. For visualizations of GAM models developed in this study, we have used visual tools of the mgcViz R package.

3.5. Relative Risk (RR)

delhi air pollution research paper

In all analyses p-value < 0.05 considered significant.

4. Results and discussion

4.1 data distribution and time-series analyses.

The distribution of criteria pollutants, climatic variables (T and RH), and daily counts of hospital visits in Delhi are placed in Table 1 for 2016–18. Table 1 indicates that the mean value of PM 2.5 and PM 10 concentrations exceeded the guidelines of NAAQS and WHO both by a wide margin. They shoot to as high as 693.08 μg m - ³ for PM 10 and 478.25 μg m - ³ for PM 2.5 during 2016–2018. The mean RH value of 58.5% (range, 98.3% to 12.5%) in Delhi indicates the city’s humid condition higher than the ideal level relative humidity for health and comfort of 30–50%. The three years mean temperature of 25.63 ± 7.65 °C with a maximum as high as 45°C and a minimum of 0.5°C along with a higher level of RH indicates the extreme climate of Delhi. Daily mean hospital visits of patients for respiratory diseases during 2016–18 was 20±23.52.

thumbnail

https://doi.org/10.1371/journal.pone.0274444.t001

Table 2 reveals that a total of 22,253 patients visited SMCH, Delhi, either for outpatient consultation or admission for respiratory diseases during 2016–2018, as retrieved from hospital records. The maximum number of people who visited the hospital for respiratory ailments for a day was 176, and the minimum 0 patients. Out of the total patients, 63.5% were female, and 30% had ≥65 years of age. Similarly, out of male patients, 52% were aged ≥65 years, as shown in Table 2 .

thumbnail

https://doi.org/10.1371/journal.pone.0274444.t002

Time series charts in ( Fig 2A–2F ) depict behaviors of meteorological variables (RH, temperature), air pollutants (PM 2.5 , PM 10 , and CO), hospital visits, and their interrelationship during 2016–2018 for Delhi. PM 2.5 and PM 10 were positively correlated in Delhi during 2016–18, indicating the interdependency ( Fig 2A ) while maintaining a positive correlation with hospital visits due to respiratory diseases ( Fig 2B and 2C ). Fig 2D–2E shows that hospital visits tended to negatively correlate with RH and temperature. Fig 2(F) shows a positive correlation of hospital visits with CO concentration too in the city’s environment.

thumbnail

The time series of Delhi from 2016–2018 (A) PM 2.5 Vs Hospital visit, (B) PM 10 Vs Hospital visit, (C) RH Vs Hospital visit, (D) T Vs Hospital visit, (E) CO Vs Hospital visit, (F) PM 2.5 Vs PM 10 .

https://doi.org/10.1371/journal.pone.0274444.g002

Violin plots of three air pollutants (PM 10 , PM 2.5 , and CO), two meteorological variables (T, RH), and hospital visits of patients were drawn for the five distinct seasons of Delhi have been provided in ( Fig 3A–3F ) below. Fig 3A indicates that PM 2.5 dominates the city environment during winter and autumn. Fig 3B indicates that PM 10 dominates the city air during the winter and summer seasons, but the median value of PM 10 concentrations was higher during winter. The concentration of CO in the air remains high during winter and low during the monsoon season ( Fig 3C ). Fig 3D clearly shows that the city experiences comparatively higher RH during summer and monsoon, with the highest median value during monsoon. Fig 3E indicates that the city experiences the hottest season during summer and autumn. From Fig 3F , it can be observed that during the winter and autumn season’s daily hospital visits due to respiratory diseases increased. The rectangles within the violin plots indicate finishing points of the first and third quartile of data distribution with central dots as medians. The upper and lower whiskers show data spread.

thumbnail

(A) PM 2.5 , (B) PM 10 , (C) CO, (D) RH, (E) Temperature, (F) Hospital visit.

https://doi.org/10.1371/journal.pone.0274444.g003

4.2 Seasonal distribution of PM 2.5 and PM 10 in Delhi

The frequency distribution of PM 2.5 and PM 10 concentrations for five Delhi seasons are shown in Fig 4 . Fig 4 indicates that the winter season was terrible from the air pollution point of view as almost 95.2% of the time, the ambient PM 2.5 concentrations recorded to be more than 100 μg m -3 . Alarmingly, 100% of the time, the ambient PM 10 concentrations crossed the 100 μg m -3 benchmark during winter, indicating very harsh wintertime for the city dwellers. The spring season brought some relief for the city dwellers when 42.2% of the time PM 2.5 concentrations crossed 100 μg m -3 benchmark, but PM 10 remained very strong with 99.4% of the time crossing the 100 μg m -3 benchmark. During summer, about 76.9% of the time PM 2.5 concentrations were under the ’good’ category, and 15.8% of the time PM 2.5 concentrations were more than the 100 μg m -3 benchmark. During summer PM 2.5 concentrations improved considerably with only 15.8% of the time, its concentrations were more than the 100 μg m -3 benchmark, but PM 10 remained razing with 97.8% time crossing 100 μg m -3 benchmark. However, two and half months of monsoon (July, August, and mid-September) brought relief from PM 2.5 pollution. Almost 100% of the time, PM 2.5 concentrations remained under the ’good’ category, but PM 10 remained 51.1% crossing the 100 μg m -3 benchmark during monsoon. From autumn (mid-September to late November), PM pollution built up with 97.8% of the time PM 2.5 concentrations crossing 100 μg m -3 benchmark, as shown in Fig 4 . In summary, the frequency distribution of PM 2.5 and PM 10 concentrations indicates that except winter, the PM concentrations remained very high, which could be a possible cause of health hazards for the city dwellers.

thumbnail

https://doi.org/10.1371/journal.pone.0274444.g004

4.3 Correlation between pollutants and meteorological variables

Positive correlation existed between two important gaseous pollutants SO 2 and NO 2 (r = 0.341), while PM 10 maintained a mild positive correlation with SO 2 (r = 0.281). PM 10 almost had linear positive correlation both with NO 2 (r = 0.783) and CO (r = 0.733) as shown in Table 3 and Fig 5 . PM 2.5 also had positive correlation with SO 2 (r = 0.137), and positive linear correlation with NO 2 (r = 0.673) and CO (r = 0.757). Also, PM 10 and PM 2.5 maintained positive linear correlation.

thumbnail

Blue, red, and while indicate positive, negative, and no correlation respectively.

https://doi.org/10.1371/journal.pone.0274444.g005

thumbnail

https://doi.org/10.1371/journal.pone.0274444.t003

4.4 Association of criteria pollutants with respiratory diseases, Delhi

Multi-pollutant and single pollutant GAM models were formed for Delhi to understand the impact of air pollutants on hospital visits due to respiratory diseases. Multi pollutant models indicate combined effects of the involved pollutants on the hospital visits, whereas single pollutant GAM models cast light on the sole effect of pollutants. The models were tested with different lag concentrations to comprehensively understand the impact of short-term exposure of pollutants on hospital visit counts due to respiratory diseases.

4.4.1. Association of criteria pollutants with respiratory diseases in Delhi (multi-pollutant models).

In the multi-pollutant model, criteria pollutants for 2016–18 were included in the base GAM model. Table 4 and Fig 6 indicate the relative risks (RR) of hospital visits due to a rise of 1 unit increase in CO and 10 units for all other pollutant concentrations for different single lag days. The RR patterns in Table 4 indicate synergistic effects of criteria pollutants on respiratory diseases related hospital visits in the city. Table 4 reveals that both PM 2.5 and PM 10 concentrations of all the 6 single lag days had no significant effect on respiratory disease-related hospital visits. The effect of NO 2 on hospital visits was there during lag1 day concentrations only but without any positive acceleration. The effect of SO 2 on respiratory diseases-related hospital visits was found to be robust instantaneously, i.e., the increase of every 10 ppb SO 2 on the same day (lag 0) resulted in a 32.6% (RR: 1.326, 95% CI: 1.089, 1.614) rise in hospital visits. The effect of SO 2 on hospital visits persisted throughout the lag days from lag0 up lag4. The increase in CO on hospital visits throughout the different lag days (lag0 to lag6) was found to be non-significant for respiratory diseases.

thumbnail

https://doi.org/10.1371/journal.pone.0274444.g006

thumbnail

https://doi.org/10.1371/journal.pone.0274444.t004

Table 5 and Fig 6 below indicate the relative risks (RR) pattern of change in hospital visits due to a rise of 1 unit increase in CO and 10 units for all other pollutant concentrations for different cumulative concentrations of pollutants. Both for PM 2.5 and PM 10 , in terms of cumulative days effect of air pollution, no significant effect could be found. NO 2 and CO were also not significantly responsible for enhancing respiratory diseases in the city. However, per 10 ppb rise in cumulative lag days, concentrations of SO 2 led to a comparatively more robust effect on respiratory diseases than single-day lag effects. At lag0-1 per 10 ppb, rise in concentrations of SO 2 was associated with the percentage change in hospital visits of 37.21% (RR: 1.372, 95% CI: 1.107, 1.701), which increased to 83.34% (RR: 1.833, 95% CI: 1.351, 2.489) during the lag0-6 day. The result indicates the robust effect of pollutants SO 2 on respiratory disease-related hospital visits in Delhi.

thumbnail

https://doi.org/10.1371/journal.pone.0274444.t005

Figs 7 and 8 below, drawn with the "mgcViz" R software package (Fasiolo et al., [ 43 ], provide the visual representation of the smoothing applied to the non-parametric terms and performance of the GAM model at lag0 respectively.

thumbnail

https://doi.org/10.1371/journal.pone.0274444.g007

thumbnail

https://doi.org/10.1371/journal.pone.0274444.g008

4.4.2. Association of criteria pollutants with respiratory diseases in Delhi (Single-pollutant models).

Two single-pollutant models were developed with pollutants PM 2.5 and PM 10, respectively, to understand the sole effect of PM pollution on respiratory diseases. We fitted different single lag days and cumulative lag days to express the association of daily hospital visits for respiratory diseases with a 10μg m -3 increase in PM 10 or PM 2.5 in Delhi. Both PM 2.5 and PM 10 did not show any significant association with the number of respiratory disease-related hospital visits in Delhi for all the single lag days considered here, as revealed by the p values ( Table 6 and Fig 9 ). In other words, the association of PM 2.5 and PM 10 with the respiratory disease was negligible as RR was found to be less than the baseline (RR<1).

thumbnail

https://doi.org/10.1371/journal.pone.0274444.g009

thumbnail

https://doi.org/10.1371/journal.pone.0274444.t006

However, in cumulative exposure single-pollutant models, PM 10 was found to have persistently enhanced hospital visits of patients with the respiratory disease excepting lag 0–2 days, as shown in Table 6 . Table 6 shows that per 10 units increase in concentrations of PM 10 brought the highest increase in hospital visits of 0.21% (RR: 1.002, 95% CI: 1.001, 1.002) at lag0-6 days. PM 2.5 association with respiratory disease-related hospital visits found to be non-significant during all the cumulative lag days considered.

5. Conclusion and discussion

The study investigated first the level of air pollution in Delhi and then assessed the impact of air pollution on respiratory diseases. The result suggests that Delhi has been struggling to cope up with the increasing nature of criteria pollutants in the first place. A total of 22,253 patients visited the Delhi hospital either for outpatient consultation or admission for respiratory diseases for 2016–2018. The study found that the mean value of PM 2.5 and PM 10 concentrations for the period 2016–2018 were 107.32±71.06 μg m -3 and 210.61±95.90 μg m -3 for Delhi, respectively, which were substantially higher than the NAAQS and WHO standards. Out of the five seasons in Delhi, the winter season is hugely dominated by PM 2.5 and PM 10 pollution, as revealed by frequency analyses. Initial time series analysis revealed that PM 2.5 maintained a positive correlation with PM 10 have while PM 2.5 , PM 10 , and CO maintained a positive correlation with hospital visits during 2016–18 in Delhi. Pearson correlation analysis confirmed that PM 10 in Delhi had almost positive linear correlations with NO 2 and CO while PM 10 maintained a strong positive correlation with PM 2.5 . Interestingly, SO 2 too maintained a significant positive correlation with PM 2.5 , PM 10 , NO 2 , and CO. Previous studies in the Indian city of Mumbai highlighted the strong positive correlation of PM 2.5 with NO 2 and referred to them as a dummy indicator of air pollution due to transport-related emissions in the city [ 44 ]. In the same line, significant positive correlations between PM concentrations and gaseous pollutants, shown by air pollution data, point towards transport-related pollution, solvent evaporation, and waste disposal as sources [ 45 , 46 ].

This study shows PM 10 to have persistent enhancing effects on the number of hospital visits with the respiratory disease during all the cumulative lag days excepting lag 0–2 days. Luong et al. [ 47 ] reported PM 10 and respiratory disease-related hospital admission in polluted Hanoi city of Vietnam. Past studies confirmed the role of PM in inducing oxidative stress in the human respiratory system [ 48 ]. PM 10 impact on respiratory diseases in Delhi may be aggravated due to the road dust fraction of PM 10 that has significant oxidative potential [ 49 ]. It was interesting to note that in multi-pollutant models, the role of PM 10 causing respiratory diseases got subdued due to the combined presence of other pollutants in Delhi city.

This study found that short-term exposure to SO 2 and PM 10 led to increased hospital visits of the city dwellers due to respiratory diseases under (ICD-10) J00-J99. The present study reports the mean SO 2 in ambient air for three years (2016–18) as 14.65 ppb or 38.25 μg m -3 . SO 2 is a very critical gaseous pollutant connected with public health [ 50 ]. Past studies reported that an ordinary person could withstand only 2.62 μg m -3 of SO 2 in the ambient air without any respiratory problem [ 51 ]. However, short but higher concentration exposure to SO 2 gas can cause persistent pulmonary problems [ 52 ]. Orellano et al. [ 53 ], in a more recent and extensive review and metadata analysis, confirmed that short-term exposure to SO 2 , varying from few hours to days, can lead to an increased risk of respiratory morbidity/mortality. Our findings agree with that and found a robust effect of SO 2 on respiratory diseases hospital visits in Delhi. This study shows the robust effect of SO 2 persisted in Delhi throughout the single lag days (from lag0 up lag4) and had an instantaneous (same day, lag 0) increase of 32.6% (RR: 1.326, 95% CI: 1.089, 1.614) of hospital visits. The cumulative concentrations of SO 2 were more robust than the single lag day concentration in Delhi. While every 10 μg m -3 SO 2 concentrations on the same day (lag0) showing 32.59% (RR: 1.326, 95% CI: 1.089, 1.614) rise of hospital visits, the cumulative concentration on the day and its previous day (lag0-1) showing 37.21% (RR: 1.372, 95% CI: 1.107, 1.701) rise in hospital visits which further increased to even 83.33% (RR: 1.833, 95% CI: 1.351, 2.489) rise at a lag0-6 cumulative concentration of the pollutant in Delhi. Ren et al. [ 54 ], using the GAM model, confirmed the SO 2 effect on respiratory diseases in the fast-industrializing Chinese city of Wuhan and found that a 10 μg m -3 rise in SO 2 concentrations led to a rise of RR for respiratory disease mortality by 1.9% at lag0 day or same day. More recently, another two highly industrializing cities of Zhoushan and Hangzhou of China with the comparatively lesser presence of average SO 2 of 6.12 μg m -3 and 17.25 μg m -3 in ambient air, respectively, confirmed the active role of SO 2 in enhancing hospital visits of the patient for respiratory diseases [ 55 ]. Phosri et al. [ 56 ] also reported the effect of SO 2 for hospital admissions for respiratory diseases in industrializing Bangkok city of Thailand.

Recent COVID-19 and air pollution studies in Delhi indicated that even during the rigorous ’lockdown’ period, there was only a marginal decrease of mean SO 2 in the ambient air than in the regular times [ 33 , 57 ]. Therefore, it proves that a significant portion of ambient SO 2 in Delhi is likely to be from non-local origins like distant transfer, fossil fuel-fired thermal power plants in the bordering areas of Delhi, and biomass burning in the neighboring states. India’s recognition as the largest anthropogenic SO 2 emitter replacing China in recent times will be much more worrisome in the context of this study’s findings [ 58 , 59 ].

Suneja et al. [ 60 ], through an experimental study in Delhi, reported the seven-year (2011–2018) mean value of SO 2 level was 2.26 ppb, while this study found a much higher three-year average (2016–18) of 14.65 ppb, indicating the rise of SO concentrations in Delhi in the more recent years. The association of respiratory diseases with PM 10 and SO 2 was found stable in different lag days analyses, indicating the problem’s depth for the city dwellers. The robust and instantaneous nature of the relationship between SO 2 and respiratory morbidity indicated in this study and evidence of similar relationships found in the previous studies highlight the necessity of taking policy-level measures to reduce SO 2 in the ambient air. Limited GAM model application in Indian cities to link air pollution and health effects is not a limitation of the present study findings but rather a call for more sponsored research in the area.

Supporting information

S1 table. air pollutants and their association with respiratory mortality/morbidity for 18 cities using gam model during 2000–2020..

https://doi.org/10.1371/journal.pone.0274444.s001

S2 Table. Monitoring stations and their geographic coordinates, Delhi.

https://doi.org/10.1371/journal.pone.0274444.s002

Acknowledgments

The authors thank the Central Pollution Control Board and the Indian Meteorological Department of Delhi city for providing air pollution and meteorological information, respectively.

  • View Article
  • Google Scholar
  • PubMed/NCBI
  • 22. IQAir. World Air Quality Report 2020: Region and city PM2.5 ranking. 2019. https://www.iqair.com/world-mostpolluted-cities .
  • 37. Xiang D. Fitting generalized additive models with the GAM procedure. In SUGI Proceedings. Cary, NC: SAS Institute, Inc. Statistics, Data Analysis, and Data Mining. 2001. Paper 256–26; [accessed on 02 October, 2020]; https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p256-26.pdf .

You are using an outdated browser. Please upgrade your browser or activate Google Chrome Frame to improve your experience.

  • Commercial & industrial PV
  • Grids & integration
  • Residential PV
  • Utility Scale PV
  • Energy storage
  • Balance of systems
  • Modules & upstream manufacturing
  • Opinion & analysis
  • Press releases
  • Sustainability
  • Technology and R&D
  • pv magazine UP initiative
  • pv magazine Hydrogen Hub
  • Guggenheim Solar Index
  • Market overview: Large-scale storage systems
  • Market overview: Microgrid control systems
  • Module Price Index
  • PV Project Exchange
  • Archived: Solar Superheroes
  • pv magazine Roundtables
  • SunRise Arabia
  • Solar+Storage España
  • pv magazine Webinars
  • pv magazine Webinars: German
  • pv magazine Spotlights
  • Event calendar
  • External Events
  • pv magazine live
  • Special editions
  • Clean Power Research: Solar data solutions to maximize PV project performance
  • BayWa r.e. 2019 grid parity white paper
  • Partner news
  • pv magazine test results
  • Issues before 2023
  • pv magazine team
  • Newsletter subscription
  • Magazine subscription
  • Community standards

Winter air pollution weighing on solar generation in India

Solargis says that Indian solar operators have experienced below-average PV panel performance due to air pollution in each of the past five winters. Northern India experienced the worst air quality in decades this January, with data showing a 30% to 50% dip in solar irradiance due to high aerosol levels.

  • Commercial & Industrial PV

delhi air pollution research paper

Image: Janak Bhatta, Wikimedia Commons

Icon Facebook

From pv magazine India

Solargis, a solar data company, has said that India’s solar power generation is significantly affected by poor air quality during the winter months.

According to new data from the company, in January 2024, northern India experienced the poorest air quality in decades, with some localities facing persistent fog or smog lasting up to 20 days.

The maps show that high aerosol levels are having a direct impact on the performance of solar projects in the region. Solargis’ monthly Global Horizontal Irradiance (GHI) map for January 2024 shows substantial drops in solar irradiance – between 30% and 50% – compared to long-term averages. This continues a longer-term trend of winter underperformance in northern India, which has seen significant dips in irradiance occur in each of the last five winters.

“January 2024 saw records broken for both the lowest average monthly temperature and lowest GHI,” said Avik Mitra, business account manager at Solargis. “This had tangible impacts on the financial performance of solar projects across Punjab, Haryana, and Uttar Pradesh, which collectively host around 5 GW of installed capacity. But this has not been an isolated event.”

In addition to this recurring pattern of winter underperformance in the north, operators in central India have faced a long-term trend of below-average irradiance, stretching back over the past six years. Solargis’ 2023 Indian solar performance maps  show a dip of between 1% and 5% compared to the average across central India – attributed in part to the prolonged monsoon season.

Popular content

To help the industry better understand and mitigate the impact of these resource challenges, Solargis is working with a number of leading PV companies in India and providing them with irradiance data to pinpoint and address underperformance.

“We’ve grappled with identifying the root causes of underperformance for our projects in India and recognized the need for accurate yield information,” said Chris Brosz, head of engineering at Candi Solar. “Relying on robust and high-quality data has enabled us to optimize our project performance and build a scalable platform.”

Indian solar developers are investing in higher quality data to understand long-term irradiance trends and the future performance of increasingly complex renewable energy assets. The Indian market has moved from 100% solar tenders to hybrid tenders incorporating both battery energy storage and wind energy, which necessitates a better understanding of how performance is influenced by changing weather patterns.

“Often these hybrid tenders require matching generation profiles with load profiles, and there are penalties for not doing so,” said Mitra. “This has increased the need for developers to better grasp solar variability – both at intra-day and seasonal levels – and diversify their portfolios to manage financial risk.”

This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com .

delhi air pollution research paper

More articles from Uma Gupta

South Korea plans 120 GW space solar project

Solar forecasting based on all sky imaging, long short-term memory, related content, elsewhere on pv magazine..., leave a reply cancel reply.

Please be mindful of our community standards .

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

By submitting this form you agree to pv magazine using your data for the purposes of publishing your comment.

Your personal data will only be disclosed or otherwise transmitted to third parties for the purposes of spam filtering or if this is necessary for technical maintenance of the website. Any other transfer to third parties will not take place unless this is justified on the basis of applicable data protection regulations or if pv magazine is legally obliged to do so.

You may revoke this consent at any time with effect for the future, in which case your personal data will be deleted immediately. Otherwise, your data will be deleted if pv magazine has processed your request or the purpose of data storage is fulfilled.

Further information on data privacy can be found in our Data Protection Policy .

By subscribing to our newsletter you’ll be eligible for a 10% discount on magazine subscriptions!

  • Select Edition(s) * Hold Ctrl or Cmd to select multiple editions. Tap to select multiple editions. Global (English, daily) Germany (German, daily) U.S. (English, daily) Australia (English, daily) China (Chinese, weekly) India (English, daily) Latin America (Spanish, daily) Brazil (Portuguese, daily) Mexico (Spanish, daily) Spain (Spanish, daily) France (French, daily) Italy (Italian, daily)
  • Read our Data Protection Policy .

Subscribe to our global magazine

delhi air pollution research paper

Our events and webinars

Pv magazine print, keep up to date.

IMAGES

  1. Case Study On Air Pollution In Delhi 2017

    delhi air pollution research paper

  2. Air pollution claimed approximately 54,000 lives in Delhi in 2020

    delhi air pollution research paper

  3. Air Pollution Of Delhi:Main Cause Of Air Pollution In Delhi,Statistics

    delhi air pollution research paper

  4. (PDF) Delhi's Air Pollution

    delhi air pollution research paper

  5. air pollution in delhi research paper

    delhi air pollution research paper

  6. (PDF) Air pollution in Delhi: A review of past and current policy

    delhi air pollution research paper

COMMENTS

  1. Air pollution in Delhi, India: It's status and association with respiratory diseases

    The policymakers need research studies indicating the role of different pollutants with morbidity for polluted cities to install a strategic air quality management system. This study critically assessed the air pollution of Delhi for 2016-18 to found out the role of air pollutants in respiratory morbidity under the ICD-10, J00-J99.

  2. What Is Polluting Delhi's Air? A Review from 1990 to 2022

    Delhi's annual average PM2.5 concentration in 2021-22 was 100 μg/m3—20 times more than the WHO guideline of 5 μg/m3. This is an improvement compared to the limited information available for the pre-CNG-conversion era (~30%), immediately before and after 2010 CWG (~28%), and the mid-2010s (~20%). These changes are a result of continuous technical and economic interventions interlaced ...

  3. Air pollution in Delhi: Its Magnitude and Effects on Health

    This paper provides an evidence-based insight into the status of air pollution in Delhi and its effects on health and control measures instituted. study the effects of air pollution.

  4. "Air pollution in Delhi: Its Magnitude and Effects on Health"

    This paper provides an evidence-based insight into the status of air pollution in Delhi and its effects on health and control measures instituted. The urban air database released by the World Health Organization in September 2011 reported that Delhi has exceeded the maximum PM10 limit by almost 10-times at 198 μ g/m3.

  5. Unveiling the Surge: Exploring Elevated Air Pollution Amidst the COVID

    This comprehensive study delves into the complex issue of air pollution in Delhi, with a specific focus on the levels of PM2.5, PM10, NO2, and O3 during 2019 and 2020 across all four seasons. By analyzing primary data and employing advanced GIS techniques, the research not only quantifies pollution levels before and during the COVID-19 pandemic but also identifies high-risk areas and ...

  6. Health and Economic Impact of Air Pollution in Delhi HEALTH AND

    Research Institute (IFPRI, 2019) pegs the economic cost of exposure to air pollution from crop residue burning at $35 billion, or nearly Rs 2.35 lakh crore annually, for the three north Indian ...

  7. Estimates of air pollution in Delhi from the burning of ...

    Introduction. In 2014, Delhi became the most polluted city in the world [1, 2].Since then it has continued to be in the list of the world's most polluted cities [].Air pollution is worse in the winter months (October—January) as particles remain suspended in the air for longer duration of time due to the lower temperature, wind speed as well as higher relative humidity.

  8. Why is Delhi's air pollution so bad right now?

    A 2019 study found that 42% of the black carbon — a pollutant that contributes to haze formation and affects health — in Delhi in winter and autumn was from crop burning 1. Another study ...

  9. Policy Interventions and Their Impact on Air Quality in Delhi City

    Delhi megacity's high level of air pollution is a grave concern and calls for stringent and result-oriented efforts toward its reduction to meet the specified standards. It is necessary to understand the effectiveness of control actions implemented in the past and their response to air quality. The present study attempts to compile the information on the implemented control strategies in the ...

  10. New Delhi: air-quality warning system cuts peak pollution

    M. Rajeevan. A sophisticated early-warning and decision-support system is minimizing air-pollution events in and around the Indian capital of New Delhi. This system helped to cut the city's ...

  11. PM 2.5 particulate matter and its effects in Delhi/NCR

    Air pollution in New Delhi/NCR, India, is an important concern for the environment and health. ... In this paper, interdisciplinary reviews on various environmental pollutions that especially caused in India's National Capital discussed. This paper will give the guidelines for future research on impacts on environmental pollution observational ...

  12. An Analysis of Air Pollution and Its Impact on Human Population in Delhi

    The paper examines the spatial distribution of air pollution in response to recent air quality regulations in Delhi, India. Air pollution was monitored at 113 sites spread across Delhi and its ...

  13. Estimation of Air Pollution in Delhi Using Machine Learning Techniques

    Urban air pollution prediction becomes an indispensable alternative to curb its detrimental consequences. Numerous machine learning techniques have been adopted to forecast the air quality. In this paper, we implemented different classification and regression techniques like Linear Regression, SDG Regression, Random Forest Regression, Decision Tree Regression, Support Vector Regression ...

  14. Analyzing the Patterns of Delhi's Air Pollution

    This paper provides evidenced-based learning on the status of air pollution in Delhi, and its impact on flourishing and control measures has begun. The urban air database produced in September 2011 by the World Prosperity Relationship revealed that Delhi had beaten the ludicrous PM 10 limit by 10 times at 198 μg/ m3 for all intents and purposes.

  15. Environmental and Health Impacts of Air Pollution: A Review

    New Delhi is one of the more polluted cities in India. Flights in and out of New Delhi International Airport are often canceled due to the reduced visibility associated with air pollution. ... In the present paper, we focus on the sources of environmental pollution in relation to public health and propose some solutions and interventions that ...

  16. PDF Air Pollution in Delhi: Filling the Policy Gaps

    The economic cost of fossil fuel air pollution alone is estimated at INR 10,700 billion, or 5.4 percent of the country's annual GDP. An estimated one million deaths each year, and 980,000 pre-term births, are attributed to air pollution from fossil fuel in India.2 Among all the cities in India, some of the worst levels of air

  17. "Air pollution in Delhi: Its Magnitude and Effects on Health"

    This paper provides an evidence-based insight into the status of air pollution in Delhi and its effects on health and control measures instituted. The urban air database released by the World Health Organization in September 2011 reported that Delhi has exceeded the maximum PM10 limit by almost 10-times at 198 μg/m3.

  18. Air pollution in Delhi, India: It's status and association with

    cities in the world and should be the obvious choice for pollution and health hazard research. The recent air quality report of IQ Air has ranked Delhi first out of the air-polluted capital cit-ies of 106 countries based on PM 2.5 concentration [22]. According to WHO, Delhi is the sixth-worst polluted city amongst 13 notable other Indian cities.

  19. The Health Effects of Air Pollution in Delhi, India

    This paper-a product of Development Economics Research Group-is part of a larger effort in the group to examine the benefits and costs of pollution control. The study was funded by the Bank's Research Support Budget under research project Measuring the Health Effects of Air Pollution in Developing Countries: The Case of Delhi, India (RPO 679-96).

  20. Air pollution in Delhi, India: It's status and association with

    The policymakers need research studies indicating the role of different pollutants with morbidity for polluted cities to install a strategic air quality management system. This study critically assessed the air pollution of Delhi for 2016-18 to found out the role of air pollutants in respiratory morbidity under the ICD-10, J00-J99.

  21. Air pollution in Delhi, India: It's status and association with

    The policymakers need research studies indicating the role of different pollutants with morbidity for polluted cities to install a strategic air quality management system. This study critically assessed the air pollution of Delhi for 2016-18 to found out the role of air pollutants in respiratory morbidity under the ICD-10, J00-J99. The critical assessment of Delhi air pollution was done ...

  22. PDF Health and Economic Impact of Air Pollution in Delhi

    the impact of clean fuel on elhi's population. Understanding air pollution originating from the transport sector is of paramount importance as nearly 40 per cent of the air pollution comes from this source. Delhi is our treatment group for the survey. Since dirty fuel (BS-IV) was distributed in Haryana during the survey period, we have also

  23. Winter air pollution weighing on solar generation in India

    Northern India experienced the worst air quality in decades this January, with data showing a 30% to 50% dip in solar irradiance due to high aerosol levels. From pv magazine India. Solargis, a ...

  24. (PDF) Review on air pollution of Delhi zone using ...

    Main pollutants which present in the air are PM2.5, PM10, CO, NO2 , SO2 and O3 In this paper we have focused mainly on data set of New Delhi for predicting ambient air pollution and quality using ...