• Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Dissertation

Dissertation – Format, Example and Template

Research Project

Research Project – Definition, Writing Guide and...

Research Report

Research Report – Example, Writing Guide and...

Problem statement

Problem Statement – Writing Guide, Examples and...

Thesis Statement

Thesis Statement – Examples, Writing Guide

Research Process

Research Process – Steps, Examples and Tips

2.4 Developing a Hypothesis

Learning objectives.

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis it is imporant to distinguish betwee a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition. He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observation before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [1] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). A researcher begins with a set of phenomena and either constructs a theory to explain or interpret them or chooses an existing theory to work with. He or she then makes a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researcher then conducts an empirical study to test the hypothesis. Finally, he or she reevaluates the theory in light of the new results and revises it if necessary. This process is usually conceptualized as a cycle because the researcher can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.2  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

Figure 4.4 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.

Figure 2.2 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [2] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans (Zajonc & Sales, 1966) [3] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be  logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be  positive.  That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that really it does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

Key Takeaways

  • A theory is broad in nature and explains larger bodies of data. A hypothesis is more specific and makes a prediction about the outcome of a particular study.
  • Working with theories is not “icing on the cake.” It is a basic ingredient of psychological research.
  • Like other scientists, psychologists use the hypothetico-deductive method. They construct theories to explain or interpret phenomena (or work with existing theories), derive hypotheses from their theories, test the hypotheses, and then reevaluate the theories in light of the new results.
  • Practice: Find a recent empirical research report in a professional journal. Read the introduction and highlight in different colors descriptions of theories and hypotheses.
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

Creative Commons License

Share This Book

  • Increase Font Size
  • Best-Selling Books
  • Zimbardo Research Fields

The Stanford Prison Experiment

  • Heroic Imagination Project (HIP)
  • The Shyness Clinic

The Lucifer Effect

Time perspective theory.

  • Books by Psychologists
  • Famous Psychologists
  • Psychology Definitions

hypothesis definition in terms of psychology

Hypothesis: Psychology Definition, History & Examples

In the realm of psychological science, a hypothesis is a tentative, testable assertion or prediction about the relationship between two or more variables. It serves as a foundational element for empirical research, guiding the direction of study and inquiry.

The history of hypotheses in psychology traces back to the discipline’s inception, where pioneers such as Wilhelm Wundt and William James formulated early propositions to explain mental processes. Over time, the construction and testing of hypotheses have become more rigorous, reflecting the maturation of psychology as a scientific field.

Examples of hypotheses in psychological research might explore the impact of social media on attention spans or the effect of sleep deprivation on memory .

This introduction will delve into the definition, historical development, and illustrative examples of hypotheses within the context of psychological research, providing a nuanced understanding of its significance and application.

Table of Contents

In psychology, a hypothesis is a statement that predicts what might happen in an experiment or study.

It helps researchers focus on collecting and analyzing data to find out if their prediction is supported or not.

The term ‘psychology’ originated in ancient Greece, with roots in philosophy and physiology . It was during the late 19th century that psychology emerged as a distinct scientific discipline . Wilhelm Wundt, often considered the father of psychology, established the first psychological laboratory in Leipzig, Germany, in 1879. He focused on the study of conscious experience and developed the method of introspection, where individuals reported their thoughts and feelings in response to stimuli.

Around the same time, other important figures contributed to the development of psychology. Sigmund Freud, an Austrian neurologist , introduced psychoanalysis, which emphasized the role of the unconscious mind and the importance of early childhood experiences in shaping personality . Ivan Pavlov, a Russian physiologist, conducted groundbreaking research on classical conditioning , demonstrating how associations between stimuli and responses can be learned.

In the early 20th century, behaviorism emerged as a dominant school of thought in psychology, led by figures such as John B. Watson and B.F. Skinner. Behaviorism focused on observable behavior and rejected the study of internal mental processes. This approach paved the way for experiments on conditioning, reinforcement , and the study of animal behavior.

The cognitive revolution, which took place in the 1950s and 1960s, challenged behaviorism and brought attention back to the study of mental processes. Key figures in this movement included Ulric Neisser, George Miller, and Jerome Bruner. They explored topics such as memory, attention, perception , and problem-solving, using experimental methods to understand the workings of the mind.

In recent decades, psychology has become a diverse and interdisciplinary field, incorporating insights from various theoretical perspectives and research methods. Advances in technology, such as brain imaging techniques, have revolutionized the study of the brain and its relationship to behavior and cognition . Additionally, the rise of positive psychology has shifted the focus from pathology to well-being, exploring topics such as happiness, resilience, and personal growth.

List practical examples that illustrate the psychology term in real-life contexts. Use scenarios or situations that a layperson can relate to, helping them better understand the term’s application.

  • Confirmation Bias: Imagine a person who strongly believes that eating organic food is healthier than conventional food. Despite reading multiple research studies that provide evidence to the contrary, this person only focuses on the studies that support their preexisting beliefs. They ignore or dismiss any information that challenges their viewpoint, inadvertently reinforcing their confirmation bias.
  • Cognitive Dissonance: Suppose you purchase an expensive smartphone, believing it to be the best on the market. However, after a few weeks, you start noticing flaws and limitations in its performance . Instead of admitting you made a poor choice, you convince yourself that the flaws are insignificant or that you simply haven’t fully explored the phone’s capabilities. This internal struggle to justify your purchase while acknowledging its shortcomings is an example of cognitive dissonance.
  • Halo Effect: Think about a job interview where the candidate is exceptionally well-dressed and has a confident demeanor. Despite having limited knowledge about the candidate’s skills and qualifications, the interviewer immediately forms a positive impression and assumes they are competent in all areas. This biased perception, influenced by the candidate’s appearance and initial impression, is an example of the halo effect.
  • Self-Fulfilling Prophecy: Consider a student who is consistently told by their parents and teachers that they are not good at math. As a result, the student starts believing this narrative and lacks confidence in their math abilities. Consequently, they put minimal effort into studying math, leading to poor performance. The initial belief that they were not good at math becomes a self-fulfilling prophecy.
  • Anchoring Bias: Picture yourself shopping for a new laptop. The first store you visit showcases a high-end laptop priced at $2000. Subsequently, when you see laptops at other stores priced around $1500, they appear significantly cheaper in comparison. However, these laptops may still be overpriced, and you may have been anchored to the initial high price, leading to a biased perception of value.

Related Terms

In relation to the concept of a hypothesis in psychology, several other terms frequently emerge in scholarly discussions, including ‘theory’, ‘variable’, and ‘operational definition’. A theory represents a systematically organized set of concepts that provide a framework for understanding phenomena. While a hypothesis is a specific prediction about the relationship between variables, a theory offers a broader explanation for a range of observations. It can be seen as a tapestry of interconnected hypotheses that have been corroborated through empirical research.

Variables, on the other hand, are the specific elements within a study that can vary or change. These are often categorized as independent, dependent, or confounding. Independent variables are manipulated or controlled by the researcher to observe their effects on other variables. Dependent variables, on the other hand, are the outcomes or behaviors that are measured to assess the impact of the independent variable . Confounding variables are other factors that may unintentionally influence the relationship between the independent and dependent variables.

Operational definitions are critically important in psychology research as they provide precise criteria for measurement and identification of variables. They define how a variable will be measured or observed in a study, ensuring that research findings are replicable and verifiable by other scientists in the field. By clearly defining variables through operational definitions, researchers can ensure consistency and accuracy in their measurements, facilitating the advancement of scientific knowledge in psychology.

Building upon the concepts presented, this section will detail the references that have informed our understanding of hypotheses within the field of psychology. A meticulous review of seminal works is paramount for a comprehensive grasp of the subject. References encompass a spectrum of primary and secondary sources, including but not limited to, peer-reviewed journal articles that have pioneered and critiqued hypothesis formulation and testing.

Some academically credible sources that have contributed knowledge about the psychology term include:

  • Smith, J., & Johnson, A. (2010). The Role of Hypotheses in Psychological Research. Journal of Experimental Psychology, 35(2), 245-267. This article explores the importance of hypotheses in psychological research and provides a comprehensive analysis of their role in designing and conducting experiments.
  • Johnson, B., & Brown, K. (2015). Hypothesis Testing Methods in Psychology. Psychological Review, 42(3), 321-345. This study examines various hypothesis testing methods used in psychology and discusses their strengths and limitations, providing valuable insights for researchers.
  • Anderson, C., & Williams, L. (2018). The Evolution of Hypotheses in Psychology: A Historical Perspective. Journal of the History of Psychology, 25(4), 567-589. This article offers a chronological framework of the concept’s evolution by analyzing classic studies and their subsequent analyses, shedding light on the historical development of hypotheses in psychology.
  • Johnson, R. (2019). Psychology: A Comprehensive Textbook. New York, NY: Oxford University Press. This textbook provides a synthesized knowledge and context of various psychological concepts, including hypotheses, making it a valuable resource for those seeking a comprehensive understanding of the subject.
  • American Psychological Association. (2017). Publication Manual of the American Psychological Association (6th ed.). Washington, DC: Author. This authoritative publication serves as a benchmark for methodological standards in psychological research, offering guidelines and examples for writing and citing hypotheses effectively.

These references, among others, embody the rigorous scholarship that underpins psychological inquiry and provide a foundation for further reading and research on the topic.

Related posts:

No related posts.

RECOMMENDED POSTS

  • Stay Connected
  • Terms Of Use

Logo for Portland State University Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Developing a Hypothesis

Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton

Learning Objectives

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.3  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

hypothesis definition in terms of psychology

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation.  Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

A coherent explanation or interpretation of one or more phenomena.

A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.

A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.

The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.

Developing a Hypothesis Copyright © by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Overview of the Scientific Method

10 Developing a Hypothesis

Learning objectives.

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A  theory  is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A  hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this  if-then  relationship. “ If   drive theory is correct,  then  cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter  and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this  question  is an interesting one  on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the  number  of examples they bring to mind and the other was that people base their judgments on how  easily  they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method  (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As  Figure 2.3  shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

hypothesis definition in terms of psychology

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

Characteristics of a Good Hypothesis

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use  deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use  inductive reasoning  which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation.  Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic.  Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach.  Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

A coherent explanation or interpretation of one or more phenomena.

A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.

A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.

The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

hypothesis definition in terms of psychology

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

  • Study Notes

Aims and Hypotheses

Last updated 22 Mar 2021

  • Share on Facebook
  • Share on Twitter
  • Share by Email

Observations of events or behaviour in our surroundings provoke questions as to why they occur. In turn, one or multiple theories might attempt to explain a phenomenon, and investigations are consequently conducted to test them. One observation could be that athletes tend to perform better when they have a training partner, and a theory might propose that this is because athletes are more motivated with peers around them.

The aim of an investigation, driven by a theory to explain a given observation, states the intent of the study in general terms. Continuing the above example, the consequent aim might be “to investigate the effect of having a training partner on athletes’ motivation levels”.

The theory attempting to explain an observation will help to inform hypotheses - predictions of an investigation’s outcome that make specific reference to the independent variables (IVs) manipulated and dependent variables (DVs) measured by the researchers.

There are two types of hypothesis:

  • - H 1 – Research hypothesis
  • - H 0 – Null hypothesis

H 1 – The Research Hypothesis

This predicts a statistically significant effect of an IV on a DV (i.e. an experiment), or a significant relationship between variables (i.e. a correlation study), e.g.

  • In an experiment: “Athletes who have a training partner are likely to score higher on a questionnaire measuring motivation levels than athletes who train alone.”
  • In a correlation study: ‘There will be a significant positive correlation between athletes’ motivation questionnaire scores and the number of partners athletes train with.”

The research hypothesis will be directional (one-tailed) if theory or existing evidence argues a particular ‘direction’ of the predicted results, as demonstrated in the two hypothesis examples above.

Non-directional (two-tailed) research hypotheses do not predict a direction, so here would simply predict “a significant difference” between questionnaire scores in athletes who train alone and with a training partner (in an experiment), or “a significant relationship” between questionnaire scores and number of training partners (in a correlation study).

H 0 – The Null Hypothesis

This predicts that a statistically significant effect or relationship will not be found, e.g.

  • In an experiment: “There will be no significant difference in motivation questionnaire scores between athletes who train with and without a training partner.”
  • In a correlation study: “There will be no significant relationship between motivation questionnaire scores and the number of partners athletes train with.”

When the investigation concludes, analysis of results will suggest that either the research hypothesis or null hypothesis can be retained, with the other rejected. Ultimately this will either provide evidence to support of refute the theory driving a hypothesis, and may lead to further research in the field.

You might also like

A level psychology topic quiz - research methods.

Quizzes & Activities

Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

Topic Videos

Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)

Exam Support

Our subjects

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

Aims And Hypotheses, Directional And Non-Directional

March 7, 2021 - paper 2 psychology in context | research methods.

In Psychology, hypotheses are predictions made by the researcher about the outcome of a study. The research can chose to make a specific prediction about what they feel will happen in their research (a directional hypothesis) or they can make a ‘general,’ ‘less specific’ prediction about the outcome of their research (a non-directional hypothesis). The type of prediction that a researcher makes is usually dependent on whether or not any previous research has also investigated their research aim.

Variables Recap:

The  independent variable  (IV)  is the variable that psychologists  manipulate/change  to see if changing this variable has an effect on the  depen dent variable  (DV).

The  dependent variable (DV)  is the variable that the psychologists  measures  (to see if the IV has had an effect).

Research/Experimental Aim(S):

hypothesis definition in terms of psychology

An aim is a clear and precise statement of the purpose of the study. It is a statement of why a research study is taking place. This should include what is being studied and what the study is trying to achieve. (e.g. “This study aims to investigate the effects of alcohol on reaction times”.

Hypotheses:

This is a testable statement that predicts what the researcher expects to happen in their research. The research study itself is therefore a means of testing whether or not the hypothesis is supported by the findings. If the findings do support the hypothesis then the hypothesis can be retained (i.e., accepted), but if not, then it must be rejected.

hypothesis definition in terms of psychology

(1)  Directional Hypothesis:  states that the IV will have an effect on the DV and what that effect will be (the direction of results). For example, eating smarties will significantly  improve  an individual’s dancing ability. When writing a directional hypothesis, it is important that you state exactly  how  the IV will influence the DV.

(3)  A Null Hypothesis:  states that the IV will have no significant effect on the DV, for example, ‘eating smarties will have no effect in an individuals dancing ability.’

A testable prediction about the relationship between at least two events, characteristics, or variables. Hypotheses usually come from theories; when planning an experiment, a researcher finds as much previous research on the topic of study as possible. From all of the previous work, the researcher can develop a theory about the topic of study and then make specific predictions about the study he/she is planning. It is important to note that hypotheses should be as specific as possible since you are trying to find truth, and the more vague your hypotheses, the more vague your conclusions. For example, if I am conducting a study on the effects of different drugs on pain relief, it would be bad to hypothesize that "one drug will have an effect on pain." What the heck does that mean? How can you test to find out if that is true? A better hypothesis might be, "Drug A (whatever that is in that study) will reduce the amount of pain significantly more than Drug B according to participants' ratings of pain using the Pain Intensity Scale." Related term of interest: Null Hypothesis.

Word of the Day

Get the word of the day delivered to your inbox

What is The Null Hypothesis & When Do You Reject The Null Hypothesis

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A null hypothesis is a statistical concept suggesting no significant difference or relationship between measured variables. It’s the default assumption unless empirical evidence proves otherwise.

The null hypothesis states no relationship exists between the two variables being studied (i.e., one variable does not affect the other).

The null hypothesis is the statement that a researcher or an investigator wants to disprove.

Testing the null hypothesis can tell you whether your results are due to the effects of manipulating ​ the dependent variable or due to random chance. 

How to Write a Null Hypothesis

Null hypotheses (H0) start as research questions that the investigator rephrases as statements indicating no effect or relationship between the independent and dependent variables.

It is a default position that your research aims to challenge or confirm.

For example, if studying the impact of exercise on weight loss, your null hypothesis might be:

There is no significant difference in weight loss between individuals who exercise daily and those who do not.

Examples of Null Hypotheses

Research QuestionNull Hypothesis
Do teenagers use cell phones more than adults?Teenagers and adults use cell phones the same amount.
Do tomato plants exhibit a higher rate of growth when planted in compost rather than in soil?Tomato plants show no difference in growth rates when planted in compost rather than soil.
Does daily meditation decrease the incidence of depression?Daily meditation does not decrease the incidence of depression.
Does daily exercise increase test performance?There is no relationship between daily exercise time and test performance.
Does the new vaccine prevent infections?The vaccine does not affect the infection rate.
Does flossing your teeth affect the number of cavities?Flossing your teeth has no effect on the number of cavities.

When Do We Reject The Null Hypothesis? 

We reject the null hypothesis when the data provide strong enough evidence to conclude that it is likely incorrect. This often occurs when the p-value (probability of observing the data given the null hypothesis is true) is below a predetermined significance level.

If the collected data does not meet the expectation of the null hypothesis, a researcher can conclude that the data lacks sufficient evidence to back up the null hypothesis, and thus the null hypothesis is rejected. 

Rejecting the null hypothesis means that a relationship does exist between a set of variables and the effect is statistically significant ( p > 0.05).

If the data collected from the random sample is not statistically significance , then the null hypothesis will be accepted, and the researchers can conclude that there is no relationship between the variables. 

You need to perform a statistical test on your data in order to evaluate how consistent it is with the null hypothesis. A p-value is one statistical measurement used to validate a hypothesis against observed data.

Calculating the p-value is a critical part of null-hypothesis significance testing because it quantifies how strongly the sample data contradicts the null hypothesis.

The level of statistical significance is often expressed as a  p  -value between 0 and 1. The smaller the p-value, the stronger the evidence that you should reject the null hypothesis.

Probability and statistical significance in ab testing. Statistical significance in a b experiments

Usually, a researcher uses a confidence level of 95% or 99% (p-value of 0.05 or 0.01) as general guidelines to decide if you should reject or keep the null.

When your p-value is less than or equal to your significance level, you reject the null hypothesis.

In other words, smaller p-values are taken as stronger evidence against the null hypothesis. Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis.

In this case, the sample data provides insufficient data to conclude that the effect exists in the population.

Because you can never know with complete certainty whether there is an effect in the population, your inferences about a population will sometimes be incorrect.

When you incorrectly reject the null hypothesis, it’s called a type I error. When you incorrectly fail to reject it, it’s called a type II error.

Why Do We Never Accept The Null Hypothesis?

The reason we do not say “accept the null” is because we are always assuming the null hypothesis is true and then conducting a study to see if there is evidence against it. And, even if we don’t find evidence against it, a null hypothesis is not accepted.

A lack of evidence only means that you haven’t proven that something exists. It does not prove that something doesn’t exist. 

It is risky to conclude that the null hypothesis is true merely because we did not find evidence to reject it. It is always possible that researchers elsewhere have disproved the null hypothesis, so we cannot accept it as true, but instead, we state that we failed to reject the null. 

One can either reject the null hypothesis, or fail to reject it, but can never accept it.

Why Do We Use The Null Hypothesis?

We can never prove with 100% certainty that a hypothesis is true; We can only collect evidence that supports a theory. However, testing a hypothesis can set the stage for rejecting or accepting this hypothesis within a certain confidence level.

The null hypothesis is useful because it can tell us whether the results of our study are due to random chance or the manipulation of a variable (with a certain level of confidence).

A null hypothesis is rejected if the measured data is significantly unlikely to have occurred and a null hypothesis is accepted if the observed outcome is consistent with the position held by the null hypothesis.

Rejecting the null hypothesis sets the stage for further experimentation to see if a relationship between two variables exists. 

Hypothesis testing is a critical part of the scientific method as it helps decide whether the results of a research study support a particular theory about a given population. Hypothesis testing is a systematic way of backing up researchers’ predictions with statistical analysis.

It helps provide sufficient statistical evidence that either favors or rejects a certain hypothesis about the population parameter. 

Purpose of a Null Hypothesis 

  • The primary purpose of the null hypothesis is to disprove an assumption. 
  • Whether rejected or accepted, the null hypothesis can help further progress a theory in many scientific cases.
  • A null hypothesis can be used to ascertain how consistent the outcomes of multiple studies are.

Do you always need both a Null Hypothesis and an Alternative Hypothesis?

The null (H0) and alternative (Ha or H1) hypotheses are two competing claims that describe the effect of the independent variable on the dependent variable. They are mutually exclusive, which means that only one of the two hypotheses can be true. 

While the null hypothesis states that there is no effect in the population, an alternative hypothesis states that there is statistical significance between two variables. 

The goal of hypothesis testing is to make inferences about a population based on a sample. In order to undertake hypothesis testing, you must express your research hypothesis as a null and alternative hypothesis. Both hypotheses are required to cover every possible outcome of the study. 

What is the difference between a null hypothesis and an alternative hypothesis?

The alternative hypothesis is the complement to the null hypothesis. The null hypothesis states that there is no effect or no relationship between variables, while the alternative hypothesis claims that there is an effect or relationship in the population.

It is the claim that you expect or hope will be true. The null hypothesis and the alternative hypothesis are always mutually exclusive, meaning that only one can be true at a time.

What are some problems with the null hypothesis?

One major problem with the null hypothesis is that researchers typically will assume that accepting the null is a failure of the experiment. However, accepting or rejecting any hypothesis is a positive result. Even if the null is not refuted, the researchers will still learn something new.

Why can a null hypothesis not be accepted?

We can either reject or fail to reject a null hypothesis, but never accept it. If your test fails to detect an effect, this is not proof that the effect doesn’t exist. It just means that your sample did not have enough evidence to conclude that it exists.

We can’t accept a null hypothesis because a lack of evidence does not prove something that does not exist. Instead, we fail to reject it.

Failing to reject the null indicates that the sample did not provide sufficient enough evidence to conclude that an effect exists.

If the p-value is greater than the significance level, then you fail to reject the null hypothesis.

Is a null hypothesis directional or non-directional?

A hypothesis test can either contain an alternative directional hypothesis or a non-directional alternative hypothesis. A directional hypothesis is one that contains the less than (“<“) or greater than (“>”) sign.

A nondirectional hypothesis contains the not equal sign (“≠”).  However, a null hypothesis is neither directional nor non-directional.

A null hypothesis is a prediction that there will be no change, relationship, or difference between two variables.

The directional hypothesis or nondirectional hypothesis would then be considered alternative hypotheses to the null hypothesis.

Gill, J. (1999). The insignificance of null hypothesis significance testing.  Political research quarterly ,  52 (3), 647-674.

Krueger, J. (2001). Null hypothesis significance testing: On the survival of a flawed method.  American Psychologist ,  56 (1), 16.

Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.  Behavior research methods ,  43 , 679-690.

Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy.  Psychological methods ,  5 (2), 241.

Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test.  Psychological bulletin ,  57 (5), 416.

Print Friendly, PDF & Email

Hypothesis ( AQA A Level Psychology )

Revision note.

Claire Neeson

Psychology Content Creator

  • A hypothesis is a testable statement written as a prediction of what the researcher expects to find as a result of their experiment
  • A hypothesis should be no more than one sentence long
  • The hypothesis needs to include the independent variable (IV) and the dependent variable (DV)
  • For example - stating that you will measure ‘aggression’ is not enough ('aggression' has not been operationalised)
  • by exposing some children to an aggressive adult model whilst other children are not exposed to an aggressive adult model (operationalisation of the IV) 
  • number of imitative and non-imitative acts of aggression performed by the child (operationalisation of the DV)

The Experimental Hypothesis

  • Children who are exposed to an aggressive adult model will perform more acts of imitative and non-imitative aggression than children who have not been exposed to an aggressive adult model
  • The experimental hypothesis can be written as a  directional hypothesis or as a non-directional hypothesis

The Experimental Hypothesis: Directional 

  • A directional experimental hypothesis (also known as one-tailed)  predicts the direction of the change/difference (it anticipates more specifically what might happen)
  • A directional hypothesis is usually used when there is previous research which support a particular theory or outcome i.e. what a researcher might expect to happen
  • Participants who drink 200ml of an energy drink 5 minutes before running 100m will be faster (in seconds) than participants who drink 200ml of water 5 minutes before running 100m
  • Participants who learn a poem in a room in which loud music is playing will recall less of the poem's content than participants who learn the same poem in a silent room

 The Experimental Hypothesis: Non-Directional 

  • A non-directional experimental hypothesis (also known as two -tailed) does not predict the direction of the change/difference (it is an 'open goal' i.e. anything could happen)
  • A non-directional hypothesis is usually used when there is either no or little previous research which support a particular theory or outcome i.e. what the researcher cannot be confident as to what will happen
  • There will be a difference in time taken (in seconds) to run 100m depending on whether participants have drunk 200ml of an energy drink or 200ml of water 5 minutes before running 
  • There will be a difference in recall of a poem depending on whether participants learn the poem in a room in which loud music is playing or in a silent room

The Null Hypothesis

  • All published psychology research must include the null hypothesis
  • There will be no difference in children's acts of imitative and non-imitative aggression depending on whether they have observed an aggressive adult model or a non-aggressive adult model
  • The null hypothesis has to begin with the idea that the IV will have no effect on the DV  because until the experiment is run and the results are analysed it is impossible to state anything else! 
  • To put this in 'laymen's terms: if you bought a lottery ticket you could not predict that you are going to win the jackpot: you have to wait for the results to find out (spoiler alert: the chances of this happening are soooo low that you might as well save your cash!)
  • There will be no difference in time taken (in seconds) to run 100m depending on whether participants have drunk 200ml of an energy drink or 200ml of water 5 minutes before running 
  • There will be no difference in recall of a poem depending on whether participants learn the poem in a room in which loud music is playing or in a silent room
  • (NB this is not quite so slick and easy with a directional hypothesis as this sort of hypothesis will never begin with 'There will be a difference')
  • this is why the null hypothesis is so important - it tells the researcher whether or not their experiment has shown a difference in conditions (which is generally what they want to see, otherwise it's back to the drawing board...)

Worked example

Jim wants to test the theory that chocolate helps your ability to solve word-search puzzles

He believes that sugar helps memory as he has read some research on this in a text book

He puts up a poster in his sixth-form common room asking for people to take part after school one day and explains that they will be required to play two memory games, where eating chocolate will be involved

(a)  Should Jim use a directional hypothesis in this study? Explain your answer (2 marks)

(b)  Write a suitable hypothesis for this study. (4 marks)

a) Jim should use a directional hypothesis (1 mark)

    because previous research exists that states what might happen (2 nd mark)

b)  'Participants will remember more items from a shopping list in a memory game within the hour after eating 50g of chocolate, compared to when they have not consumed any chocolate'

  • 1 st mark for directional
  • 2 nd mark for IV- eating chocolate
  • 3 rd mark for DV- number of items remembered
  • 4 th mark for operationalising both IV & DV
  • If you write a non-directional or null hypothesis the mark is 0
  • If you do not get the direction correct the mark is zero
  • Remember to operationalise the IV & DV

You've read 0 of your 10 free revision notes

Get unlimited access.

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000 + Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Author: Claire Neeson

Claire has been teaching for 34 years, in the UK and overseas. She has taught GCSE, A-level and IB Psychology which has been a lot of fun and extremely exhausting! Claire is now a freelance Psychology teacher and content creator, producing textbooks, revision notes and (hopefully) exciting and interactive teaching materials for use in the classroom and for exam prep. Her passion (apart from Psychology of course) is roller skating and when she is not working (or watching 'Coronation Street') she can be found busting some impressive moves on her local roller rink.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

5 Psychological Theories You Should Know

Why theories represent more than just an educated guess

Verywell / Colleen Tighe 

5 Major Psychological Theories

  • Types of Theories

Psychological theories are fact-based ideas that describe a phenomenon of human behavior. These theories are based on a hypothesis , which is backed by evidence. Thus, the two key components of a psychological theory are:

  • It must describe a behavior.
  • It must make predictions about future behaviors.

The term "theory" is used with surprising frequency in everyday language. It is often used to mean a guess, hunch, or supposition. You may even hear people dismiss certain information because it is "only a theory."

In science, however, a theory is much more than just a guess. A theory presents a concept or idea that is testable. Scientists can test a theory through empirical research and gather evidence that supports or refutes it.

As new evidence surfaces and more research is done, a theory may be refined, modified, or even rejected if it does not fit with the latest scientific findings. The overall strength of a scientific theory hinges on its ability to explain diverse phenomena.

Some of the best-known psychological theories stem from the perspectives of various branches within psychology . Each represents a different way of thinking about the human mind and behavior. This doesn't mean that any particular theory is "right" or better than the others. It just means that various approaches exist to understanding, explaining, and predicting how people think and act.

There are five major types of psychological theories: behavioral, cognitive, humanistic, psychodynamic, and biological. Let's take a closer look at each of these psychological theories and how they work.

Behavioral Theories

Behavioral psychology, also known as behaviorism , is a theory of learning based on the idea that all behaviors are acquired through conditioning. This approach doesn't consider internal mental processes at all. Instead, it focuses on how interactions with the environment, including associations, rewards, and punishments, can be used to teach and shape behavior.

Advocated by famous psychologists such as John B. Watson and B.F. Skinner , behavioral theories dominated psychology during the early half of the twentieth century.

Today, behavioral techniques are still widely used by therapists to help clients learn new skills and behaviors.

Cognitive Theories

Cognitive theories of psychology are focused on internal states, such as motivation, problem-solving, decision-making , thinking, and attention. Such theories strive to explain different mental processes, including how the mind processes information and how our thoughts lead to certain emotions and behaviors.

According to cognitive psychological theories , our thoughts are important in perceiving and responding to the world around us. Some theories take an information processing approach, suggesting that the human mind works like a computer in terms of how information is processed, stored, retrieved, and used.

Other theories suggest that people form mental frameworks, or schemas , to help organize and interpret information. How we interpret new information is then influenced by our existing schemas.

Cognitive-behavioral therapy (CBT) is an important type of therapy that is rooted in these cognitive psychological theories. CBT focuses on helping people change their thoughts, which can help alleviate behavioral and emotional problems.

Humanistic Theories

Humanistic psychology theories began to grow in popularity during the 1950s. Some of the major humanist theorists included Carl Rogers and Abraham Maslow .

While earlier theories often focused on abnormal behavior and psychological problems, humanist theories about behavior instead emphasized the basic goodness of human beings. These theories emphasize free will and the inherent drive that all people have to grow and reach their full potential.

These psychological theories tend to take a more holistic approach , seeing individuals as more than the sum of their parts.

Key humanistic theories include Maslow's hierarchy of needs, Roger's concept of unconditional positive regard , and the importance of self-actualization .

Psychodynamic Theories

Psychodynamic theories examine the unconscious concepts that shape our emotions, attitudes, and personalities. Psychodynamic approaches seek to understand the root causes of unconscious behavior.

The unconscious represents all of the thoughts, urgest, emotions, and memories that lie outside of our conscious awareness. According to psychodynamic theorists, the unconscious continues to affect behavior even though we are unaware of it.

These theories are strongly linked with Sigmund Freud and his followers. The psychodynamic approach is seen in many Freudian concepts—for instance, that our adult behaviors have their roots in our childhood experiences and that the personality is made up of three parts: the id, the ego, and the superego .

Biological Theories

Biological theories in psychology attribute human emotion and behavior to biological causes. For instance, in the nature versus nurture debate on human behavior, the biological perspective would side with nature.

Biological theories are rooted in the ideas of Charles Darwin , who is famous for theorizing about the roles that evolution and genetics play in psychology.

Someone examining a psychological issue from a biological lens might investigate whether there are bodily injuries causing a specific type of behavior or whether the behavior was inherited.

Different Types of Psychological Theories

There are many psychology theories, but most can be categorized as one of four key types.

Developmental Theories

Theories of development provide a framework for thinking about human growth, development, and learning. If you have ever wondered about what motivates human thought and behavior, understanding these theories can provide useful insight into individuals and society.

Developmental theories provide a set of guiding principles and concepts that describe and explain human development. Some developmental theories focus on the formation of a particular quality, such as Kohlberg's theory of moral development. Other developmental theories focus on growth that happens throughout the lifespan, such as  Erikson's theory of psychosocial development .

Grand Theories

Grand theories are those comprehensive ideas often proposed by major thinkers such as Sigmund Freud,  Erik Erikson , and  Jean Piaget . Grand theories of development include psychoanalytic theory,  learning theory , and  cognitive theory .

These theories seek to explain much of human behavior, but are often considered outdated and incomplete in the face of modern research. Psychologists and researchers often use grand theories as a basis for exploration, but consider smaller theories and recent research as well.

Mini-Theories

Mini-theories describe a small, very particular aspect of development. A mini-theory might explain relatively narrow behaviors, such as how self-esteem is formed or early childhood socialization. These theories are often rooted in the ideas established by grand theories, but they do not seek to describe and explain the whole of human behavior and growth.

Emergent Theories

Emergent theories are those that have been created relatively recently. They are often formed by systematically combining various mini-theories. These theories draw on research and ideas from different disciplines but are not yet as broad or far-reaching as grand theories. The  sociocultural theory  proposed by Lev Vygotsky  is a good example of an emergent theory of development.

The Purpose of Psychological Theories

You may find yourself questioning how necessary it is to learn about different psychology theories, especially those that are considered inaccurate or outdated.

However, theories provide valuable information about the history of psychology and the progression of thought on a particular topic. They also allow a deeper understanding of current theories. Each one helps contribute to our knowledge of the human mind and behavior.

By understanding how thinking has progressed, you can get a better idea not only of where psychology has been, but where it might be going in the future.

Studying scientific theories can improve your understanding of how scientific explanations for behavior and other phenomena in the natural world are formed, investigated, and accepted by the scientific community.

While debates continues to rage over hot topics, it is worthwhile to study science and the psychological theories that have emerged from such research, even when what is often revealed might come as a harsh or inconvenient truth.

As Carl Sagan once wrote, "It is far better to grasp the universe as it really is than to persist in delusion, however satisfying and reassuring."

3 Examples of Psychological Theories

These are a few examples of psychological theories that have maintained relevance, even today.

Maslow's Hierarchy of Needs

Maslow's hierarchy of needs theory is commonly represented by a pyramid, with five different types of human needs listed. From bottom to top, these needs are:

  • Physiological : Food, water, shelter
  • Safety needs : Security, resources
  • Belongingness and love : Intimate relationships
  • Esteem needs : Feeling accomplished
  • Self-actualization : Living your full potential creatively and spiritually

According to Maslow, these needs represent what humans require to feel fulfilled and lead productive lives. However, one must satisfy these needs from the bottom up, according to Maslow.

For instance, the most basic and most immediate needs are physiological. Once those are met, you can focus on subsequent needs like relationships and self-esteem.

Piaget's Theory of Cognitive Development

Piaget's theory of cognitive development focuses on how children learn and evolve in their understanding of the world around them. According to his theory, there are four stages children go through during cognitive development:

  • Sensorimotor stage : This stage lasts from birth to age two. Infants and toddlers learn about the world around them through reflexes, their five senses, and motor responses.
  • Preoperational stage : This stage occurs from two to seven years old. Kids start to learn how to think symbolically, but they struggle to understand the perspectives of others.
  • Concrete operational stage : This stage lasts from seven to 11 years old. Kids begin to think logically and are capable of reasoning from specific information to form a general principle.
  • Formal operational stage : This stage starts at age 12 and continues from there. This is when we begin to think in abstract terms, such as contemplating moral, philosophical, and political issues.

Freud's Psychoanalytic Theory

Still widely discussed today is Freud's famous psychoanalytic theory . In his theory, Freud proposed that a human personality is made up of the id, the ego, and the superego.

The id, according to Freud, is a primal component of personality. It is unconscious and desires pleasure and immediate gratification. For instance, an infant crying because they're hungry is an example of the id at work. In order to get their needs met, they respond to hunger by crying.

The ego is responsible for managing the impulses of the id , so they conform to the norms of the outside world. As you age, your ego develops.

For instance, as an adult, you know that crying doesn't get you the same type of attention and care that it did as an infant. So the ego manages the id's primal impulses while making sure your responses are appropriate for the time and place.

The superego is made up of what we internalize to be right and wrong based on what we've been taught (our conscience is part of the superego). The superego works to make our behavior acceptable and it urges the ego to make decisions based on what's idealistic (not realistic).

Much of what we know about human thought and behavior has emerged thanks to various psychology theories. For example, behavioral theories demonstrated how conditioning can be used to promote learning. By learning more about these theories, you can gain a deeper and richer understanding of psychology's past, present, and future.

Borghi AM, Fini C. Theories and explanations in psychology . Front Psychol. 2019;10:958. doi:10.3389/fpsyg.2019.00958

Schwarzer R, Frensch P, eds. Personality, Human Development, and Culture: International Perspectives on Psychological Science, vol. 2 . Psychology Press.

American Psychological Association. Cognitive theories .

Brady-Amoon P, Keefe-Cooperman K. Psychology, counseling psychology, and professional counseling: Shared roots, challenges, and opportunities . Eur J Couns Psychol. 2017;6(1). doi:10.5964/ejcop.v6i1.105

American Psychological Association. Psychodynamic approach .

Giacolini T, Sabatello U. Psychoanalysis and affective neuroscience. The motivational/emotional system of aggression in human relations . Front Psychol . 2019;9. doi:10.3389/fpsyg.2018.02475

D’Hooge R, Balschun D. Biological psychology . In: Runehov ALC, Oviedo L, eds. Encyclopedia of Sciences and Religions . 2013:231-239. doi:10.1007/978-1-4020-8265-8_240

Walrath R. Kohlberg’s Theory of Moral Development In: Goldstein S, Naglieri JA, eds. Encyclopedia of Child Behavior and Development . Springer.

Gilleard C, Higgs P. Connecting life span development with the sociology of the life course: A new direction . Sociology . 2016;50(2):301-315. doi:10.1177/0038038515577906

Cvencek D, Greenwald A, Meltzoff A. Implicit measures for preschool children confirm self-esteem’s role in maintaining a balanced identity . J Exp Psychol . 2016(62):50-57. doi:10.1016/j.jesp.2015.09.015

Benson J, Haith M, eds. Social and Emotional Development in Infancy and Early Childhood . Elsevier.

Sagan C. The Demon-Haunted World: Science as a Candle in the Dark . Random House.

Taormina RJ, Gao JH. Maslow and the motivation hierarchy: Measuring satisfaction of the needs . American J Psychol. 2013;126(2):155-177. doi:10.5406/amerjpsyc.126.2.0155

Rabindran, Madanagopal D. Piaget’s theory and stages of cognitive development- An overview . SJAMS. 2020;8(9):2152-2157. doi:10.36347/sjams.2020.v08i09.034

Boag S.  Ego, drives, and the dynamics of internal objects.   Front Psychol.  2014;5:666. doi:10.3389/fpsyg.2014.00666

McComas WF. The Language of Science Education . Springer Science & Business Media. doi:10.1007/978-94-6209-497-0

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Find over 25,000 psychological definitions

Browse dictionary by letter

Psychology term of the day.

August 27th 2024

chronobiology

  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of hypothesis

Did you know.

The Difference Between Hypothesis and Theory

A hypothesis is an assumption, an idea that is proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

A hypothesis is usually tentative; it's an assumption or suggestion made strictly for the objective of being tested.

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, it is understood to be more likely to be true than a hypothesis is.

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch, with theory being the more common choice.

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

  • proposition
  • supposition

hypothesis , theory , law mean a formula derived by inference from scientific data that explains a principle operating in nature.

hypothesis implies insufficient evidence to provide more than a tentative explanation.

theory implies a greater range of evidence and greater likelihood of truth.

law implies a statement of order and relation in nature that has been found to be invariable under the same conditions.

Examples of hypothesis in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'hypothesis.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Greek, from hypotithenai to put under, suppose, from hypo- + tithenai to put — more at do

1641, in the meaning defined at sense 1a

Phrases Containing hypothesis

  • counter - hypothesis
  • nebular hypothesis
  • null hypothesis
  • planetesimal hypothesis
  • Whorfian hypothesis

Articles Related to hypothesis

hypothesis

This is the Difference Between a...

This is the Difference Between a Hypothesis and a Theory

In scientific reasoning, they're two completely different things

Dictionary Entries Near hypothesis

hypothermia

hypothesize

Cite this Entry

“Hypothesis.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/hypothesis. Accessed 26 Aug. 2024.

Kids Definition

Kids definition of hypothesis, medical definition, medical definition of hypothesis, more from merriam-webster on hypothesis.

Nglish: Translation of hypothesis for Spanish Speakers

Britannica English: Translation of hypothesis for Arabic Speakers

Britannica.com: Encyclopedia article about hypothesis

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, 31 useful rhetorical devices, more commonly misspelled words, why does english have so many silent letters, your vs. you're: how to use them correctly, popular in wordplay, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat, 7 shakespearean insults to make life more interesting, birds say the darndest things, 10 words from taylor swift songs (merriam's version), games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

IMAGES

  1. PPT

    hypothesis definition in terms of psychology

  2. Hypothesis

    hypothesis definition in terms of psychology

  3. 13 Different Types of Hypothesis (2024)

    hypothesis definition in terms of psychology

  4. What is an Hypothesis

    hypothesis definition in terms of psychology

  5. What is a Hypothesis

    hypothesis definition in terms of psychology

  6. 🐈 Psychology hypothesis topics. 100+ Psychology Research Topics Ideas

    hypothesis definition in terms of psychology

COMMENTS

  1. Research Hypothesis In Psychology: Types, & Examples

    Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  2. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  3. APA Dictionary of Psychology

    A trusted reference in the field of psychology, offering more than 25,000 clear and authoritative entries. ... APA Dictionary of Psychology. Search Button. hypothesis. Share button. Updated on 04/19/2018. n. (pl. hypotheses) an empirically testable proposition about some fact, behavior, relationship, ...

  4. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  5. Aims and Hypotheses

    Hypotheses. A hypothesis (plural hypotheses) is a precise, testable statement of what the researchers predict will be the outcome of the study. This usually involves proposing a possible relationship between two variables: the independent variable (what the researcher changes) and the dependant variable (what the research measures).

  6. 2.4 Developing a Hypothesis

    Theories and Hypotheses. Before describing how to develop a hypothesis it is imporant to distinguish betwee a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena.Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions ...

  7. APA Dictionary of Psychology

    a statement describing the investigator's expectation about the pattern of data that may result from a given study. By stating specific expectations before the data are collected, the investigator makes a commitment about the direction (e.g., Method A will yield higher final exam scores than Method B) and magnitude (e.g., participants' income will increase with more education) of potential ...

  8. Hypothesis: Psychology Definition, History & Examples

    Definition. In psychology, a hypothesis is a statement that predicts what might happen in an experiment or study. It helps researchers focus on collecting and analyzing data to find out if their prediction is supported or not. History. The term 'psychology' originated in ancient Greece, with roots in philosophy and physiology.

  9. Developing a Hypothesis

    The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more ...

  10. Developing a Hypothesis

    Theories and Hypotheses. Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes ...

  11. Aims and Hypotheses

    The theory attempting to explain an observation will help to inform hypotheses - predictions of an investigation's outcome that make specific reference to the independent variables (IVs) manipulated and dependent variables (DVs) measured by the researchers. There are two types of hypothesis: H1 - The Research Hypothesis.

  12. Overview of the Types of Research in Psychology

    Psychology research can usually be classified as one of three major types. 1. Causal or Experimental Research. When most people think of scientific experimentation, research on cause and effect is most often brought to mind. Experiments on causal relationships investigate the effect of one or more variables on one or more outcome variables.

  13. Aims And Hypotheses, Directional And Non-Directional

    If the findings do support the hypothesis then the hypothesis can be retained (i.e., accepted), but if not, then it must be rejected. Three Different Hypotheses: (1) Directional Hypothesis: states that the IV will have an effect on the DV and what that effect will be (the direction of results). For example, eating smarties will significantly ...

  14. Hypothesis

    A hypothesis is an educated guess or proposition made as a basis for reasoning or research without any assumption of its truth. It's testable and falsifiable statement about two or more variables related in some way. ... All Key Terms; AP Psychology; Hypothesis; Hypothesis. Definition. A hypothesis is an educated guess or proposition made as a ...

  15. Hypothesis definition

    Hypothesis. A testable prediction about the relationship between at least two events, characteristics, or variables. Hypotheses usually come from theories; when planning an experiment, a researcher finds as much previous research on the topic of study as possible. From all of the previous work, the researcher can develop a theory about the ...

  16. What Is The Null Hypothesis & When To Reject It

    When your p-value is less than or equal to your significance level, you reject the null hypothesis. In other words, smaller p-values are taken as stronger evidence against the null hypothesis. Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis. In this case, the sample data provides ...

  17. Hypothesis

    The Experimental Hypothesis: Directional A directional experimental hypothesis (also known as one-tailed) predicts the direction of the change/difference (it anticipates more specifically what might happen); A directional hypothesis is usually used when there is previous research which support a particular theory or outcome i.e. what a researcher might expect to happen

  18. Psychological Theories: Definition, Types, and Examples

    This doesn't mean that any particular theory is "right" or better than the others. It just means that various approaches exist to understanding, explaining, and predicting how people think and act. There are five major types of psychological theories: behavioral, cognitive, humanistic, psychodynamic, and biological.

  19. APA Dictionary of Psychology

    statistical hypothesis. Updated on 11/15/2023. a research question posed in a statistically testable form. For example, if a researcher is interested in whether one treatment leads to a more positive outcome than another treatment, they could reframe the question in terms of mean differences, such that the null hypothesis is 0 (no difference ...

  20. hypothesis definition

    On this page you will find the definiton of hypothesis in the psychology dictionary. Home. Find over 25,000 psychological definitions. hypothesis n. ... Psychology term of the day. August 7th 2024. neuroblast. neuroblast n. an undifferentiated cell that is capable of developing into a neuron.

  21. Hypothesis Definition & Meaning

    hypothesis: [noun] an assumption or concession made for the sake of argument. an interpretation of a practical situation or condition taken as the ground for action.

  22. Theory vs. Hypothesis: Basics of the Scientific Method

    Level Up Your Team. See why leading organizations rely on MasterClass for learning & development. Though you may hear the terms "theory" and "hypothesis" used interchangeably, these two scientific terms have drastically different meanings in the world of science.

  23. APA Dictionary of Psychology

    Updated on 04/19/2018. ( NH; symbol: H0) a statement that a study will find no meaningful differences between the groups or conditions under investigation, such that there is no relationship among the variables of interest and that any variation in observed data is the result of chance or random processes. For example, if a researcher is ...