## 11 Tips For Writing a Dissertation Data Analysis

Since the evolution of the fourth industrial revolution – the Digital World; lots of data have surrounded us. There are terabytes of data around us or in data centers that need to be processed and used. The data needs to be appropriately analyzed to process it, and Dissertation data analysis forms its basis. If data analysis is valid and free from errors, the research outcomes will be reliable and lead to a successful dissertation.

So, in today’s topic, we will cover the need to analyze data, dissertation data analysis, and mainly the tips for writing an outstanding data analysis dissertation. If you are a doctoral student and plan to perform dissertation data analysis on your data, make sure that you give this article a thorough read for the best tips!

## What is Data Analysis in Dissertation?

Even f you have the data collected and compiled in the form of facts and figures, it is not enough for proving your research outcomes. There is still a need to apply dissertation data analysis on your data; to use it in the dissertation. It provides scientific support to the thesis and conclusion of the research.

## Data Analysis Tools

There are plenty of indicative tests used to analyze data and infer relevant results for the discussion part. Following are some tests used to perform analysis of data leading to a scientific conclusion:

Hypothesis Testing | Regression and Correlation analysis |

T-test | Z test |

Mann-Whitney Test | Time Series and index number |

Chi-Square Test | ANOVA (or sometimes MANOVA) |

## 11 Most Useful Tips for Dissertation Data Analysis

Doctoral students need to perform dissertation data analysis and then dissertation to receive their degree. Many Ph.D. students find it hard to do dissertation data analysis because they are not trained in it.

## 1. Dissertation Data Analysis Services

The first tip applies to those students who can afford to look for help with their dissertation data analysis work. It’s a viable option, and it can help with time management and with building the other elements of the dissertation with much detail.

Dissertation Analysis services are professional services that help doctoral students with all the basics of their dissertation work, from planning, research and clarification, methodology, dissertation data analysis and review, literature review, and final powerpoint presentation.

One great reference for dissertation data analysis professional services is Statistics Solutions , they’ve been around for over 22 years helping students succeed in their dissertation work. You can find the link to their website here .

Following are some helpful tips for writing a splendid dissertation data analysis:

## 2. Relevance of Collected Data

It involves data collection of your related topic for research. Carefully analyze the data that tends to be suitable for your analysis. Do not just go with irrelevant data leading to complications in the results. Your data must be relevant and fit with your objectives. You must be aware of how the data is going to help in analysis.

## 3. Data Analysis

For analysis, it is crucial to use such methods that fit best with the types of data collected and the research objectives. Elaborate on these methods and the ones that justify your data collection methods thoroughly. Make sure to make the reader believe that you did not choose your method randomly. Instead, you arrived at it after critical analysis and prolonged research.

Data analysis involves two approaches – Qualitative Data Analysis and Quantitative Data Analysis. Qualitative data analysis comprises research through experiments, focus groups, and interviews. This approach helps to achieve the objectives by identifying and analyzing common patterns obtained from responses.

The overall objective of data analysis is to detect patterns and inclinations in data and then present the outcomes implicitly. It helps in providing a solid foundation for critical conclusions and assisting the researcher to complete the dissertation proposal.

## 4. Qualitative Data Analysis

Qualitative data refers to data that does not involve numbers. You are required to carry out an analysis of the data collected through experiments, focus groups, and interviews. This can be a time-taking process because it requires iterative examination and sometimes demanding the application of hermeneutics. Note that using qualitative technique doesn’t only mean generating good outcomes but to unveil more profound knowledge that can be transferrable.

Presenting qualitative data analysis in a dissertation can also be a challenging task. It contains longer and more detailed responses. Placing such comprehensive data coherently in one chapter of the dissertation can be difficult due to two reasons. Firstly, we cannot figure out clearly which data to include and which one to exclude. Secondly, unlike quantitative data, it becomes problematic to present data in figures and tables. Making information condensed into a visual representation is not possible. As a writer, it is of essence to address both of these challenges.

This method involves analyzing qualitative data based on an argument that a researcher already defines. It’s a comparatively easy approach to analyze data. It is suitable for the researcher with a fair idea about the responses they are likely to receive from the questionnaires.

In this method, the researcher analyzes the data not based on any predefined rules. It is a time-taking process used by students who have very little knowledge of the research phenomenon.

## 5. Quantitative Data Analysis

The Presentation of quantitative data depends on the domain to which it is being presented. It is beneficial to consider your audience while writing your findings. Quantitative data for hard sciences might require numeric inputs and statistics. As for natural sciences , such comprehensive analysis is not required.

Following are some of the methods used to perform quantitative data analysis.

## 6. Data Presentation Tools

Since large volumes of data need to be represented, it becomes a difficult task to present such an amount of data in coherent ways. To resolve this issue, consider all the available choices you have, such as tables, charts, diagrams, and graphs.

## 7. Include Appendix or Addendum

After presenting a large amount of data, your dissertation analysis part might get messy and look disorganized. Also, you would not be cutting down or excluding the data you spent days and months collecting. To avoid this, you should include an appendix part.

The data you find hard to arrange within the text, include that in the appendix part of a dissertation . And place questionnaires, copies of focus groups and interviews, and data sheets in the appendix. On the other hand, one must put the statistical analysis and sayings quoted by interviewees within the dissertation.

## 8. Thoroughness of Data

Thoroughly demonstrate the ideas and critically analyze each perspective taking care of the points where errors can occur. Always make sure to discuss the anomalies and strengths of your data to add credibility to your research.

## 9. Discussing Data

Discussion of data involves elaborating the dimensions to classify patterns, themes, and trends in presented data. In addition, to balancing, also take theoretical interpretations into account. Discuss the reliability of your data by assessing their effect and significance. Do not hide the anomalies. While using interviews to discuss the data, make sure you use relevant quotes to develop a strong rationale.

## 10. Findings and Results

Findings refer to the facts derived after the analysis of collected data. These outcomes should be stated; clearly, their statements should tightly support your objective and provide logical reasoning and scientific backing to your point. This part comprises of majority part of the dissertation.

## 11. Connection with Literature Review

The role of data analytics at the senior management level.

From small and medium-sized businesses to Fortune 500 conglomerates, the success of a modern business is now increasingly tied to how the company implements its data infrastructure and data-based decision-making. According

## The Decision-Making Model Explained (In Plain Terms)

Any form of the systematic decision-making process is better enhanced with data. But making sense of big data or even small data analysis when venturing into a decision-making process might

## 13 Reasons Why Data Is Important in Decision Making

Wrapping up.

Writing data analysis in the dissertation involves dedication, and its implementations demand sound knowledge and proper planning. Choosing your topic, gathering relevant data, analyzing it, presenting your data and findings correctly, discussing the results, connecting with the literature and conclusions are milestones in it. Among these checkpoints, the Data analysis stage is most important and requires a lot of keenness.

As an IT Engineer, who is passionate about learning and sharing. I have worked and learned quite a bit from Data Engineers, Data Analysts, Business Analysts, and Key Decision Makers almost for the past 5 years. Interested in learning more about Data Science and How to leverage it for better decision-making in my business and hopefully help you do the same in yours.

## Recent Posts

In today’s fast-paced business landscape, it is crucial to make informed decisions to stay in the competition which makes it important to understand the concept of the different characteristics and...

## Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

- Knowledge Base

## The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organizations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organize and summarize the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalize your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

## Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarize your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, other interesting articles.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

## Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

- Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
- Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
- Null hypothesis: Parental income and GPA have no relationship with each other in college students.
- Alternative hypothesis: Parental income and GPA are positively correlated in college students.

## Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

- In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
- In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
- In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

- In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
- In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
- In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
- Experimental
- Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

## Measuring variables

When planning a research design, you should operationalize your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

- Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
- Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Variable | Type of data |
---|---|

Age | Quantitative (ratio) |

Gender | Categorical (nominal) |

Race or ethnicity | Categorical (nominal) |

Baseline test scores | Quantitative (interval) |

Final test scores | Quantitative (interval) |

Parental income | Quantitative (ratio) |
---|---|

GPA | Quantitative (interval) |

## Prevent plagiarism. Run a free check.

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

## Sampling for statistical analysis

There are two main approaches to selecting a sample.

- Probability sampling: every member of the population has a chance of being selected for the study through random selection.
- Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalizable findings, you should use a probability sampling method. Random selection reduces several types of research bias , like sampling bias , and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to at risk for biases like self-selection bias , they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

- your sample is representative of the population you’re generalizing your findings to.
- your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalize your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialized, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalized in your discussion section .

## Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

- Will you have resources to advertise your study widely, including outside of your university setting?
- Will you have the means to recruit a diverse sample that represents a broad population?
- Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

## Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

- Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
- Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
- Expected effect size : a standardized indication of how large the expected result of your study will be, usually based on other similar studies.
- Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarize them.

## Inspect your data

There are various ways to inspect your data, including the following:

- Organizing data from each variable in frequency distribution tables .
- Displaying data from a key variable in a bar chart to view the distribution of responses.
- Visualizing the relationship between two variables using a scatter plot .

By visualizing your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

## Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

- Mode : the most popular response or value in the data set.
- Median : the value in the exact middle of the data set when ordered from low to high.
- Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

## Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

- Range : the highest value minus the lowest value of the data set.
- Interquartile range : the range of the middle half of the data set.
- Standard deviation : the average distance between each value in your data set and the mean.
- Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

Pretest scores | Posttest scores | |
---|---|---|

Mean | 68.44 | 75.25 |

Standard deviation | 9.43 | 9.88 |

Variance | 88.96 | 97.96 |

Range | 36.25 | 45.12 |

30 |

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

Parental income (USD) | GPA | |
---|---|---|

Mean | 62,100 | 3.12 |

Standard deviation | 15,000 | 0.45 |

Variance | 225,000,000 | 0.16 |

Range | 8,000–378,000 | 2.64–4.00 |

653 |

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

- Estimation: calculating population parameters based on sample statistics.
- Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

- A point estimate : a value that represents your best guess of the exact parameter.
- An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

## Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

- A test statistic tells you how much your data differs from the null hypothesis of the test.
- A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

- Comparison tests assess group differences in outcomes.
- Regression tests assess cause-and-effect relationships between variables.
- Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

## Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

- A simple linear regression includes one predictor variable and one outcome variable.
- A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

- A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
- A z test is for exactly 1 or 2 groups when the sample is large.
- An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

- If you have only one sample that you want to compare to a population mean, use a one-sample test .
- If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
- If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
- If you expect a difference between groups in a specific direction, use a one-tailed test .
- If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

- a t value (test statistic) of 3.00
- a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

- a t value of 3.08
- a p value of 0.001

## Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The final step of statistical analysis is interpreting your results.

## Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

## Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

## Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimize the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

## Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasizes null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

- Student’s t -distribution
- Normal distribution
- Null and Alternative Hypotheses
- Chi square tests
- Confidence interval

Methodology

- Cluster sampling
- Stratified sampling
- Data cleansing
- Reproducibility vs Replicability
- Peer review
- Likert scale

Research bias

- Implicit bias
- Framing effect
- Cognitive bias
- Placebo effect
- Hawthorne effect
- Hostile attribution bias
- Affect heuristic

## Is this article helpful?

Other students also liked.

- Descriptive Statistics | Definitions, Types, Examples
- Inferential Statistics | An Easy Introduction & Examples
- Choosing the Right Statistical Test | Types & Examples

## More interesting articles

- Akaike Information Criterion | When & How to Use It (Example)
- An Easy Introduction to Statistical Significance (With Examples)
- An Introduction to t Tests | Definitions, Formula and Examples
- ANOVA in R | A Complete Step-by-Step Guide with Examples
- Central Limit Theorem | Formula, Definition & Examples
- Central Tendency | Understanding the Mean, Median & Mode
- Chi-Square (Χ²) Distributions | Definition & Examples
- Chi-Square (Χ²) Table | Examples & Downloadable Table
- Chi-Square (Χ²) Tests | Types, Formula & Examples
- Chi-Square Goodness of Fit Test | Formula, Guide & Examples
- Chi-Square Test of Independence | Formula, Guide & Examples
- Coefficient of Determination (R²) | Calculation & Interpretation
- Correlation Coefficient | Types, Formulas & Examples
- Frequency Distribution | Tables, Types & Examples
- How to Calculate Standard Deviation (Guide) | Calculator & Examples
- How to Calculate Variance | Calculator, Analysis & Examples
- How to Find Degrees of Freedom | Definition & Formula
- How to Find Interquartile Range (IQR) | Calculator & Examples
- How to Find Outliers | 4 Ways with Examples & Explanation
- How to Find the Geometric Mean | Calculator & Formula
- How to Find the Mean | Definition, Examples & Calculator
- How to Find the Median | Definition, Examples & Calculator
- How to Find the Mode | Definition, Examples & Calculator
- How to Find the Range of a Data Set | Calculator & Formula
- Hypothesis Testing | A Step-by-Step Guide with Easy Examples
- Interval Data and How to Analyze It | Definitions & Examples
- Levels of Measurement | Nominal, Ordinal, Interval and Ratio
- Linear Regression in R | A Step-by-Step Guide & Examples
- Missing Data | Types, Explanation, & Imputation
- Multiple Linear Regression | A Quick Guide (Examples)
- Nominal Data | Definition, Examples, Data Collection & Analysis
- Normal Distribution | Examples, Formulas, & Uses
- Null and Alternative Hypotheses | Definitions & Examples
- One-way ANOVA | When and How to Use It (With Examples)
- Ordinal Data | Definition, Examples, Data Collection & Analysis
- Parameter vs Statistic | Definitions, Differences & Examples
- Pearson Correlation Coefficient (r) | Guide & Examples
- Poisson Distributions | Definition, Formula & Examples
- Probability Distribution | Formula, Types, & Examples
- Quartiles & Quantiles | Calculation, Definition & Interpretation
- Ratio Scales | Definition, Examples, & Data Analysis
- Simple Linear Regression | An Easy Introduction & Examples
- Skewness | Definition, Examples & Formula
- Statistical Power and Why It Matters | A Simple Introduction
- Student's t Table (Free Download) | Guide & Examples
- T-distribution: What it is and how to use it
- Test statistics | Definition, Interpretation, and Examples
- The Standard Normal Distribution | Calculator, Examples & Uses
- Two-Way ANOVA | Examples & When To Use It
- Type I & Type II Errors | Differences, Examples, Visualizations
- Understanding Confidence Intervals | Easy Examples & Formulas
- Understanding P values | Definition and Examples
- Variability | Calculating Range, IQR, Variance, Standard Deviation
- What is Effect Size and Why Does It Matter? (Examples)
- What Is Kurtosis? | Definition, Examples & Formula
- What Is Standard Error? | How to Calculate (Guide with Examples)

## What is your plagiarism score?

- +44 7897 053596
- [email protected]

## Get an experienced writer start working

Review our examples before placing an order, learn how to draft academic papers, a step-by-step guide to dissertation data analysis.

## How to Write a Dissertation Conclusion? | Tips & Examples

## What is PhD Thesis Writing? | Beginner’s Guide

A data analysis dissertation is a complex and challenging project requiring significant time, effort, and expertise. Fortunately, it is possible to successfully complete a data analysis dissertation with careful planning and execution.

As a student, you must know how important it is to have a strong and well-written dissertation, especially regarding data analysis. Proper data analysis is crucial to the success of your research and can often make or break your dissertation.

To get a better understanding, you may review the data analysis dissertation examples listed below;

- Impact of Leadership Style on the Job Satisfaction of Nurses
- Effect of Brand Love on Consumer Buying Behaviour in Dietary Supplement Sector
- An Insight Into Alternative Dispute Resolution
- An Investigation of Cyberbullying and its Impact on Adolescent Mental Health in UK

## 3-Step Dissertation Process!

## Get 3+ Topics

## Dissertation Proposal

## Get Final Dissertation

Types of data analysis for dissertation.

The various types of data Analysis in a Dissertation are as follows;

1. Qualitative Data Analysis

Qualitative data analysis is a type of data analysis that involves analyzing data that cannot be measured numerically. This data type includes interviews, focus groups, and open-ended surveys. Qualitative data analysis can be used to identify patterns and themes in the data.

2. Quantitative Data Analysis

Quantitative data analysis is a type of data analysis that involves analyzing data that can be measured numerically. This data type includes test scores, income levels, and crime rates. Quantitative data analysis can be used to test hypotheses and to look for relationships between variables.

3. Descriptive Data Analysis

Descriptive data analysis is a type of data analysis that involves describing the characteristics of a dataset. This type of data analysis summarizes the main features of a dataset.

4. Inferential Data Analysis

Inferential data analysis is a type of data analysis that involves making predictions based on a dataset. This type of data analysis can be used to test hypotheses and make predictions about future events.

5. Exploratory Data Analysis

Exploratory data analysis is a type of data analysis that involves exploring a data set to understand it better. This type of data analysis can identify patterns and relationships in the data.

## Time Period to Plan and Complete a Data Analysis Dissertation?

When planning dissertation data analysis, it is important to consider the dissertation methodology structure and time series analysis as they will give you an understanding of how long each stage will take. For example, using a qualitative research method, your data analysis will involve coding and categorizing your data.

This can be time-consuming, so allowing enough time in your schedule is important. Once you have coded and categorized your data, you will need to write up your findings. Again, this can take some time, so factor this into your schedule.

Finally, you will need to proofread and edit your dissertation before submitting it. All told, a data analysis dissertation can take anywhere from several weeks to several months to complete, depending on the project’s complexity. Therefore, starting planning early and allowing enough time in your schedule to complete the task is important.

## Essential Strategies for Data Analysis Dissertation

A. Planning

The first step in any dissertation is planning. You must decide what you want to write about and how you want to structure your argument. This planning will involve deciding what data you want to analyze and what methods you will use for a data analysis dissertation.

B. Prototyping

Once you have a plan for your dissertation, it’s time to start writing. However, creating a prototype is important before diving head-first into writing your dissertation. A prototype is a rough draft of your argument that allows you to get feedback from your advisor and committee members. This feedback will help you fine-tune your argument before you start writing the final version of your dissertation.

C. Executing

After you have created a plan and prototype for your data analysis dissertation, it’s time to start writing the final version. This process will involve collecting and analyzing data and writing up your results. You will also need to create a conclusion section that ties everything together.

D. Presenting

The final step in acing your data analysis dissertation is presenting it to your committee. This presentation should be well-organized and professionally presented. During the presentation, you’ll also need to be ready to respond to questions concerning your dissertation.

## Data Analysis Tools

Numerous suggestive tools are employed to assess the data and deduce pertinent findings for the discussion section. The tools used to analyze data and get a scientific conclusion are as follows:

a. Excel

Excel is a spreadsheet program part of the Microsoft Office productivity software suite. Excel is a powerful tool that can be used for various data analysis tasks, such as creating charts and graphs, performing mathematical calculations, and sorting and filtering data.

b. Google Sheets

Google Sheets is a free online spreadsheet application that is part of the Google Drive suite of productivity software. Google Sheets is similar to Excel in terms of functionality, but it also has some unique features, such as the ability to collaborate with other users in real-time.

c. SPSS

SPSS is a statistical analysis software program commonly used in the social sciences. SPSS can be used for various data analysis tasks, such as hypothesis testing, factor analysis, and regression analysis.

d. STATA

STATA is a statistical analysis software program commonly used in the sciences and economics. STATA can be used for data management, statistical modelling, descriptive statistics analysis, and data visualization tasks.

SAS is a commercial statistical analysis software program used by businesses and organizations worldwide. SAS can be used for predictive modelling, market research, and fraud detection.

R is a free, open-source statistical programming language popular among statisticians and data scientists. R can be used for tasks such as data wrangling, machine learning, and creating complex visualizations.

g. Python

A variety of applications may be used using the distinctive programming language Python, including web development, scientific computing, and artificial intelligence. Python also has a number of modules and libraries that can be used for data analysis tasks, such as numerical computing, statistical modelling, and data visualization.

Testimonials

## Very satisfied students

This is our reason for working. We want to make all students happy, every day. Review us on Sitejabber

## Tips to Compose a Successful Data Analysis Dissertation

a. Choose a Topic You’re Passionate About

The first step to writing a successful data analysis dissertation is to choose a topic you’re passionate about. Not only will this make the research and writing process more enjoyable, but it will also ensure that you produce a high-quality paper.

Choose a topic that is particular enough to be covered in your paper’s scope but not so specific that it will be challenging to obtain enough evidence to substantiate your arguments.

b. Do Your Research

data analysis in research is an important part of academic writing. Once you’ve selected a topic, it’s time to begin your research. Be sure to consult with your advisor or supervisor frequently during this stage to ensure that you are on the right track. In addition to secondary sources such as books, journal articles, and reports, you should also consider conducting primary research through surveys or interviews. This will give you first-hand insights into your topic that can be invaluable when writing your paper.

c. Develop a Strong Thesis Statement

After you’ve done your research, it’s time to start developing your thesis statement. It is arguably the most crucial part of your entire paper, so take care to craft a clear and concise statement that encapsulates the main argument of your paper.

Remember that your thesis statement should be arguable—that is, it should be capable of being disputed by someone who disagrees with your point of view. If your thesis statement is not arguable, it will be difficult to write a convincing paper.

d. Write a Detailed Outline

Once you have developed a strong thesis statement, the next step is to write a detailed outline of your paper. This will offer you a direction to write in and guarantee that your paper makes sense from beginning to end.

Your outline should include an introduction, in which you state your thesis statement; several body paragraphs, each devoted to a different aspect of your argument; and a conclusion, in which you restate your thesis and summarize the main points of your paper.

e. Write Your First Draft

With your outline in hand, it’s finally time to start writing your first draft. At this stage, don’t worry about perfecting your grammar or making sure every sentence is exactly right—focus on getting all of your ideas down on paper (or onto the screen). Once you have completed your first draft, you can revise it for style and clarity.

And there you have it! Following these simple tips can increase your chances of success when writing your data analysis dissertation. Just remember to start early, give yourself plenty of time to research and revise, and consult with your supervisor frequently throughout the process.

## How Does It Work ?

## Fill the Form

## Writer Starts Working

## 3+ Topics Emailed!

Studying the above examples gives you valuable insight into the structure and content that should be included in your own data analysis dissertation. You can also learn how to effectively analyze and present your data and make a lasting impact on your readers.

In addition to being a useful resource for completing your dissertation, these examples can also serve as a valuable reference for future academic writing projects. By following these examples and understanding their principles, you can improve your data analysis skills and increase your chances of success in your academic career.

You may also contact Premier Dissertations to develop your data analysis dissertation.

For further assistance, some other resources in the dissertation writing section are shared below;

How Do You Select the Right Data Analysis

How to Write Data Analysis For A Dissertation?

How to Develop a Conceptual Framework in Dissertation?

What is a Hypothesis in a Dissertation?

## Get an Immediate Response

Discuss your requirments with our writers

WhatsApp Us Email Us Chat with Us

## Get 3+ Free Dissertation Topics within 24 hours?

Your Number

Academic Level Select Academic Level Undergraduate Masters PhD

Area of Research

## admin farhan

Related posts.

## What is Gibbs’ Reflective Cycle and How Can It Benefit You? | Applications and Example

## How to be a Valedictorian | Easy Steps

## 230 Passion Project Ideas for Students

Comments are closed.

- Cookies & Privacy
- GETTING STARTED
- Introduction
- FUNDAMENTALS

Getting to the main article

Choosing your route

Setting research questions/ hypotheses

Assessment point

Building the theoretical case

Setting your research strategy

Data collection

Data analysis

## Data analysis techniques

In STAGE NINE: Data analysis , we discuss the data you will have collected during STAGE EIGHT: Data collection . However, before you collect your data, having followed the research strategy you set out in this STAGE SIX , it is useful to think about the data analysis techniques you may apply to your data when it is collected.

The statistical tests that are appropriate for your dissertation will depend on (a) the research questions/hypotheses you have set, (b) the research design you are using, and (c) the nature of your data. You should already been clear about your research questions/hypotheses from STAGE THREE: Setting research questions and/or hypotheses , as well as knowing the goal of your research design from STEP TWO: Research design in this STAGE SIX: Setting your research strategy . These two pieces of information - your research questions/hypotheses and research design - will let you know, in principle , the statistical tests that may be appropriate to run on your data in order to answer your research questions.

We highlight the words in principle and may because the most appropriate statistical test to run on your data not only depend on your research questions/hypotheses and research design, but also the nature of your data . As you should have identified in STEP THREE: Research methods , and in the article, Types of variables , in the Fundamentals part of Lærd Dissertation, (a) not all data is the same, and (b) not all variables are measured in the same way (i.e., variables can be dichotomous, ordinal or continuous). In addition, not all data is normal , nor is the data when comparing groups necessarily equal , terms we explain in the Data Analysis section in the Fundamentals part of Lærd Dissertation. As a result, you might think that running a particular statistical test is correct at this point of setting your research strategy (e.g., a statistical test called a dependent t-test ), based on the research questions/hypotheses you have set, but when you collect your data (i.e., during STAGE EIGHT: Data collection ), the data may fail certain assumptions that are important to such a statistical test (i.e., normality and homogeneity of variance ). As a result, you have to run another statistical test (e.g., a Wilcoxon signed-rank test instead of a dependent t-test ).

At this stage in the dissertation process, it is important, or at the very least, useful to think about the data analysis techniques you may apply to your data when it is collected. We suggest that you do this for two reasons:

REASON A Supervisors sometimes expect you to know what statistical analysis you will perform at this stage of the dissertation process

This is not always the case, but if you have had to write a Dissertation Proposal or Ethics Proposal , there is sometimes an expectation that you explain the type of data analysis that you plan to carry out. An understanding of the data analysis that you will carry out on your data can also be an expected component of the Research Strategy chapter of your dissertation write-up (i.e., usually Chapter Three: Research Strategy ). Therefore, it is a good time to think about the data analysis process if you plan to start writing up this chapter at this stage.

REASON B It takes time to get your head around data analysis

When you come to analyse your data in STAGE NINE: Data analysis , you will need to think about (a) selecting the correct statistical tests to perform on your data, (b) running these tests on your data using a statistics package such as SPSS, and (c) learning how to interpret the output from such statistical tests so that you can answer your research questions or hypotheses. Whilst we show you how to do this for a wide range of scenarios in the in the Data Analysis section in the Fundamentals part of Lærd Dissertation, it can be a time consuming process. Unless you took an advanced statistics module/option as part of your degree (i.e., not just an introductory course to statistics, which are often taught in undergraduate and master?s degrees), it can take time to get your head around data analysis. Starting this process at this stage (i.e., STAGE SIX: Research strategy ), rather than waiting until you finish collecting your data (i.e., STAGE EIGHT: Data collection ) is a sensible approach.

## Final thoughts...

Setting the research strategy for your dissertation required you to describe, explain and justify the research paradigm, quantitative research design, research method(s), sampling strategy, and approach towards research ethics and data analysis that you plan to follow, as well as determine how you will ensure the research quality of your findings so that you can effectively answer your research questions/hypotheses. However, from a practical perspective, just remember that the main goal of STAGE SIX: Research strategy is to have a clear research strategy that you can implement (i.e., operationalize ). After all, if you are unable to clearly follow your plan and carry out your research in the field, you will struggle to answer your research questions/hypotheses. Once you are sure that you have a clear plan, it is a good idea to take a step back, speak with your supervisor, and assess where you are before moving on to collect data. Therefore, when you are ready, proceed to STAGE SEVEN: Assessment point .

## Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA) and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

## Overview: Quantitative Data Analysis 101

- What (exactly) is quantitative data analysis?
- When to use quantitative analysis
- How quantitative analysis works

## The two “branches” of quantitative analysis

- Descriptive statistics 101
- Inferential statistics 101
- How to choose the right quantitative methods
- Recap & summary

## What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

## What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

- Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
- Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
- And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

## How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

## Need a helping hand?

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

## Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

- Mean – this is simply the mathematical average of a range of numbers.
- Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
- Mode – this is simply the most commonly occurring number in the data set.
- In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
- Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
- Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

- Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
- Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
- And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

## Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

- Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
- And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations .

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

## How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

- The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
- Your research questions and hypotheses

Let’s take a closer look at each of these.

## Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

## Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

## Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

- Quantitative data analysis is all about analysing number-based data (which includes categorical and numerical data) using various statistical techniques.
- The two main branches of statistics are descriptive statistics and inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
- Common descriptive statistical methods include mean (average), median , standard deviation and skewness .
- Common inferential statistical methods include t-tests , ANOVA , correlation and regression analysis.
- To choose the right statistical methods and techniques, you need to consider the type of data you’re working with , as well as your research questions and hypotheses.

## Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

## 77 Comments

Hi, I have read your article. Such a brilliant post you have created.

Thank you for the feedback. Good luck with your quantitative analysis.

Thank you so much.

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

Very useful, I have got the concept

Amazing and simple way of breaking down quantitative methods.

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Send me every new information you might have.

i need every new information

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

I like your page..helpful

wonderful i got my concept crystal clear. thankyou!!

This is really helpful , thank you

Thank you so much this helped

Wonderfully explained

thank u so much, it was so informative

THANKYOU, this was very informative and very helpful

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

This is so great and fully useful. I would like to thank you again and again.

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

This is a very helpful article, couldn’t have been clearer. Thank you.

Awesome and phenomenal information.Well done

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

thank you so much, your presentation helped me a lot

I don’t know how should I express that ur article is saviour for me 🥺😍

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Very helpful and clear .Thank you Gradcoach.

Thank for sharing this article, well organized and information presented are very clear.

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

simple and constant direction to research. thanks

This is helpful

Great writing!! Comprehensive and very helpful.

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Thank you so much for such useful article!

Amazing article. So nicely explained. Wow

Very insightfull. Thanks

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

tnx. fruitful blog!

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

This was quite helpful. Thank you so much.

wow I got a lot from this article, thank you very much, keep it up

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Thank you very much, this service is very helpful.

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

I really enjoyed reading though this. Very easy to follow. Thank you

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Thank you very much for sharing, I got much from this article

This is a very informative write-up. Kindly include me in your latest posts.

Very interesting mostly for social scientists

Thank you so much, very helpfull

You’re welcome 🙂

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

very informative article. Easy to understand

Beautiful read, much needed.

Always greet intro and summary. I learn so much from GradCoach

Quite informative. Simple and clear summary.

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Absolutely!!! Thank you

Thank you very much for this post. It made me to understand how to do my data analysis.

its nice work and excellent job ,you have made my work easier

Wow! So explicit. Well done.

## Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

- Print Friendly

## Raw Data to Excellence: Master Dissertation Analysis

Discover the secrets of successful dissertation data analysis. Get practical advice and useful insights from experienced experts now!

Have you ever found yourself knee-deep in a dissertation , desperately seeking answers from the data you’ve collected? Or have you ever felt clueless with all the data that you’ve collected but don’t know where to start? Fear not, in this article we are going to discuss a method that helps you come out of this situation and that is Dissertation Data Analysis.

Dissertation data analysis is like uncovering hidden treasures within your research findings. It’s where you roll up your sleeves and explore the data you’ve collected, searching for patterns, connections, and those “a-ha!” moments. Whether you’re crunching numbers, dissecting narratives, or diving into qualitative interviews, data analysis is the key that unlocks the potential of your research.

## Dissertation Data Analysis

Dissertation data analysis plays a crucial role in conducting rigorous research and drawing meaningful conclusions. It involves the systematic examination, interpretation, and organization of data collected during the research process. The aim is to identify patterns, trends, and relationships that can provide valuable insights into the research topic.

The first step in dissertation data analysis is to carefully prepare and clean the collected data. This may involve removing any irrelevant or incomplete information, addressing missing data, and ensuring data integrity. Once the data is ready, various statistical and analytical techniques can be applied to extract meaningful information.

Descriptive statistics are commonly used to summarize and describe the main characteristics of the data, such as measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). These statistics help researchers gain an initial understanding of the data and identify any outliers or anomalies.

Furthermore, qualitative data analysis techniques can be employed when dealing with non-numerical data, such as textual data or interviews. This involves systematically organizing, coding, and categorizing qualitative data to identify themes and patterns.

## Types of Research

When considering research types in the context of dissertation data analysis, several approaches can be employed:

## 1. Quantitative Research

This type of research involves the collection and analysis of numerical data. It focuses on generating statistical information and making objective interpretations. Quantitative research often utilizes surveys, experiments, or structured observations to gather data that can be quantified and analyzed using statistical techniques.

## 2. Qualitative Research

In contrast to quantitative research, qualitative research focuses on exploring and understanding complex phenomena in depth. It involves collecting non-numerical data such as interviews, observations, or textual materials. Qualitative data analysis involves identifying themes, patterns, and interpretations, often using techniques like content analysis or thematic analysis.

## 3. Mixed-Methods Research

This approach combines both quantitative and qualitative research methods. Researchers employing mixed-methods research collect and analyze both numerical and non-numerical data to gain a comprehensive understanding of the research topic. The integration of quantitative and qualitative data can provide a more nuanced and comprehensive analysis, allowing for triangulation and validation of findings.

## Primary vs. Secondary Research

Primary research.

Primary research involves the collection of original data specifically for the purpose of the dissertation. This data is directly obtained from the source, often through surveys, interviews, experiments, or observations. Researchers design and implement their data collection methods to gather information that is relevant to their research questions and objectives. Data analysis in primary research typically involves processing and analyzing the raw data collected.

## Secondary Research

Secondary research involves the analysis of existing data that has been previously collected by other researchers or organizations. This data can be obtained from various sources such as academic journals, books, reports, government databases, or online repositories. Secondary data can be either quantitative or qualitative, depending on the nature of the source material. Data analysis in secondary research involves reviewing, organizing, and synthesizing the available data.

If you wanna deepen into Methodology in Research , also read: What is Methodology in Research and How Can We Write it?

## Types of Analysis

Various types of analysis techniques can be employed to examine and interpret the collected data. Of all those types, the ones that are most important and used are:

- Descriptive Analysis: Descriptive analysis focuses on summarizing and describing the main characteristics of the data. It involves calculating measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). Descriptive analysis provides an overview of the data, allowing researchers to understand its distribution, variability, and general patterns.
- Inferential Analysis: Inferential analysis aims to draw conclusions or make inferences about a larger population based on the collected sample data. This type of analysis involves applying statistical techniques, such as hypothesis testing, confidence intervals, and regression analysis, to analyze the data and assess the significance of the findings. Inferential analysis helps researchers make generalizations and draw meaningful conclusions beyond the specific sample under investigation.
- Qualitative Analysis: Qualitative analysis is used to interpret non-numerical data, such as interviews, focus groups, or textual materials. It involves coding, categorizing, and analyzing the data to identify themes, patterns, and relationships. Techniques like content analysis, thematic analysis, or discourse analysis are commonly employed to derive meaningful insights from qualitative data.
- Correlation Analysis: Correlation analysis is used to examine the relationship between two or more variables . It determines the strength and direction of the association between variables. Common correlation techniques include Pearson’s correlation coefficient, Spearman’s rank correlation, or point-biserial correlation, depending on the nature of the variables being analyzed.

## Basic Statistical Analysis

When conducting dissertation data analysis, researchers often utilize basic statistical analysis techniques to gain insights and draw conclusions from their data. These techniques involve the application of statistical measures to summarize and examine the data. Here are some common types of basic statistical analysis used in dissertation research:

- Descriptive Statistics
- Frequency Analysis
- Cross-tabulation
- Chi-Square Test
- Correlation Analysis

## Advanced Statistical Analysis

In dissertation data analysis, researchers may employ advanced statistical analysis techniques to gain deeper insights and address complex research questions. These techniques go beyond basic statistical measures and involve more sophisticated methods. Here are some examples of advanced statistical analysis commonly used in dissertation research:

## Regression Analysis

- Analysis of Variance (ANOVA)
- Factor Analysis
- Cluster Analysis
- Structural Equation Modeling (SEM)
- Time Series Analysis

## Examples of Methods of Analysis

Regression analysis is a powerful tool for examining relationships between variables and making predictions. It allows researchers to assess the impact of one or more independent variables on a dependent variable. Different types of regression analysis, such as linear regression, logistic regression, or multiple regression, can be used based on the nature of the variables and research objectives.

## Event Study

An event study is a statistical technique that aims to assess the impact of a specific event or intervention on a particular variable of interest. This method is commonly employed in finance, economics, or management to analyze the effects of events such as policy changes, corporate announcements, or market shocks.

## Vector Autoregression

Vector Autoregression is a statistical modeling technique used to analyze the dynamic relationships and interactions among multiple time series variables. It is commonly employed in fields such as economics, finance, and social sciences to understand the interdependencies between variables over time.

## Preparing Data for Analysis

1. become acquainted with the data.

It is crucial to become acquainted with the data to gain a comprehensive understanding of its characteristics, limitations , and potential insights. This step involves thoroughly exploring and familiarizing oneself with the dataset before conducting any formal analysis by reviewing the dataset to understand its structure and content. Identify the variables included, their definitions, and the overall organization of the data. Gain an understanding of the data collection methods, sampling techniques, and any potential biases or limitations associated with the dataset.

## 2. Review Research Objectives

This step involves assessing the alignment between the research objectives and the data at hand to ensure that the analysis can effectively address the research questions. Evaluate how well the research objectives and questions align with the variables and data collected. Determine if the available data provides the necessary information to answer the research questions adequately. Identify any gaps or limitations in the data that may hinder the achievement of the research objectives.

## 3. Creating a Data Structure

This step involves organizing the data into a well-defined structure that aligns with the research objectives and analysis techniques. Organize the data in a tabular format where each row represents an individual case or observation, and each column represents a variable. Ensure that each case has complete and accurate data for all relevant variables. Use consistent units of measurement across variables to facilitate meaningful comparisons.

## 4. Discover Patterns and Connections

In preparing data for dissertation data analysis, one of the key objectives is to discover patterns and connections within the data. This step involves exploring the dataset to identify relationships, trends, and associations that can provide valuable insights. Visual representations can often reveal patterns that are not immediately apparent in tabular data.

## Qualitative Data Analysis

Qualitative data analysis methods are employed to analyze and interpret non-numerical or textual data. These methods are particularly useful in fields such as social sciences, humanities, and qualitative research studies where the focus is on understanding meaning, context, and subjective experiences. Here are some common qualitative data analysis methods:

Thematic Analysis

The thematic analysis involves identifying and analyzing recurring themes, patterns, or concepts within the qualitative data. Researchers immerse themselves in the data, categorize information into meaningful themes, and explore the relationships between them. This method helps in capturing the underlying meanings and interpretations within the data.

Content Analysis

Content analysis involves systematically coding and categorizing qualitative data based on predefined categories or emerging themes. Researchers examine the content of the data, identify relevant codes, and analyze their frequency or distribution. This method allows for a quantitative summary of qualitative data and helps in identifying patterns or trends across different sources.

Grounded Theory

Grounded theory is an inductive approach to qualitative data analysis that aims to generate theories or concepts from the data itself. Researchers iteratively analyze the data, identify concepts, and develop theoretical explanations based on emerging patterns or relationships. This method focuses on building theory from the ground up and is particularly useful when exploring new or understudied phenomena.

Discourse Analysis

Discourse analysis examines how language and communication shape social interactions, power dynamics, and meaning construction. Researchers analyze the structure, content, and context of language in qualitative data to uncover underlying ideologies, social representations, or discursive practices. This method helps in understanding how individuals or groups make sense of the world through language.

Narrative Analysis

Narrative analysis focuses on the study of stories, personal narratives, or accounts shared by individuals. Researchers analyze the structure, content, and themes within the narratives to identify recurring patterns, plot arcs, or narrative devices. This method provides insights into individuals’ live experiences, identity construction, or sense-making processes.

## Applying Data Analysis to Your Dissertation

Applying data analysis to your dissertation is a critical step in deriving meaningful insights and drawing valid conclusions from your research. It involves employing appropriate data analysis techniques to explore, interpret, and present your findings. Here are some key considerations when applying data analysis to your dissertation:

Selecting Analysis Techniques

Choose analysis techniques that align with your research questions, objectives, and the nature of your data. Whether quantitative or qualitative, identify the most suitable statistical tests, modeling approaches, or qualitative analysis methods that can effectively address your research goals. Consider factors such as data type, sample size, measurement scales, and the assumptions associated with the chosen techniques.

Data Preparation

Ensure that your data is properly prepared for analysis. Cleanse and validate your dataset, addressing any missing values, outliers, or data inconsistencies. Code variables, transform data if necessary, and format it appropriately to facilitate accurate and efficient analysis. Pay attention to ethical considerations, data privacy, and confidentiality throughout the data preparation process.

Execution of Analysis

Execute the selected analysis techniques systematically and accurately. Utilize statistical software, programming languages, or qualitative analysis tools to carry out the required computations, calculations, or interpretations. Adhere to established guidelines, protocols, or best practices specific to your chosen analysis techniques to ensure reliability and validity.

Interpretation of Results

Thoroughly interpret the results derived from your analysis. Examine statistical outputs, visual representations, or qualitative findings to understand the implications and significance of the results. Relate the outcomes back to your research questions, objectives, and existing literature. Identify key patterns, relationships, or trends that support or challenge your hypotheses.

Drawing Conclusions

Based on your analysis and interpretation, draw well-supported conclusions that directly address your research objectives. Present the key findings in a clear, concise, and logical manner, emphasizing their relevance and contributions to the research field. Discuss any limitations, potential biases, or alternative explanations that may impact the validity of your conclusions.

Validation and Reliability

Evaluate the validity and reliability of your data analysis by considering the rigor of your methods, the consistency of results, and the triangulation of multiple data sources or perspectives if applicable. Engage in critical self-reflection and seek feedback from peers, mentors, or experts to ensure the robustness of your data analysis and conclusions.

In conclusion, dissertation data analysis is an essential component of the research process, allowing researchers to extract meaningful insights and draw valid conclusions from their data. By employing a range of analysis techniques, researchers can explore relationships, identify patterns, and uncover valuable information to address their research objectives.

## Turn Your Data Into Easy-To-Understand And Dynamic Stories

Decoding data is daunting and you might end up in confusion. Here’s where infographics come into the picture. With visuals, you can turn your data into easy-to-understand and dynamic stories that your audience can relate to. Mind the Graph is one such platform that helps scientists to explore a library of visuals and use them to amplify their research work. Sign up now to make your presentation simpler.

## Related Articles

## Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Sign Up for Free

Try the best infographic maker and promote your research with scientifically-accurate beautiful figures

no credit card required

## About Sowjanya Pedada

Sowjanya is a passionate writer and an avid reader. She holds MBA in Agribusiness Management and now is working as a content writer. She loves to play with words and hopes to make a difference in the world through her writings. Apart from writing, she is interested in reading fiction novels and doing craftwork. She also loves to travel and explore different cuisines and spend time with her family and friends.

## Content tags

- Skip to main content
- Skip to primary sidebar
- Skip to footer
- QuestionPro

- Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
- Resources Blog eBooks Survey Templates Case Studies Training Help center

Home Market Research

## Data Analysis in Research: Types & Methods

Content Index

## Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense.

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research.

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

- Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
- Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
- Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

## Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words.

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find “food” and “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended text analysis methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other.

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

- Content Analysis: It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
- Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
- Discourse Analysis: Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
- Grounded Theory: When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

## Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

## Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

- Fraud: To ensure an actual human being records each response to the survey or the questionnaire
- Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
- Procedure: To ensure ethical standards were maintained while collecting the data sample
- Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

## Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

## Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

## Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

## Measures of Frequency

- Count, Percent, Frequency
- It is used to denote home often a particular event occurs.
- Researchers use it when they want to showcase how often a response is given.

## Measures of Central Tendency

- Mean, Median, Mode
- The method is widely used to demonstrate distribution by various points.
- Researchers use this method when they want to showcase the most commonly or averagely indicated response.

## Measures of Dispersion or Variation

- Range, Variance, Standard deviation
- Here the field equals high/low points.
- Variance standard deviation = difference between the observed score and mean
- It is used to identify the spread of scores by stating intervals.
- Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

## Measures of Position

- Percentile ranks, Quartile ranks
- It relies on standardized scores helping researchers to identify the relationship between different scores.
- It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided sample without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

## Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected sample to reason that about 80-90% of people like the movie.

Here are two significant areas of inferential statistics.

- Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
- Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

- Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
- Cross-tabulation: Also called contingency tables, cross-tabulation is used to analyze the relationship between multiple variables. Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
- Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
- Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
- Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
- Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
- Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

- The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing audience sample il to draw a biased inference.
- Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
- The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

## MORE LIKE THIS

## Age Gating: Effective Strategies for Online Content Control

Aug 23, 2024

## Customer Experience Lessons from 13,000 Feet — Tuesday CX Thoughts

Aug 20, 2024

## Insight: Definition & meaning, types and examples

Aug 19, 2024

## Employee Loyalty: Strategies for Long-Term Business Success

Other categories.

- Academic Research
- Artificial Intelligence
- Assessments
- Brand Awareness
- Case Studies
- Communities
- Consumer Insights
- Customer effort score
- Customer Engagement
- Customer Experience
- Customer Loyalty
- Customer Research
- Customer Satisfaction
- Employee Benefits
- Employee Engagement
- Employee Retention
- Friday Five
- General Data Protection Regulation
- Insights Hub
- Life@QuestionPro
- Market Research
- Mobile diaries
- Mobile Surveys
- New Features
- Online Communities
- Question Types
- Questionnaire
- QuestionPro Products
- Release Notes
- Research Tools and Apps
- Revenue at Risk
- Survey Templates
- Training Tips
- Tuesday CX Thoughts (TCXT)
- Uncategorized
- What’s Coming Up
- Workforce Intelligence

- Privacy Policy

Home » Data Analysis – Process, Methods and Types

## Data Analysis – Process, Methods and Types

Table of Contents

## Data Analysis

Definition:

Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets. The ultimate aim of data analysis is to convert raw data into actionable insights that can inform business decisions, scientific research, and other endeavors.

## Data Analysis Process

The following are step-by-step guides to the data analysis process:

## Define the Problem

The first step in data analysis is to clearly define the problem or question that needs to be answered. This involves identifying the purpose of the analysis, the data required, and the intended outcome.

## Collect the Data

The next step is to collect the relevant data from various sources. This may involve collecting data from surveys, databases, or other sources. It is important to ensure that the data collected is accurate, complete, and relevant to the problem being analyzed.

## Clean and Organize the Data

Once the data has been collected, it needs to be cleaned and organized. This involves removing any errors or inconsistencies in the data, filling in missing values, and ensuring that the data is in a format that can be easily analyzed.

## Analyze the Data

The next step is to analyze the data using various statistical and analytical techniques. This may involve identifying patterns in the data, conducting statistical tests, or using machine learning algorithms to identify trends and insights.

## Interpret the Results

After analyzing the data, the next step is to interpret the results. This involves drawing conclusions based on the analysis and identifying any significant findings or trends.

## Communicate the Findings

Once the results have been interpreted, they need to be communicated to stakeholders. This may involve creating reports, visualizations, or presentations to effectively communicate the findings and recommendations.

## Take Action

The final step in the data analysis process is to take action based on the findings. This may involve implementing new policies or procedures, making strategic decisions, or taking other actions based on the insights gained from the analysis.

## Types of Data Analysis

Types of Data Analysis are as follows:

## Descriptive Analysis

This type of analysis involves summarizing and describing the main characteristics of a dataset, such as the mean, median, mode, standard deviation, and range.

## Inferential Analysis

This type of analysis involves making inferences about a population based on a sample. Inferential analysis can help determine whether a certain relationship or pattern observed in a sample is likely to be present in the entire population.

## Diagnostic Analysis

This type of analysis involves identifying and diagnosing problems or issues within a dataset. Diagnostic analysis can help identify outliers, errors, missing data, or other anomalies in the dataset.

## Predictive Analysis

This type of analysis involves using statistical models and algorithms to predict future outcomes or trends based on historical data. Predictive analysis can help businesses and organizations make informed decisions about the future.

## Prescriptive Analysis

This type of analysis involves recommending a course of action based on the results of previous analyses. Prescriptive analysis can help organizations make data-driven decisions about how to optimize their operations, products, or services.

## Exploratory Analysis

This type of analysis involves exploring the relationships and patterns within a dataset to identify new insights and trends. Exploratory analysis is often used in the early stages of research or data analysis to generate hypotheses and identify areas for further investigation.

## Data Analysis Methods

Data Analysis Methods are as follows:

## Statistical Analysis

This method involves the use of mathematical models and statistical tools to analyze and interpret data. It includes measures of central tendency, correlation analysis, regression analysis, hypothesis testing, and more.

## Machine Learning

This method involves the use of algorithms to identify patterns and relationships in data. It includes supervised and unsupervised learning, classification, clustering, and predictive modeling.

## Data Mining

This method involves using statistical and machine learning techniques to extract information and insights from large and complex datasets.

## Text Analysis

This method involves using natural language processing (NLP) techniques to analyze and interpret text data. It includes sentiment analysis, topic modeling, and entity recognition.

## Network Analysis

This method involves analyzing the relationships and connections between entities in a network, such as social networks or computer networks. It includes social network analysis and graph theory.

## Time Series Analysis

This method involves analyzing data collected over time to identify patterns and trends. It includes forecasting, decomposition, and smoothing techniques.

## Spatial Analysis

This method involves analyzing geographic data to identify spatial patterns and relationships. It includes spatial statistics, spatial regression, and geospatial data visualization.

## Data Visualization

This method involves using graphs, charts, and other visual representations to help communicate the findings of the analysis. It includes scatter plots, bar charts, heat maps, and interactive dashboards.

## Qualitative Analysis

This method involves analyzing non-numeric data such as interviews, observations, and open-ended survey responses. It includes thematic analysis, content analysis, and grounded theory.

## Multi-criteria Decision Analysis

This method involves analyzing multiple criteria and objectives to support decision-making. It includes techniques such as the analytical hierarchy process, TOPSIS, and ELECTRE.

## Data Analysis Tools

There are various data analysis tools available that can help with different aspects of data analysis. Below is a list of some commonly used data analysis tools:

- Microsoft Excel: A widely used spreadsheet program that allows for data organization, analysis, and visualization.
- SQL : A programming language used to manage and manipulate relational databases.
- R : An open-source programming language and software environment for statistical computing and graphics.
- Python : A general-purpose programming language that is widely used in data analysis and machine learning.
- Tableau : A data visualization software that allows for interactive and dynamic visualizations of data.
- SAS : A statistical analysis software used for data management, analysis, and reporting.
- SPSS : A statistical analysis software used for data analysis, reporting, and modeling.
- Matlab : A numerical computing software that is widely used in scientific research and engineering.
- RapidMiner : A data science platform that offers a wide range of data analysis and machine learning tools.

## Applications of Data Analysis

Data analysis has numerous applications across various fields. Below are some examples of how data analysis is used in different fields:

- Business : Data analysis is used to gain insights into customer behavior, market trends, and financial performance. This includes customer segmentation, sales forecasting, and market research.
- Healthcare : Data analysis is used to identify patterns and trends in patient data, improve patient outcomes, and optimize healthcare operations. This includes clinical decision support, disease surveillance, and healthcare cost analysis.
- Education : Data analysis is used to measure student performance, evaluate teaching effectiveness, and improve educational programs. This includes assessment analytics, learning analytics, and program evaluation.
- Finance : Data analysis is used to monitor and evaluate financial performance, identify risks, and make investment decisions. This includes risk management, portfolio optimization, and fraud detection.
- Government : Data analysis is used to inform policy-making, improve public services, and enhance public safety. This includes crime analysis, disaster response planning, and social welfare program evaluation.
- Sports : Data analysis is used to gain insights into athlete performance, improve team strategy, and enhance fan engagement. This includes player evaluation, scouting analysis, and game strategy optimization.
- Marketing : Data analysis is used to measure the effectiveness of marketing campaigns, understand customer behavior, and develop targeted marketing strategies. This includes customer segmentation, marketing attribution analysis, and social media analytics.
- Environmental science : Data analysis is used to monitor and evaluate environmental conditions, assess the impact of human activities on the environment, and develop environmental policies. This includes climate modeling, ecological forecasting, and pollution monitoring.

## When to Use Data Analysis

Data analysis is useful when you need to extract meaningful insights and information from large and complex datasets. It is a crucial step in the decision-making process, as it helps you understand the underlying patterns and relationships within the data, and identify potential areas for improvement or opportunities for growth.

Here are some specific scenarios where data analysis can be particularly helpful:

- Problem-solving : When you encounter a problem or challenge, data analysis can help you identify the root cause and develop effective solutions.
- Optimization : Data analysis can help you optimize processes, products, or services to increase efficiency, reduce costs, and improve overall performance.
- Prediction: Data analysis can help you make predictions about future trends or outcomes, which can inform strategic planning and decision-making.
- Performance evaluation : Data analysis can help you evaluate the performance of a process, product, or service to identify areas for improvement and potential opportunities for growth.
- Risk assessment : Data analysis can help you assess and mitigate risks, whether it is financial, operational, or related to safety.
- Market research : Data analysis can help you understand customer behavior and preferences, identify market trends, and develop effective marketing strategies.
- Quality control: Data analysis can help you ensure product quality and customer satisfaction by identifying and addressing quality issues.

## Purpose of Data Analysis

The primary purposes of data analysis can be summarized as follows:

- To gain insights: Data analysis allows you to identify patterns and trends in data, which can provide valuable insights into the underlying factors that influence a particular phenomenon or process.
- To inform decision-making: Data analysis can help you make informed decisions based on the information that is available. By analyzing data, you can identify potential risks, opportunities, and solutions to problems.
- To improve performance: Data analysis can help you optimize processes, products, or services by identifying areas for improvement and potential opportunities for growth.
- To measure progress: Data analysis can help you measure progress towards a specific goal or objective, allowing you to track performance over time and adjust your strategies accordingly.
- To identify new opportunities: Data analysis can help you identify new opportunities for growth and innovation by identifying patterns and trends that may not have been visible before.

## Examples of Data Analysis

Some Examples of Data Analysis are as follows:

- Social Media Monitoring: Companies use data analysis to monitor social media activity in real-time to understand their brand reputation, identify potential customer issues, and track competitors. By analyzing social media data, businesses can make informed decisions on product development, marketing strategies, and customer service.
- Financial Trading: Financial traders use data analysis to make real-time decisions about buying and selling stocks, bonds, and other financial instruments. By analyzing real-time market data, traders can identify trends and patterns that help them make informed investment decisions.
- Traffic Monitoring : Cities use data analysis to monitor traffic patterns and make real-time decisions about traffic management. By analyzing data from traffic cameras, sensors, and other sources, cities can identify congestion hotspots and make changes to improve traffic flow.
- Healthcare Monitoring: Healthcare providers use data analysis to monitor patient health in real-time. By analyzing data from wearable devices, electronic health records, and other sources, healthcare providers can identify potential health issues and provide timely interventions.
- Online Advertising: Online advertisers use data analysis to make real-time decisions about advertising campaigns. By analyzing data on user behavior and ad performance, advertisers can make adjustments to their campaigns to improve their effectiveness.
- Sports Analysis : Sports teams use data analysis to make real-time decisions about strategy and player performance. By analyzing data on player movement, ball position, and other variables, coaches can make informed decisions about substitutions, game strategy, and training regimens.
- Energy Management : Energy companies use data analysis to monitor energy consumption in real-time. By analyzing data on energy usage patterns, companies can identify opportunities to reduce energy consumption and improve efficiency.

## Characteristics of Data Analysis

Characteristics of Data Analysis are as follows:

- Objective : Data analysis should be objective and based on empirical evidence, rather than subjective assumptions or opinions.
- Systematic : Data analysis should follow a systematic approach, using established methods and procedures for collecting, cleaning, and analyzing data.
- Accurate : Data analysis should produce accurate results, free from errors and bias. Data should be validated and verified to ensure its quality.
- Relevant : Data analysis should be relevant to the research question or problem being addressed. It should focus on the data that is most useful for answering the research question or solving the problem.
- Comprehensive : Data analysis should be comprehensive and consider all relevant factors that may affect the research question or problem.
- Timely : Data analysis should be conducted in a timely manner, so that the results are available when they are needed.
- Reproducible : Data analysis should be reproducible, meaning that other researchers should be able to replicate the analysis using the same data and methods.
- Communicable : Data analysis should be communicated clearly and effectively to stakeholders and other interested parties. The results should be presented in a way that is understandable and useful for decision-making.

## Advantages of Data Analysis

Advantages of Data Analysis are as follows:

- Better decision-making: Data analysis helps in making informed decisions based on facts and evidence, rather than intuition or guesswork.
- Improved efficiency: Data analysis can identify inefficiencies and bottlenecks in business processes, allowing organizations to optimize their operations and reduce costs.
- Increased accuracy: Data analysis helps to reduce errors and bias, providing more accurate and reliable information.
- Better customer service: Data analysis can help organizations understand their customers better, allowing them to provide better customer service and improve customer satisfaction.
- Competitive advantage: Data analysis can provide organizations with insights into their competitors, allowing them to identify areas where they can gain a competitive advantage.
- Identification of trends and patterns : Data analysis can identify trends and patterns in data that may not be immediately apparent, helping organizations to make predictions and plan for the future.
- Improved risk management : Data analysis can help organizations identify potential risks and take proactive steps to mitigate them.
- Innovation: Data analysis can inspire innovation and new ideas by revealing new opportunities or previously unknown correlations in data.

## Limitations of Data Analysis

- Data quality: The quality of data can impact the accuracy and reliability of analysis results. If data is incomplete, inconsistent, or outdated, the analysis may not provide meaningful insights.
- Limited scope: Data analysis is limited by the scope of the data available. If data is incomplete or does not capture all relevant factors, the analysis may not provide a complete picture.
- Human error : Data analysis is often conducted by humans, and errors can occur in data collection, cleaning, and analysis.
- Cost : Data analysis can be expensive, requiring specialized tools, software, and expertise.
- Time-consuming : Data analysis can be time-consuming, especially when working with large datasets or conducting complex analyses.
- Overreliance on data: Data analysis should be complemented with human intuition and expertise. Overreliance on data can lead to a lack of creativity and innovation.
- Privacy concerns: Data analysis can raise privacy concerns if personal or sensitive information is used without proper consent or security measures.

## About the author

## Muhammad Hassan

Researcher, Academic Writer, Web developer

## You may also like

## Research Methodology – Types, Examples and...

## Chapter Summary & Overview – Writing Guide...

## Factor Analysis – Steps, Methods and Examples

## Research Findings – Types Examples and Writing...

## Bimodal Histogram – Definition, Examples

## Research Process – Steps, Examples and Tips

- Deutschland
- United Kingdom

- Revisión en inglés
- Relecture en anglais
- Revisão em inglês

## Manuscript Editing

- Research Paper Editing
- Lektorat Doktorarbeit
- Dissertation Proofreading
- Englisches Lektorat
- Journal Manuscript Editing
- Scientific Manuscript Editing Services
- Book Manuscript Editing
- PhD Thesis Proofreading Services
- Wissenschaftslektorat
- Korektura anglického textu
- Akademisches Lektorat
- Journal Article Editing
- Manuscript Editing Services

## PhD Thesis Editing

- Medical Editing Sciences
- Proofreading Rates UK
- Medical Proofreading
- PhD Proofreading
- Academic Proofreading
- PhD Proofreaders
- Best Dissertation Proofreaders
- Masters Dissertation Proofreading
- Proofreading PhD Thesis Price
- PhD Dissertation Editing
- Lektorat Englisch Preise
- Lektorieren Englisch
- Wissenschaftliches Lektorat
- Thesis Proofreading Services
- PhD Thesis Proofreading
- Proofreading Thesis Cost
- Proofreading Thesis
- Thesis Editing Services
- Professional Thesis Editing
- PhD Thesis Editing Services
- Thesis Editing Cost
- Dissertation Proofreading Services
- Proofreading Dissertation

## PhD Dissertation Proofreading

- Dissertation Proofreading Cost
- Dissertation Proofreader
- Correção de Artigos Científicos
- Correção de Trabalhos Academicos
- Serviços de Correção de Inglês
- Correção de Dissertação
- Correção de Textos Precos
- Revision en Ingles
- Revision de Textos en Ingles
- Revision de Tesis
- Revision Medica en Ingles
- Revision de Tesis Precio
- Revisão de Artigos Científicos
- Revisão de Trabalhos Academicos
- Serviços de Revisão de Inglês
- Revisão de Dissertação
- Revisão de Textos Precos
- Corrección de Textos en Ingles
- Corrección de Tesis
- Corrección de Tesis Precio
- Corrección Medica en Ingles
- Corrector ingles
- Choosing the right Journal
- Journal Editor’s Feedback
- Dealing with Rejection
- Quantitative Research Examples
- Number of scientific papers published per year
- Acknowledgements Example
- ISO, ANSI, CFR & Other
- Types of Peer Review
- Withdrawing a Paper
- What is a good h-index
- Appendix paper
- Cover Letter Templates
- Writing an Article
- How To Write the Findings
- Abbreviations: ‘Ibid.’ & ‘Id.’
- Sample letter to editor for publication
- Tables and figures in research paper
- Journal Metrics
- Revision Process of Journal Publishing
- JOURNAL GUIDELINES

Select Page

## Writing the Data Analysis Chapter(s): Results and Evidence

Posted by Rene Tetzner | Oct 19, 2021 | PhD Success | 0 |

4.4 Writing the Data Analysis Chapter(s): Results and Evidence

Unlike the introduction, literature review and methodology chapter(s), your results chapter(s) will need to be written for the first time as you draft your thesis even if you submitted a proposal, though this part of your thesis will certainly build upon the preceding chapters. You should have carefully recorded and collected the data (test results, participant responses, computer print outs, observations, transcriptions, notes of various kinds etc.) from your research as you conducted it, so now is the time to review, organise and analyse the data. If your study is quantitative in nature, make sure that you know what all the numbers mean and that you consider them in direct relation to the topic, problem or phenomenon you are investigating, and especially in relation to your research questions and hypotheses. You may find that you require the services of a statistician to help make sense of the data, in which case, obtaining that help sooner rather than later is advisable, because you need to understand your results thoroughly before you can write about them. If, on the other hand, your study is qualitative, you will need to read through the data you have collected several times to become familiar with them both as a whole and in detail so that you can establish important themes, patterns and categories. Remember that ‘qualitative analysis is a creative process and requires thoughtful judgments about what is significant and meaningful in the data’ (Roberts, 2010, p.174; see also Miles & Huberman, 1994) – judgements that often need to be made before the findings can be effectively analysed and presented. If you are combining methodologies in your research, you will also need to consider relationships between the results obtained from the different methods, integrating all the data you have obtained and discovering how the results of one approach support or correlate with the results of another. Ideally, you will have taken careful notes recording your initial thoughts and analyses about the sources you consulted and the results and evidence provided by particular methods and instruments as you put them into practice (as suggested in Sections 2.1.2 and 2.1.4), as these will prove helpful while you consider how best to present your results in your thesis.

Although the ways in which to present and organise the results of doctoral research differ markedly depending on the nature of the study and its findings, as on author and committee preferences and university and department guidelines, there are several basic principles that apply to virtually all theses. First and foremost is the need to present the results of your research both clearly and concisely, and in as objective and factual a manner as possible. There will be time and space to elaborate and interpret your results and speculate on their significance and implications in the final discussion chapter(s) of your thesis, but, generally speaking, such reflection on the meaning of the results should be entirely separate from the factual report of your research findings. There are exceptions, of course, and some candidates, supervisors and departments may prefer the factual presentation and interpretive discussion of results to be blended, just as some thesis topics may demand such treatment, but this is rare and best avoided unless there are persuasive reasons to avoid separating the facts from your thoughts about them. If you do find that you need to blend facts and interpretation in reporting your results, make sure that your language leaves no doubt about the line between the two: words such as ‘seems,’ ‘appears,’ ‘may,’ ‘might,’ probably’ and the like will effectively distinguish analytical speculation from more factual reporting (see also Section 4.5).

You need not dedicate much space in this part of the thesis to the methods you used to arrive at your results because these have already been described in your methodology chapter(s), but they can certainly be revisited briefly to clarify or lend structure to your report. Results are most often presented in a straightforward narrative form which is often supplemented by tables and perhaps by figures such as graphs, charts and maps. An effective approach is to decide immediately which information would be best included in tables and figures, and then to prepare those tables and figures before you begin writing the text for the chapter (see Section 4.4.1 on designing effective tables and figures). Arranging your data into the visually immediate formats provided by tables and figures can, for one, produce interesting surprises by enabling you to see trends and details that you may not have noticed previously, and writing the report of your results will prove easier when you have the tables and figures to work with just as your readers ultimately will. In addition, while the text of the results chapter(s) should certainly highlight the most notable data included in tables and figures, it is essential not to repeat information unnecessarily, so writing with the tables and figures already constructed will help you keep repetition to a minimum. Finally, writing about the tables and figures you create will help you test their clarity and effectiveness for your readers, and you can make any necessary adjustments to the tables and figures as you work. Be sure to refer to each table and figure by number in your text and to make it absolutely clear what you want your readers to see or understand in the table or figure (e.g., ‘see Table 1 for the scores’ and ‘Figure 2 shows this relationship’).

Beyond combining textual narration with the data presented in tables and figures, you will need to organise your report of the results in a manner best suited to the material. You may choose to arrange the presentation of your results chronologically or in a hierarchical order that represents their importance; you might subdivide your results into sections (or separate chapters if there is a great deal of information to accommodate) focussing on the findings of different kinds of methodology (quantitative versus qualitative, for instance) or of different tests, trials, surveys, reviews, case studies and so on; or you may want to create sections (or chapters) focussing on specific themes, patterns or categories or on your research questions and/or hypotheses. The last approach allows you to cluster results that relate to a particular question or hypothesis into a single section and can be particularly useful because it provides cohesion for the thesis as a whole and forces you to focus closely on the issues central to the topic, problem or phenomenon you are investigating. You will, for instance, be able to refer back to the questions and hypotheses presented in your introduction (see Section 3.1), to answer the questions and confirm or dismiss the hypotheses and to anticipate in relation to those questions and hypotheses the discussion and interpretation of your findings that will appear in the next part of the thesis (see Section 4.5). Less effective is an approach that organises the presentation of results according to the items of a survey or questionnaire, because these lend the structure of the instrument used to the results instead of connecting those results directly to the aims, themes and argument of your thesis, but such an organisation can certainly be an important early step in your analysis of the findings and might even be valid for the final thesis if, for instance, your work focuses on developing the instrument involved.

The results generated by doctoral research are unique, and this book cannot hope to outline all the possible approaches for presenting the data and analyses that constitute research results, but it is essential that you devote considerable thought and special care to the way in which you structure the report of your results (Section 6.1 on headings may prove helpful). Whatever structure you choose should accurately reflect the nature of your results and highlight their most important and interesting trends, and it should also effectively allow you (in the next part of the thesis) to discuss and speculate upon your findings in ways that will test the premises of your study, work well in the overall argument of your thesis and lead to significant implications for your research. Regardless of how you organise the main body of your results chapter(s), however, you should include a final paragraph (or more than one paragraph if necessary) that briefly summarises and explains the key results and also guides the reader on to the discussion and interpretation of those results in the following chapter(s).

## Why PhD Success?

To Graduate Successfully

This article is part of a book called "PhD Success" which focuses on the writing process of a phd thesis, with its aim being to provide sound practices and principles for reporting and formatting in text the methods, results and discussion of even the most innovative and unique research in ways that are clear, correct, professional and persuasive.

The assumption of the book is that the doctoral candidate reading it is both eager to write and more than capable of doing so, but nonetheless requires information and guidance on exactly what he or she should be writing and how best to approach the task. The basic components of a doctoral thesis are outlined and described, as are the elements of complete and accurate scholarly references, and detailed descriptions of writing practices are clarified through the use of numerous examples.

The basic components of a doctoral thesis are outlined and described, as are the elements of complete and accurate scholarly references, and detailed descriptions of writing practices are clarified through the use of numerous examples. PhD Success provides guidance for students familiar with English and the procedures of English universities, but it also acknowledges that many theses in the English language are now written by candidates whose first language is not English, so it carefully explains the scholarly styles, conventions and standards expected of a successful doctoral thesis in the English language.

Individual chapters of this book address reflective and critical writing early in the thesis process; working successfully with thesis supervisors and benefiting from commentary and criticism; drafting and revising effective thesis chapters and developing an academic or scientific argument; writing and formatting a thesis in clear and correct scholarly English; citing, quoting and documenting sources thoroughly and accurately; and preparing for and excelling in thesis meetings and examinations.

Completing a doctoral thesis successfully requires long and penetrating thought, intellectual rigour and creativity, original research and sound methods (whether established or innovative), precision in recording detail and a wide-ranging thoroughness, as much perseverance and mental toughness as insight and brilliance, and, no matter how many helpful writing guides are consulted, a great deal of hard work over a significant period of time. Writing a thesis can be an enjoyable as well as a challenging experience, however, and even if it is not always so, the personal and professional rewards of achieving such an enormous goal are considerable, as all doctoral candidates no doubt realise, and will last a great deal longer than any problems that may be encountered during the process.

## Interested in Proofreading your PhD Thesis? Get in Touch with us

If you are interested in proofreading your PhD thesis or dissertation, please explore our expert dissertation proofreading services.

## Rene Tetzner

Rene Tetzner's blog posts dedicated to academic writing. Although the focus is on How To Write a Doctoral Thesis, many other important aspects of research-based writing, editing and publishing are addressed in helpful detail.

## Related Posts

## PhD Success – How To Write a Doctoral Thesis

October 1, 2021

## Table of Contents – PhD Success

October 2, 2021

## The Essential – Preliminary Matter

October 3, 2021

## The Main Body of the Thesis

October 4, 2021

## Data Analysis

Methodology chapter of your dissertation should include discussions about the methods of data analysis. You have to explain in a brief manner how you are going to analyze the primary data you will collect employing the methods explained in this chapter.

There are differences between qualitative data analysis and quantitative data analysis . In qualitative researches using interviews, focus groups, experiments etc. data analysis is going to involve identifying common patterns within the responses and critically analyzing them in order to achieve research aims and objectives.

Data analysis for quantitative studies, on the other hand, involves critical analysis and interpretation of figures and numbers, and attempts to find rationale behind the emergence of main findings. Comparisons of primary research findings to the findings of the literature review are critically important for both types of studies – qualitative and quantitative.

Data analysis methods in the absence of primary data collection can involve discussing common patterns, as well as, controversies within secondary data directly related to the research area.

John Dudovskiy

- Write my thesis
- Thesis writers
- Buy thesis papers
- Bachelor thesis
- Master's thesis
- Thesis editing services
- Thesis proofreading services
- Buy a thesis online
- Write my dissertation
- Dissertation proposal help
- Pay for dissertation
- Custom dissertation
- Dissertation help online
- Buy dissertation online
- Cheap dissertation
- Dissertation editing services
- Write my research paper
- Buy research paper online
- Pay for research paper
- Research paper help
- Order research paper
- Custom research paper
- Cheap research paper
- Research papers for sale
- Thesis subjects
- How It Works

## Writing a Dissertation Data Analysis the Right Way

Do you want to be a college professor? Most teaching positions at four-year universities and colleges require the applicants to have at least a doctoral degree in the field they wish to teach in. If you are looking for information about the dissertation data analysis, it means you have already started working on yours. Congratulations!

Truth be told, learning how to write a data analysis the right way can be tricky. This is, after all, one of the most important chapters of your paper. It is also the most difficult to write, unfortunately. The good news is that we will help you with all the information you need to write a good data analysis chapter right now. And remember, if you need an original dissertation data analysis example, our PhD experts can write one for you in record time. You’ll be amazed how much you can learn from a well-written example.

## OK, But What Is the Data Analysis Section?

Don’t know what the data analysis section is or what it is used for? No problem, we’ll explain it to you. Understanding the data analysis meaning is crucial to understanding the next sections of this blog post.

Basically, the data analysis section is the part where you analyze and discuss the data you’ve uncovered. In a typical dissertation, you will present your findings (the data) in the Results section. You will explain how you obtained the data in the Methodology chapter.

The data analysis section should be reserved just for discussing your findings. This means you should refrain from introducing any new data in there. This is extremely important because it can get your paper penalized quite harshly. Remember, the evaluation committee will look at your data analysis section very closely. It’s extremely important to get this chapter done right.

## Learn What to Include in Data Analysis

Don’t know what to include in data analysis? Whether you need to do a quantitative data analysis or analyze qualitative data, you need to get it right. Learning how to analyze research data is extremely important, and so is learning what you need to include in your analysis. Here are the basic parts that should mandatorily be in your dissertation data analysis structure:

- The chapter should start with a brief overview of the problem. You will need to explain the importance of your research and its purpose. Also, you will need to provide a brief explanation of the various types of data and the methods you’ve used to collect said data. In case you’ve made any assumptions, you should list them as well.
- The next part will include detailed descriptions of each and every one of your hypotheses. Alternatively, you can describe the research questions. In any case, this part of the data analysis chapter will make it clear to your readers what you aim to demonstrate.
- Then, you will introduce and discuss each and every piece of important data. Your aim is to demonstrate that your data supports your thesis (or answers an important research question). Go in as much detail as possible when analyzing the data. Each question should be discussed in a single paragraph and the paragraph should contain a conclusion at the end.
- The very last part of the data analysis chapter that an undergraduate must write is the conclusion of the entire chapter. It is basically a short summary of the entire chapter. Make it clear that you know what you’ve been talking about and how your data helps answer the research questions you’ve been meaning to cover.

## Dissertation Data Analysis Methods

If you are reading this, it means you need some data analysis help. Fortunately, our writers are experts when it comes to the discussion chapter of a dissertation, the most important part of your paper. To make sure you write it correctly, you need to first ensure you learn about the various data analysis methods that are available to you. Here is what you can – and should – do during the data analysis phase of the paper:

- Validate the data. This means you need to check for fraud (were all the respondents really interviewed?), screen the respondents to make sure they meet the research criteria, check that the data collection procedures were properly followed, and then verify that the data is complete (did each respondent receive all the questions or not?). Validating the data is no as difficult as you imagine. Just pick several respondents at random and call them or email them to find out if the data is valid.

For example, an outlier can be identified using a scatter plot or a box plot. Points (values) that are beyond an inner fence on either side are mild outliers, while points that are beyond an outer fence are called extreme outliers.

- If you have a large amount of data, you should code it. Group similar data into sets and code them. This will significantly simplify the process of analyzing the data later.

For example, the median is almost always used to separate the lower half from the upper half of a data set, while the percentage can be used to make a graph that emphasizes a small group of values in a large set o data.

ANOVA, for example, is perfect for testing how much two groups differ from one another in the experiment. You can safely use it to find a relationship between the number of smartphones in a family and the size of the family’s savings.

Analyzing qualitative data is a bit different from analyzing quantitative data. However, the process is not entirely different. Here are some methods to analyze qualitative data:

You should first get familiar with the data, carefully review each research question to see which one can be answered by the data you have collected, code or index the resulting data, and then identify all the patterns. The most popular methods of conducting a qualitative data analysis are the grounded theory, the narrative analysis, the content analysis, and the discourse analysis. Each has its strengths and weaknesses, so be very careful which one you choose.

Of course, it goes without saying that you need to become familiar with each of the different methods used to analyze various types of data. Going into detail for each method is not possible in a single blog post. After all, there are entire books written about these methods. However, if you are having any trouble with analyzing the data – or if you don’t know which dissertation data analysis methods suits your data best – you can always ask our dissertation experts. Our customer support department is online 24 hours a day, 7 days a week – even during holidays. We are always here for you!

## Tips and Tricks to Write the Analysis Chapter

Did you know that the best way to learn how to write a data analysis chapter is to get a great example of data analysis in research paper? In case you don’t have access to such an example and don’t want to get assistance from our experts, we can still help you. Here are a few very useful tips that should make writing the analysis chapter a lot easier:

- Always start the chapter with a short introductory paragraph that explains the purpose of the chapter. Don’t just assume that your audience knows what a discussion chapter is. Provide them with a brief overview of what you are about to demonstrate.
- When you analyze and discuss the data, keep the literature review in mind. Make as many cross references as possible between your analysis and the literature review. This way, you will demonstrate to the evaluation committee that you know what you’re talking about.
- Never be afraid to provide your point of view on the data you are analyzing. This is why it’s called a data analysis and not a results chapter. Be as critical as possible and make sure you discuss every set of data in detail.
- If you notice any patterns or themes in the data, make sure you acknowledge them and explain them adequately. You should also take note of these patterns in the conclusion at the end of the chapter.
- Do not assume your readers are familiar with jargon. Always provide a clear definition of the terms you are using in your paper. Not doing so can get you penalized. Why risk it?
- Don’t be afraid to discuss both the advantage and the disadvantages you can get from the data. Being biased and trying to ignore the drawbacks of the results will not get you far.
- Always remember to discuss the significance of each set of data. Also, try to explain to your audience how the various elements connect to each other.
- Be as balanced as possible and make sure your judgments are reasonable. Only strong evidence should be used to support your claims and arguments. Weak evidence just shows that you did not do your best to uncover enough information to answer the research question.
- Get dissertation data analysis help whenever you feel like you need it. Don’t leave anything to chance because the outcome of your dissertation depends in large part on the data analysis chapter.

Finally, don’t be afraid to make effective use of any quantitative data analysis software you can get your hands on. We know that many of these tools can be quite expensive, but we can assure you that the investment is a good idea. Many of these tools are of real help when it comes to analyzing huge amounts of data.

## Final Considerations

Finally, you need to be aware that the data analysis chapter should not be rushed in any way. We do agree that the Results chapter is extremely important, but we consider that the Discussion chapter is equally as important. Why? Because you will be explaining your findings and not just presenting some results. You will have the option to talk about your personal opinions. You are free to unleash your critical thinking and impress the evaluation committee. The data analysis section is where you can really shine.

Also, you need to make sure that this chapter is as interesting as it can be for the reader. Make sure you discuss all the interesting results of your research. Explain peculiar findings. Make correlations and reference other works by established authors in your field. Show your readers that you know that subject extremely well and that you are perfectly capable of conducting a proper analysis no matter how complex the data may be. This way, you can ensure that you get maximum points for the data analysis chapter. If you can’t do a great job, get help ASAP!

## Need Some Assistance With Data Analysis?

If you are a university student or a graduate, you may need some cheap help with writing the analysis chapter of your dissertation. Remember, time saving is extremely important because finishing the dissertation on time is mandatory. You should consider our amazing services the moment you notice you are not on track with your dissertation. Also, you should get help from our dissertation writing service in case you can’t do a terrific job writing the data analysis chapter. This is one of the most important chapters of your paper and the supervisor will look closely at it.

Why risk getting penalized when you can get high quality academic writing services from our team of experts? All our writers are PhD degree holders, so they know exactly how to write any chapter of a dissertation the right way. This also means that our professionals work fast. They can get the analysis chapter done for you in no time and bring you back on track. It’s also worth noting that we have access to the best software tools for data analysis. We will bring our knowledge and technical know-how to your project and ensure you get a top grade on your paper. Get in touch with us and let’s discuss the specifics of your project right now!

## Leave a Reply Cancel reply

Business growth

Business tips

## What is data analysis? Examples and how to get started

Even with years of professional experience working with data, the term "data analysis" still sets off a panic button in my soul. And yes, when it comes to serious data analysis for your business, you'll eventually want data scientists on your side. But if you're just getting started, no panic attacks are required.

Table of contents:

## Quick review: What is data analysis?

Data analysis is the process of examining, filtering, adapting, and modeling data to help solve problems. Data analysis helps determine what is and isn't working, so you can make the changes needed to achieve your business goals.

Keep in mind that data analysis includes analyzing both quantitative data (e.g., profits and sales) and qualitative data (e.g., surveys and case studies) to paint the whole picture. Here are two simple examples (of a nuanced topic) to show you what I mean.

An example of quantitative data analysis is an online jewelry store owner using inventory data to forecast and improve reordering accuracy. The owner looks at their sales from the past six months and sees that, on average, they sold 210 gold pieces and 105 silver pieces per month, but they only had 100 gold pieces and 100 silver pieces in stock. By collecting and analyzing inventory data on these SKUs, they're forecasting to improve reordering accuracy. The next time they order inventory, they order twice as many gold pieces as silver to meet customer demand.

An example of qualitative data analysis is a fitness studio owner collecting customer feedback to improve class offerings. The studio owner sends out an open-ended survey asking customers what types of exercises they enjoy the most. The owner then performs qualitative content analysis to identify the most frequently suggested exercises and incorporates these into future workout classes.

## Why is data analysis important?

Here's why it's worth implementing data analysis for your business:

Understand your target audience: You might think you know how to best target your audience, but are your assumptions backed by data? Data analysis can help answer questions like, "What demographics define my target audience?" or "What is my audience motivated by?"

Inform decisions: You don't need to toss and turn over a decision when the data points clearly to the answer. For instance, a restaurant could analyze which dishes on the menu are selling the most, helping them decide which ones to keep and which ones to change.

Adjust budgets: Similarly, data analysis can highlight areas in your business that are performing well and are worth investing more in, as well as areas that aren't generating enough revenue and should be cut. For example, a B2B software company might discover their product for enterprises is thriving while their small business solution lags behind. This discovery could prompt them to allocate more budget toward the enterprise product, resulting in better resource utilization.

Identify and solve problems: Let's say a cell phone manufacturer notices data showing a lot of customers returning a certain model. When they investigate, they find that model also happens to have the highest number of crashes. Once they identify and solve the technical issue, they can reduce the number of returns.

## Types of data analysis (with examples)

There are five main types of data analysis—with increasingly scary-sounding names. Each one serves a different purpose, so take a look to see which makes the most sense for your situation. It's ok if you can't pronounce the one you choose.

## Text analysis: What is happening?

Here are a few methods used to perform text analysis, to give you a sense of how it's different from a human reading through the text:

Word frequency identifies the most frequently used words. For example, a restaurant monitors social media mentions and measures the frequency of positive and negative keywords like "delicious" or "expensive" to determine how customers feel about their experience.

Language detection indicates the language of text. For example, a global software company may use language detection on support tickets to connect customers with the appropriate agent.

Keyword extraction automatically identifies the most used terms. For example, instead of sifting through thousands of reviews, a popular brand uses a keyword extractor to summarize the words or phrases that are most relevant.

## Statistical analysis: What happened?

Statistical analysis pulls past data to identify meaningful trends. Two primary categories of statistical analysis exist: descriptive and inferential.

## Descriptive analysis

Here are a few methods used to perform descriptive analysis:

Measures of frequency identify how frequently an event occurs. For example, a popular coffee chain sends out a survey asking customers what their favorite holiday drink is and uses measures of frequency to determine how often a particular drink is selected.

Measures of central tendency use mean, median, and mode to identify results. For example, a dating app company might use measures of central tendency to determine the average age of its users.

Measures of dispersion measure how data is distributed across a range. For example, HR may use measures of dispersion to determine what salary to offer in a given field.

## Inferential analysis

Inferential analysis uses a sample of data to draw conclusions about a much larger population. This type of analysis is used when the population you're interested in analyzing is very large.

Here are a few methods used when performing inferential analysis:

Hypothesis testing identifies which variables impact a particular topic. For example, a business uses hypothesis testing to determine if increased sales were the result of a specific marketing campaign.

Regression analysis shows the effect of independent variables on a dependent variable. For example, a rental car company may use regression analysis to determine the relationship between wait times and number of bad reviews.

## Diagnostic analysis: Why did it happen?

Diagnostic analysis, also referred to as root cause analysis, uncovers the causes of certain events or results.

Here are a few methods used to perform diagnostic analysis:

Time-series analysis analyzes data collected over a period of time. A retail store may use time-series analysis to determine that sales increase between October and December every year.

Correlation analysis determines the strength of the relationship between variables. For example, a local ice cream shop may determine that as the temperature in the area rises, so do ice cream sales.

## Predictive analysis: What is likely to happen?

Predictive analysis aims to anticipate future developments and events. By analyzing past data, companies can predict future scenarios and make strategic decisions.

Here are a few methods used to perform predictive analysis:

Decision trees map out possible courses of action and outcomes. For example, a business may use a decision tree when deciding whether to downsize or expand.

## Prescriptive analysis: What action should we take?

The highest level of analysis, prescriptive analysis, aims to find the best action plan. Typically, AI tools model different outcomes to predict the best approach. While these tools serve to provide insight, they don't replace human consideration, so always use your human brain before going with the conclusion of your prescriptive analysis. Otherwise, your GPS might drive you into a lake.

Here are a few methods used to perform prescriptive analysis:

Algorithms are used in technology to perform specific tasks. For example, banks use prescriptive algorithms to monitor customers' spending and recommend that they deactivate their credit card if fraud is suspected.

## Data analysis process: How to get started

The actual analysis is just one step in a much bigger process of using data to move your business forward. Here's a quick look at all the steps you need to take to make sure you're making informed decisions.

## Data decision

As with almost any project, the first step is to determine what problem you're trying to solve through data analysis.

Make sure you get specific here. For example, a food delivery service may want to understand why customers are canceling their subscriptions. But to enable the most effective data analysis, they should pose a more targeted question, such as "How can we reduce customer churn without raising costs?"

## Data collection

Next, collect the required data from both internal and external sources.

Internal data comes from within your business (think CRM software, internal reports, and archives), and helps you understand your business and processes.

External data originates from outside of the company (surveys, questionnaires, public data) and helps you understand your industry and your customers.

## Data cleaning

Data can be seriously misleading if it's not clean. So before you analyze, make sure you review the data you collected. Depending on the type of data you have, cleanup will look different, but it might include:

Removing unnecessary information

Addressing structural errors like misspellings

Deleting duplicates

Trimming whitespace

Human checking for accuracy

## Data analysis

Now that you've compiled and cleaned the data, use one or more of the above types of data analysis to find relationships, patterns, and trends.

Data analysis tools can speed up the data analysis process and remove the risk of inevitable human error. Here are some examples.

Spreadsheets sort, filter, analyze, and visualize data.

Structured query language (SQL) tools manage and extract data in relational databases.

## Data interpretation

After you analyze the data, you'll need to go back to the original question you posed and draw conclusions from your findings. Here are some common pitfalls to avoid:

Correlation vs. causation: Just because two variables are associated doesn't mean they're necessarily related or dependent on one another.

Confirmation bias: This occurs when you interpret data in a way that confirms your own preconceived notions. To avoid this, have multiple people interpret the data.

Small sample size: If your sample size is too small or doesn't represent the demographics of your customers, you may get misleading results. If you run into this, consider widening your sample size to give you a more accurate representation.

## Data visualization

Automate your data collection, frequently asked questions.

Need a quick summary or still have a few nagging data analysis questions? I'm here for you.

## What are the five types of data analysis?

The five types of data analysis are text analysis, statistical analysis, diagnostic analysis, predictive analysis, and prescriptive analysis. Each type offers a unique lens for understanding data: text analysis provides insights into text-based content, statistical analysis focuses on numerical trends, diagnostic analysis looks into problem causes, predictive analysis deals with what may happen in the future, and prescriptive analysis gives actionable recommendations.

## What is the data analysis process?

The data analysis process involves data decision, collection, cleaning, analysis, interpretation, and visualization. Every stage comes together to transform raw data into meaningful insights. Decision determines what data to collect, collection gathers the relevant information, cleaning ensures accuracy, analysis uncovers patterns, interpretation assigns meaning, and visualization presents the insights.

## What is the main purpose of data analysis?

In business, the main purpose of data analysis is to uncover patterns, trends, and anomalies, and then use that information to make decisions, solve problems, and reach your business goals.

Related reading:

This article was originally published in October 2022 and has since been updated with contributions from Cecilia Gillen. The most recent update was in September 2023.

Get productivity tips delivered straight to your inbox

We’ll email you 1-3 times per week—and never share your information.

Shea Stevens

Shea is a content writer currently living in Charlotte, North Carolina. After graduating with a degree in Marketing from East Carolina University, she joined the digital marketing industry focusing on content and social media. In her free time, you can find Shea visiting her local farmers market, attending a country music concert, or planning her next adventure.

- Data & analytics
- Small business

Data extraction is the process of taking actionable information from larger, less structured sources to be further refined or analyzed. Here's how to do it.

## Related articles

Project milestones for improved project management

Project milestones for improved project...

14 data visualization examples to captivate your audience

14 data visualization examples to captivate...

61 best businesses to start with $10K or less

61 best businesses to start with $10K or...

SWOT analysis: A how-to guide and template (that won't bore you to tears)

SWOT analysis: A how-to guide and template...

## Improve your productivity automatically. Use Zapier to get your apps working together.

- How it works

## Chapter 4 – Data Analysis and Discussion (example)

Disclaimer: This is not a sample of our professional work. The paper has been produced by a student. You can view samples of our work here . Opinions, suggestions, recommendations and results in this piece are those of the author and should not be taken as our company views.

Type of Academic Paper – Dissertation Chapter

Academic Subject – Marketing

Word Count – 2964 words

## Reliability Analysis

Before conducting any analysis on the data, all the data’s reliability was analyzed based on Cronbach’s Alpha value. The reliability analysis was performed on the complete data of the questionnaire. The reliability of the data was found to be (0.922), as shown in the results of the reliability analysis provided below in table 4.1. However, the complete results output of the reliability analysis is given in the appendix.

Reliability Analysis (N=200)

Cronbach’s Alpha | No. of Items |
---|---|

.922 | 29 |

The Cronbach’s Alpha value between (0.7-1.0) is considered to have excellent reliability. The Cronbach’s Alpha value of the data was found to be (0.922); therefore, this indicated that the questionnaire data had excellent reliability. All of the 29 items of the questionnaire had excellent reliability, and if they are taken for further analysis, they can generate results with 92.2% reliability.

## Frequency Distribution Analysis

First of all, the frequency distribution analysis was performed on the demographic variables using SPSS to identify the respondents’ demographic composition. Section 1 of the questionnaire had 5 demographic questions to identify; gender, age group, annual income, marital status, and education level of the research sample. The frequency distribution results shown in table 4.2 below indicated that there were 200 respondents in total, out of which 50% were male, and 50% were female. This shows that the research sample was free from gender-based biases as males and females had equal representation in the sample.

Moreover, the frequency distribution analysis suggested three age groups; ‘20-35’, ‘36-60’ and ‘Above 60’. 39% of the respondents belonged to the ‘20-35’ age group, while 56.5% of the respondents belonged to the ‘36-60’ age group and the remaining 4.5% belonged to the age group of ‘Above 60’.

Furthermore, the annual income level was divided into four categories. The income values were in GBP. It was found that 13% of the respondents had income ‘up to 30000’, 27% had income between ‘31000 to 50000’, 52.5% had income between ‘51000 to 100000’, and 7.5% had income ‘Above 100000’. This suggests that most of the respondents had an annual income between ‘31000 to 50000’ GBP.

The frequency distribution analysis indicated that 61% of respondents were single, while 39% were married, as indicated in table 4.2. This means that most of the respondents were single. Based on frequency distribution, it was also found that the education level of the respondents was analyzed using four categories of education level, namely; diploma, graduate, master, and doctorate. The results depicted that 37% of the respondents were diploma holders, 46% were graduates, 16% had master-level education, while only 2% had a doctorate. This suggests that most of the respondents were either graduate or diploma holders.

Frequency Distribution of the Demographic Characteristics of the respondents (N=200)

Information of Participants | (N=200) |
---|---|

Gender | |

Age group | |

Annual income | |

Marital status | |

Education level |

## Multiple Regression Analysis

The hypotheses were tested using linear multiple regression analysis to determine which of the dependent variables had a significant positive effect on the customer loyalty of the five-star hotel brands. The results of the regression analysis are summarized in the following table 4.3. However, the complete SPSS output of the regression analysis is given in the appendix. Table 4.3

Multiple regression analysis showing the predictive values of dependent variables (Brand image, corporate identity, public relation, perceived quality, and trustworthiness) on customer loyalty (N=200)

Source | R | R2 | Adjusted R2 | β | Significance | t |
---|---|---|---|---|---|---|

Regression (ANOVA) | .948 | .899 | .897 | .000 | ||

Constant | -382 | .005 | -.2.866 | |||

Brand image | .074 | .046 | 2.012 | |||

Corporate identity | .020 | .482 | .704 | |||

Public relation | .014 | .400 | .843 | |||

Perceived quality | .991 | .000 | 21.850 | |||

Trustworthiness | -.010 | .652 | -.452 |

Predictors: (Constant), Trustworthiness, Public Relation, Brand Image, Corporate Identity, Perceived Quality Dependent Variable: Customer Loyalty

The significance value (p-value) of ANOVA was found to be (0.000) as shown in the above

table, which was less than 0.05. This suggested that the model equation was significantly fitted

on the data. Moreover, the adjusted R-Square value was (0.897), which indicated that the model’s predictors explained 89.7% variation in customer loyalty.

Furthermore, the presence of the significant effect of the 5 predicting variables on customer loyalty was identified based on their sig. Values. The effect of a predicting variable is significant if its sig. Value is less than 0.05 or if its t-Statistics value is greater than 2. It was found that the variable ‘brand image’ had sig. Value (0.046), the variable ‘corporate identity had sig. Value (0.482), the variable ‘public relation’ had sig. Value (0.400), while the variable ‘perceived quality’ had sig. value (0.000), and the variable ‘trustworthiness’ had sig. value (0.652).

## Hire an Expert Dissertation Chapter Writer

Orders completed by our expert writers are

- Formally drafted in an academic style
- Free Amendments and 100% Plagiarism Free – or your money back!
- 100% Confidential and Timely Delivery!
- Free anti-plagiarism report
- Appreciated by thousands of clients. Check client reviews

## Hypotheses Assessment

Based on the regression analysis, it was found that brand image and perceived quality have a significant positive effect on customer loyalty. In contrast, corporate identity, public relations, and trustworthiness have an insignificant effect on customer loyalty. Therefore the two hypotheses; H1 and H4 were accepted, however the three hypotheses; H2, H3, and H5 were rejected as indicated in table 4.4.

Hypothesis Assessment Summary Table (N=200)

Hypotheses | Sig. value | t-Statistics | Empirical conclusion |
---|---|---|---|

H1: Brand image has a significant positive effect on customer loyalty. | .046 | 2.012 | Accepted |

H2: Corporate identity has a significant positive effect on customer loyalty. | .482 | .704 | Rejected |

H3: Public relation has a significant positive effect on customer loyalty. | .400 | .843 | Rejected |

H4: Perceived quality has a significant positive effect on customer loyalty. | .000 | 21.850 | Accepted |

H5: Trustworthiness has a significant positive effect on customer loyalty. | .652 | -.452 | Rejected |

The insignificant variables (corporate identity, public relation and trustworthiness) were excluded from equation 1. After excluding the insignificant variables from the model equation 1, the final equation becomes as follows;

Customer loyalty = α + 0.074 (Brand image) + 0.991 (Perceived quality) + €

The above equation suggests that a 1 unit increase in brand image is likely to result in 0.074 units increase customer loyalty. In comparison, 1 unit increase in perceived quality can result in 0.991 units increase in customer loyalty.

## Cross Tabulation Analysis

To further explore the results, the demographic variables’ data were cross-tabulated against the respondents’ responses regarding customer loyalty using SPSS. In this regards the five demographic variables; gender, age group, annual income, marital status and education level were cross-tabulated against the five questions regarding customer loyalty to know the difference between the customer loyalty of five-star hotels of UK based on demographic differences. The results of the cross-tabulation analysis are given in the appendix. The results are graphically presented in bar charts too, which are also given in the appendix.

## Cross Tabulation of Gender against Customer Loyalty

The gender was cross-tabulated against question 1 to 5 of the questionnaire to identify the gender differences between male and female respondents’ responses regarding customer loyalty of five-star hotels of the UK. The results indicated that out of 100 males, 57% were extremely agreed that they stay at one hotel, while out of 100 females, 80% were extremely agreed they stay at one hotel. This shows that in comparison with a male, females were more agreed that they stayed at one hotel and were found to be more loyal towards their respective hotel brands.

The cross-tabulation results further indicated that out of 100 males, 53% agreed that they always say positive things about their respective hotel brand to other people. In contrast, out of 100 females, 77% were extremely agreed. Based on the results, the females were found to be in more agreement than males that they always say positive things about their respective hotel brand to other people.

It was further found that out of 100 males, 53% were extremely agreed that they recommend their hotel brand to others, however, out of 100 females, 74% were extremely agreed to this statement. This result also suggested that females were more in agreement than males to recommend their hotel brand to others.

Moreover, it was found that out of 100 males, 54% were extremely agreed that they don’t seek alternative hotel brands, while out of 100 females, 79% were extremely agreed to this statement. This result also suggested that females were more agreed than males that they don’t seek alternative hotel brands, and so were found to be more loyal than males.

Furthermore, it was identified that out of 100 male respondents 56% were extremely agreed that they would continue to go to the same hotel irrespective of the prices, however out of 100 females 79% were extremely agreed. Based on this result, it was clear that females were more agreed than males that they would continue to go to the same hotel irrespective of the prices, so females were found to be more loyal than males.

After cross tabulating ‘gender’ against the response of the 5 questions regarding customer loyalty the females were found to be more loyal customers of the five-star hotel brands than males as they were found to be more in agreement than the man that they stay at one hotel, always say positive things about their hotel brand to other people, recommend their hotel brand to others, don’t seek alternative hotel brands and would continue to go to the same hotel irrespective of the prices.

## Cross Tabulation of Age Group against Customer Loyalty

Afterward, the second demographic variable, ‘age groups’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify the difference between the customer loyalty of customers of different age groups. The results indicated that out of 78 respondents between 20 to 35 years of age, 61.5% were extremely agreed that they stayed at one hotel. While out of 113 respondents who were between 36 to 60 years of age, 72.6% were extremely agreed that they always stay at one hotel. However, out of 9 respondents who were above 60 years of age, 77.8% agreed that they always stay at one hotel. This indicated that customers of 36-60 and above 60 age groups were more loyal to their hotel brands as they were keener to stay at a respective hotel brand.

Content removed…

## Cross Tabulation of Annual Income against Customer Loyalty

The third demographic variable, ‘annual income’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify which of the customers were most loyal based on their respective annual income levels. The results indicated that out of 26 respondents who had annual income up to 30000 GBP, 84.6% were extremely agreed that they always stay at one hotel. However, out of 54 respondents who had annual income from 31000 to 50000 GBP, 98.1% agreed that they always stay at one hotel. Although out of 105 respondents had annual income from 50000 to 100000 GBP, 49.5% were extremely agreed that they always stay at one hotel. While out of 10 respondents who had annual income from 50000 to 1000000 GBP, 66.7% agreed that they always stay at one hotel. This indicated that customers of annual income levels from 31000 to 50000 GBP were more loyal to their hotel brands than the customers having other annual income levels.

## Cross Tabulation of Marital Status against Customer Loyalty

Furthermore, the fourth demographic variable the ‘marital status’ was cross-tabulated against questions 1 to 5 of the questionnaire to understand the difference between married and unmarried respondents regarding customer loyalty of five-star hotels of the UK. The cross-tabulation analysis results indicated that out of 122 single respondents, 59.8% were extremely agreed that they stay at one hotel. However, out of 78 married respondents, around 82% of respondents agreed that they stay at one hotel. Thus, the married customers were more loyal to their hotel brands than unmarried customers because, in comparison, married customers prefer to stay at one hotel brand.

To proceed with the cross-tabulation results, out of 122 single respondents, 55.7% were extremely agreed upon always saying positive things about their hotel brands to other people. On the other hand, out of 78 married respondents, 79.5% were extremely agreed. Hence, upon evaluating the results, it can be said that married customers have more customer loyalty as they are in more agreement than singles. They always give positive feedback regarding their respective hotel brand to other people.

## Cross Tabulation of Education Level against Customer Loyalty

Subsequently, the fifth demographic variable, ‘education level’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify which of the customers were most loyal based on their respective education levels. The results indicated that out of 50 respondents who were diploma holders, 67.6% were extremely agreed that they always stay at one hotel. While out of 64 respondents who were graduates, 69.6% were extremely agreed that they always stay at one hotel. Although out of 22 respondents who were masters, 68.8% were extremely agreed that they always stay at one hotel. However, out of 2 respondents with doctorates, 50% were extremely agreed to always stay at one hotel. This indicated that customers who were graduates were more loyal than the customers with diplomas, masters, or doctorates.

Moreover, 66.2% of the diploma holders were extremely agreed that they always say positive things about their hotel brand to other people. In comparison, 64.1% of the respondents who were graduates were extremely agreed. However, 65.5% of the respondents who had masters were extremely agreed, and 50% of the respondents who had doctorates agreed with the statement. Based on this result customers having masters were the most loyal customers of their respective five-star hotel brands.

## Need a Dissertation Chapter On a Similar Topic?

In this subsection, the findings of this study are compared and contrasted with the literature to identify which of the past research supports the present research findings. This present study based on regression analysis suggested that brand image can have a significant positive effect on the customer loyalty of five-star hotels in the UK. This finding was supported by the research of Heung et al. (1996), who also suggested that the hotel’s brand image can play a vital role in preserving a high ratio of customer loyalty.

Moreover, this present study also suggested that perceived quality was the second factor that was found to have a significant positive effect on customer loyalty. The perceived quality was evaluated based on; service quality, comfort, staff courtesy, customer satisfaction, and service quality expectations. In this regard, Tat and Raymond (2000) research supports the findings of this study. The staff service quality was found to affect customer loyalty and the level of satisfaction. Teas (1994) had also found service quality to affect customer loyalty. However, Teas also found that staff empathy (staff courtesy) towards customers can also affect customer loyalty. The research of Rowley and Dawes (1999) also supports the finding of this present study. The users’ expectations about the quality and nature of the services affect customer loyalty. A study by Oberoi and Hales (1990) was found to agree with the present study’s findings, as they had found the quality of staff service to affect customer loyalty.

## Summary of the Findings

- The brand image was found to have a significant positive effect on customer loyalty. Therefore customer loyalty is likely to increase with the increase in brand image.
- The corporate identity was found to have an insignificant effect on customer loyalty. Therefore customer loyalty is not likely to increase with the increase in corporate identity.
- Public relations was found to have an insignificant effect on customer loyalty. Therefore customer loyalty is not likely to increase with the increase in public relations.
- Perceived quality was found to have a significant positive effect on customer loyalty. Therefore customer loyalty is likely to increase with the increase in perceived quality.
- Trustworthiness was found to have an insignificant effect on customer loyalty. Therefore customer loyalty is not likely to increase with the increase in trustworthiness.
- The female customers were found to be more loyal customers of the five-star hotel brands than male customers.
- The customers of age from 36 to 60 years were more loyal to their hotel brands than the customers of age from 20 to 35 and above 60.
- The customers who had annual income from 31000 to 50000 were more loyal customers of their respective hotel brands than those who had an annual income level of less than 31000 or more than 50000.
- The married respondents had more customer loyalty than unmarried customers, towards five-star hotel brands of the UK.

The customers who had bachelor degrees and the customers who had master degrees were more loyal to the customers who had a diploma or doctorate.

Bryman, A., Bell, E., 2015. Business Research Methods. Oxford University Press.

Daum, P., 2013. International Synergy Management: A Strategic Approach for Raising Efficiencies in the Cross-border Interaction Process. Anchor Academic Publishing (aap_verlag).

Dümke, R., 2002. Corporate Reputation and its Importance for Business Success: A European

Perspective and its Implication for Public Relations Consultancies. diplom.de.

Guetterman, T.C., 2015. Descriptions of Sampling Practices Within Five Approaches to Qualitative Research in Education and the Health Sciences. Forum Qualitative Sozialforschung /

Forum: Qualitative Social Research 16.

Haq, M., 2014. A Comparative Analysis of Qualitative and Quantitative Research Methods and a Justification for Adopting Mixed Methods in Social Research (PDF Download Available).

ResearchGate 1–22. doi:http://dx.doi.org/10.13140/RG.2.1.1945.8640

Kelley, ., Clark, B., Brown, V., Sitzia, J., 2003. Good practice in the conduct and reporting of survey research. Int J Qual Health Care 15, 261–266. doi:10.1093/intqhc/mzg031

Lewis, S., 2015. Qualitative Inquiry and Research Design: Choosing Among Five Approaches.

Health Promotion Practice 16, 473–475. doi:10.1177/1524839915580941

Saunders, M., 2003. Research Methods for Business Students. Pearson Education India.

Saunders, M.N.K., Tosey, P., 2015. Handbook of Research Methods on Human Resource

Development. Edward Elgar Publishing.

## DMCA / Removal Request

If you are the original writer of this Dissertation Chapter and no longer wish to have it published on the www.ResearchProspect.com then please:

Request The Removal Of This Dissertation Chapter

## Frequently Asked Questions

How to write the results chapter of a dissertation.

To write the Results chapter of a dissertation:

- Present findings objectively.
- Use tables, graphs, or charts for clarity.
- Refer to research questions/hypotheses.
- Provide sufficient details.
- Avoid interpretation; save that for the Discussion chapter.

USEFUL LINKS

LEARNING RESOURCES

COMPANY DETAILS

- How It Works

## IMAGES

## COMMENTS

The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.

How to Write a Results Section | Tips & Examples. Published on August 30, 2022 by Tegan George. Revised on July 18, 2023. A results section is where you report the main findings of the data collection and analysis you conducted for your thesis or dissertation. You should report all relevant results concisely and objectively, in a logical order.

And place questionnaires, copies of focus groups and interviews, and data sheets in the appendix. On the other hand, one must put the statistical analysis and sayings quoted by interviewees within the dissertation. 8. Thoroughness of Data. It is a common misconception that the data presented is self-explanatory.

The analysis and interpretation of data is carried out in two phases. The. first part, which is based on the results of the questionnaire, deals with a quantitative. analysis of data. The second, which is based on the results of the interview and focus group. discussions, is a qualitative interpretation.

This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

For example, if you're writing a paper on the differences between corporate charitable donation strategies, your thesis statement might read something like this: It is not known what the differences in charitable donation strategies are in four U.S. corporations. ... Applying Quantitative Data Analysis to Your Thesis Statement. It's ...

Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarize your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

A. Planning. The first step in any dissertation is planning. You must decide what you want to write about and how you want to structure your argument. This planning will involve deciding what data you want to analyze and what methods you will use for a data analysis dissertation. B. Prototyping.

An understanding of the data analysis that you will carry out on your data can also be an expected component of the Research Strategy chapter of your dissertation write-up (i.e., usually Chapter Three: Research Strategy). Therefore, it is a good time to think about the data analysis process if you plan to start writing up this chapter at this ...

Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.Suddenly we're all wishing we'd paid a little more attention in math class…. The good news is that while quantitative data analysis is a mammoth topic ...

The first step in dissertation data analysis is to carefully prepare and clean the collected data. This may involve removing any irrelevant or incomplete information, addressing missing data, and ensuring data integrity. Once the data is ready, various statistical and analytical techniques can be applied to extract meaningful information.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

Data Analysis. Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.

Score 94% Score 94%. 4.4 Writing the Data Analysis Chapter (s): Results and Evidence. Unlike the introduction, literature review and methodology chapter (s), your results chapter (s) will need to be written for the first time as you draft your thesis even if you submitted a proposal, though this part of your thesis will certainly build upon the ...

4.1 INTRODUCTION. This chapter describes the analysis of data followed by a discussion of the research findings. The findings relate to the research questions that guided the study. Data were analyzed to identify, describe and explore the relationship between death anxiety and death attitudes of nurses in a private acute care hospital and to ...

4.1 INTRODUCTION. In this chapter, I describe the qualitative analysis of the data, including the practical steps involved in the analysis. A quantitative analysis of the data follows in Chapter 5. In the qualitative phase, I analyzed the data into generative themes, which will be described individually. I describe how the themes overlap.

interpretation of qualitative data collected for this thesis. 6.2.1 Analysis of qualitative data Qualitative data analysis can be described as the process of making sense from research participants‟ views and opinions of situations, corresponding patterns, themes, categories and ... data analysis well, when he provides the following ...

A Data Analysis Plan (DAP) is about putting thoughts into a plan of action. Research questions are often framed broadly and need to be clarified and funnelled down into testable hypotheses and action steps. The DAP provides an opportunity for input from collaborators and provides a platform for training. Having a clear plan of action is also ...

Data analysis methods in the absence of primary data collection can involve discussing common patterns, as well as, controversies within secondary data directly related to the research area. My e-book, The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step assistance offers practical assistance to complete a ...

4.1 INTRODUCTION. This chapter presents the data and a discussion of the findings. A quantitative, descriptive survey design was used to collect data from subjects. Two questionnaires, one for diabetic patients and the other for family members of diabetic patients, were administered to subjects by the researcher personally.

In a typical dissertation, you will present your findings (the data) in the Results section. You will explain how you obtained the data in the Methodology chapter. The data analysis section should be reserved just for discussing your findings. This means you should refrain from introducing any new data in there.

An example of quantitative data analysis is an online jewelry store owner using inventory data to forecast and improve reordering accuracy. The owner looks at their sales from the past six months and sees that, on average, they sold 210 gold pieces and 105 silver pieces per month, but they only had 100 gold pieces and 100 silver pieces in stock

Moreover, the frequency distribution analysis suggested three age groups; '20-35', '36-60' and 'Above 60'. 39% of the respondents belonged to the '20-35' age group, while 56.5% of the respondents belonged to the '36-60' age group and the remaining 4.5% belonged to the age group of 'Above 60'. Furthermore, the annual ...

Examples of qualitative data include the color of an object or someone's opinion. You collect qualitative data using various methods, including focus groups and interviews. ... Data analysis is relevant across industries, which makes it applicable to a diverse range of careers. You can find several different roles where data analysis is a ...