conclusion
The insignificant variables (corporate identity, public relation and trustworthiness) were excluded from equation 1. After excluding the insignificant variables from the model equation 1, the final equation becomes as follows;
Customer loyalty = α + 0.074 (Brand image) + 0.991 (Perceived quality) + €
The above equation suggests that a 1 unit increase in brand image is likely to result in 0.074 units increase customer loyalty. In comparison, 1 unit increase in perceived quality can result in 0.991 units increase in customer loyalty.
To further explore the results, the demographic variables’ data were cross-tabulated against the respondents’ responses regarding customer loyalty using SPSS. In this regards the five demographic variables; gender, age group, annual income, marital status and education level were cross-tabulated against the five questions regarding customer loyalty to know the difference between the customer loyalty of five-star hotels of UK based on demographic differences. The results of the cross-tabulation analysis are given in the appendix. The results are graphically presented in bar charts too, which are also given in the appendix.
The gender was cross-tabulated against question 1 to 5 of the questionnaire to identify the gender differences between male and female respondents’ responses regarding customer loyalty of five-star hotels of the UK. The results indicated that out of 100 males, 57% were extremely agreed that they stay at one hotel, while out of 100 females, 80% were extremely agreed they stay at one hotel. This shows that in comparison with a male, females were more agreed that they stayed at one hotel and were found to be more loyal towards their respective hotel brands.
The cross-tabulation results further indicated that out of 100 males, 53% agreed that they always say positive things about their respective hotel brand to other people. In contrast, out of 100 females, 77% were extremely agreed. Based on the results, the females were found to be in more agreement than males that they always say positive things about their respective hotel brand to other people.
It was further found that out of 100 males, 53% were extremely agreed that they recommend their hotel brand to others, however, out of 100 females, 74% were extremely agreed to this statement. This result also suggested that females were more in agreement than males to recommend their hotel brand to others.
Moreover, it was found that out of 100 males, 54% were extremely agreed that they don’t seek alternative hotel brands, while out of 100 females, 79% were extremely agreed to this statement. This result also suggested that females were more agreed than males that they don’t seek alternative hotel brands, and so were found to be more loyal than males.
Furthermore, it was identified that out of 100 male respondents 56% were extremely agreed that they would continue to go to the same hotel irrespective of the prices, however out of 100 females 79% were extremely agreed. Based on this result, it was clear that females were more agreed than males that they would continue to go to the same hotel irrespective of the prices, so females were found to be more loyal than males.
After cross tabulating ‘gender’ against the response of the 5 questions regarding customer loyalty the females were found to be more loyal customers of the five-star hotel brands than males as they were found to be more in agreement than the man that they stay at one hotel, always say positive things about their hotel brand to other people, recommend their hotel brand to others, don’t seek alternative hotel brands and would continue to go to the same hotel irrespective of the prices.
Afterward, the second demographic variable, ‘age groups’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify the difference between the customer loyalty of customers of different age groups. The results indicated that out of 78 respondents between 20 to 35 years of age, 61.5% were extremely agreed that they stayed at one hotel. While out of 113 respondents who were between 36 to 60 years of age, 72.6% were extremely agreed that they always stay at one hotel. However, out of 9 respondents who were above 60 years of age, 77.8% agreed that they always stay at one hotel. This indicated that customers of 36-60 and above 60 age groups were more loyal to their hotel brands as they were keener to stay at a respective hotel brand.
Content removed…
The third demographic variable, ‘annual income’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify which of the customers were most loyal based on their respective annual income levels. The results indicated that out of 26 respondents who had annual income up to 30000 GBP, 84.6% were extremely agreed that they always stay at one hotel. However, out of 54 respondents who had annual income from 31000 to 50000 GBP, 98.1% agreed that they always stay at one hotel. Although out of 105 respondents had annual income from 50000 to 100000 GBP, 49.5% were extremely agreed that they always stay at one hotel. While out of 10 respondents who had annual income from 50000 to 1000000 GBP, 66.7% agreed that they always stay at one hotel. This indicated that customers of annual income levels from 31000 to 50000 GBP were more loyal to their hotel brands than the customers having other annual income levels.
Furthermore, the fourth demographic variable the ‘marital status’ was cross-tabulated against questions 1 to 5 of the questionnaire to understand the difference between married and unmarried respondents regarding customer loyalty of five-star hotels of the UK. The cross-tabulation analysis results indicated that out of 122 single respondents, 59.8% were extremely agreed that they stay at one hotel. However, out of 78 married respondents, around 82% of respondents agreed that they stay at one hotel. Thus, the married customers were more loyal to their hotel brands than unmarried customers because, in comparison, married customers prefer to stay at one hotel brand.
To proceed with the cross-tabulation results, out of 122 single respondents, 55.7% were extremely agreed upon always saying positive things about their hotel brands to other people. On the other hand, out of 78 married respondents, 79.5% were extremely agreed. Hence, upon evaluating the results, it can be said that married customers have more customer loyalty as they are in more agreement than singles. They always give positive feedback regarding their respective hotel brand to other people.
Subsequently, the fifth demographic variable, ‘education level’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify which of the customers were most loyal based on their respective education levels. The results indicated that out of 50 respondents who were diploma holders, 67.6% were extremely agreed that they always stay at one hotel. While out of 64 respondents who were graduates, 69.6% were extremely agreed that they always stay at one hotel. Although out of 22 respondents who were masters, 68.8% were extremely agreed that they always stay at one hotel. However, out of 2 respondents with doctorates, 50% were extremely agreed to always stay at one hotel. This indicated that customers who were graduates were more loyal than the customers with diplomas, masters, or doctorates.
Moreover, 66.2% of the diploma holders were extremely agreed that they always say positive things about their hotel brand to other people. In comparison, 64.1% of the respondents who were graduates were extremely agreed. However, 65.5% of the respondents who had masters were extremely agreed, and 50% of the respondents who had doctorates agreed with the statement. Based on this result customers having masters were the most loyal customers of their respective five-star hotel brands.
In this subsection, the findings of this study are compared and contrasted with the literature to identify which of the past research supports the present research findings. This present study based on regression analysis suggested that brand image can have a significant positive effect on the customer loyalty of five-star hotels in the UK. This finding was supported by the research of Heung et al. (1996), who also suggested that the hotel’s brand image can play a vital role in preserving a high ratio of customer loyalty.
Moreover, this present study also suggested that perceived quality was the second factor that was found to have a significant positive effect on customer loyalty. The perceived quality was evaluated based on; service quality, comfort, staff courtesy, customer satisfaction, and service quality expectations. In this regard, Tat and Raymond (2000) research supports the findings of this study. The staff service quality was found to affect customer loyalty and the level of satisfaction. Teas (1994) had also found service quality to affect customer loyalty. However, Teas also found that staff empathy (staff courtesy) towards customers can also affect customer loyalty. The research of Rowley and Dawes (1999) also supports the finding of this present study. The users’ expectations about the quality and nature of the services affect customer loyalty. A study by Oberoi and Hales (1990) was found to agree with the present study’s findings, as they had found the quality of staff service to affect customer loyalty.
The customers who had bachelor degrees and the customers who had master degrees were more loyal to the customers who had a diploma or doctorate.
Bryman, A., Bell, E., 2015. Business Research Methods. Oxford University Press.
Daum, P., 2013. International Synergy Management: A Strategic Approach for Raising Efficiencies in the Cross-border Interaction Process. Anchor Academic Publishing (aap_verlag).
Dümke, R., 2002. Corporate Reputation and its Importance for Business Success: A European
Perspective and its Implication for Public Relations Consultancies. diplom.de.
Guetterman, T.C., 2015. Descriptions of Sampling Practices Within Five Approaches to Qualitative Research in Education and the Health Sciences. Forum Qualitative Sozialforschung /
Forum: Qualitative Social Research 16.
Haq, M., 2014. A Comparative Analysis of Qualitative and Quantitative Research Methods and a Justification for Adopting Mixed Methods in Social Research (PDF Download Available).
ResearchGate 1–22. doi:http://dx.doi.org/10.13140/RG.2.1.1945.8640
Kelley, ., Clark, B., Brown, V., Sitzia, J., 2003. Good practice in the conduct and reporting of survey research. Int J Qual Health Care 15, 261–266. doi:10.1093/intqhc/mzg031
Lewis, S., 2015. Qualitative Inquiry and Research Design: Choosing Among Five Approaches.
Health Promotion Practice 16, 473–475. doi:10.1177/1524839915580941
Saunders, M., 2003. Research Methods for Business Students. Pearson Education India.
Saunders, M.N.K., Tosey, P., 2015. Handbook of Research Methods on Human Resource
Development. Edward Elgar Publishing.
If you are the original writer of this Dissertation Chapter and no longer wish to have it published on the www.ResearchProspect.com then please:
Request The Removal Of This Dissertation Chapter
How to write the results chapter of a dissertation.
To write the Results chapter of a dissertation:
USEFUL LINKS
LEARNING RESOURCES
COMPANY DETAILS
IMAGES
COMMENTS
The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.
How to Write a Results Section | Tips & Examples. Published on August 30, 2022 by Tegan George. Revised on July 18, 2023. A results section is where you report the main findings of the data collection and analysis you conducted for your thesis or dissertation. You should report all relevant results concisely and objectively, in a logical order.
And place questionnaires, copies of focus groups and interviews, and data sheets in the appendix. On the other hand, one must put the statistical analysis and sayings quoted by interviewees within the dissertation. 8. Thoroughness of Data. It is a common misconception that the data presented is self-explanatory.
The analysis and interpretation of data is carried out in two phases. The. first part, which is based on the results of the questionnaire, deals with a quantitative. analysis of data. The second, which is based on the results of the interview and focus group. discussions, is a qualitative interpretation.
This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.
For example, if you're writing a paper on the differences between corporate charitable donation strategies, your thesis statement might read something like this: It is not known what the differences in charitable donation strategies are in four U.S. corporations. ... Applying Quantitative Data Analysis to Your Thesis Statement. It's ...
Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarize your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.
A. Planning. The first step in any dissertation is planning. You must decide what you want to write about and how you want to structure your argument. This planning will involve deciding what data you want to analyze and what methods you will use for a data analysis dissertation. B. Prototyping.
An understanding of the data analysis that you will carry out on your data can also be an expected component of the Research Strategy chapter of your dissertation write-up (i.e., usually Chapter Three: Research Strategy). Therefore, it is a good time to think about the data analysis process if you plan to start writing up this chapter at this ...
Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.Suddenly we're all wishing we'd paid a little more attention in math class…. The good news is that while quantitative data analysis is a mammoth topic ...
The first step in dissertation data analysis is to carefully prepare and clean the collected data. This may involve removing any irrelevant or incomplete information, addressing missing data, and ensuring data integrity. Once the data is ready, various statistical and analytical techniques can be applied to extract meaningful information.
Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...
Data Analysis. Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.
Score 94% Score 94%. 4.4 Writing the Data Analysis Chapter (s): Results and Evidence. Unlike the introduction, literature review and methodology chapter (s), your results chapter (s) will need to be written for the first time as you draft your thesis even if you submitted a proposal, though this part of your thesis will certainly build upon the ...
4.1 INTRODUCTION. This chapter describes the analysis of data followed by a discussion of the research findings. The findings relate to the research questions that guided the study. Data were analyzed to identify, describe and explore the relationship between death anxiety and death attitudes of nurses in a private acute care hospital and to ...
4.1 INTRODUCTION. In this chapter, I describe the qualitative analysis of the data, including the practical steps involved in the analysis. A quantitative analysis of the data follows in Chapter 5. In the qualitative phase, I analyzed the data into generative themes, which will be described individually. I describe how the themes overlap.
interpretation of qualitative data collected for this thesis. 6.2.1 Analysis of qualitative data Qualitative data analysis can be described as the process of making sense from research participants‟ views and opinions of situations, corresponding patterns, themes, categories and ... data analysis well, when he provides the following ...
A Data Analysis Plan (DAP) is about putting thoughts into a plan of action. Research questions are often framed broadly and need to be clarified and funnelled down into testable hypotheses and action steps. The DAP provides an opportunity for input from collaborators and provides a platform for training. Having a clear plan of action is also ...
Data analysis methods in the absence of primary data collection can involve discussing common patterns, as well as, controversies within secondary data directly related to the research area. My e-book, The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step assistance offers practical assistance to complete a ...
4.1 INTRODUCTION. This chapter presents the data and a discussion of the findings. A quantitative, descriptive survey design was used to collect data from subjects. Two questionnaires, one for diabetic patients and the other for family members of diabetic patients, were administered to subjects by the researcher personally.
In a typical dissertation, you will present your findings (the data) in the Results section. You will explain how you obtained the data in the Methodology chapter. The data analysis section should be reserved just for discussing your findings. This means you should refrain from introducing any new data in there.
An example of quantitative data analysis is an online jewelry store owner using inventory data to forecast and improve reordering accuracy. The owner looks at their sales from the past six months and sees that, on average, they sold 210 gold pieces and 105 silver pieces per month, but they only had 100 gold pieces and 100 silver pieces in stock
Moreover, the frequency distribution analysis suggested three age groups; '20-35', '36-60' and 'Above 60'. 39% of the respondents belonged to the '20-35' age group, while 56.5% of the respondents belonged to the '36-60' age group and the remaining 4.5% belonged to the age group of 'Above 60'. Furthermore, the annual ...
Examples of qualitative data include the color of an object or someone's opinion. You collect qualitative data using various methods, including focus groups and interviews. ... Data analysis is relevant across industries, which makes it applicable to a diverse range of careers. You can find several different roles where data analysis is a ...