A free, AI-powered research tool for scientific literature

  • Elizabeth Loftus
  • Sigma Bonds
  • Means of Production

New & Improved API for Developers

Introducing semantic reader in beta.

Stay Connected With Semantic Scholar Sign Up What Is Semantic Scholar? Semantic Scholar is a free, AI-powered research tool for scientific literature, based at the Allen Institute for AI.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • J Med Libr Assoc
  • v.106(4); 2018 Oct

A systematic approach to searching: an efficient and complete method to develop literature searches

Associated data.

Creating search strategies for systematic reviews, finding the best balance between sensitivity and specificity, and translating search strategies between databases is challenging. Several methods describe standards for systematic search strategies, but a consistent approach for creating an exhaustive search strategy has not yet been fully described in enough detail to be fully replicable. The authors have established a method that describes step by step the process of developing a systematic search strategy as needed in the systematic review. This method describes how single-line search strategies can be prepared in a text document by typing search syntax (such as field codes, parentheses, and Boolean operators) before copying and pasting search terms (keywords and free-text synonyms) that are found in the thesaurus. To help ensure term completeness, we developed a novel optimization technique that is mainly based on comparing the results retrieved by thesaurus terms with those retrieved by the free-text search words to identify potentially relevant candidate search terms. Macros in Microsoft Word have been developed to convert syntaxes between databases and interfaces almost automatically. This method helps information specialists in developing librarian-mediated searches for systematic reviews as well as medical and health care practitioners who are searching for evidence to answer clinical questions. The described method can be used to create complex and comprehensive search strategies for different databases and interfaces, such as those that are needed when searching for relevant references for systematic reviews, and will assist both information specialists and practitioners when they are searching the biomedical literature.

INTRODUCTION

Librarians and information specialists are often involved in the process of preparing and completing systematic reviews (SRs), where one of their main tasks is to identify relevant references to include in the review [ 1 ]. Although several recommendations for the process of searching have been published [ 2 – 6 ], none describe the development of a systematic search strategy from start to finish.

Traditional methods of SR search strategy development and execution are highly time consuming, reportedly requiring up to 100 hours or more [ 7 , 8 ]. The authors wanted to develop systematic and exhaustive search strategies more efficiently, while preserving the high sensitivity that SR search strategies necessitate. In this article, we describe the method developed at Erasmus University Medical Center (MC) and demonstrate its use through an example search. The efficiency of the search method and outcome of 73 searches that have resulted in published reviews are described in a separate article [ 9 ].

As we aimed to describe the creation of systematic searches in full detail, the method starts at a basic level with the analysis of the research question and the creation of search terms. Readers who are new to SR searching are advised to follow all steps described. More experienced searchers can consider the basic steps to be existing knowledge that will already be part of their normal workflow, although step 4 probably differs from general practice. Experienced searchers will gain the most from reading about the novelties in the method as described in steps 10–13 and comparing the examples given in the supplementary appendix to their own practice.

CREATING A SYSTEMATIC SEARCH STRATEGY

Our methodology for planning and creating a multi-database search strategy consists of the following steps:

  • Determine a clear and focused question
  • Describe the articles that can answer the question
  • Decide which key concepts address the different elements of the question
  • Decide which elements should be used for the best results
  • Choose an appropriate database and interface to start with
  • Document the search process in a text document
  • Identify appropriate index terms in the thesaurus of the first database
  • Identify synonyms in the thesaurus
  • Add variations in search terms
  • Use database-appropriate syntax, with parentheses, Boolean operators, and field codes
  • Optimize the search
  • Evaluate the initial results
  • Check for errors
  • Translate to other databases
  • Test and reiterate

Each step in the process is reflected by an example search described in the supplementary appendix .

1. Determine a clear and focused question

A systematic search can best be applied to a well-defined and precise research or clinical question. Questions that are too broad or too vague cannot be answered easily in a systematic way and will generally result in an overwhelming number of search results. On the other hand, a question that is too specific will result into too few or even zero search results. Various papers describe this process in more detail [ 10 – 12 ].

2. Describe the articles that can answer the question

Although not all clinical or research questions can be answered in the literature, the next step is to presume that the answer can indeed be found in published studies. A good starting point for a search is hypothesizing what the research that can answer the question would look like. These hypothetical (when possible, combined with known) articles can be used as guidance for constructing the search strategy.

3. Decide which key concepts address the different elements of the question

Key concepts are the topics or components that the desired articles should address, such as diseases or conditions, actions, substances, settings, domains (e.g., therapy, diagnosis, etiology), or study types. Key concepts from the research question can be grouped to create elements in the search strategy.

Elements in a search strategy do not necessarily follow the patient, intervention, comparison, outcome (PICO) structure or any other related structure. Using the PICO or another similar framework as guidance can be helpful to consider, especially in the inclusion and exclusion review stage of the SR, but this is not necessary for good search strategy development [ 13 – 15 ]. Sometimes concepts from different parts of the PICO structure can be grouped together into one search element, such as when the desired outcome is frequently described in a certain study type.

4. Decide which elements should be used for the best results

Not all elements of a research question should necessarily be used in the search strategy. Some elements are less important than others or may unnecessarily complicate or restrict a search strategy. Adding an element to a search strategy increases the chance of missing relevant references. Therefore, the number of elements in a search strategy should remain as low as possible to optimize recall.

Using the schema in Figure 1 , elements can be ordered by their specificity and importance to determine the best search approach. Whether an element is more specific or more general can be measured objectively by the number of hits retrieved in a database when searching for a key term representing that element. Depending on the research question, certain elements are more important than others. If articles (hypothetically or known) exist that can answer the question but lack a certain element in their titles, abstracts, or keywords, that element is unimportant to the question. An element can also be unimportant because of expected bias or an overlap with another element.

An external file that holds a picture, illustration, etc.
Object name is jmla-106-531-f001.jpg

Schema for determining the optimal order of elements

Bias in elements

The choice of elements in a search strategy can introduce bias through use of overly specific terminology or terms often associated with positive outcomes. For the question “does prolonged breastfeeding improve intelligence outcomes in children?,” searching specifically for the element of duration will introduce bias, as articles that find a positive effect of prolonged breastfeeding will be much more likely to mention time factors in their titles or abstracts.

Overlapping elements

Elements in a question sometimes overlap in their meaning. Sometimes certain therapies are interventions for one specific disease. The Lichtenstein technique, for example, is a repair method for inguinal hernias. There is no need to include an element of “inguinal hernias” to a search for the effectiveness of the Lichtenstein therapy. Likewise, sometimes certain diseases are only found in certain populations. Adding such an overlapping element could lead to missing relevant references.

The elements to use in a search strategy can be found in the plot of elements in Figure 1 , by following the top row from left to right. For this method, we recommend starting with the most important and specific elements. Then, continue with more general and important elements until the number of results is acceptable for screening. Determining how many results are acceptable for screening is often a matter of negotiation with the SR team.

5. Choose an appropriate database and interface to start with

Important factors for choosing databases to use are the coverage and the presence of a thesaurus. For medically oriented searches, the coverage and recall of Embase, which includes the MEDLINE database, are superior to those of MEDLINE [ 16 ]. Each of these two databases has its own thesaurus with its own unique definitions and structure. Because of the complexity of the Embase thesaurus, Emtree, which contains much more specific thesaurus terms than the MEDLINE Medical Subject Headings (MeSH) thesaurus, translation from Emtree to MeSH is easier than the other way around. Therefore, we recommend starting in Embase.

MEDLINE and Embase are available through many different vendors and interfaces. The choice of an interface and primary database is often determined by the searcher’s accessibility. For our method, an interface that allows searching with proximity operators is desirable, and full functionality of the thesaurus, including explosion of narrower terms, is crucial. We recommend developing a personal workflow that always starts with one specific database and interface.

6. Document the search process in a text document

We advise designing and creating the complete search strategies in a log document, instead of directly in the database itself, to register the steps taken and to make searches accountable and reproducible. The developed search strategies can be copied and pasted into the desired databases from the log document. This way, the searcher is in control of the whole process. Any change to the search strategy should be done in the log document, assuring that the search strategy in the log is always the most recent.

7. Identify appropriate index terms in the thesaurus of the first database

Searches should start by identifying appropriate thesaurus terms for the desired elements. The thesaurus of the database is searched for matching index terms for each key concept. We advise restricting the initial terms to the most important and most relevant terms. Later in the process, more general terms can be added in the optimization process, in which the effect on the number of hits, and thus the desirability of adding these terms, can be evaluated more easily.

Several factors can complicate the identification of thesaurus terms. Sometimes, one thesaurus term is found that exactly describes a specific element. In contrast, especially in more general elements, multiple thesaurus terms can be found to describe one element. If no relevant thesaurus terms have been found for an element, free-text terms can be used, and possible thesaurus terms found in the resulting references can be added later (step 11).

Sometimes, no distinct thesaurus term is available for a specific key concept that describes the concept in enough detail. In Emtree, one thesaurus term often combines two or more elements. The easiest solution for combining these terms for a sensitive search is to use such a thesaurus term in all elements where it is relevant. Examples are given in the supplementary appendix .

8. Identify synonyms in the thesaurus

Most thesauri offer a list of synonyms on their term details page (named Synonyms in Emtree and Entry Terms in MeSH). To create a sensitive search strategy for SRs, these terms need to be searched as free-text keywords in the title and abstract fields, in addition to searching their associated thesaurus terms.

The Emtree thesaurus contains more synonyms (300,000) than MeSH does (220,000) [ 17 ]. The difference in number of terms is even higher considering that many synonyms in MeSH are permuted terms (i.e., inversions of phrases using commas).

Thesaurus terms are ordered in a tree structure. When searching for a more general thesaurus term, the more specific (narrower) terms in the branches below that term will also be searched (this is frequently referred to as “exploding” a thesaurus term). However, to perform a sensitive search, all relevant variations of the narrower terms must be searched as free-text keywords in the title or abstract, in addition to relying on the exploded thesaurus term. Thus, all articles that describe a certain narrower topic in their titles and abstracts will already be retrieved before MeSH terms are added.

9. Add variations in search terms (e.g., truncation, spelling differences, abbreviations, opposites)

Truncation allows a searcher to search for words beginning with the same word stem. A search for therap* will, thus, retrieve therapy, therapies, therapeutic, and all other words starting with “therap.” Do not truncate a word stem that is too short. Also, limitations of interfaces should be taken into account, especially in PubMed, where the number of search term variations that can be found by truncation is limited to 600.

Databases contain references to articles using both standard British and American English spellings. Both need to be searched as free-text terms in the title and abstract. Alternatively, many interfaces offer a certain code to replace zero or one characters, allowing a search for “pediatric” or “paediatric” as “p?ediatric.” Table 1 provides a detailed description of the syntax for different interfaces.

Field codes in five most used interfaces for biomedical literature searching

Searching for abbreviations can identify extra, relevant references and retrieve more irrelevant ones. The search can be more focused by combining the abbreviation with an important word that is relevant to its meaning or by using the Boolean “NOT” to exclude frequently observed, clearly irrelevant results. We advise that searchers do not exclude all possible irrelevant meanings, as it is very time consuming to identify all the variations, it will result in unnecessarily complicated search strategies, and it may lead to erroneously narrowing the search and, thereby, reduce recall.

Searching partial abbreviations can be useful for retrieving relevant references. For example, it is very likely that an article would mention osteoarthritis (OA) early in the abstract, replacing all further occurrences of osteoarthritis with OA . Therefore, it may not contain the phrase “hip osteoarthritis” but only “hip oa.”

It is also important to search for the opposites of search terms to avoid bias. When searching for “disease recurrence,” articles about “disease free” may be relevant as well. When the desired outcome is survival , articles about mortality may be relevant.

10. Use database-appropriate syntax, with parentheses, Boolean operators, and field codes

Different interfaces require different syntaxes, the special set of rules and symbols unique to each database that define how a correctly constructed search operates. Common syntax components include the use of parentheses and Boolean operators such as “AND,” “OR,” and “NOT,” which are available in all major interfaces. An overview of different syntaxes for four major interfaces for bibliographic medical databases (PubMed, Ovid, EBSCOhost, Embase.com, and ProQuest) is shown in Table 1 .

Creating the appropriate syntax for each database, in combination with the selected terms as described in steps 7–9, can be challenging. Following the method outlined below simplifies the process:

  • Create single-line queries in a text document (not combining multiple record sets), which allows immediate checking of the relevance of retrieved references and efficient optimization.
  • Type the syntax (Boolean operators, parentheses, and field codes) before adding terms, which reduces the chance that errors are made in the syntax, especially in the number of parentheses.
  • Use predefined proximity structures including parentheses, such as (() ADJ3 ()) in Ovid, that can be reused in the query when necessary.
  • Use thesaurus terms separately from free-text terms of each element. Start an element with all thesaurus terms (using “OR”) and follow with the free-text terms. This allows the unique optimization methods as described in step 11.
  • When adding terms to an existing search strategy, pay close attention to the position of the cursor. Make sure to place it appropriately either in the thesaurus terms section, in the title/abstract section, or as an addition (broadening) to an existing proximity search.

The supplementary appendix explains the method of building a query in more detail, step by step for different interfaces: PubMed, Ovid, EBSCOhost, Embase.com, and ProQuest. This method results in a basic search strategy designed to retrieve some relevant references upon which a more thorough search strategy can be built with optimization such as described in step 11.

11. Optimize the search

The most important question when performing a systematic search is whether all (or most) potentially relevant articles have been retrieved by the search strategy. This is also the most difficult question to answer, since it is unknown which and how many articles are relevant. It is, therefore, wise first to broaden the initial search strategy, making the search more sensitive, and then check if new relevant articles are found by comparing the set results (i.e., search for Strategy #2 NOT Strategy #1 to see the unique results).

A search strategy should be tested for completeness. Therefore, it is necessary to identify extra, possibly relevant search terms and add them to the test search in an OR relationship with the already used search terms. A good place to start, and a well-known strategy, is scanning the top retrieved articles when sorted by relevance, looking for additional relevant synonyms that could be added to the search strategy.

We have developed a unique optimization method that has not been described before in the literature. This method often adds valuable extra terms to our search strategy and, therefore, extra, relevant references to our search results. Extra synonyms can be found in articles that have been assigned a certain set of thesaurus terms but that lack synonyms in the title and/or abstract that are already present in the current search strategy. Searching for thesaurus terms NOT free-text terms will help identify missed free-text terms in the title or abstract. Searching for free-text terms NOT thesaurus terms will help identify missed thesaurus terms. If this is done repeatedly for each element, leaving the rest of the query unchanged, this method will help add numerous relevant terms to the query. These steps are explained in detail for five different search platforms in the supplementary appendix .

12. Evaluate the initial results

The results should now contain relevant references. If the interface allows relevance ranking, use that in the evaluation. If you know some relevant references that should be included in the research, search for those references specifically; for example, combine a specific (first) author name with a page number and the publication year. Check whether those references are retrieved by the search. If the known relevant references are not retrieved by the search, adapt the search so that they are. If it is unclear which element should be adapted to retrieve a certain article, combine that article with each element separately.

Different outcomes are desired for different types of research questions. For instance, in the case of clinical question answering, the researcher will not be satisfied with many references that contain a lot of irrelevant references. A clinical search should be rather specific and is allowed to miss a relevant reference. In the case of an SR, the researchers do not want to miss any relevant reference and are willing to handle many irrelevant references to do so. The search for references to include in an SR should be very sensitive: no included reference should be missed. A search that is too specific or too sensitive for the intended goal can be adapted to become more sensitive or specific. Steps to increase sensitivity or specificity of a search strategy can be found in the supplementary appendix .

13. Check for errors

Errors might not be easily detected. Sometimes clues can be found in the number of results, either when the number of results is much higher or lower than expected or when many retrieved references are not relevant. However, the number expected is often unknown, and very sensitive search strategies will always retrieve many irrelevant articles. Each query should, therefore, be checked for errors.

One of the most frequently occurring errors is missing the Boolean operator “OR.” When no “OR” is added between two search terms, many interfaces automatically add an “AND,” which unintentionally reduces the number of results and likely misses relevant references. One good strategy to identify missing “OR”s is to go to the web page containing the full search strategy, as translated by the database, and using Ctrl-F search for “AND.” Check whether the occurrences of the “AND” operator are deliberate.

Ideally, search strategies should be checked by other information specialists [ 18 ]. The Peer Review of Electronic Search Strategies (PRESS) checklist offers good guidance for this process [ 4 ]. Apart from the syntax (especially Boolean operators and field codes) of the search strategy, it is wise to have the search terms checked by the clinician or researcher familiar with the topic. At Erasmus MC, researchers and clinicians are involved during the complete process of structuring and optimizing the search strategy. Each word is added after the combined decision of the searcher and the researcher, with the possibility of directly comparing results with and without the new term.

14. Translate to other databases

To retrieve as many relevant references as possible, one has to search multiple databases. Translation of complex and exhaustive queries between different databases can be very time consuming and cumbersome. The single-line search strategy approach detailed above allows quick translations using the find and replace method in Microsoft Word (<Ctrl-H>).

At Erasmus MC, macros based on the find-and-replace method in Microsoft Word have been developed for easy and fast translation between the most used databases for biomedical and health sciences questions. The schema that is followed for the translation between databases is shown in Figure 2 . Most databases simply follow the structure set by the Embase.com search strategy. The translation from Emtree terms to MeSH terms for MEDLINE in Ovid often identifies new terms that need to be added to the Embase.com search strategy before the translation to other databases.

An external file that holds a picture, illustration, etc.
Object name is jmla-106-531-f002.jpg

Schematic representation of translation between databases used at Erasmus University Medical Center

Dotted lines represent databases that are used in less than 80% of the searches.

Using five different macros, a thoroughly optimized query in Embase.com can be relatively quickly translated into eight major databases. Basic search strategies will be created to use in many, mostly smaller, databases, because such niche databases often do not have extensive thesauri or advanced syntax options. Also, there is not much need to use extensive syntax because the number of hits and, therefore, the amount of noise in these databases is generally low. In MEDLINE (Ovid), PsycINFO (Ovid), and CINAHL (EBSCOhost), the thesaurus terms must be adapted manually, as each database has its own custom thesaurus. These macros and instructions for their installation, use, and adaptation are available at bit.ly/databasemacros.

15. Test and reiterate

Ideally, exhaustive search strategies should retrieve all references that are covered in a specific database. For SR search strategies, checking searches for their recall is advised. This can be done after included references have been determined by the authors of the systematic review. If additional papers have been identified through other non-database methods (i.e., checking references in included studies), results that were not identified by the database searches should be examined. If these results were available in the databases but not located by the search strategy, the search strategy should be adapted to try to retrieve these results, as they may contain terms that were omitted in the original search strategies. This may enable the identification of additional relevant results.

A methodology for creating exhaustive search strategies has been created that describes all steps of the search process, starting with a question and resulting in thorough search strategies in multiple databases. Many of the steps described are not new, but together, they form a strong method creating high-quality, robust searches in a relatively short time frame.

Our methodology is intended to create thoroughness for literature searches. The optimization method, as described in step 11, will identify missed synonyms or thesaurus terms, unlike any other method that largely depends on predetermined keywords and synonyms. Using this method results in a much quicker search process, compared to traditional methods, especially because of the easier translation between databases and interfaces (step 13). The method is not a guarantee for speed, since speed depends on many factors, including experience. However, by following the steps and using the tools as described above, searchers can gain confidence first and increase speed through practice.

What is new?

This method encourages searchers to start their search development process using empty syntax first and later adding the thesaurus terms and free-text synonyms. We feel this helps the searcher to focus on the search terms, instead of on the structure of the search query. The optimization method in which new terms are found in the already retrieved articles is used in some other institutes as well but has to our knowledge not been described in the literature. The macros to translate search strategies between interfaces are unique in this method.

What is different compared to common practice?

Traditionally, librarians and information specialists have focused on creating complex, multi-line (also called line-by-line) search strategies, consisting of multiple record sets, and this method is frequently advised in the literature and handbooks [ 2 , 19 – 21 ]. Our method, instead, uses single-line searches, which is critical to its success. Single-line search strategies can be easily adapted by adding or dropping a term without having to recode numbers of record sets, which would be necessary in multi-line searches. They can easily be saved in a text document and repeated by copying and pasting for search updates. Single-line search strategies also allow easy translation to other syntaxes using find-and-replace technology to update field codes and other syntax elements or using macros (step 13).

When constructing a search strategy, the searcher might experience that certain parentheses in the syntax are unnecessary, such as parentheses around all search terms in the title/abstract portion, if there is only one such term, there are double parentheses in the proximity statement, or one of the word groups exists for only one word. One might be tempted to omit those parentheses for ease of reading and management. However, during the optimization process, the searcher is likely to find extra synonyms that might consist of one word. To add those terms to the first query (with reduced parentheses) requires adding extra parentheses (meticulously placing and counting them), whereas, in the latter search, it only requires proper placement of those terms.

Many search methods highly depend on the PICO framework. Research states that often PICO or PICOS is not suitable for every question [ 22 , 23 ]. There are other acronyms than PICO—such as sample, phenomenon of interest, design, evaluation, research type (SPIDER) [ 24 ]—but each is just a variant. In our method, the most important and specific elements of a question are being analyzed for building the best search strategy.

Though it is generally recommended that searchers search both MEDLINE and Embase, most use MEDLINE as the starting point. It is considered the gold standard for biomedical searching, partially due to historical reasons, since it was the first of its kind, and more so now that it is freely available via the PubMed interface. Our method can be used with any database as a starting point, but we use Embase instead of MEDLINE or another database for a number of reasons. First, Embase provides both unique content and the complete content of MEDLINE. Therefore, searching Embase will be, by definition, more complete than searching MEDLINE only. Second, the number of terms in Emtree (the Embase thesaurus) is three times as high as that of MeSH (the MEDLINE thesaurus). It is easier to find MeSH terms after all relevant Emtree terms have been identified than to start with MeSH and translate to Emtree.

At Erasmus MC, the researchers sit next to the information specialist during most of the search strategy design process. This way, the researchers can deliver immediate feedback on the relevance of proposed search terms and retrieved references. The search team then combines knowledge about databases with knowledge about the research topic, which is an important condition to create the highest quality searches.

Limitations of the method

One disadvantage of single-line searches compared to multi-line search strategies is that errors are harder to recognize. However, with the methods for optimization as described (step 11), errors are recognized easily because missed synonyms and spelling errors will be identified during the process. Also problematic is that more parentheses are needed, making it more difficult for the searcher and others to assess the logic of the search strategy. However, as parentheses and field codes are typed before the search terms are added (step 10), errors in parentheses can be prevented.

Our methodology works best if used in an interface that allows proximity searching. It is recommended that searchers with access to an interface with proximity searching capabilities select one of those as the initial database to develop and optimize the search strategy. Because the PubMed interface does not allow proximity searches, phrases or Boolean “AND” combinations are required. Phrase searching complicates the process and is more specific, with the higher risk of missing relevant articles, and using Boolean “AND” combinations increases sensitivity but at an often high loss of specificity. Due to some searchers’ lack of access to expensive databases or interfaces, the freely available PubMed interface may be necessary to use, though it should never be the sole database used for an SR [ 2 , 16 , 25 ]. A limitation of our method is that it works best with subscription-based and licensed resources.

Another limitation is the customization of the macros to a specific institution’s resources. The macros for the translation between different database interfaces only work between the interfaces as described. To mitigate this, we recommend using the find-and-replace functionality of text editors like Microsoft Word to ease the translation of syntaxes between other databases. Depending on one’s institutional resources, custom macros can be developed using similar methods.

Results of the method

Whether this method results in exhaustive searches where no important article is missed is difficult to determine, because the number of relevant articles is unknown for any topic. A comparison of several parameters of 73 published reviews that were based on a search developed with this method to 258 reviews that acknowledged information specialists from other Dutch academic hospitals shows that the performance of the searches following our method is comparable to those performed in other institutes but that the time needed to develop the search strategies was much shorter than the time reported for the other reviews [ 9 ].

CONCLUSIONS

With the described method, searchers can gain confidence in their search strategies by finding many relevant words and creating exhaustive search strategies quickly. The approach can be used when performing SR searches or for other purposes such as answering clinical questions, with different expectations of the search’s precision and recall. This method, with practice, provides a stepwise approach that facilitates the search strategy development process from question clarification to final iteration and beyond.

SUPPLEMENTAL FILE

Acknowledgments.

We highly appreciate the work that was done by our former colleague Louis Volkers, who in his twenty years as an information specialist in Erasmus MC laid the basis for our method. We thank Professor Oscar Franco for reviewing earlier drafts of this article.

Stand on the shoulders of giants

Google Scholar provides a simple way to broadly search for scholarly literature. From one place, you can search across many disciplines and sources: articles, theses, books, abstracts and court opinions, from academic publishers, professional societies, online repositories, universities and other web sites. Google Scholar helps you find relevant work across the world of scholarly research.

searching research papers

How are documents ranked?

Google Scholar aims to rank documents the way researchers do, weighing the full text of each document, where it was published, who it was written by, as well as how often and how recently it has been cited in other scholarly literature.

Features of Google Scholar

  • Search all scholarly literature from one convenient place
  • Explore related works, citations, authors, and publications
  • Locate the complete document through your library or on the web
  • Keep up with recent developments in any area of research
  • Check who's citing your publications, create a public author profile

searching research papers

Disclaimer: Legal opinions in Google Scholar are provided for informational purposes only and should not be relied on as a substitute for legal advice from a licensed lawyer. Google does not warrant that the information is complete or accurate.

  • Privacy & Terms
  • Corrections

Search Help

Get the most out of Google Scholar with some helpful tips on searches, email alerts, citation export, and more.

Finding recent papers

Your search results are normally sorted by relevance, not by date. To find newer articles, try the following options in the left sidebar:

  • click "Since Year" to show only recently published papers, sorted by relevance;
  • click "Sort by date" to show just the new additions, sorted by date;
  • click the envelope icon to have new results periodically delivered by email.

Locating the full text of an article

Abstracts are freely available for most of the articles. Alas, reading the entire article may require a subscription. Here're a few things to try:

  • click a library link, e.g., "FindIt@Harvard", to the right of the search result;
  • click a link labeled [PDF] to the right of the search result;
  • click "All versions" under the search result and check out the alternative sources;
  • click "Related articles" or "Cited by" under the search result to explore similar articles.

If you're affiliated with a university, but don't see links such as "FindIt@Harvard", please check with your local library about the best way to access their online subscriptions. You may need to do search from a computer on campus, or to configure your browser to use a library proxy.

Getting better answers

If you're new to the subject, it may be helpful to pick up the terminology from secondary sources. E.g., a Wikipedia article for "overweight" might suggest a Scholar search for "pediatric hyperalimentation".

If the search results are too specific for your needs, check out what they're citing in their "References" sections. Referenced works are often more general in nature.

Similarly, if the search results are too basic for you, click "Cited by" to see newer papers that referenced them. These newer papers will often be more specific.

Explore! There's rarely a single answer to a research question. Click "Related articles" or "Cited by" to see closely related work, or search for author's name and see what else they have written.

Searching Google Scholar

Use the "author:" operator, e.g., author:"d knuth" or author:"donald e knuth".

Put the paper's title in quotations: "A History of the China Sea".

You'll often get better results if you search only recent articles, but still sort them by relevance, not by date. E.g., click "Since 2018" in the left sidebar of the search results page.

To see the absolutely newest articles first, click "Sort by date" in the sidebar. If you use this feature a lot, you may also find it useful to setup email alerts to have new results automatically sent to you.

Note: On smaller screens that don't show the sidebar, these options are available in the dropdown menu labelled "Year" right below the search button.

Select the "Case law" option on the homepage or in the side drawer on the search results page.

It finds documents similar to the given search result.

It's in the side drawer. The advanced search window lets you search in the author, title, and publication fields, as well as limit your search results by date.

Select the "Case law" option and do a keyword search over all jurisdictions. Then, click the "Select courts" link in the left sidebar on the search results page.

Tip: To quickly search a frequently used selection of courts, bookmark a search results page with the desired selection.

Access to articles

For each Scholar search result, we try to find a version of the article that you can read. These access links are labelled [PDF] or [HTML] and appear to the right of the search result. For example:

A paper that you need to read

Access links cover a wide variety of ways in which articles may be available to you - articles that your library subscribes to, open access articles, free-to-read articles from publishers, preprints, articles in repositories, etc.

When you are on a campus network, access links automatically include your library subscriptions and direct you to subscribed versions of articles. On-campus access links cover subscriptions from primary publishers as well as aggregators.

Off-campus access

Off-campus access links let you take your library subscriptions with you when you are at home or traveling. You can read subscribed articles when you are off-campus just as easily as when you are on-campus. Off-campus access links work by recording your subscriptions when you visit Scholar while on-campus, and looking up the recorded subscriptions later when you are off-campus.

We use the recorded subscriptions to provide you with the same subscribed access links as you see on campus. We also indicate your subscription access to participating publishers so that they can allow you to read the full-text of these articles without logging in or using a proxy. The recorded subscription information expires after 30 days and is automatically deleted.

In addition to Google Scholar search results, off-campus access links can also appear on articles from publishers participating in the off-campus subscription access program. Look for links labeled [PDF] or [HTML] on the right hand side of article pages.

Anne Author , John Doe , Jane Smith , Someone Else

In this fascinating paper, we investigate various topics that would be of interest to you. We also describe new methods relevant to your project, and attempt to address several questions which you would also like to know the answer to. Lastly, we analyze …

You can disable off-campus access links on the Scholar settings page . Disabling off-campus access links will turn off recording of your library subscriptions. It will also turn off indicating subscription access to participating publishers. Once off-campus access links are disabled, you may need to identify and configure an alternate mechanism (e.g., an institutional proxy or VPN) to access your library subscriptions while off-campus.

Email Alerts

Do a search for the topic of interest, e.g., "M Theory"; click the envelope icon in the sidebar of the search results page; enter your email address, and click "Create alert". We'll then periodically email you newly published papers that match your search criteria.

No, you can enter any email address of your choice. If the email address isn't a Google account or doesn't match your Google account, then we'll email you a verification link, which you'll need to click to start receiving alerts.

This works best if you create a public profile , which is free and quick to do. Once you get to the homepage with your photo, click "Follow" next to your name, select "New citations to my articles", and click "Done". We will then email you when we find new articles that cite yours.

Search for the title of your paper, e.g., "Anti de Sitter space and holography"; click on the "Cited by" link at the bottom of the search result; and then click on the envelope icon in the left sidebar of the search results page.

First, do a search for your colleague's name, and see if they have a Scholar profile. If they do, click on it, click the "Follow" button next to their name, select "New articles by this author", and click "Done".

If they don't have a profile, do a search by author, e.g., [author:s-hawking], and click on the mighty envelope in the left sidebar of the search results page. If you find that several different people share the same name, you may need to add co-author names or topical keywords to limit results to the author you wish to follow.

We send the alerts right after we add new papers to Google Scholar. This usually happens several times a week, except that our search robots meticulously observe holidays.

There's a link to cancel the alert at the bottom of every notification email.

If you created alerts using a Google account, you can manage them all here . If you're not using a Google account, you'll need to unsubscribe from the individual alerts and subscribe to the new ones.

Google Scholar library

Google Scholar library is your personal collection of articles. You can save articles right off the search page, organize them by adding labels, and use the power of Scholar search to quickly find just the one you want - at any time and from anywhere. You decide what goes into your library, and we’ll keep the links up to date.

You get all the goodies that come with Scholar search results - links to PDF and to your university's subscriptions, formatted citations, citing articles, and more!

Library help

Find the article you want to add in Google Scholar and click the “Save” button under the search result.

Click “My library” at the top of the page or in the side drawer to view all articles in your library. To search the full text of these articles, enter your query as usual in the search box.

Find the article you want to remove, and then click the “Delete” button under it.

  • To add a label to an article, find the article in your library, click the “Label” button under it, select the label you want to apply, and click “Done”.
  • To view all the articles with a specific label, click the label name in the left sidebar of your library page.
  • To remove a label from an article, click the “Label” button under it, deselect the label you want to remove, and click “Done”.
  • To add, edit, or delete labels, click “Manage labels” in the left column of your library page.

Only you can see the articles in your library. If you create a Scholar profile and make it public, then the articles in your public profile (and only those articles) will be visible to everyone.

Your profile contains all the articles you have written yourself. It’s a way to present your work to others, as well as to keep track of citations to it. Your library is a way to organize the articles that you’d like to read or cite, not necessarily the ones you’ve written.

Citation Export

Click the "Cite" button under the search result and then select your bibliography manager at the bottom of the popup. We currently support BibTeX, EndNote, RefMan, and RefWorks.

Err, no, please respect our robots.txt when you access Google Scholar using automated software. As the wearers of crawler's shoes and webmaster's hat, we cannot recommend adherence to web standards highly enough.

Sorry, we're unable to provide bulk access. You'll need to make an arrangement directly with the source of the data you're interested in. Keep in mind that a lot of the records in Google Scholar come from commercial subscription services.

Sorry, we can only show up to 1,000 results for any particular search query. Try a different query to get more results.

Content Coverage

Google Scholar includes journal and conference papers, theses and dissertations, academic books, pre-prints, abstracts, technical reports and other scholarly literature from all broad areas of research. You'll find works from a wide variety of academic publishers, professional societies and university repositories, as well as scholarly articles available anywhere across the web. Google Scholar also includes court opinions and patents.

We index research articles and abstracts from most major academic publishers and repositories worldwide, including both free and subscription sources. To check current coverage of a specific source in Google Scholar, search for a sample of their article titles in quotes.

While we try to be comprehensive, it isn't possible to guarantee uninterrupted coverage of any particular source. We index articles from sources all over the web and link to these websites in our search results. If one of these websites becomes unavailable to our search robots or to a large number of web users, we have to remove it from Google Scholar until it becomes available again.

Our meticulous search robots generally try to index every paper from every website they visit, including most major sources and also many lesser known ones.

That said, Google Scholar is primarily a search of academic papers. Shorter articles, such as book reviews, news sections, editorials, announcements and letters, may or may not be included. Untitled documents and documents without authors are usually not included. Website URLs that aren't available to our search robots or to the majority of web users are, obviously, not included either. Nor do we include websites that require you to sign up for an account, install a browser plugin, watch four colorful ads, and turn around three times and say coo-coo before you can read the listing of titles scanned at 10 DPI... You get the idea, we cover academic papers from sensible websites.

That's usually because we index many of these papers from other websites, such as the websites of their primary publishers. The "site:" operator currently only searches the primary version of each paper.

It could also be that the papers are located on examplejournals.gov, not on example.gov. Please make sure you're searching for the "right" website.

That said, the best way to check coverage of a specific source is to search for a sample of their papers using the title of the paper.

Ahem, we index papers, not journals. You should also ask about our coverage of universities, research groups, proteins, seminal breakthroughs, and other dimensions that are of interest to users. All such questions are best answered by searching for a statistical sample of papers that has the property of interest - journal, author, protein, etc. Many coverage comparisons are available if you search for [allintitle:"google scholar"], but some of them are more statistically valid than others.

Currently, Google Scholar allows you to search and read published opinions of US state appellate and supreme court cases since 1950, US federal district, appellate, tax and bankruptcy courts since 1923 and US Supreme Court cases since 1791. In addition, it includes citations for cases cited by indexed opinions or journal articles which allows you to find influential cases (usually older or international) which are not yet online or publicly available.

Legal opinions in Google Scholar are provided for informational purposes only and should not be relied on as a substitute for legal advice from a licensed lawyer. Google does not warrant that the information is complete or accurate.

We normally add new papers several times a week. However, updates to existing records take 6-9 months to a year or longer, because in order to update our records, we need to first recrawl them from the source website. For many larger websites, the speed at which we can update their records is limited by the crawl rate that they allow.

Inclusion and Corrections

We apologize, and we assure you the error was unintentional. Automated extraction of information from articles in diverse fields can be tricky, so an error sometimes sneaks through.

Please write to the owner of the website where the erroneous search result is coming from, and encourage them to provide correct bibliographic data to us, as described in the technical guidelines . Once the data is corrected on their website, it usually takes 6-9 months to a year or longer for it to be updated in Google Scholar. We appreciate your help and your patience.

If you can't find your papers when you search for them by title and by author, please refer your publisher to our technical guidelines .

You can also deposit your papers into your institutional repository or put their PDF versions on your personal website, but please follow your publisher's requirements when you do so. See our technical guidelines for more details on the inclusion process.

We normally add new papers several times a week; however, it might take us some time to crawl larger websites, and corrections to already included papers can take 6-9 months to a year or longer.

Google Scholar generally reflects the state of the web as it is currently visible to our search robots and to the majority of users. When you're searching for relevant papers to read, you wouldn't want it any other way!

If your citation counts have gone down, chances are that either your paper or papers that cite it have either disappeared from the web entirely, or have become unavailable to our search robots, or, perhaps, have been reformatted in a way that made it difficult for our automated software to identify their bibliographic data and references. If you wish to correct this, you'll need to identify the specific documents with indexing problems and ask your publisher to fix them. Please refer to the technical guidelines .

Please do let us know . Please include the URL for the opinion, the corrected information and a source where we can verify the correction.

We're only able to make corrections to court opinions that are hosted on our own website. For corrections to academic papers, books, dissertations and other third-party material, click on the search result in question and contact the owner of the website where the document came from. For corrections to books from Google Book Search, click on the book's title and locate the link to provide feedback at the bottom of the book's page.

General Questions

These are articles which other scholarly articles have referred to, but which we haven't found online. To exclude them from your search results, uncheck the "include citations" box on the left sidebar.

First, click on links labeled [PDF] or [HTML] to the right of the search result's title. Also, check out the "All versions" link at the bottom of the search result.

Second, if you're affiliated with a university, using a computer on campus will often let you access your library's online subscriptions. Look for links labeled with your library's name to the right of the search result's title. Also, see if there's a link to the full text on the publisher's page with the abstract.

Keep in mind that final published versions are often only available to subscribers, and that some articles are not available online at all. Good luck!

Technically, your web browser remembers your settings in a "cookie" on your computer's disk, and sends this cookie to our website along with every search. Check that your browser isn't configured to discard our cookies. Also, check if disabling various proxies or overly helpful privacy settings does the trick. Either way, your settings are stored on your computer, not on our servers, so a long hard look at your browser's preferences or internet options should help cure the machine's forgetfulness.

Not even close. That phrase is our acknowledgement that much of scholarly research involves building on what others have already discovered. It's taken from Sir Isaac Newton's famous quote, "If I have seen further, it is by standing on the shoulders of giants."

  • Privacy & Terms

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources

How to Find Sources | Scholarly Articles, Books, Etc.

Published on June 13, 2022 by Eoghan Ryan . Revised on May 31, 2023.

It’s important to know how to find relevant sources when writing a  research paper , literature review , or systematic review .

The types of sources you need will depend on the stage you are at in the research process , but all sources that you use should be credible , up to date, and relevant to your research topic.

There are three main places to look for sources to use in your research:

Research databases

  • Your institution’s library
  • Other online resources

Table of contents

Library resources, other online sources, other interesting articles, frequently asked questions about finding sources.

You can search for scholarly sources online using databases and search engines like Google Scholar . These provide a range of search functions that can help you to find the most relevant sources.

If you are searching for a specific article or book, include the title or the author’s name. Alternatively, if you’re just looking for sources related to your research problem , you can search using keywords. In this case, it’s important to have a clear understanding of the scope of your project and of the most relevant keywords.

Databases can be general (interdisciplinary) or subject-specific.

  • You can use subject-specific databases to ensure that the results are relevant to your field.
  • When using a general database or search engine, you can still filter results by selecting specific subjects or disciplines.

Example: JSTOR discipline search filter

Filtering by discipline

Check the table below to find a database that’s relevant to your research.

Google Scholar

To get started, you might also try Google Scholar , an academic search engine that can help you find relevant books and articles. Its “Cited by” function lets you see the number of times a source has been cited. This can tell you something about a source’s credibility and importance to the field.

Example: Google Scholar “Cited by” function

Google Scholar cited by function

Boolean operators

Boolean operators can also help to narrow or expand your search.

Boolean operators are words and symbols like AND , OR , and NOT that you can use to include or exclude keywords to refine your results. For example, a search for “Nietzsche NOT nihilism” will provide results that include the word “Nietzsche” but exclude results that contain the word “nihilism.”

Many databases and search engines have an advanced search function that allows you to refine results in a similar way without typing the Boolean operators manually.

Example: Project Muse advanced search

Project Muse advanced search

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

searching research papers

Try for free

You can find helpful print sources in your institution’s library. These include:

  • Journal articles
  • Encyclopedias
  • Newspapers and magazines

Make sure that the sources you consult are appropriate to your research.

You can find these sources using your institution’s library database. This will allow you to explore the library’s catalog and to search relevant keywords. You can refine your results using Boolean operators .

Once you have found a relevant print source in the library:

  • Consider what books are beside it. This can be a great way to find related sources, especially when you’ve found a secondary or tertiary source instead of a primary source .
  • Consult the index and bibliography to find the bibliographic information of other relevant sources.

You can consult popular online sources to learn more about your topic. These include:

  • Crowdsourced encyclopedias like Wikipedia

You can find these sources using search engines. To refine your search, use Boolean operators in combination with relevant keywords.

However, exercise caution when using online sources. Consider what kinds of sources are appropriate for your research and make sure the sites are credible .

Look for sites with trusted domain extensions:

  • URLs that end with .edu are educational resources.
  • URLs that end with .gov are government-related resources.
  • DOIs often indicate that an article is published in a peer-reviewed , scientific article.

Other sites can still be used, but you should evaluate them carefully and consider alternatives.

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

How should academia deal with AI writing platforms? Free webinar

AI is transforming academia. In collaboration with QuillBot, we’ll explore how appropriate use of AI can help you achieve higher levels of success.

  • The AI revolution for academic success
  • Learn with industry experts and ask your questions
  • Using AI to enhance writing, not replace it

Sign up for this session

February 29th, 10AM CST

searching research papers

You can find sources online using databases and search engines like Google Scholar . Use Boolean operators or advanced search functions to narrow or expand your search.

For print sources, you can use your institution’s library database. This will allow you to explore the library’s catalog and to search relevant keywords.

It is important to find credible sources and use those that you can be sure are sufficiently scholarly .

  • Consult your institute’s library to find out what books, journals, research databases, and other types of sources they provide access to.
  • Look for books published by respected academic publishing houses and university presses, as these are typically considered trustworthy sources.
  • Look for journals that use a peer review process. This means that experts in the field assess the quality and credibility of an article before it is published.

When searching for sources in databases, think of specific keywords that are relevant to your topic , and consider variations on them or synonyms that might be relevant.

Once you have a clear idea of your research parameters and key terms, choose a database that is relevant to your research (e.g., Medline, JSTOR, Project MUSE).

Find out if the database has a “subject search” option. This can help to refine your search. Use Boolean operators to combine your keywords, exclude specific search terms, and search exact phrases to find the most relevant sources.

There are many types of sources commonly used in research. These include:

You’ll likely use a variety of these sources throughout the research process , and the kinds of sources you use will depend on your research topic and goals.

Scholarly sources are written by experts in their field and are typically subjected to peer review . They are intended for a scholarly audience, include a full bibliography, and use scholarly or technical language. For these reasons, they are typically considered credible sources .

Popular sources like magazines and news articles are typically written by journalists. These types of sources usually don’t include a bibliography and are written for a popular, rather than academic, audience. They are not always reliable and may be written from a biased or uninformed perspective, but they can still be cited in some contexts.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). How to Find Sources | Scholarly Articles, Books, Etc.. Scribbr. Retrieved February 26, 2024, from https://www.scribbr.com/working-with-sources/finding-sources/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, types of sources explained | examples & tips, primary vs. secondary sources | difference & examples, boolean operators | quick guide, examples & tips.

🇺🇦    make metadata, not war

A comprehensive bibliographic database of the world’s scholarly literature

The world’s largest collection of open access research papers, machine access to our vast unique full text corpus, core features, indexing the world’s repositories.

We serve the global network of repositories and journals

Comprehensive data coverage

We provide both metadata and full text access to our comprehensive collection through our APIs and Datasets

Powerful services

We create powerful services for researchers, universities, and industry

Cutting-edge solutions

We research and develop innovative data-driven and AI solutions

Committed to the POSI

Cost-free PIDs for your repository

OAI identifiers are unique identifiers minted cost-free by repositories. Ensure that your repository is correctly configured, enabling the CORE OAI Resolver to redirect your identifiers to your repository landing pages.

OAI IDs provide a cost-free option for assigning Persistent Identifiers (PIDs) to your repository records. Learn more.

Who we serve?

Enabling others to create new tools and innovate using a global comprehensive collection of research papers.

Companies

“ Our partnership with CORE will provide Turnitin with vast amounts of metadata and full texts that we can ... ” Show more

Gareth Malcolm, Content Partner Manager at Turnitin

Academic institutions.

Making research more discoverable, improving metadata quality, helping to meet and monitor open access compliance.

Academic institutions

“ CORE’s role in providing a unified search of repository content is a great tool for the researcher and ex... ” Show more

Nicola Dowson, Library Services Manager at Open University

Researchers & general public.

Tools to find, discover and explore the wealth of open access research. Free for everyone, forever.

Researchers & general public

“ With millions of research papers available across thousands of different systems, CORE provides an invalu... ” Show more

Jon Tennant, Rogue Paleontologist and Founder of the Open Science MOOC

Helping funders to analyse, audit and monitor open research and accelerate towards open science.

Funders

“ Aggregation plays an increasingly essential role in maximising the long-term benefits of open access, hel... ” Show more

Ben Johnson, Research Policy Adviser at Research England

Our services, access to raw data.

Create new and innovative solutions.

Content discovery

Find relevant research and make your research more visible.

Managing content

Manage how your research content is exposed to the world.

Companies using CORE

Gareth Malcolm

Gareth Malcolm

Content Partner Manager at Turnitin

Our partnership with CORE will provide Turnitin with vast amounts of metadata and full texts that we can utilise in our plagiarism detection software.

Academic institution using CORE

Kathleen Shearer

Executive Director of the Confederation of Open Access Repositories (COAR)

CORE has significantly assisted the academic institutions participating in our global network with their key mission, which is their scientific content exposure. In addition, CORE has helped our content administrators to showcase the real benefits of repositories via its added value services.

Partner projects

Ben Johnson

Ben Johnson

Research Policy Adviser

Aggregation plays an increasingly essential role in maximising the long-term benefits of open access, helping to turn the promise of a 'research commons' into a reality. The aggregation services that CORE provides therefore make a very valuable contribution to the evolving open access environment in the UK.

logo

Reference management. Clean and simple.

Google Scholar: the ultimate guide

How to use Google scholar: the ultimate guide

What is Google Scholar?

Why is google scholar better than google for finding research papers, the google scholar search results page, the first two lines: core bibliographic information, quick full text-access options, "cited by" count and other useful links, tips for searching google scholar, 1. google scholar searches are not case sensitive, 2. use keywords instead of full sentences, 3. use quotes to search for an exact match, 3. add the year to the search phrase to get articles published in a particular year, 4. use the side bar controls to adjust your search result, 5. use boolean operator to better control your searches, google scholar advanced search interface, customizing search preferences and options, using the "my library" feature in google scholar, the scope and limitations of google scholar, alternatives to google scholar, country-specific google scholar sites, frequently asked questions about google scholar, related articles.

Google Scholar (GS) is a free academic search engine that can be thought of as the academic version of Google. Rather than searching all of the indexed information on the web, it searches repositories of:

  • universities
  • scholarly websites

This is generally a smaller subset of the pool that Google searches. It's all done automatically, but most of the search results tend to be reliable scholarly sources.

However, Google is typically less careful about what it includes in search results than more curated, subscription-based, academic databases like Scopus and Web of Science . As a result, it is important to take some time to assess the credibility of the resources linked through Google Scholar.

➡️ Take a look at our guide on the best academic databases .

Google Scholar home page

One advantage of using Google Scholar is that the interface is comforting and familiar to anyone who uses Google. This lowers the learning curve of finding scholarly information .

There are a number of useful differences from a regular Google search. Google Scholar allows you to:

  • copy a formatted citation in different styles including MLA and APA
  • export bibliographic data (BibTeX, RIS) to use with reference management software
  • explore other works have cited the listed work
  • easily find full text versions of the article

Although it is free to search in Google Scholar, most of the content is not freely available. Google does its best to find copies of restricted articles in public repositories. If you are at an academic or research institution, you can also set up a library connection that allows you to see items that are available through your institution.

The Google Scholar results page differs from the Google results page in a few key ways. The search result page is, however, different and it is worth being familiar with the different pieces of information that are shown. Let's have a look at the results for the search term "machine learning.”

Google Scholar search results page

  • The first line of each result provides the title of the document (e.g. of an article, book, chapter, or report).
  • The second line provides the bibliographic information about the document, in order: the author(s), the journal or book it appears in, the year of publication, and the publisher.

Clicking on the title link will bring you to the publisher’s page where you may be able to access more information about the document. This includes the abstract and options to download the PDF.

Google Scholar quick link to PDF

To the far right of the entry are more direct options for obtaining the full text of the document. In this example, Google has also located a publicly available PDF of the document hosted at umich.edu . Note, that it's not guaranteed that it is the version of the article that was finally published in the journal.

Google Scholar: more action links

Below the text snippet/abstract you can find a number of useful links.

  • Cited by : the cited by link will show other articles that have cited this resource. That is a super useful feature that can help you in many ways. First, it is a good way to track the more recent research that has referenced this article, and second the fact that other researches cited this document lends greater credibility to it. But be aware that there is a lag in publication type. Therefore, an article published in 2017 will not have an extensive number of cited by results. It takes a minimum of 6 months for most articles to get published, so even if an article was using the source, the more recent article has not been published yet.
  • Versions : this link will display other versions of the article or other databases where the article may be found, some of which may offer free access to the article.
  • Quotation mark icon : this will display a popup with commonly used citation formats such as MLA, APA, Chicago, Harvard, and Vancouver that may be copied and pasted. Note, however, that the Google Scholar citation data is sometimes incomplete and so it is often a good idea to check this data at the source. The "cite" popup also includes links for exporting the citation data as BibTeX or RIS files that any major reference manager can import.

Google Scholar citation panel

Although Google Scholar limits each search to a maximum of 1,000 results , it's still too much to explore, and you need an effective way of locating the relevant articles. Here’s a list of pro tips that will help you save time and search more effectively.

You don’t need to worry about case sensitivity when you’re using Google scholar. In other words, a search for "Machine Learning" will produce the same results as a search for "machine learning.”

Let's say your research topic is about self driving cars. For a regular Google search we might enter something like " what is the current state of the technology used for self driving cars ". In Google Scholar, you will see less than ideal results for this query .

The trick is to build a list of keywords and perform searches for them like self-driving cars, autonomous vehicles, or driverless cars. Google Scholar will assist you on that: if you start typing in the search field you will see related queries suggested by Scholar!

If you put your search phrase into quotes you can search for exact matches of that phrase in the title and the body text of the document. Without quotes, Google Scholar will treat each word separately.

This means that if you search national parks , the words will not necessarily appear together. Grouped words and exact phrases should be enclosed in quotation marks.

A search using “self-driving cars 2015,” for example, will return articles or books published in 2015.

Using the options in the left hand panel you can further restrict the search results by limiting the years covered by the search, the inclusion or exclude of patents, and you can sort the results by relevance or by date.

Searches are not case sensitive, however, there are a number of Boolean operators you can use to control the search and these must be capitalized.

  • AND requires both of the words or phrases on either side to be somewhere in the record.
  • NOT can be placed in front of a word or phrases to exclude results which include them.
  • OR will give equal weight to results which match just one of the words or phrases on either side.

➡️ Read more about how to efficiently search online databases for academic research .

In case you got overwhelmed by the above options, here’s some illustrative examples:

Tip: Use the advanced search features in Google Scholar to narrow down your search results.

You can gain even more fine-grained control over your search by using the advanced search feature. This feature is available by clicking on the hamburger menu in the upper left and selecting the "Advanced search" menu item.

Google Scholar advanced search

Adjusting the Google Scholar settings is not necessary for getting good results, but offers some additional customization, including the ability to enable the above-mentioned library integrations.

The settings menu is found in the hamburger menu located in the top left of the Google Scholar page. The settings are divided into five sections:

  • Collections to search: by default Google scholar searches articles and includes patents, but this default can be changed if you are not interested in patents or if you wish to search case law instead.
  • Bibliographic manager: you can export relevant citation data via the “Bibliography manager” subsection.
  • Languages: if you wish for results to return only articles written in a specific subset of languages, you can define that here.
  • Library links: as noted, Google Scholar allows you to get the Full Text of articles through your institution’s subscriptions, where available. Search for, and add, your institution here to have the relevant link included in your search results.
  • Button: the Scholar Button is a Chrome extension which adds a dropdown search box to your toolbar. This allows you to search Google Scholar from any website. Moreover, if you have any text selected on the page and then click the button it will display results from a search on those words when clicked.

When signed in, Google Scholar adds some simple tools for keeping track of and organizing the articles you find. These can be useful if you are not using a full academic reference manager.

All the search results include a “save” button at the end of the bottom row of links, clicking this will add it to your "My Library".

To help you provide some structure, you can create and apply labels to the items in your library. Appended labels will appear at the end of the article titles. For example, the following article has been assigned a “RNA” label:

Google Scholar  my library entry with label

Within your Google Scholar library, you can also edit the metadata associated with titles. This will often be necessary as Google Scholar citation data is often faulty.

There is no official statement about how big the Scholar search index is, but unofficial estimates are in the range of about 160 million , and it is supposed to continue to grow by several million each year.

Yet, Google Scholar does not return all resources that you may get in search at you local library catalog. For example, a library database could return podcasts, videos, articles, statistics, or special collections. For now, Google Scholar has only the following publication types:

  • Journal articles : articles published in journals. It's a mixture of articles from peer reviewed journals, predatory journals and pre-print archives.
  • Books : links to the Google limited version of the text, when possible.
  • Book chapters : chapters within a book, sometimes they are also electronically available.
  • Book reviews : reviews of books, but it is not always apparent that it is a review from the search result.
  • Conference proceedings : papers written as part of a conference, typically used as part of presentation at the conference.
  • Court opinions .
  • Patents : Google Scholar only searches patents if the option is selected in the search settings described above.

The information in Google Scholar is not cataloged by professionals. The quality of the metadata will depend heavily on the source that Google Scholar is pulling the information from. This is a much different process to how information is collected and indexed in scholarly databases such as Scopus or Web of Science .

➡️ Visit our list of the best academic databases .

Google Scholar is by far the most frequently used academic search engine , but it is not the only one. Other academic search engines include:

  • Science.gov
  • Semantic Scholar
  • scholar.google.fr : Sur les épaules d'un géant
  • scholar.google.es (Google Académico): A hombros de gigantes
  • scholar.google.pt (Google Académico): Sobre os ombros de gigantes
  • scholar.google.de : Auf den Schultern von Riesen

➡️ Once you’ve found some research, it’s time to read it. Take a look at our guide on how to read a scientific paper .

No. Google Scholar is a bibliographic search engine rather than a bibliographic database. In order to qualify as a database Google Scholar would need to have stable identifiers for its records.

No. Google Scholar is an academic search engine, but the records found in Google Scholar are scholarly sources.

No. Google Scholar collects research papers from all over the web, including grey literature and non-peer reviewed papers and reports.

Google Scholar does not provide any full text content itself, but links to the full text article on the publisher page, which can either be open access or paywalled content. Google Scholar tries to provide links to free versions, when possible.

The easiest way to access Google scholar is by using The Google Scholar Button. This is a browser extension that allows you easily access Google Scholar from any web page. You can install it from the Chrome Webstore .

searching research papers

  • Advanced search
  • Peer review

searching research papers

Discover relevant research today

searching research papers

Advance your research field in the open

searching research papers

Reach new audiences and maximize your readership

ScienceOpen puts your research in the context of

Publications

For Publishers

ScienceOpen offers content hosting, context building and marketing services for publishers. See our tailored offerings

  • For academic publishers  to promote journals and interdisciplinary collections
  • For open access journals  to host journal content in an interactive environment
  • For university library publishing  to develop new open access paradigms for their scholars
  • For scholarly societies  to promote content with interactive features

For Institutions

ScienceOpen offers state-of-the-art technology and a range of solutions and services

  • For faculties and research groups  to promote and share your work
  • For research institutes  to build up your own branding for OA publications
  • For funders  to develop new open access publishing paradigms
  • For university libraries to create an independent OA publishing environment

For Researchers

Make an impact and build your research profile in the open with ScienceOpen

  • Search and discover relevant research in over 92 million Open Access articles and article records
  • Share your expertise and get credit by publicly reviewing any article
  • Publish your poster or preprint and track usage and impact with article- and author-level metrics
  • Create a topical Collection  to advance your research field

Create a Journal powered by ScienceOpen

Launching a new open access journal or an open access press? ScienceOpen now provides full end-to-end open access publishing solutions – embedded within our smart interactive discovery environment. A modular approach allows open access publishers to pick and choose among a range of services and design the platform that fits their goals and budget.

Continue reading “Create a Journal powered by ScienceOpen”   

What can a Researcher do on ScienceOpen?

ScienceOpen provides researchers with a wide range of tools to support their research – all for free. Here is a short checklist to make sure you are getting the most of the technological infrastructure and content that we have to offer. What can a researcher do on ScienceOpen? Continue reading “What can a Researcher do on ScienceOpen?”   

ScienceOpen on the Road

Upcoming events.

  • 20 – 22 February – ResearcherToReader Conferece

Past Events

  • 09 November – Webinar for the Discoverability of African Research
  • 26 – 27 October – Attending the Workshop on Open Citations and Open Scholarly Metadata
  • 18 – 22 October – ScienceOpen at Frankfurt Book Fair.
  • 27 – 29 September – Attending OA Tage, Berlin .
  • 25 – 27 September – ScienceOpen at Open Science Fair
  • 19 – 21 September – OASPA 2023 Annual Conference .
  • 22 – 24 May – ScienceOpen sponsoring Pint of Science, Berlin.
  • 16-17 May – ScienceOpen at 3rd AEUP Conference.
  • 20 – 21 April – ScienceOpen attending Scaling Small: Community-Owned Futures for Open Access Books .
  • 18 – 20 April – ScienceOpen at the London Book Fair .

What is ScienceOpen?

  • Smart search and discovery within an interactive interface
  • Researcher promotion and ORCID integration
  • Open evaluation with article reviews and Collections
  • Business model based on providing services to publishers

Live Twitter stream

Some of our partners:.

UCL Press

Detail of a painting depicting the landscape of New Mexico with mountains in the distance

Explore millions of high-quality primary sources and images from around the world, including artworks, maps, photographs, and more.

Explore migration issues through a variety of media types

  • Part of The Streets are Talking: Public Forms of Creative Expression from Around the World
  • Part of The Journal of Economic Perspectives, Vol. 34, No. 1 (Winter 2020)
  • Part of Cato Institute (Aug. 3, 2021)
  • Part of University of California Press
  • Part of Open: Smithsonian National Museum of African American History & Culture
  • Part of Indiana Journal of Global Legal Studies, Vol. 19, No. 1 (Winter 2012)
  • Part of R Street Institute (Nov. 1, 2020)
  • Part of Leuven University Press
  • Part of UN Secretary-General Papers: Ban Ki-moon (2007-2016)
  • Part of Perspectives on Terrorism, Vol. 12, No. 4 (August 2018)
  • Part of Leveraging Lives: Serbia and Illegal Tunisian Migration to Europe, Carnegie Endowment for International Peace (Mar. 1, 2023)
  • Part of UCL Press

Harness the power of visual materials—explore more than 3 million images now on JSTOR.

Enhance your scholarly research with underground newspapers, magazines, and journals.

Explore collections in the arts, sciences, and literature from the world’s leading museums, archives, and scholars.

Internet Archive Scholar logo (vaporwave)

SCI Journal

28 Best Academic Search Engines That make your research easier

Photo of author

This post may contain affiliate links that allow us to earn a commission at no expense to you. Learn more

Academic Search Engines

If you’re a researcher or scholar, you know that conducting effective online research is a critical part of your job. And if you’re like most people, you’re always on the lookout for new and better ways to do it. 

I’m sure you are familiar with some research databases. But, top researchers keep an open mind and are always looking for inspiration in unexpected places. 

This article aims to give you an edge over researchers that rely mainly on Google for their entire research process.

Our list of 28 academic search engines will start with the more familiar to less.

Table of Contents

#1. Google Scholar

Academic Search Engines

Google Scholar is an academic search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

Great for academic research, you can use Google Scholar to find articles from academic journals, conference proceedings, theses, and dissertations. The results returned by Google Scholar are typically more relevant and reliable than those from regular search engines like Google.

Tip: You can restrict your results to peer-reviewed articles only by clicking on the “Scholarly”

  • Scholarly results are typically more relevant and reliable than those from regular search engines like Google.
  • You can restrict your results to peer-reviewed articles only by clicking on the “Scholarly” tab.
  • Google Scholar database Coverage is extensive, with approx. 200 million articles indexed.
  • Abstracts are available for most articles.
  • Related articles are shown, as well as the number of times an article has been cited.
  • Links to full text are available for many articles.
  • Abstracts are only a snippet of the full article, so you might need to do additional searching to get the full information you need.
  • Not all articles are available in full text.

Google Scholar is completely free.

#2. ERIC (Education Resources Information Center) 

searching research papers

ERIC (short for educational resources information center) is a great academic search engine that focuses on education-related literature. It is sponsored by the U.S. Department of Education and produced by the Institute of Education Sciences. 

ERIC indexes over a million articles, reports, conference papers, and other resources on all aspects of education from early childhood to higher education. So, search results are more relevant to Education on ERIC. 

  • Extensive coverage: ERIC indexes over a million articles, reports, and other resources on all aspects of education from early childhood to higher education.
  • You can limit your results to peer-reviewed journals by clicking on the “Peer-Reviewed” tab.
  • Great search engine for educators, as abstracts are available for most articles.

ERIC is a free online database of education-related literature. 

You might also like:

  • Best Plagiarism Checkers For Research Papers
  • 30+ Essential Software For Researchers
  • Best AI-Based Summary Generators
  • 25 Best Schools For International Relations In The US
  • GPTZero Review

#3. Wolfram Alpha

searching research papers

Wolfram Alpha is a “computational knowledge engine” that can answer factual questions posed in natural language. It can be a useful search tool. 

Type in a question like “What is the square root of 64?” or “What is the boiling point of water?” and Wolfram Alpha will give you an answer.

Wolfram Alpha can also be used to find academic articles. Just type in your keywords and Wolfram Alpha will generate a list of academic articles that match your query.

Tip: You can restrict your results to peer-reviewed journals by clicking on the “Scholarly” tab.

  • Can answer factual questions posed in natural language.
  • Can be used to find academic articles.
  • Results are ranked by relevance.
  • Results can be overwhelming, so it’s important to narrow down your search criteria as much as possible.
  • The experience feels a bit more structured but it could also be a bit restrictive

Wolfram Alpha offers a few pricing options, including a “Pro” subscription that gives you access to additional features, such as the ability to create custom reports. You can also purchase individual articles or download them for offline use.

Pro costs $5.49 and Pro Premium costs $9.99

#4. iSEEK Education 

  • 15 Best Websites To Download Research Papers For Free
  • 15 Best Academic Research Trend Prediction Platforms
  • Academic Tools
  • 15 Best Academic Networking And Collaboration Platforms

iSEEK is a search engine targeting students, teachers, administrators, and caregiver. It’s designed to be safe with editor-reviewed content.

iSEEK Education also includes a “Cited by” feature which shows you how often an article has been cited by other researchers.

  • Editor-reviewed content.
  • “Cited by” feature shows how often an article has been cited by other researchers.
  • Limited to academic content.
  • Doesn’t have the breadth of coverage that some of the other academic search engines have.

iSEEK Education is free to use.

#5. BASE (Bielefeld Academic Search Engine)

searching research papers

BASE is hosted at Bielefeld University in Germany and that’s where it name stems from (Bielefeld Academic Search Engine). 

Known as “one of the most comprehensive academic web search engines,” it contains over 100 million documents from 4,000 different sources. 

Users can narrow their search using the advanced search option, so regardless of whether you need a book, a review, a lecture, a video or a thesis, BASE has what you need.

BASE indexes academic articles from a variety of disciplines, including the arts, humanities, social sciences, and natural sciences.

  • One of the world’s most voluminous search engines, 
  • Indexes academic articles from a variety of disciplines, especially for academic web resources
  • Includes an “Advanced Search” feature that lets you restrict your results to peer-reviewed journals.
  • Doesn’t include abstracts for most articles.
  • Doesn’t have related articles, references, cited by

BASE is free to use.

  • 10 Best Reference Management Software for Research 2023
  • 15 Best Academic Networking and Collaboration Platforms
  • 30+ Essential Software for Researchers
  • 15 Best Academic Blogging and Content Management 
  • 11 Best Academic Writing Tools For Researchers

searching research papers

CORE is an academic search engine that focuses on open access research papers. A link to the full text PDF or complete text web page is supplied for each search result. It’s academic search engine dedicated to open access research papers.

  • Focused on open access research papers.
  • Links to full text PDF or complete text web page are supplied for each search result.
  • Export formats include BibTeX, Endnote, RefWorks, Zotero.
  • Coverage is limited to open access research papers.
  • No abstracts are available for most articles.
  • No related articles, references, or cited by features.

CORE is free to use.

  • Best Plagiarism Checkers for Research Papers in 2024

#7. Science.gov

searching research papers

Science.gov is a search engine developed and managed by the United States government. It includes results from a variety of scientific databases, including NASA, EPA, USGS, and NIST. 

US students are more likely to have early exposure to this tool for scholarly research. 

  • Coverage from a variety of scientific databases (200 million articles and reports).
  • Links to full text are available for some articles.

Science.gov is free to use.

  • 15 Best Academic Journal Discovery Platforms
  • Sci Hub Review 

#8. Semantic Scholar

searching research papers

Semantic Scholar is a recent entrant to the field. Its goal is to provide more relevant and effective search results via artificial intelligence-powered methods that detect hidden relationships and connections between research topics.

  • Powered by artificial intelligence, which enhances search results.
  • Covers a large number of academic articles (approx. 40 million).
  • Related articles, references, and cited by features are all included.
  • Links to full text are available for most articles.

Semantic Scholar is free to use.

  • 11 Best Academic Writing Tools For Researchers 
  • 10 Best Reference Management Software for Research 
  • 15 Best Academic Journal Discovery Platforms 

#9. RefSeek

searching research papers

RefSeek searches more than five billion documents, including web pages, books, encyclopedias, journals, and newspapers.

This is one of the free search engines that feels like Yahoo with a massive directory. It could be good when you are just looking for research ideas from unexpected angles. It could lead you to some other database that you might not know such as the CIA The World Factbook, which is a great reference tool.

  • Searches more than five billion documents.
  • The Documents tab is very focused on research papers and easy to use.
  • Results can be filtered by date, type of document, and language.
  • Good source for free academic articles, open access journals, and technical reports.
  • The navigation and user experience is very dated even to millenials…
  • It requires more than 3 clicks to dig up interesting references (which is how it could lead to you something beyond the 1st page of Google)
  • The top part of the results are ALL ads (well… it’s free to use)

RefSeek is free to use.

#10. ResearchGate 

searching research papers

A mixture of social networking site + forum + content databases where researchers can build their profile, share research papers, and interact with one another.

Although it is not an academic search engine that goes outside of its site, ResearchGate ‘s library of works offers an excellent choice for any curious scholar.

There are more than 100 million publications available on the site from over 11 million researchers. It is possible to search by publication, data, and author, as well as to ask the researchers questions. 

  • A great place to find research papers and researchers.
  • Can follow other researchers and get updates when they share new papers or make changes to their profile.
  • The network effect can be helpful in finding people who have expertise in a particular topic.
  • Interface is not as user friendly
  • Can be overwhelming when trying to find relevant papers.
  • Some papers are behind a paywall.

ResearchGate is free to use.

  • 15 Best Academic Research Trend Prediction Platforms 
  • 25 Best Tools for Tracking Research Impact and Citations

#11. DataONE Search (formerly CiteULike) 

searching research papers

A social networking site for academics who want to share and discover academic articles and papers.

  • A great place to find academic papers that have been shared by other academics.
  • Some papers are behind a paywall

CiteULike is free to use.

#12. DataElixir 

searching research papers

DataElixir is deigned to help you find, understand and use data. It includes a curated list of the best open datasets, tools and resources for data science.

  • Dedicated resource for finding open data sets, tools, and resources for data science.
  • The website is easy to navigate.
  • The content is updated regularly
  • The resources are grouped by category.
  • Not all of the resources are applicable to academic research.
  • Some of the content is outdated.

DataElixir is free to use.

#13. LazyScholar – browser extension

searching research papers

LazyScholar is a free browser plugin that helps you discover free academic full texts, metrics, and instant citation and sharing links. Lazy Scholar is created Colby Vorland, a postdoctoral fellow at Indiana University.

  • It can integrate with your library to find full texts even when you’re off-campus.
  • Saves your history and provides an interface to find it.
  • A pre-formed citation is availlable in over 900 citation styles.
  • Can recommend you topics and scans new PubMed listings to suggest new papers
  • Results can be a bit hit or miss

LazyScholar is free to use.

#14. CiteseerX – digital library from PenState

searching research papers

CiteseerX is a digital library stores and indexes research articles in Computer Science and related fields. The site has a robust search engine that allows you to filter results by date, author.

  • Searches a large number of academic papers.
  • Results can be filtered by date, author, and topic.
  • The website is easy to use.
  • You can create an account and save your searches for future reference.

CiteseerX is free to use.

  • Surfer Review: Is It Worth It?
  • 25 Best Tools For Tracking Research Impact And Citations

#15. The Lens – patents search 

The Lens or the Patent Lens is an online patent and scholarly literature search facility, provided by Cambia, an Australia-based non-profit organization.

searching research papers

  • Searches for a large number of academic papers.

The price range can be free for non-profit use to $5,000 for commercial enterprise.

#16. Fatcat – wiki for bibliographic catalog 

searching research papers

Fatcat is an open bibliographic catalog of written works. The scope of works is somewhat flexible, with a focus on published research outputs like journal articles, pre-prints, and conference proceedings. Records are collaboratively editable, versioned, available in bulk form, and include URL-agnostic file-level metadata.

  • Open source and collaborative
  • You can be part of the community that is very focused on its mission
  • The archival file-level metadata (verified digests and long-term copies) is a great feature.
  • Could prove to be another rabbit hole
  • People either love or hate the text-only interface

#17. Lexis Web – Legal database

searching research papers

Are you researching legal topics? You can turn to Lexis Web for any law-related questions you may have. The results are drawn from legal sites and can be filtered based on criteria such as news, blogs, government, and commercial. Additionally, users can filter results by jurisdiction, practice area, source and file format.

  • Results are drawn from legal sites.
  • Filters are available based on criteria such as news, blogs, government, and commercial.
  • Users can filter results by jurisdiction, practice area, source and file format.
  • Not all law-related questions will be answered by this search engine.
  • Coverage is limited to legal sites only.

Lexis Web is free for up to three searches per day. After that, a subscription is required.

#18. Infotopia – part of the VLRC family

searching research papers

Infotopia touts itself as an “alternative to Google safe search.” Scholarly book results are curated by librarians, teachers, and other educational workers. Users can select from a range of topics such as art, health, and science and technology, and then see a list of resources pertaining to the topic. 

Consequently, if you aren’t able to find what you are looking for within Infotopia’s pages, you will probably find it on one of its many suggested websites.

#19. Virtual Learning Resources Center

searching research papers

Virtual Learning Resources Center (VLRC) is an academic search engine that features thousands of academic sites chosen by educators and librarians worldwide. Using an index generated from a research portal, university, and library internet subject guides, students and instructors can find current, authoritative information for school.

  • Thousands of academic information websites indexed by it. You will also be able to get more refined results with custom Google search, which will speed up your research. 
  • Many people consider VLRC as one of the best free search engines to start looking for research material. 
  • TeachThought rated the Virtual LRC #3 in it’s list of 100 Search Engines For Academic Research
  • More relevant to education 
  • More relevant to students

searching research papers

Powered by Google Custom Search Engine (CSE), Jurn is a free online search engine for accessing and downloading free full-text scholarly papers. It was created by David Haden in a public open beta version in February 2009, initially for locating open access electronic journal articles in the arts and humanities.

After the indexing process was completed, a website containing additional public directories of web links to indexed publications was introduced in mid-2009. The Jurn search service and directory has been regularly modified and cleaned since then.

  • A great resource for finding academic papers that are behind paywalls.
  • The content is updated regularly.uren

Jurn is free to use.

#21. WorldWideScience

searching research papers

The Office of Scientific and Technical Information—a branch of the Office of Science within the U.S. Department of Energy—hosts the portal WorldWideScience , which has dubbed itself “The Global Science Gateway.”

Over 70 countries’ databases are used on the website. When a user enters a query, it contacts databases from all across the world and shows results in both English and translated journals and academic resources.

  • Results can be filtered by language and type of resource
  • Interface is easy to use
  • Contains both academic journal articles and translated academic resources 
  • The website can be difficult to navigate.

WorldWideScience is free to use.

#22. Google Books

searching research papers

A user can browse thousands of books on Google Books, from popular titles to old titles, to find pages that include their search terms. You can look through pages, read online reviews, and find out where to buy a hard copy once you find the book you are interested in.

#23. DOAJ (Directory of Open Access Journals)

searching research papers

DOAJ is a free search engine for scientific and scholarly materials. It is a searchable database with over 8,000 peer-reviewed research papers organized by subject. It’s one of the most comprehensive libraries of scientific and scholarly resources, with over 8,000 journals available on a variety of themes.

#24. Baidu Scholar

searching research papers

Baidu Xueshu (Academic) is the Chinese version for Google Scholar. IDU Scholar indexes academic papers from a variety of disciplines in both Chinese and English.

  • Articles are available in full text PDF.
  • Covers a variety of academic disciplines.
  • No abstracts are available for most articles, but summaries are provided for some.
  • A great portal that takes you to different specialized research platform
  • You need to be able to read Chinese to use the site
  • Since 2021 there is a rise of focus on China and the Chinese Communist Party

Baidu Scholar is free to use.

#25. PubMed Central

searching research papers

PubMed is a free search engine that provides references and abstracts for medical, life sciences, and biomedical topics.

If you’re studying anything related to healthcare or science, this site is perfect. PublicMed Central is operated by the National Center for Biotechnology Information, a division of the U.S. National Library of Medicine. It contains more than 3 million full-text journal articles. 

It’s similar to PubMed Health, which focuses on health-related research and includes abstracts and citations to over 26 million articles.

#26. MEDLINE®

searching research papers

MEDLINE® is a paid subscription database for life sciences and biomedicine that includes more than 28 million citations to journal articles. For finding reliable, carefully chosen health information, Medline Plus provides a powerful search tool and even a dictionary.

  • A great database for life sciences and biomedicine.
  • Contains more than 28 million references to journal articles.
  • References can be filtered by date, type of document, and language.
  • The database is expensive to access.
  • Some people find it difficult to navigate and find what they are looking for.

MEDLINE is not free to use ( pricing information ).

Defunct Academic Search Engines 

#27. microsoft academic  .

Microsoft Academic

Microsoft Academic Search seemed to be a failure from the beginning. It ended in 2012, then re-launched in 2016 as Microsoft Academic. It provides the researcher with the opportunity to search academic publications,

Microsoft Academic used to be the second-largest academic search engine after Google Scholar. Microsoft Academic provides a wealth of data for free, but Microsoft has announced that it will shut Microsoft Academic down in by 2022. 

#28. Scizzle

searching research papers

Designed to help researchers stay on top of the literature by setting up email alerts, based on key terms, for newspapers.

Unfortunately, academic search engines come and go. These are two that are no longer available.

Final Thoughts

There are many academic search engines that can help researchers and scholars find the information they need. This list provides a variety of options, starting with more familiar engines and moving on to less well-known ones. 

Keeping an open mind and exploring different sources is essential for conducting effective online research. With so much information at our fingertips, it’s important to make sure we’re using the best tools available to us.

Tell us in the comment below which academic search engine have you not heard of? Which database do you think we should add? What database do your professional societies use? What are the most useful academic websites for research in your opinion?

There is more.

Check out our other articles on the Best Academic Tools Series for Research below.

  • Learn how to get more done with these Academic Writing Tools  
  • Learn how to proofread your work with these Proofreading Tools
  • Learn how to broaden your research landscape with these Academic Search Engines
  • Learn how to manage multiple research projects with these Project Management Tools
  • Learn how to run effective survey research with these Survey Tools for Research
  • Learn how get more insights from important conversations and interviews with Transcription Tools
  • Learn how to manage the ever-growing list of references with these Reference Management Software
  • Learn how to double your productivity with literature reviews with these AI-Based Summary Generators
  • Learn how to build and develop your audience with these Academic Social Network Sites
  • Learn how to make sure your content is original and trustworthy with these Plagiarism Checkers
  • Learn how to talk about your work effectively with these Science Communication Tools

Photo of author

10 thoughts on “28 Best Academic Search Engines That make your research easier”

Thank you so much Joannah..I have found this information useful to me as librarian in an academic library

You are welcome! We are happy to hear that!

Thank You Team, for providing a comprehensive list of academic search engines that can help make research easier for students and scholars. The variety of search engines included offers a range of options for finding scholarly articles, journals, and other academic resources. The article also provides a brief summary of each search engine’s features, which helps in determining which one is the best fit for a specific research topic. Overall, this article is a valuable resource for anyone looking for a quick and easy way to access a wealth of academic information.

Thank you for taking the time to share your feedback with us. We are delighted to hear that you found our list of academic search engines helpful in making research easier for students and scholars. We understand the importance of having a variety of options when it comes to finding scholarly articles, journals, and other academic resources, and we strive to provide a comprehensive list of resources to meet those needs.

We are glad that you found the brief summary of each search engine’s features helpful in determining which one is the best fit for a specific research topic. Our goal is to make it easy for our readers to access valuable academic information and we’re glad that we were able to achieve that for you.

We appreciate your support and thank you for your kind words. We will continue to provide valuable resources for students and researchers in the future. Please let us know if you have any further questions or suggestions.

No more questions Thank You

I cannot thank you enough!!! thanks alot 🙂

Typography animation is a technique that combines text and motion to create visually engaging and dynamic animations. It involves animating individual letters, words, or phrases in various ways to convey a message, evoke emotions, or enhance the visual impact of a design or video. – Typography Animation Techniques Tools and Online Software {43}

Hi Joannah! Here’s another one you may want to add! Expontum ( https://www.expontum.com/ ) – Helps researchers quickly find knowledge gaps and identify what research projects have been completed before. Thanks!

Expontum – Helps researchers quickly find knowledge gaps and identify what research projects have been completed before. Expontum is free, open access, and available to all globally with no paid versions of the site. Automated processes scan research article information 24/7 so this website is constantly updating. By looking at over 35 million research publications (240 million by the end of 2023), the site has 146 million tagged research subjects and 122 million tagged research attributes. Learn more about methodology and sources on the Expontum About Page ( https://www.expontum.com/about.php )

Hey Ryan, I clicked and checked your site and thought it was very relevant to our reader. Thank you for sharing. And, we will be reviewing your site soon.

Sounds good! Thanks, Joannah!

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

We maintain and update science journals and scientific metrics. Scientific metrics data are aggregated from publicly available sources. Please note that we do NOT publish research papers on this platform. We do NOT accept any manuscript.

searching research papers

2012-2024 © scijournal.org

Banner

How to Write a Research Paper: Searching Tips

  • Anatomy of a Research Paper
  • Developing a Research Focus
  • Background Research Tips
  • Searching Tips
  • Scholarly Journals vs. Popular Journals
  • Thesis Statement
  • Annotated Bibliography
  • Citing Sources
  • Evaluating Sources
  • Literature Review
  • Academic Integrity
  • Scholarship as Conversation
  • Understanding Fake News
  • Data, Information, Knowledge

searching research papers

Still confused on how Boolean Operators work? Try out the Boolean Machine .

Advanced Searching Tips

Facets : Most databases will allow you to filter your results using "facets" (sometimes called limiters or refiners). These are the options (normally located on the right side) that allow you to only display results that meet certain criteria such as peer review, full text, year of publication, etc. Using facets can really help to cut down the number of results you get from a search.

Bibliography Scanning:  When you find an article you like, look at the bibliography. There is a good chance that you wi ll find other articles that would be helpful to your research.

Find Alternate Keywords:  Often databases will list the keywords that are associated with the article you find. You can sometimes find this information in the abstract of the article as well. 

Boolean Operators :Use of Boolean operators (AND, OR, NOT) can sometimes be useful to help tie together or separate search terms. Use AND to only find articles that contain both of the keywords you're looking for, use OR to search for articles that use either one, and use NOT to eliminate a search term from your search. 

Truncation and Wildcards:  Root words can have multiple endings Example: sun = suns, sunshine, sunny, sunlight. Likewise there are some words that are spelled differently, but mean the same thing.  Example:  color, colour

Keywords vs. Subject

Keywords  are how  you  think about a subject. What words do you use to describe the topic?

Subjects  are how a  database  thinks about a subject. You might think this word does not describe your topic, but the database does! 

Databases often have a thesaurus to help you learn their language. If not, look at a useful article in that database and use the subjects listed.

If you are looking for phrases, use quotations marks.  Then the database will search for it as a phrase and not just as words anywhere in the record     Examples:             

  • "North Dakota"
  • "University of Mary"
  • "right to life"

Good Search Terms

What's wrong with Googling your topic? Google can give you over 25,000,000 hits when you look for your topic.

Is a database better? Yes! It's easier to focus your search to your particular topic and limit your results to academic research.

First of all, start with a strategy:

  • Write the topic down   in the form of a sentence or question
  • Identify the  key concepts   of the question
  • Try to think of at least  one or two synonyms   for each of these concepts
  • If the database you are going to use has a  thesaurus (index of subject headings) , go there and search for the concepts and synonyms you have thought of.  If related terms are suggested, review these. Then, possibly select and search a few
  • Search each of your concepts separately   You can have 2 or more related terms in a concept
  • Use the Boolean operators   (and, or, not) to combine the results that you get in the previous step.

Bad Search Terms

Not getting good search results? Check your search terms.

Terms not worth typing -- Words like:

  • Pros and cons

In general, articles discuss strategies, effects and benefits. It's more effective to think about specific benefits, strategies and outcomes you want to research.

  • Example : if your question is: 'What are some strategies for using manipulatives with third grade math students?'  Your keywords could be: manipulatives, third grade or elementary school, and mathematics or arithmetic.  Notice that 'strategies' is not included .  You will still find articles that discuss strategies without that term in your search.
  • << Previous: Background Research Tips
  • Next: Scholarly Journals vs. Popular Journals >>
  • Last Updated: Jan 24, 2024 2:33 PM
  • URL: https://libguide.umary.edu/researchpaper

Help | Advanced Search

Computer Science > Artificial Intelligence

Title: an interactive agent foundation model.

Abstract: The development of artificial intelligence systems is transitioning from creating static, task-specific models to dynamic, agent-based systems capable of performing well in a wide range of applications. We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents across a wide range of domains, datasets, and tasks. Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction, enabling a versatile and adaptable AI framework. We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare. Our model demonstrates its ability to generate meaningful and contextually relevant outputs in each area. The strength of our approach lies in its generality, leveraging a variety of data sources such as robotics sequences, gameplay data, large-scale video datasets, and textual information for effective multimodal and multi-task learning. Our approach provides a promising avenue for developing generalist, action-taking, multimodal systems.

Submission history

Access paper:.

  • Download PDF
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Climate Policy Reform Options in 2025

With the expiration of many tax cuts and unmet climate targets, 2025 could be a crucial year for climate policy in the United States. Using an integrated model of energy supply and demand, this paper aims to assess climate policies that the U.S. federal government may consider in 2025 and to evaluate emissions reductions, fiscal costs and revenues, and household energy expenditures across a range of policy scenarios. Model results suggest that the emissions reductions of the Inflation Reduction Act are significantly augmented under scenarios that add a modest carbon fee or, to a lesser extent, that implement a clean electricity standard in the power sector. Second, net fiscal costs can be substantially reduced in scenarios that include a carbon fee, especially if fossil fuel exports are taxed. Third, expanding the IRA tax credits yields modest additional emissions reductions with higher fiscal costs. Finally, although none of the policy combinations across these scenarios achieve the U.S. target of a 50-52% economy-wide emissions reduction by 2030 from 2005 levels, the carbon fee and clean electricity standard scenarios achieve these levels between 2030 and 2035.

We are grateful to Joseph Aldy, Adrian Bilal, Tatyana Deryugina, Matthew Kotchen, and Robert Stavins for helpful suggestions. All remaining errors are our own. The views expressed in this paper are those of the authors and do not represent the Federal Reserve System, the Federal Reserve Bank of Minneapolis, or the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

More from NBER

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

A once-ignored community of science sleuths now has the research community on its heels

searching research papers

A community of sleuths hunting for errors in scientific research have sent shockwaves through some of the most prestigious research institutions in the world — and the science community at large.

High-profile cases of alleged image manipulations in papers authored by the former president at Stanford University and leaders at the Dana-Farber Cancer Institute have made national media headlines, and some top science leaders think this could be just the start.

“At the rate things are going, we expect another one of these to come up every few weeks,” said Holden Thorp, the editor-in-chief of the Science family of scientific journals, whose namesake publication is one of the two most influential in the field. 

The sleuths argue their work is necessary to correct the scientific record and prevent generations of researchers from pursuing dead-end topics because of flawed papers. And some scientists say it’s time for universities and academic publishers to reform how they address flawed research. 

“I understand why the sleuths finding these things are so pissed off,” said Michael Eisen, a biologist, the former editor of the journal eLife and a prominent voice of reform in scientific publishing. “Everybody — the author, the journal, the institution, everybody — is incentivized to minimize the importance of these things.” 

For about a decade, science sleuths unearthed widespread problems in scientific images in published papers, publishing concerns online but receiving little attention. 

That began to change last summer after then-Stanford President Marc Tessier-Lavigne, who is a neuroscientist, stepped down from his post after scrutiny of alleged image manipulations in studies he helped author and a report criticizing his laboratory culture. Tessier-Lavigne was not found to have engaged in misconduct himself, but members of his lab appeared to manipulate images in dubious ways, a report from a scientific panel hired to examine the allegations said. 

In January, a scathing post from a blogger exposed questionable work from top leaders at the Dana-Farber Cancer Institute , which subsequently asked journals to retract six articles and issue corrections for dozens more. 

In a resignation statement , Tessier-Lavigne noted that the panel did not find that he knew of misconduct and that he never submitted papers he didn’t think were accurate. In a statement from its research integrity officer, Dana-Farber said it took decisive action to correct the scientific record and that image discrepancies were not necessarily evidence an author sought to deceive. 

“We’re certainly living through a moment — a public awareness — that really hit an inflection when the Marc Tessier-Lavigne matter happened and has continued steadily since then, with Dana-Farber being the latest,” Thorp said. 

Now, the long-standing problem is in the national spotlight, and new artificial intelligence tools are only making it easier to spot problems that range from decades-old errors and sloppy science to images enhanced unethically in photo-editing software.  

This heightened scrutiny is reshaping how some publishers are operating. And it’s pushing universities, journals and researchers to reckon with new technology, a potential backlog of undiscovered errors and how to be more transparent when problems are identified. 

This comes at a fraught time in academic halls. Bill Ackman, a venture capitalist, in a post on X last month discussed weaponizing artificial intelligence to identify plagiarism of leaders at top-flight universities where he has had ideological differences, raising questions about political motivations in plagiarism investigations. More broadly, public trust in scientists and science has declined steadily in recent years, according to the Pew Research Center .

Eisen said he didn’t think sleuths’ concerns over scientific images had veered into “McCarthyist” territory.

“I think they’ve been targeting a very specific type of problem in the literature, and they’re right — it’s bad,” Eisen said. 

Scientific publishing builds the base of what scientists understand about their disciplines, and it’s the primary way that researchers with new findings outline their work for colleagues. Before publication, scientific journals consider submissions and send them to outside researchers in the field for vetting and to spot errors or faulty reasoning, which is called peer review. Journal editors will review studies for plagiarism and for copy edits before they’re published. 

That system is not perfect and still relies on good-faith efforts by researchers to not manipulate their findings.

Over the past 15 years, scientists have grown increasingly concerned about problems that some researchers were digitally altering images in their papers to skew or emphasize results. Discovering irregularities in images — typically of experiments involving mice, gels or blots — has become a larger priority of scientific journals’ work.   

Jana Christopher, an expert on scientific images who works for the Federation of European Biochemical Societies and its journals, said the field of image integrity screening has grown rapidly since she began working in it about 15 years ago. 

At the time, “nobody was doing this and people were kind of in denial about research fraud,” Christopher said. “The common view was that it was very rare and every now and then you would find someone who fudged their results.” 

Today, scientific journals have entire teams dedicated to dealing with images and trying to ensure their accuracy. More papers are being retracted than ever — with a record 10,000-plus pulled last year, according to a Nature analysis . 

A loose group of scientific sleuths have added outside pressure. Sleuths often discover and flag errors or potential manipulations on the online forum PubPeer. Some sleuths receive little or no payment or public recognition for their work.

“To some extent, there is a vigilantism around it,” Eisen said. 

An analysis of comments on more than 24,000 articles posted on PubPeer found that more than 62% of comments on PubPeer were related to image manipulation. 

For years, sleuths relied on sharp eyes, keen pattern recognition and an understanding of photo manipulation tools. In the past few years, rapidly developing artificial intelligence tools, which can scan papers for irregularities, are supercharging their work. 

Now, scientific journals are adopting similar technology to try to prevent errors from reaching publication. In January, Science announced that it was using an artificial intelligence tool called Proofig to scan papers that were being edited and peer-reviewed for publication. 

Thorp, the Science editor-in-chief, said the family of six journals added the tool “quietly” into its workflow about six months before that January announcement. Before, the journal was reliant on eye-checks to catch these types of problems. 

Thorp said Proofig identified several papers late in the editorial process that were not published because of problematic images that were difficult to explain and other instances in which authors had “logical explanations” for issues they corrected before publication.

“The serious errors that cause us not to publish a paper are less than 1%,” Thorp said.

In a statement, Chris Graf, the research integrity director at the publishing company Springer Nature, said his company is developing and testing “in-house AI image integrity software” to check for image duplications. Graf’s research integrity unit currently uses Proofig to help assess articles if concerns are raised after publication. 

Graf said processes varied across its journals, but that some Springer Nature publications manually check images for manipulations with Adobe Photoshop tools and look for inconsistencies in raw data for experiments that visualize cell components or common scientific experiments.

“While the AI-based tools are helpful in speeding up and scaling up the investigations, we still consider the human element of all our investigations to be crucial,” Graf said, adding that image recognition software is not perfect and that human expertise is required to protect against false positives and negatives. 

No tool will catch every mistake or cheat. 

“There’s a lot of human beings in that process. We’re never going to catch everything,” Thorp said. “We need to get much better at managing this when it happens, as journals, institutions and authors.”

Many science sleuths had grown frustrated after their concerns seemed to be ignored or as investigations trickled along slowly and without a public resolution.  

Sholto David, who publicly exposed concerns about Dana-Farber research in a blog post, said he largely “gave up” on writing letters to journal editors about errors he discovered because their responses were so insufficient. 

Elisabeth Bik, a microbiologist and longtime image sleuth, said she has frequently flagged image problems and “nothing happens.” 

Leaving public comments questioning research figures on PubPeer can start a public conversation over questionable research, but authors and research institutions often don’t respond directly to the online critiques. 

While journals can issue corrections or retractions, it’s typically a research institution’s or a university’s responsibility to investigate cases. When cases involve biomedical research supported by federal funding, the federal Office of Research Integrity can investigate. 

Thorp said the institutions need to move more swiftly to take responsibility when errors are discovered and speak plainly and publicly about what happened to earn the public’s trust.  

“Universities are so slow at responding and so slow at running through their processes, and the longer that goes on, the more damage that goes on,” Thorp said. “We don’t know what happened if instead of launching this investigation Stanford said, ‘These papers are wrong. We’re going to retract them. It’s our responsibility. But for now, we’re taking the blame and owning up to this.’” 

Some scientists worry that image concerns are only scratching the surface of science’s integrity issues — problems in images are simply much easier to spot than data errors in spreadsheets. 

And while policing bad papers and seeking accountability is important, some scientists think those measures will be treating symptoms of the larger problem: a culture that rewards the careers of those who publish the most exciting results, rather than the ones that hold up over time. 

“The scientific culture itself does not say we care about being right; it says we care about getting splashy papers,” Eisen said. 

Evan Bush is a science reporter for NBC News. He can be reached at [email protected].

IMAGES

  1. How to Search & Download Research Paper from Google Scholar

    searching research papers

  2. How to use and find Research Papers on Google Scholar? 10 Tips for

    searching research papers

  3. 8 Best Websites for Accessing Research Papers for Students

    searching research papers

  4. (PDF) Searching research papers using clustering and text mining

    searching research papers

  5. PPT

    searching research papers

  6. Research Survival Guide

    searching research papers

VIDEO

  1. A100% guaranteed method to bypass ai detection

  2. How to critically review research papers in 4 steps #academicwriting #studytips #thesis

  3. Advanced ways and tools used to search for articles and research papers. || Private Batch ||

  4. How can you find my published research paper that is still in process after publication

  5. Struggling finding research papers for your literature review? #researchtips #studytips #chatgpt

  6. How to find unlocked research papers for free

COMMENTS

  1. Google Scholar

    Google Scholar provides a simple way to broadly search for scholarly literature. Search across a wide variety of disciplines and sources: articles, theses, books, abstracts and court opinions.

  2. The best academic search engines [Update 2024]

    1. Google Scholar Google Scholar is the clear number one when it comes to academic search engines. It's the power of Google searches applied to research papers and patents. It not only lets you find research papers for all academic disciplines for free but also often provides links to full-text PDF files. Coverage: approx. 200 million articles

  3. Search

    With 160+ million publication pages, 25+ million researchers and 1+ million questions, this is where everyone can access science You can use AND, OR, NOT, "" and () to specify your search....

  4. Semantic Scholar

    Search 216,895,366 papers from all fields of science Try: Barbara L. Fredrickson Renaissance Laser New & Improved API for Developers Our API now includes paper search, better documentation, and increased stability. Join hundreds of other developers and start building your scholarly app today. Get Started Introducing Semantic Reader in Beta

  5. A systematic approach to searching: an efficient and complete method to

    1. Determine a clear and focused question. A systematic search can best be applied to a well-defined and precise research or clinical question. Questions that are too broad or too vague cannot be answered easily in a systematic way and will generally result in an overwhelming number of search results.

  6. About Google Scholar

    Google Scholar provides a simple way to broadly search for scholarly literature. From one place, you can search across many disciplines and sources: articles, theses, books, abstracts and court ...

  7. Google Scholar Search Help

    Search Help Get the most out of Google Scholar with some helpful tips on searches, email alerts, citation export, and more. Finding recent papers Your search results are normally sorted by...

  8. How to Find Sources

    Revised on May 31, 2023. It's important to know how to find relevant sources when writing a research paper, literature review, or systematic review. The types of sources you need will depend on the stage you are at in the research process, but all sources that you use should be credible, up to date, and relevant to your research topic.

  9. CORE

    Aggregation plays an increasingly essential role in maximising the long-term benefits of open access, helping to turn the promise of a 'research commons' into a reality. The aggregation services that CORE provides therefore make a very valuable contribution to the evolving open access environment in the UK. Show all.

  10. How to use Google Scholar: the ultimate guide

    Google Scholar searches are not case sensitive. 2. Use keywords instead of full sentences. 3. Use quotes to search for an exact match. 3. Add the year to the search phrase to get articles published in a particular year. 4. Use the side bar controls to adjust your search result.

  11. ScienceOpen

    Make an impact and build your research profile in the open with ScienceOpen. Search and discover relevant research in over 92 million Open Access articles and article records; Share your expertise and get credit by publicly reviewing any article; Publish your poster or preprint and track usage and impact with article- and author-level metrics; Create a topical Collection to advance your ...

  12. RefSeek

    Academic search engine for students and researchers. Locates relevant academic search results from web pages, books, encyclopedias, and journals.

  13. JSTOR Home

    Harness the power of visual materials—explore more than 3 million images now on JSTOR. Enhance your scholarly research with underground newspapers, magazines, and journals. Explore collections in the arts, sciences, and literature from the world's leading museums, archives, and scholars. JSTOR is a digital library of academic journals ...

  14. Internet Archive Scholar

    Search Millions of Research Papers. This fulltext search index includes over 35 million research articles and other scholarly documents preserved in the Internet Archive. The collection spans from digitized copies of eighteenth century journals through the latest Open Access conference proceedings and preprints crawled from the World Wide Web.

  15. Connected Papers

    Enter a typical paper and we'll build you a graph of similar papers in the field. Explore and build more graphs for interesting papers that you find - soon you'll have a real, visual understanding of the trends, popular works and dynamics of the field you're interested in. Make sure you haven't missed an important paper

  16. 28 Best Academic Search Engines That make your research easier

    #1. Google Scholar #2. ERIC (Education Resources Information Center) #3. Wolfram Alpha #4. iSEEK Education #5. BASE (Bielefeld Academic Search Engine) #6. CORE #7. Science.gov #8. Semantic Scholar #9. RefSeek #10. ResearchGate #11. DataONE Search (formerly CiteULike) #12. DataElixir #13.

  17. Find a journal

    Find the right journal for your research. Looking for the best journal match for your paper? Search the world's leading source of academic journals using your abstract or your keywords and other details. More on how it works. Match my abstract Search by keywords, aims & scope, ...

  18. Research Guides: How to Write a Research Paper: Searching Tips

    How to Write a Research Paper: Searching Tips Step by step description of how to write a research paper Data, Information, Knowledge Still confused on how Boolean Operators work? Try out the Boolean Machine. Advanced Searching Tips Facets: Most databases will allow you to filter your results using "facets" (sometimes called limiters or refiners).

  19. How to search for research papers effectively

    The most popular ones are Yahoo, Bing, and Google. Researchers can find research articles and more using specialized search engines like Google Scholar, which is an excellent resource for accessing research articles. Other options include Microsoft Academic, Pubmed Central, Science.gov., Worldcat, and Refseek, to name a few 1.

  20. 10 Best Online Websites and Resources for Academic Research

    Still, Google Books is a great first step to find sources that you can later look for at your campus library. 6. Science.gov. If you're looking for scientific research, Science.gov is a great option. The site provides full-text documents, scientific data, and other resources from federally funded research.

  21. The best AI tools for research papers and academic research (Literature

    They can mine key information from countless PDFs, drastically reducing research time. You can even search with semantic questions, rather than having to deal with key words etc. With AI as your research assistant, you can navigate the vast sea of scientific research with ease, uncovering citations and focusing on academic writing.

  22. pyResearchInsights—An open‐source Python package for scientific text

    1 INTRODUCTION. Keeping track of conceptual and methodological developments in any scientific discipline is imperative to advance research. An exponential growth in published scientific literature has made it extremely difficult to keep track of scientific advancements (Roll et al., 2018).Within the field of ecology, we have observed a twofold increase in published literature over the last ...

  23. Scinapse

    Paper Search. Collections. Favorites. History. Notes. Keyword Alerts. Submit feedback. Settings. Access diverse information extracted from hundreds to thousands of papers, identifying key trends in any research field.

  24. [2402.05929] An Interactive Agent Foundation Model

    The development of artificial intelligence systems is transitioning from creating static, task-specific models to dynamic, agent-based systems capable of performing well in a wide range of applications. We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents across a wide range of domains, datasets, and tasks. Our training ...

  25. Researching the White Paper

    Unlike a school research paper, the author does not set out to argue for or against a particular position, and then devote the majority of effort to finding sources to support the selected position. Instead, the author sets out in good faith to do as much fact-finding as possible, and thus research is likely to present multiple, conflicting ...

  26. Climate Policy Reform Options in 2025

    With the expiration of many tax cuts and unmet climate targets, 2025 could be a crucial year for climate policy in the United States. Using an integrated model of energy supply and demand, this paper aims to assess climate policies that the U.S. federal government may consider in 2025 and to evaluate emissions reductions, fiscal costs and revenues, and household energy expenditures across a ...

  27. A once-ignored community of science sleuths now has the research

    A community of sleuths hunting for errors in scientific research have sent shockwaves through some of the most prestigious research institutions in the world — and the science community at large.

  28. Disentangling the Anacondas: Revealing a New Green Species and ...

    A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the ...