Site's logo

Problem-Based Learning (PBL)

What is Problem-Based Learning (PBL)? PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and research skills, but they also sharpen their critical thinking and problem-solving abilities essential for life-long learning.

See also: Just-in-Time Teaching

Problem-Based Learning (PBL)

In implementing PBL, the teaching role shifts from that of the more traditional model that follows a linear, sequential pattern where the teacher presents relevant material, informs the class what needs to be done, and provides details and information for students to apply their knowledge to a given problem. With PBL, the teacher acts as a facilitator; the learning is student-driven with the aim of solving the given problem (note: the problem is established at the onset of learning opposed to being presented last in the traditional model). Also, the assignments vary in length from relatively short to an entire semester with daily instructional time structured for group work.

Pbl

By working with PBL, students will:

  • Become engaged with open-ended situations that assimilate the world of work
  • Participate in groups to pinpoint what is known/ not known and the methods of finding information to help solve the given problem.
  • Investigate a problem; through critical thinking and problem solving, brainstorm a list of unique solutions.
  • Analyze the situation to see if the real problem is framed or if there are other problems that need to be solved.

How to Begin PBL

  • Establish the learning outcomes (i.e., what is it that you want your students to really learn and to be able to do after completing the learning project).
  • Find a real-world problem that is relevant to the students; often the problems are ones that students may encounter in their own life or future career.
  • Discuss pertinent rules for working in groups to maximize learning success.
  • Practice group processes: listening, involving others, assessing their work/peers.
  • Explore different roles for students to accomplish the work that needs to be done and/or to see the problem from various perspectives depending on the problem (e.g., for a problem about pollution, different roles may be a mayor, business owner, parent, child, neighboring city government officials, etc.).
  • Determine how the project will be evaluated and assessed. Most likely, both self-assessment and peer-assessment will factor into the assignment grade.

Designing Classroom Instruction

See also: Inclusive Teaching Strategies

  • Take the curriculum and divide it into various units. Decide on the types of problems that your students will solve. These will be your objectives.
  • Determine the specific problems that most likely have several answers; consider student interest.
  • Arrange appropriate resources available to students; utilize other teaching personnel to support students where needed (e.g., media specialists to orientate students to electronic references).
  • Decide on presentation formats to communicate learning (e.g., individual paper, group PowerPoint, an online blog, etc.) and appropriate grading mechanisms (e.g., rubric).
  • Decide how to incorporate group participation (e.g., what percent, possible peer evaluation, etc.).

How to Orchestrate a PBL Activity

  • Explain Problem-Based Learning to students: its rationale, daily instruction, class expectations, grading.
  • Serve as a model and resource to the PBL process; work in-tandem through the first problem
  • Help students secure various resources when needed.
  • Supply ample class time for collaborative group work.
  • Give feedback to each group after they share via the established format; critique the solution in quality and thoroughness. Reinforce to the students that the prior thinking and reasoning process in addition to the solution are important as well.

Teacher’s Role in PBL

See also: Flipped teaching

As previously mentioned, the teacher determines a problem that is interesting, relevant, and novel for the students. It also must be multi-faceted enough to engage students in doing research and finding several solutions. The problems stem from the unit curriculum and reflect possible use in future work situations.

  • Determine a problem aligned with the course and your students. The problem needs to be demanding enough that the students most likely cannot solve it on their own. It also needs to teach them new skills. When sharing the problem with students, state it in a narrative complete with pertinent background information without excessive information. Allow the students to find out more details as they work on the problem.
  • Place students in groups, well-mixed in diversity and skill levels, to strengthen the groups. Help students work successfully. One way is to have the students take on various roles in the group process after they self-assess their strengths and weaknesses.
  • Support the students with understanding the content on a deeper level and in ways to best orchestrate the various stages of the problem-solving process.

The Role of the Students

See also: ADDIE model

The students work collaboratively on all facets of the problem to determine the best possible solution.

  • Analyze the problem and the issues it presents. Break the problem down into various parts. Continue to read, discuss, and think about the problem.
  • Construct a list of what is known about the problem. What do your fellow students know about the problem? Do they have any experiences related to the problem? Discuss the contributions expected from the team members. What are their strengths and weaknesses? Follow the rules of brainstorming (i.e., accept all answers without passing judgment) to generate possible solutions for the problem.
  • Get agreement from the team members regarding the problem statement.
  • Put the problem statement in written form.
  • Solicit feedback from the teacher.
  • Be open to changing the written statement based on any new learning that is found or feedback provided.
  • Generate a list of possible solutions. Include relevant thoughts, ideas, and educated guesses as well as causes and possible ways to solve it. Then rank the solutions and select the solution that your group is most likely to perceive as the best in terms of meeting success.
  • Include what needs to be known and done to solve the identified problems.
  • Prioritize the various action steps.
  • Consider how the steps impact the possible solutions.
  • See if the group is in agreement with the timeline; if not, decide how to reach agreement.
  • What resources are available to help (e.g., textbooks, primary/secondary sources, Internet).
  • Determine research assignments per team members.
  • Establish due dates.
  • Determine how your group will present the problem solution and also identify the audience. Usually, in PBL, each group presents their solutions via a team presentation either to the class of other students or to those who are related to the problem.
  • Both the process and the results of the learning activity need to be covered. Include the following: problem statement, questions, data gathered, data analysis, reasons for the solution(s) and/or any recommendations reflective of the data analysis.
  • A well-stated problem and conclusion.
  • The process undertaken by the group in solving the problem, the various options discussed, and the resources used.
  • Your solution’s supporting documents, guests, interviews and their purpose to be convincing to your audience.
  • In addition, be prepared for any audience comments and questions. Determine who will respond and if your team doesn’t know the answer, admit this and be open to looking into the question at a later date.
  • Reflective thinking and transfer of knowledge are important components of PBL. This helps the students be more cognizant of their own learning and teaches them how to ask appropriate questions to address problems that need to be solved. It is important to look at both the individual student and the group effort/delivery throughout the entire process. From here, you can better determine what was learned and how to improve. The students should be asked how they can apply what was learned to a different situation, to their own lives, and to other course projects.

See also: Kirkpatrick Model: Four Levels of Learning Evaluation

' src=

I am a professor of Educational Technology. I have worked at several elite universities. I hold a PhD degree from the University of Illinois and a master's degree from Purdue University.

Similar Posts

Adaptive learning: what is it, what are its benefits and how does it work.

People learn in many different ways. Adaptive learning has sought to address differences in ability by targeting teaching practices. The use of adaptive models, ranging from technological programs to intelligent systems, can be…

How Can We Align Learning Objectives, Instructional Strategies, and Assessments?

What is course alignment When a course is being designed, it is important to ensure that ensure that these three components of your course are aligned. In order to align various components of…

Kolb’s Experiential Learning Theory & Learning Styles

The humanistic and constructivist approaches to education, which emphasize that learning occurs naturally, include David Kolb’s Theory of Experiential Learning. Kolb proposed that experience was critical in the development of knowledge construction, as…

Just-in-Time Teaching (JiTT)

Just-in-Time Teaching (JiTT) is an innovative approach to education that integrates real-life and virtual instruction to maximize the efficacy of both. This teaching method is created by a team led by university professor…

How to Create Effective Multiple Choice Questions

There are many advantages to using multiple choice (MC) questions as an evaluation / assessment strategy. They are easy to set up, easy to mark, and allow teachers to cover a wide range…

Bloom’s Taxonomy

Together with Edward Gurst, David Krathwohl, Max Englehart and Walter Hill, psychologist Benjamin Bloom released Taxonomy of Educational Objectives in 1956. This framework would prove to be valuable to teachers and instructors everywhere…

Center for Teaching Innovation

Resource library.

  • Getting Started with Establishing Ground Rules
  • Sample group work rubric
  • Problem-Based Learning Clearinghouse of Activities, University of Delaware

Problem-Based Learning

Problem-based learning  (PBL) is a student-centered approach in which students learn about a subject by working in groups to solve an open-ended problem. This problem is what drives the motivation and the learning. 

Why Use Problem-Based Learning?

Nilson (2010) lists the following learning outcomes that are associated with PBL. A well-designed PBL project provides students with the opportunity to develop skills related to:

  • Working in teams.
  • Managing projects and holding leadership roles.
  • Oral and written communication.
  • Self-awareness and evaluation of group processes.
  • Working independently.
  • Critical thinking and analysis.
  • Explaining concepts.
  • Self-directed learning.
  • Applying course content to real-world examples.
  • Researching and information literacy.
  • Problem solving across disciplines.

Considerations for Using Problem-Based Learning

Rather than teaching relevant material and subsequently having students apply the knowledge to solve problems, the problem is presented first. PBL assignments can be short, or they can be more involved and take a whole semester. PBL is often group-oriented, so it is beneficial to set aside classroom time to prepare students to   work in groups  and to allow them to engage in their PBL project.

Students generally must:

  • Examine and define the problem.
  • Explore what they already know about underlying issues related to it.
  • Determine what they need to learn and where they can acquire the information and tools necessary to solve the problem.
  • Evaluate possible ways to solve the problem.
  • Solve the problem.
  • Report on their findings.

Getting Started with Problem-Based Learning

  • Articulate the learning outcomes of the project. What do you want students to know or be able to do as a result of participating in the assignment?
  • Create the problem. Ideally, this will be a real-world situation that resembles something students may encounter in their future careers or lives. Cases are often the basis of PBL activities. Previously developed PBL activities can be found online through the University of Delaware’s PBL Clearinghouse of Activities .
  • Establish ground rules at the beginning to prepare students to work effectively in groups.
  • Introduce students to group processes and do some warm up exercises to allow them to practice assessing both their own work and that of their peers.
  • Consider having students take on different roles or divide up the work up amongst themselves. Alternatively, the project might require students to assume various perspectives, such as those of government officials, local business owners, etc.
  • Establish how you will evaluate and assess the assignment. Consider making the self and peer assessments a part of the assignment grade.

Nilson, L. B. (2010).  Teaching at its best: A research-based resource for college instructors  (2nd ed.).  San Francisco, CA: Jossey-Bass. 

  • Illinois Online
  • Illinois Remote

teaching_learning_banner

  • TA Resources
  • Teaching Consultation
  • Teaching Portfolio Program
  • Grad Academy for College Teaching
  • Faculty Events
  • The Art of Teaching
  • 2022 Illinois Summer Teaching Institute
  • Large Classes
  • Leading Discussions
  • Laboratory Classes
  • Lecture-Based Classes
  • Planning a Class Session
  • Questioning Strategies
  • Classroom Assessment Techniques (CATs)
  • Problem-Based Learning (PBL)
  • The Case Method
  • Community-Based Learning: Service Learning
  • Group Learning
  • Just-in-Time Teaching
  • Creating a Syllabus
  • Motivating Students
  • Dealing With Cheating
  • Discouraging & Detecting Plagiarism
  • Diversity & Creating an Inclusive Classroom
  • Harassment & Discrimination
  • Professional Conduct
  • Foundations of Good Teaching
  • Student Engagement
  • Assessment Strategies
  • Course Design
  • Student Resources
  • Teaching Tips
  • Graduate Teacher Certificate
  • Certificate in Foundations of Teaching
  • Teacher Scholar Certificate
  • Certificate in Technology-Enhanced Teaching
  • Master Course in Online Teaching (MCOT)
  • 2022 Celebration of College Teaching
  • 2023 Celebration of College Teaching
  • Hybrid Teaching and Learning Certificate
  • Classroom Observation Etiquette
  • Teaching Philosophy Statement
  • Pedagogical Literature Review
  • Scholarship of Teaching and Learning
  • Instructor Stories
  • Podcast: Teach Talk Listen Learn
  • Universal Design for Learning

Sign-Up to receive Teaching and Learning news and events

Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and life-long learning (Duch et al, 2001).

PBL can be incorporated into any learning situation. In the strictest definition of PBL, the approach is used over the entire semester as the primary method of teaching. However, broader definitions and uses range from including PBL in lab and design classes, to using it simply to start a single discussion. PBL can also be used to create assessment items. The main thread connecting these various uses is the real-world problem.

Any subject area can be adapted to PBL with a little creativity. While the core problems will vary among disciplines, there are some characteristics of good PBL problems that transcend fields (Duch, Groh, and Allen, 2001):

  • The problem must motivate students to seek out a deeper understanding of concepts.
  • The problem should require students to make reasoned decisions and to defend them.
  • The problem should incorporate the content objectives in such a way as to connect it to previous courses/knowledge.
  • If used for a group project, the problem needs a level of complexity to ensure that the students must work together to solve it.
  • If used for a multistage project, the initial steps of the problem should be open-ended and engaging to draw students into the problem.

The problems can come from a variety of sources: newspapers, magazines, journals, books, textbooks, and television/ movies. Some are in such form that they can be used with little editing; however, others need to be rewritten to be of use. The following guidelines from The Power of Problem-Based Learning (Duch et al, 2001) are written for creating PBL problems for a class centered around the method; however, the general ideas can be applied in simpler uses of PBL:

  • Choose a central idea, concept, or principle that is always taught in a given course, and then think of a typical end-of-chapter problem, assignment, or homework that is usually assigned to students to help them learn that concept. List the learning objectives that students should meet when they work through the problem.
  • Think of a real-world context for the concept under consideration. Develop a storytelling aspect to an end-of-chapter problem, or research an actual case that can be adapted, adding some motivation for students to solve the problem. More complex problems will challenge students to go beyond simple plug-and-chug to solve it. Look at magazines, newspapers, and articles for ideas on the story line. Some PBL practitioners talk to professionals in the field, searching for ideas of realistic applications of the concept being taught.
  • What will the first page (or stage) look like? What open-ended questions can be asked? What learning issues will be identified?
  • How will the problem be structured?
  • How long will the problem be? How many class periods will it take to complete?
  • Will students be given information in subsequent pages (or stages) as they work through the problem?
  • What resources will the students need?
  • What end product will the students produce at the completion of the problem?
  • Write a teacher's guide detailing the instructional plans on using the problem in the course. If the course is a medium- to large-size class, a combination of mini-lectures, whole-class discussions, and small group work with regular reporting may be necessary. The teacher's guide can indicate plans or options for cycling through the pages of the problem interspersing the various modes of learning.
  • The final step is to identify key resources for students. Students need to learn to identify and utilize learning resources on their own, but it can be helpful if the instructor indicates a few good sources to get them started. Many students will want to limit their research to the Internet, so it will be important to guide them toward the library as well.

The method for distributing a PBL problem falls under three closely related teaching techniques: case studies, role-plays, and simulations. Case studies are presented to students in written form. Role-plays have students improvise scenes based on character descriptions given. Today, simulations often involve computer-based programs. Regardless of which technique is used, the heart of the method remains the same: the real-world problem.

Where can I learn more?

  • PBL through the Institute for Transforming Undergraduate Education at the University of Delaware
  • Duch, B. J., Groh, S. E, & Allen, D. E. (Eds.). (2001). The power of problem-based learning . Sterling, VA: Stylus.
  • Grasha, A. F. (1996). Teaching with style: A practical guide to enhancing learning by understanding teaching and learning styles. Pittsburgh: Alliance Publishers.

Center for Innovation in Teaching & Learning

249 Armory Building 505 East Armory Avenue Champaign, IL 61820

217 333-1462

Email: [email protected]

Office of the Provost

  • Our Mission

5 Strategies for Aligning PBL to Real-World Problem-Solving

The closer project-based learning comes to the messy, complicated problems of our world today, the more students benefit.

Student paint an outdoor wall mural

In March 2020, I faced a number of challenges as a school superintendent. Earlier in the month, I had read about a virus that was sweeping the world, and while American schools had not shuttered, the challenge seemed both eminent and far off.

Over the next several weeks, months, and years, I, and every other leader, faced a series of problems, including closing schools, redesigning in-person instruction, developing virtual learning programs, and working in partnership with public health organizations.

Interestingly, I learned that authentic, real-world problem-solving has a few key features:

  • I was never given one problem but was presented with a number of problem situations in which I and my team needed to derive key questions that drove our decision-making.
  • The problems we faced continued to change, requiring us to go back and learn new content, prepare for multiple contingencies, and communicate up-to-date information and our plans for multiple scenarios.

Contemporary learning frameworks and related methodologies can learn a lot from what we are experiencing with Covid-19. Applying the two features above to project-based learning (PBL) by using a more fluid rather than static, linear model may best prepare students for what the future of learning and work actually looks and feels like.

5 Strategies to Make PBL More Authentic

1: Students derive the driving question from multiple contexts or multiple issues within a context. In one third-grade class, students read the book We Are Water Protectors and discuss the challenges Native Americans face with the introduction of the Keystone pipeline. Next, the teacher presents two problems:

  • The extraction of cobalt to build electric cars and the negative impact on rural African communities
  • The development of wind farms and the decline of the golden eagle

Students then work together in this strategy to determine the key challenges facing Indigenous people and native species. Next, they develop core questions they want to answer and determine what they need to learn to answer those questions.

2: Students face changes in the problem(s) they are contemplating. Problem environments are fluid, not static. In an AP economics class, students are analyzing supply and demand of a new video game system and preparing to advise the company on what it should do to improve profits.

Every day at the beginning of class, their teacher asks them to scan reliable news sources to report any changes to supply chains, governmental restrictions such as embargoes, or any other factor that would influence their solutions to the client.

The students found out that there were major supply chain issues with essential parts needed to create the video game console. Moreover, some of the ships carrying current consoles are sitting in Asia awaiting passage to the United States because of a political dispute.

The students worked together in small groups and discussed the key factors that were impacting the company they were advising, along with what the students needed to learn and understand before meeting with the client, and finally developed multiple recommendations based on multiple contingencies.

The general strategy looks like this:

  • Students learn about changes to the problem content (this could be via reading multiple news reports, listening to daily podcasts, or engaging with actual people in the field).
  • In small groups, students share their key understanding of the changes and how that impacts their current understanding and strategy.
  • Students determine key “need-to-knows” they have and work with the teacher and peers to gain competencies.
  • Students plan for multiple contingencies and tentative solutions.

3: Presentations are short bursts of what students think and propose during the project with dollops of feedback to make adjustments. Seventh-grade students are sending in their persuasive essay on one of a number of topics (e.g., addressing the homelessness crisis, engaging with politicians on critical race theory).

As they are drafting their papers, students are randomly assigned to present their ideas and current drafts to other students and receive feedback on their writing as well as their persuasiveness to opposing views.

The strategy looks like this:

  • Students have a mid-lesson stop in which they have 5 minutes to prepare to present their current work.
  • Students conduct a feedback protocol (tuning or critical friends) in which one or two students receive feedback.
  • Students who received feedback share what they have changed in a reflective journal or exit ticket.
  • This process is repeated daily.

4: Authentic audiences engage with students throughout the project rather than just at the beginning and/or end. In a fifth-grade art class, students have been commissioned by the local town council to paint murals that represent voices that are largely marginalized in their community. During their work, students meet with a number of artists and community members who share their stories, offer feedback, and address questions.

In this strategy, students engage with people outside the classroom at the beginning, middle, and end of a project to hear stories that relate to the problem context, receive guidance on the technical aspects of the content they are learning, and ask questions.

5: Groups work together in small bursts of time to solve problems. Students in Algebra II are working with logarithms to solve a number of problems related to stomach acid, algae-filled hot tubs, soil composition, and buffalo teeth.

While each student may be solving a different problem, students form small groups to share their learning, evaluate the connections between each context, and give each other feedback. After approximately two weeks of solving complex math tasks, the teacher presents three new problems and forms new groups for students to solve the problem in one or two days.

In this strategy, students form temporary groups of two to three to solve a new challenge and work together for one to two days without forming task-specific roles.

MyeLearningWorld

Disclosure: MyeLearningWorld is reader-supported. We may receive a commission if you purchase through our links.

What is Problem-Based Learning? A Complete Guide for Educators

Published on: 11/30/2023

Photo of author

By Scott Winstead

  • Share on Facebook
  • Share on LinkedIn
  • Share on Reddit
  • Share on Pinterest

problem based learning

As an educator, you’re always looking for the most effective ways to help your students master the material and develop the skills they need to succeed. With so many different instructional approaches to choose from, it can be tough to decide which one is right for your class. One approach that has shown promise in a variety of educational settings is problem-based learning (PBL) — a method that involves having students work through real-world, open-ended problems and scenarios as a means of learning new concepts.

In fact, studies have shown that problem based learning is often more effective than traditional lecturing.

How can you use problem-based learning it as a teacher, instructional designer ,  course creator , or trainer? In the guide below, I’ll talk more what problem-based learning is, how it can be used in the classroom, its pros and cons, and more.

What is Problem-Based Learning?

With problem-based learning, students work on a real-world, open-ended problem or issue and try to solve it.

By challenging students to come up with solutions to real problems, they learn to think critically and creatively. They also learn to work together and communicate effectively.

This form of experienced-based education can help students better master the material and develop the skills they need to succeed in college and their careers.

In my experience, when students are engaged in problem-based learning, they tend to be more motivated and enthusiastic about learning. And they retain information better too.

When using PBL, the instructor’s role switches from the more conventional paradigm. The teacher gives relevant content, tells the class what has to be done, and offers excellent knowledge for solving a particular problem.

The instructor serves as a facilitator in PBL. The learning is student-driven, intending to address the issue (note: the problem is established at the onset of learning instead of being presented last in the traditional model). Furthermore, the tasks range from a few weeks to a semester, with daily instructional time dedicated to group work.

If you’re looking for a way to help your students learn more effectively, problem-based learning may be the answer.

How to Use Problem-Based Learning in the Classroom

There are a few different ways you can incorporate problem-based learning into your classroom.

One option is to have students work on problems individually or in small groups.

Another option is to use problem-based learning as a whole-class activity.

This is a great way to get all of your students engaged and involved in the lesson.

Before you can implement problem-based learning, you should:

  • Identify what it is exactly that you want the students to learn
  • Determine what real-world problem or issue you want them to solve that ties into the learning objective.
  • Come up with a plan and rules for how the students will work together on the problem.
  • Define how the assignment will be evaluated.

Once you have a plan in place, you can start incorporating problem-based learning into your lessons.

The Pros and Cons of Problem-Based Learning

When it comes to teaching, there’s no one-size-fits-all approach.

What works for one teacher in one classroom might not work for another teacher in a different classroom.

The same goes for problem-based learning. While this instructional approach has its benefits, there are also some potential drawbacks to consider.

Pros of Problem-Based Learning:

  • Helps students learn how to think critically and solve problems
  • Encourages students to be creative
  • Teaches students how to work together
  • Helps students learn how to communicate effectively

Cons of Problem-Based Learning:

  • May be challenging for some teachers to implement
  • May be too much for some students who struggle with problem-solving
  • If not done correctly, can lead to students feeling overwhelmed or frustrated

Before you decide to use problem-based learning in your classroom, weigh the pros and cons to see if it’s the right instructional approach for you and your students.

Final Thoughts on Problem-Based Learning

Problem-based learning (PBL) is a student-centered teaching method that encourages students to learn by actively solving real-world problems.

Unlike traditional instructional methods, PBL does not focus on delivering content but rather on facilitating student learning through problem-solving.

This type of learning has been shown to be particularly effective in promoting higher-order thinking skills such as critical thinking and creativity.

In addition, PBL can help to build students’ confidence and self-efficacy as they learn to tackle challenging problems.

For teachers, PBL can be a useful tool for differentiating instruction and meeting the needs of all learners.

When designed and implemented effectively, PBL can provide an engaging and rewarding learning experience for both teachers and students.

Other Useful Resources

  • What is Adaptive Learning?
  • What is Inquiry Based Learning?
  • What is Just in Time Learning?
  • What is Microlearning?
  • What is Project Based Learning?
  • What is Service Learning?

Do you have any experience using problem-based learning in your classroom? Share your thoughts by leaving a comment below.

5 Scenarios Where Agile for Instructional Designers Makes Sense

What is service learning a complete guide for educators, leave a comment cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

11k Accesses

9 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

problem solving e problem based learning

Probing boundary conditions of Productive Failure and analyzing the role of young students’ collaboration

Claudia Mazziotti, Nikol Rummel, … Katharina Loibl

problem solving e problem based learning

Fostering twenty-first century skills among primary school students through math project-based learning

Nadia Rehman, Wenlan Zhang, … Samia Batool

problem solving e problem based learning

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

Malavika E. Santhosh, Jolly Bhadra, … Noora Al-Thani

Introduction

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Exploring the effects of digital technology on deep learning: a meta-analysis.

Education and Information Technologies (2024)

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

problem solving e problem based learning

Teaching and Learning

Elevating math education through problem-based learning, by lisa matthews     feb 14, 2024.

Elevating Math Education Through Problem-Based Learning

Image Credit: rudall30 / Shutterstock

Imagine you are a mountaineer. Nothing excites you more than testing your skill, strength and resilience against some of the most extreme environments on the planet, and now you've decided to take on the greatest challenge of all: Everest, the tallest mountain in the world. You’ll be training for at least a year, slowly building up your endurance. Climbing Everest involves hiking for many hours per day, every day, for several weeks. How do you prepare for that?

The answer, as in many situations, lies in math. Climbers maximize their training by measuring their heart rate. When they train, they aim for a heart rate between 60 and 80 percent of their maximum. More than that, and they risk burning out. A heart rate below 60 percent means the training is too easy — they’ve got to push themselves harder. By combining this strategy with other types of training, overall fitness will increase over time, and eventually, climbers will be ready, in theory, for Everest.

problem solving e problem based learning

Knowledge Through Experience

The influence of constructivist theories has been instrumental in shaping PBL, from Jean Piaget's theory of cognitive development, which argues that knowledge is constructed through experiences and interactions , to Leslie P. Steffe’s work on the importance of students constructing their own mathematical understanding rather than passively receiving information .

You don't become a skilled mountain climber by just reading or watching others climb. You become proficient by hitting the mountains, climbing, facing challenges and getting right back up when you stumble. And that's how people learn math.

problem solving e problem based learning

So what makes PBL different? The key to making it work is introducing the right level of problem. Remember Vygotsky’s Zone of Proximal Development? It is essentially the space where learning and development occur most effectively – where the task is not so easy that it is boring but not so hard that it is discouraging. As with a mountaineer in training, that zone where the level of challenge is just right is where engagement really happens.

I’ve seen PBL build the confidence of students who thought they weren’t math people. It makes them feel capable and that their insights are valuable. They develop the most creative strategies; kids have said things that just blow my mind. All of a sudden, they are math people.

problem solving e problem based learning

Supporting Teachers With Implementation

Why aren’t more math teachers adopting problem-based learning in their class lessons? One main stumbling block is a lack of teacher training in PBL methods. Implementing PBL effectively requires a shift in the role of the teacher from a knowledge provider to a facilitator of learning.

In my experience introducing the problem-based curriculum Imagine IM to teachers, professional learning is key to helping teachers make that shift. Experiencing PBL firsthand allows teachers to develop a deeper conceptual understanding of math while building confidence in their own teaching practices. Teachers are not only mastering content knowledge but also shifting mindsets to a more exploratory and inquiry-based approach. I see the same reactions in teachers as I do from students, the same joy in being creative with math: “Hey, I did it! I figured it out!” And then after that — and this is what we do at Imagine Learning — ongoing support and coaching are critically helpful.

Skills and Understanding

Despite the challenges, the trend toward PBL in math education has been growing , driven by evidence of its benefits in developing critical thinking, problem-solving skills and a deeper understanding of mathematical concepts, as well as building more positive math identities. The incorporation of PBL aligns well with the contemporary broader shift toward more student-centered, interactive and meaningful learning experiences. It has become an increasingly important component of effective math education, equipping students with the skills and understanding necessary for success in the 21st century.

At the heart of Imagine IM lies a commitment to providing students with opportunities for deep, active mathematics practice through problem-based learning. Imagine IM builds upon the problem-based pedagogy and instructional design of the renowned Illustrative Mathematics curriculum, adding a number of exclusive videos, digital interactives, design-enhanced print and hands-on tools.

The value of imagine im's enhancements is evident in the beautifully produced inspire math videos, from which the mountaineer scenario stems. inspire math videos showcase the math for each imagine im unit in a relevant and often unexpected real-world context to help spark curiosity. the videos use contexts from all around the world to make cross-curricular connections and increase engagement..

This article was sponsored by Imagine Learning and produced by the Solutions Studio team.

Imagine Learning

More from EdSurge

The Growing Importance of Digital Citizenship

The Growing Importance of Digital Citizenship

By abbie misha.

As Public Skepticism of College Grows, Students Become Savvier Customers

EdSurge Podcast

As public skepticism of college grows, students become savvier customers, by jeffrey r. young.

Boys Aren’t Excelling in Schools. Would More Male Role Models in Early Learning Help?

Diversity and Equity

Boys aren’t excelling in schools. would more male role models in early learning help, by daniel mollenkamp.

An Educator’s Podcast Aims to Be an Antidote to School Culture Wars

An Educator’s Podcast Aims to Be an Antidote to School Culture Wars

Journalism that ignites your curiosity about education.

EdSurge is an editorially independent project of and

  • Product Index
  • Write for us
  • Advertising

FOLLOW EDSURGE

© 2024 All Rights Reserved

New TTE Logo very Small

Teach the Earth the portal for Earth Education

From NAGT's On the Cutting Edge Collection

NAGT Join small

  • Course Topics
  • Atmospheric Science
  • Biogeoscience
  • Environmental Geology
  • Environmental Science
  • Geochemistry
  • Geomorphology
  • GIS/Remote Sensing
  • Hydrology/Hydrogeology
  • Oceanography
  • Paleontology
  • Planetary Science
  • Sedimentary Geology
  • Structural Geology
  • Incorporating Societal Issues
  • Climate Change
  • Complex Systems
  • Ethics and Environmental Justice
  • Geology and Health
  • Public Policy
  • Sustainability
  • Strengthening Your Department
  • Career Development
  • Strengthening Departments
  • Student Recruitment
  • Teacher Preparation
  • Teaching Topics
  • Biocomplexity
  • Early Earth
  • Earthquakes
  • Hydraulic Fracturing
  • Plate Tectonics
  • Teaching Environments
  • Intro Geoscience
  • Online Teaching
  • Teaching in the Field
  • Two-Year Colleges
  • Urban Students
  • Enhancing your Teaching
  • Affective Domain
  • Course Design
  • Data, Simulations, Models
  • Geophotography
  • Google Earth
  • Metacognition
  • Online Games
  • Problem Solving
  • Quantitative Skills
  • Rates and Time
  • Service Learning
  • Spatial Thinking
  • Teaching Methods
  • Teaching with Video
  • Undergrad Research
  • Visualization
  • Teaching Materials
  • Two Year Colleges
  • Departments
  • Workshops and Webinars

' crossorigin=

Problem Solving and Problem-based Learning Journal Club

  • ⋮⋮⋮ ×

Problem Solving and Problem-based Learning in the Geosciences

Earth and Moon

2012 Journal Club

From January to May, 2012, the Problem Solving and Problem-based Learning Journal Club will meet once a month to discuss readings from the geoscience, other natural sciences and cognitive science literature. We will explore aspects of problem solving and problem-based learning in the classroom that includes introducing problem solving, levels of scaffolding, and assessing students' success.

Resources for Teaching Problem Solving and Problem-based Learning

Browse our collections of

  • Teaching activities with a strong problem solving or problem-based learning
  • Pedagogic modules that involve problem solving, including the what, why, and how to use the teaching method in class and with a collection of activity examples:
  • Documented Problem Solving
  • Guided Discovery Problems
  • Faculty-coached, In-class Problem Solving
  • Investigative Case-Based Learning
  • The Case Method
  • Process-Oriented, Guided Inquiry Learning
  • Print and online references

Join the Discussion

Share insights, ask questions or network with other faculty who are engaged in teaching or researching spatial thinking:

  • Subscribe to the problem solving email list .
  • Read the problem solving email list archives .

      Next Page »

Effective Learning Behavior in Problem-Based Learning: a Scoping Review

  • Published: 21 April 2021
  • Volume 31 , pages 1199–1211, ( 2021 )

Cite this article

  • Azril Shahreez Abdul Ghani   ORCID: orcid.org/0000-0001-9130-2175 1 , 2 ,
  • Ahmad Fuad Abdul Rahim   ORCID: orcid.org/0000-0001-7499-8895 2 ,
  • Muhamad Saiful Bahri Yusoff   ORCID: orcid.org/0000-0002-4969-9217 2 &
  • Siti Nurma Hanim Hadie   ORCID: orcid.org/0000-0001-9046-9379 3  

6529 Accesses

24 Citations

Explore all metrics

Problem-based learning (PBL) emphasizes learning behavior that leads to critical thinking, problem-solving, communication, and collaborative skills in preparing students for a professional medical career. However, learning behavior that develops these skills has not been systematically described. This review aimed to unearth the elements of effective learning behavior in a PBL context, using the protocol by Arksey and O’Malley. The protocol identified the research question, selected relevant studies, charted and collected data, and collated, summarized, and reported results. We discovered three categories of elements—intrinsic empowerment, entrustment, and functional skills—proven effective in the achievement of learning outcomes in PBL.

Similar content being viewed by others

problem solving e problem based learning

Effectiveness of problem-based learning methodology in undergraduate medical education: a scoping review

Joan Carles Trullàs, Carles Blay, … Ramon Pujol

problem solving e problem based learning

Problem-Based Learning: Conception, Practice, and Future

problem solving e problem based learning

Does your group matter? How group function impacts educational outcomes in problem-based learning: a scoping review

Athena Li, Elif Bilgic, … Matthew Sibbald

Avoid common mistakes on your manuscript.

Introduction

Problem-based learning (PBL) is an educational approach that utilizes the principles of collaborative learning in small groups, first introduced by McMaster Medical University [ 1 ]. The shift of the higher education curriculum from traditional, lecture-based approaches to an integrated, student-centered approach was triggered by concern over the content-driven nature of medical knowledge with minimal clinical application [ 2 ]. The PBL pedagogy uses a systematic approach, starting with an authentic, real-life problem scenario as a context in which learning is not separated from practice as students collaborate and learn [ 3 ]. The tutor acts as a facilitator who guides the students’ learning, while students are required to solve the problems by discussing them with group members [ 4 ]. The essential aspect of the PBL process is the ability of the students to recognize their current knowledge, determine the gaps in their knowledge and experience, and acquire new knowledge to bridge the gaps [ 5 ]. PBL is a holistic approach that gives students an active role in their learning.

Since its inception, PBL has been used in many undergraduate and postgraduate degree programs, such as medicine [ 6 , 7 ], nursing [ 8 ], social work education [ 9 ], law [ 10 ], architecture [ 11 ], economics [ 12 ], business [ 13 ], science [ 14 ], and engineering [ 15 ]. It has also been applied in elementary and secondary education [ 16 , 17 , 18 ]. Despite its many applications, its implementation is based on a single universal workflow framework that contains three elements: problem as the initiator for learning, tutor as a facilitator in the group versions, and group work as a stimulus for collaborative interaction [ 19 ]. However, there are various versions of PBL workflow, such as the seven-step technique based on the Maastricht “seven jumps” process. The tutor’s role is to ensure the achievement of learning objectives and to assess students’ performance [ 20 , 21 ].

The PBL process revolves around four types of learning principles: constructive, self-directed, collaborative, and contextual [ 19 ]. Through the constructive learning process, the students are encouraged to think about what is already known and integrate their prior knowledge with their new understanding. This process helps the student understand the content, form a new opinion, and acquire new knowledge [ 22 ]. The PBL process encourages students to become self-directed learners who plan, monitor, and evaluate their own learning, enabling them to become lifelong learners [ 23 ]. The contextualized collaborative learning process also promotes interaction among students, who share similar responsibilities to achieve common goals relevant to the learning context [ 24 ]. By exchanging ideas and providing feedback during the learning session, the students can attain a greater understanding of the subject matter [ 25 ].

Dolmans et al. [ 19 ] pointed out two issues related to the implementation of PBL: dominant facilitators and dysfunctional PBL groups. These problems inhibit students’ self-directed learning and reduce their satisfaction level with the PBL session. A case study by Eryilmaz [ 26 ] that evaluated engineering students’ and tutors’ experience of PBL discovered that PBL increased the students’ self-confidence and improved essential skills such as problem-solving, communications, critical thinking, and collaboration. Although most of the participants in the study found PBL satisfactory, many complained about the tutor’s poor guidance and lack of preparation. Additionally, it was noted that 64% of the first-year students were unable to adapt to the PBL system because they had been accustomed to conventional learning settings and that 43% of students were not adequately prepared for the sessions and thus were minimally involved in the discussion.

In a case study by Cónsul-giribet [ 27 ], newly graduated nursing professionals reported a lack of perceived theoretical basic science knowledge at the end of their program, despite learning through PBL. The nurses perceived that this lack of knowledge might affect their expertise, identity, and professional image.

Likewise, a study by McKendree [ 28 ] reported the outcomes of a workshop that explored the strengths and weaknesses of PBL in an allied health sciences curriculum in the UK. The workshop found that problems related to PBL were mainly caused by students, the majority of whom came from conventional educational backgrounds either during high school or their first degree. They felt anxious when they were involved in PBL, concerned about “not knowing when to stop” in exploring the learning needs. Apart from a lack of basic science knowledge, the knowledge acquired during PBL sessions remains unorganized [ 29 ]. Hence, tutors must guide students in overcoming this situation by instilling appropriate insights and essential skills for the achievement of the learning outcomes [ 30 ]. It was also evident that the combination of intention and motivation to learn and desirable learning behavior determined the quality of learning outcomes [ 31 , 32 ]. However, effective learning behaviors that help develop these skills have not been systematically described. Thus, this scoping review aimed to unearth the elements of effective learning behavior in the PBL context.

Scoping Review Protocol

This scoping review was performed using a protocol by Arksey and O’Malley [ 33 ]. The protocol comprises five phases: (i) identification of research questions, (ii) identification of relevant articles, (iii) selection of relevant studies, (iv) data collection and charting, and (v) collating, summarizing, and reporting the results.

Identification of Research Questions

This scoping review was designed to unearth the elements of effective learning behavior that can be generated from learning through PBL instruction. The review aimed to answer one research question: “What are the effective learning behavior elements related to PBL?” For the purpose of the review, an operational definition of effective learning behavior was constructed, whereby it was defined as any learning behavior that is related to PBL instruction and has been shown to successfully attain the desired learning outcomes (i.e., cognitive, skill, or affective)—either quantitatively or qualitatively—in any intervention conducted in higher education institutions.

The positive outcome variables include student viewpoint or perception, student learning experience and performance, lecturer viewpoint and expert judgment, and other indirect variables that may be important indicators of successful PBL learning (i.e., attendance to PBL session, participation in PBL activity, number of interactions in PBL activity, and improvement in communication skills in PBL).

Identification of Relevant Articles

An extensive literature search was conducted on articles published in English between 2015 and 2019. Three databases—Google Scholar, Scopus, and PubMed—were used for the literature search. Seven search terms with the Boolean combination were used, whereby the keywords were identified from the Medical Subject Headings (MeSH) and Education Resources Information Center (ERIC) databases. The search terms were tested and refined with multiple test searches. The final search terms with the Boolean operation were as follows: “problem-based learning” AND (“learning behavior” OR “learning behaviour”) AND (student OR “medical students” OR undergraduate OR “medical education”).

Selection of Relevant Articles

The articles from the three databases were exported manually into Microsoft Excel. The duplicates were removed, and the remaining articles were reviewed based on the inclusion and exclusion criteria. These criteria were tested on titles and abstracts to ensure their robustness in capturing the articles related to learning behavior in PBL. The shortlisted articles were reviewed by two independent researchers, and a consensus was reached either to accept or reject each article based on the set criteria. When a disagreement occurred between the two reviewers, the particular article was re-evaluated independently by the third and fourth researchers (M.S.B.Y and A.F.A.R), who have vast experience in conducting qualitative research. The sets of criteria for selecting abstracts and final articles were developed. The inclusion and exclusion criteria are listed in Table 1 .

Data Charting

The selected final articles were reviewed, and several important data were extracted to provide an objective summary of the review. The extracted data were charted in a table, including the (i) title of the article, (ii) author(s), (iii) year of publication, (iv) aim or purpose of the study, (v) study design and method, (iv) intervention performed, and (v) study population and sample size.

Collating, Summarizing, and Reporting the Results

A content analysis was performed to identify the elements of effective learning behaviors in the literature by A.S.A.G and S.N.H.H, who have experience in conducting qualitative studies. The initial step of content analysis was to read the selected articles thoroughly to gain a general understanding of the articles and extract the elements of learning behavior which are available in the articles. Next, the elements of learning behavior that fulfil the inclusion criteria were extracted. The selected elements that were related to each other through their content or context were grouped into subtheme categories. Subsequently, the combinations of several subthemes expressing similar underlying meanings were grouped into themes. Each of the themes and subthemes was given a name, which was operationally defined based on the underlying elements. The selected themes and subthemes were presented to the independent researchers in the team (M.S.B.Y and A.F.A.R), and a consensus was reached either to accept or reformulate each of the themes and subthemes. The flow of the scoping review methods for this study is illustrated in Fig.  1 .

figure 1

The flow of literature search and article selection

Literature Search

Based on the keyword search, 1750 articles were obtained. Duplicate articles that were not original articles found in different databases and resources were removed. Based on the inclusion and exclusion criteria of title selection, the eligibility of 1750 abstracts was evaluated. The articles that did not fulfil the criteria were removed, leaving 328 articles for abstract screening. A total of 284 articles were screened according to the eligibility criteria for abstract selection. Based on these criteria, 284 articles were selected and screened according to the eligibility criteria for full article selection. Fourteen articles were selected for the final review. The information about these articles is summarized in Table 2 .

Study Characteristics

The final 14 articles were published between 2015 and 2019. The majority of the studies were conducted in Western Asian countries ( n  = 4), followed by China ( n  = 3), European countries ( n  = 2), Thailand ( n  = 2), Indonesia ( n  = 1), Singapore ( n  = 1), and South Africa ( n  = 1). Apart from traditional PBL, some studies incorporated other pedagogic modalities into their PBL sessions, such as online learning, blended learning, and gamification. The majority of the studies targeted a single-profession learner group, and one study was performed on mixed interprofessional health education learners.

Results of Thematic Analysis

The thematic analysis yielded three main themes of effective learning behavior: intrinsic empowerment, entrustment, and functional skills. Intrinsic empowerment overlies four proposed subthemes: proactivity, organization, diligence, and resourcefulness. For entrustment, there were four underlying subthemes: students as assessors, students as teachers, feedback-giving, and feedback-receiving. The functional skills theme contains four subthemes: time management, digital proficiency, data management, and collaboration.

Theme 1: Intrinsic Empowerment

Intrinsic empowerment enforces student learning behavior that can facilitate the achievement of learning outcomes. By empowering the development of these behaviors, students can become lifelong learners [ 34 ]. The first element of intrinsic empowerment is proactive behavior. In PBL, the students must be proactive in analyzing problems [ 35 , 36 ] and their learning needs [ 35 , 37 ], and this can be done by integrating prior knowledge and previous experience through a brainstorming session [ 35 , 38 ]. The students must be proactive in seeking guidance to ensure they stay focused and confident [ 39 , 40 ]. Finding ways to integrate content from different disciplines [ 35 , 41 ], formulate new explanations based on known facts [ 34 , 35 , 41 ], and incorporate hands-on activity [ 35 , 39 , 42 ] during a PBL session are also proactive behaviors.

The second element identified is “being organized” which reflects the ability of students to systematically manage their roles [ 43 ], ideas, and learning needs [ 34 ]. The students also need to understand the task for each learning role in PBL, such as chairperson or leader, scribe, recorder, and reflector. This role needs to be assigned appropriately to ensure that all members take part in the discussion [ 43 ]. Similarly, when discussing ideas or learning needs, the students need to follow the steps in the PBL process and organize and prioritize the information to ensure that the issues are discussed systematically and all aspects of the problems are covered accordingly [ 34 , 37 ]. This team organization and systematic thought process is an effective way for students to focus, plan, and finalize their learning tasks.

The third element of intrinsic empowerment is “being diligent.” Students must consistently conduct self-revision [ 40 ] and keep track of their learning plan to ensure the achievement of their learning goal [ 4 , 40 ]. The students must also be responsible for completing any given task and ensuring good understanding prior to their presentation [ 40 ]. Appropriate actions need to be undertaken to find solutions to unsolved problems [ 40 , 44 ]. This effort will help them think critically and apply their knowledge for problem-solving.

The fourth element identified is “being resourceful.” Students should be able to acquire knowledge from different resources, which include external resources (i.e., lecture notes, textbooks, journal articles, audiovisual instructions, the Internet) [ 38 , 40 , 45 ] and internal resources (i.e., students’ prior knowledge or experience) [ 35 , 39 ]. The resources must be evidence-based, and thus should be carefully selected by evaluating their cross-references and appraising them critically [ 37 ]. Students should also be able to understand and summarize the learned materials and explain them using their own words [ 4 , 34 ]. The subthemes of the intrinsic empowerment theme are summarized in Table 3 .

Theme 2: Entrustment

Entrustment emphasizes the various roles of students in PBL that can promote effective learning. The first entrusted role identified is “student as an assessor.” This means that students evaluate their own performance in PBL [ 46 ]. The evaluation of their own performance must be based on the achievement of the learning outcomes and reflect actual understanding of the content as well as the ability to apply the learned information in problem-solving [ 46 ].

The second element identified in this review is “student as a teacher.” To ensure successful peer teaching in PBL, students need to comprehensively understand the content of the learning materials and summarize the content in an organized manner. The students should be able to explain the gist of the discussed information using their own words [ 4 , 34 ] and utilize teaching methods to cater to differences in learning styles (i.e., visual, auditory, and kinesthetic) [ 41 ]. These strategies help capture their group members’ attention and evoke interactive discussions among them.

The third element of entrustment is to “give feedback.” Students should try giving constructive feedback on individual and group performance in PBL. Feedback on individual performance must reflect the quality of the content and task presented in the PBL. Feedback on group performance should reflect the ways in which the group members communicate and complete the group task [ 47 ]. To ensure continuous constructive feedback, students should be able to generate feedback questions beforehand and immediately deliver them during the PBL sessions [ 44 , 47 ]. In addition, the feedback must include specific measures for improvement to help their peers to take appropriate action for the future [ 47 ].

The fourth element of entrustment is “receive feedback.” Students should listen carefully to the feedback given and ask questions to clarify the feedback [ 47 ]. They need to be attentive and learn to deal with negative feedback [ 47 ]. Also, if the student does not receive feedback, they should request it either from peers or teachers and ask specific questions, such as what aspects to improve and how to improve [ 47 ]. The data on the subthemes of the entrustment theme are summarized in Table 4 .

Theme 3: Functional Skills

Functional skills refer to essential skills that can help students learn independently and competently. The first element identified is time management skills. In PBL, students must know how to prioritize learning tasks according to the needs and urgency of the tasks [ 40 ]. To ensure that students can self-pace their learning, a deadline should be set for each learning task within a manageable and achievable learning schedule [ 40 ].

Furthermore, students should have digital proficiency, the ability to utilize digital devices to support learning [ 38 , 40 , 44 ]. The student needs to know how to operate basic software (e.g., Words and PowerPoints) and the basic digital tools (i.e., social media, cloud storage, simulation, and online community learning platforms) to support their learning [ 39 , 40 ]. These skills are important for peer learning activities, which may require information sharing, information retrieval, online peer discussion, and online peer feedback [ 38 , 44 ].

The third functional skill identified is data management, the ability to collect key information in the PBL trigger and analyze that information to support the solution in a problem-solving activity [ 39 ]. Students need to work either individually or in a group to collect the key information from a different trigger or case format such as text lines, an interview, an investigation, or statistical results [ 39 ]. Subsequently, students also need to analyze the information and draw conclusions based on their analysis [ 39 ].

The fourth element of functional skill is collaboration. Students need to participate equally in the PBL discussion [ 41 , 46 ]. Through discussion, confusion and queries can be addressed and resolved by listening, respecting others’ viewpoints, and responding professionally [ 35 , 39 , 43 , 44 ]. In addition, the students need to learn from each other and reflect on their performance [ 48 ]. Table 5 summarizes the data on the subthemes of the functional skills theme.

This scoping review outlines three themes of effective learning behavior elements in the PBL context: intrinsic empowerment, entrustment, and functional skills. Hence, it is evident from this review that successful PBL instruction demands students’ commitment to empower themselves with value-driven behaviors, skills, and roles.

In this review, intrinsic empowerment is viewed as enforcement of students’ internal strength in performing positive learning behaviors related to PBL. This theme requires the student to proactively engage in the learning process, organize their learning activities systematically, persevere in learning, and be intelligently resourceful. One of the elements of intrinsic empowerment is the identification and analysis of problems related to complex scenarios. This element is aligned with a study by Meyer [ 49 ], who observed students’ engagement in problem identification and clarification prior to problem-solving activities in a PBL session related to multiple engineering design. Rubenstein and colleagues [ 50 ] discovered in a semi-structured interview the importance of undergoing a problem identification process before proposing a solution during learning. It was reported that the problem identification process in PBL may enhance the attainment of learning outcomes, specifically in the domain of concept understanding [ 51 ].

The ability of the students to acquire and manage learning resources is essential for building their understanding of the learned materials and enriching discussion among team members during PBL. This is aligned with a study by Jeong and Hmelo-Silver [ 52 ], who studied the use of learning resources by students in PBL. The study concluded that in a resource-rich environment, the students need to learn how to access and understand the resources to ensure effective learning. Secondly, they need to process the content of the resources, integrate various resources, and apply them in problem-solving activities. Finally, they need to use the resources in collaborative learning activities, such as sharing and relating to peer resources.

Wong [ 53 ] documented that excellent students spent considerably more time managing academic resources than low achievers. The ability of the student to identify and utilize their internal learning resources, such as prior knowledge and experience, is also important. A study by Lee et al. [ 54 ] has shown that participants with high domain-specific prior knowledge displayed a more systematic approach and high accuracy in visual and motor reactions in solving problems compared to novice learners.

During the discussion phase in PBL, organizing ideas—e.g., arranging relevant information gathered from the learning resources into relevant categories—is essential for communicating the idea clearly [ 34 ]. This finding is in line with a typology study conducted by Larue [ 55 ] on second-year nursing students’ learning strategies during a group discussion. The study discovered that although the content presented by the student is adequate, they unable to make further progress in the group discussion until they are instructed by the tutor on how to organize the information given into a category [ 55 ].

Hence, the empowerment of student intrinsic behavior may enhance students’ learning in PBL by allowing them to make a decision in their learning objectives and instilling confidence in them to achieve goals. A study conducted by Kirk et al. [ 56 ] proved that highly empowered students obtain better grades, increase learning participation, and target higher educational aspirations.

Entrustment is the learning role given to students to be engaging and identify gaps in their learning. This theme requires the student to engage in self-assessment, prepare to teach others, give constructive feedback, and value the feedback received. One of the elements of entrustment is the ability to self-assess. In a study conducted by Mohd et al. [ 57 ] looking at the factors in PBL that can strengthen the capability of IT students, they discovered that one of the critical factors that contribute to these skills is the ability of the student to perform self-assessment in PBL. As mentioned by Daud, Kassim, and Daud [ 58 ], the self-assessment may be more reliable if the assessment is performed based on the objectives set beforehand and if the criteria of the assessment are understood by the learner. This is important to avoid the fact that the result of the self-assessment is influenced by the students’ perception of themselves rather than reflecting their true performance. However, having an assessment based on the learning objective only focuses on the immediate learning requirements in the PBL. To foster lifelong learning skills, it should also be balanced with the long-term focus of assessment, such as utilizing the assessment to foster the application of knowledge in solving real-life situations. This is aligned with the review by Boud and Falchikov [ 59 ] suggesting that students need to become assessors within the concept of participation in practice, that is, the kind that is within the context of real life and work.

The second subtheme of entrustment is “students as a teacher” in PBL. In our review, the student needs to be well prepared with the teaching materials. A cross-sectional study conducted by Charoensakulchai and colleagues discovered that student preparation is considered among the important factors in PBL success, alongside other factors such as “objective and contents,” “student assessment,” and “attitude towards group work” [ 60 ]. This is also aligned with a study conducted by Sukrajh [ 61 ] using focus group discussion on fifth-year medical students to explore their perception of preparedness before conducting peer teaching activity. In this study, the student in the focus group expressed that the preparation made them more confident in teaching others because preparing stimulated them to activate and revise prior knowledge, discover their knowledge gaps, construct new knowledge, reflect on their learning, improve their memory, inspire them to search several resources, and motivate them to learn the topics.

The next element of “student as a teacher” is using various learning styles to teach other members in the group. A study conducted by Almomani [ 62 ] showed that the most preferred learning pattern by the high school student is the visual pattern, followed by auditory pattern and then kinesthetic. However, in the university setting, Hamdani [ 63 ] discovered that students prefer a combination of the three learning styles. Anbarasi [ 64 ] also explained that incorporating teaching methods based on the student’s preferred learning style further promotes active learning among the students and significantly improved the long-term retrieval of knowledge. However, among the three learning styles group, he discovered that the kinesthetic group with the kinesthetic teaching method showed a significantly higher post-test score compared to the traditional group with the didactic teaching method, and he concluded that this is because of the involvement of more active learning activity in the kinesthetic group.

The ability of students to give constructive feedback on individual tasks is an important element in promoting student contribution in PBL because feedback from peers or teachers is needed to reassure themselves that they are on the right track in the learning process. Kamp et al. [ 65 ] performed a study on the effectiveness of midterm peer feedback on student individual cognitive, collaborative, and motivational contributions in PBL. The experimental group that received midterm peer feedback combined with goal-setting with face-to-face discussion showed an increased amount of individual contributions in PBL. Another element of effective feedback is that the feedback is given immediately after the observed behavior. Parikh and colleagues survey student feedback in PBL environments among 103 final-year medical students in five Ontario schools, including the University of Toronto, McMaster University, Queens University, the University of Ottawa, and the University of Western Ontario. They discovered that there was a dramatic difference between McMaster University and other universities in the immediacy of feedback they practiced. Seventy percent of students at McMaster reported receiving immediate feedback in PBL, compared to less than 40 percent of students from the other universities, in which most of them received feedback within one week or several weeks after the PBL had been conducted [ 66 ]. Another study, conducted among students of the International Medical University of Kuala Lumpur examining the student expectation on feedback, discovered that immediate feedback is effective if the feedback is in written form, simple but focused on the area of improvement, and delivered by a content expert. If the feedback is delivered by a content non-expert and using a model answer, it must be supplemented with teacher dialogue sessions to clarify the feedback received [ 67 ].

Requesting feedback from peers and teachers is an important element of the PBL learning environment, enabling students to discover their learning gaps and ways to fill them. This is aligned with a study conducted by de Jong and colleagues [ 68 ], who discovered that high-performing students are more motivated to seek feedback than low-performing students. The main reason for this is because high-performing students seek feedback as a tool to learn from, whereas low-performing students do so as an academic requirement. This resulted in high-performing students collecting more feedback. A study by Bose and Gijselaers [ 69 ] examined the factors that promote feedback-seeking behavior in medical residency. They discovered that feedback-seeking behavior can be promoted by providing residents with high-quality feedback to motivate them to ask for feedback for improvement.

By assigning an active role to students as teachers, assessors, and feedback providers, teachers give them the ownership and responsibility to craft their learning. The learner will then learn the skills to monitor and reflect on their learning to achieve academic success. Furthermore, an active role encourages students to be evaluative experts in their own learning, and promoting deep learning [ 70 ].

Functional skills refer to essential abilities for competently performing a task in PBL. This theme requires the student to organize and plan time for specific learning tasks, be digitally literate, use data effectively to support problem-solving, and work together efficiently to achieve agreed objectives. One of the elements in this theme is to have a schedule of learning tasks with deadlines. In a study conducted by Tadjer and colleagues [ 71 ], they discovered that setting deadlines with a restricted time period in a group activity improved students’ cognitive abilities and soft skills. Although the deadline may initially cause anxiety, coping with it encourages students to become more creative and energetic in performing various learning strategies [ 72 , 73 ]. Ballard et al. [ 74 ] reported that students tend to work harder to complete learning tasks if they face multiple deadlines.

The students also need to be digitally literate—i.e., able to demonstrate the use of technological devices and tools in PBL. Taradi et al. [ 75 ] discovered that incorporating technology in learning—blending web technology with PBL—removes time and place barriers in the creation of a collaborative environment. It was found that students who participated in web discussions achieved a significantly higher mean grade on a physiology final examination than those who used traditional methods. Also, the incorporation of an online platform in PBL can facilitate students to develop investigation and inquiry skills with high-level cognitive thought processes, which is crucial to successful problem-solving [ 76 ].

In PBL, students need to work collaboratively with their peers to solve problems. A study by Hidayati et al. [ 77 ] demonstrated that effective collaborative skills improve cognitive learning outcomes and problem-solving ability among students who undergo PBL integrated with digital mind maps. To ensure successful collaborative learning in PBL, professional communication among students is pertinent. Research by Zheng and Huang [ 78 ] has proven that co-regulation (i.e., warm and responsive communication that provides support to peers) improved collaborative effort and group performance among undergraduate and master’s students majoring in education and psychology. This is also in line with a study by Maraj and colleagues [ 79 ], which showed the strong team interaction within the PBL group leads to a high level of team efficacy and academic self-efficacy. Moreover, strengthening communication competence, such as by developing negotiation skills among partners during discussion sessions, improves student scores [ 80 ].

PBL also includes opportunities for students to learn from each other (i.e., peer learning). A study by Maraj et al. [ 79 ] discovered that the majority of the students in their study perceived improvement in their understanding of the learned subject when they learned from each other. Another study by Lyonga [ 81 ] documented the successful formation of cohesive group learning, where students could express and share their ideas with their friends and help each other. It was suggested that each student should be paired with a more knowledgeable student who has mastered certain learning components to promote purposeful structured learning within the group.

From this scoping review, it is clear that functional skills equip the students with abilities and knowledge needed for successful PBL. Studies have shown that strong time management skills, digital literacy, data management, and collaborative skills lead to positive academic achievement [ 77 , 82 , 83 ].

Limitation of the Study

This scoping review is aimed to capture the recent effective learning behavior in problem-based learning; therefore, the literature before 2015 was not included. Without denying the importance of publication before 2015, we are relying on Okoli and Schabram [ 84 ] who highlighted the impossibility of retrieving all the published articles when conducting a literature search. Based on this ground, we decided to focus on the time frame between 2015 and 2019, which is aligned with the concepts of study maturity (i.e., the more mature the field, the higher the published articles and therefore more topics were investigated) by Kraus et al. [ 85 ]. In fact, it was noted that within this time frame, a significant number of articles have been found as relevant to PBL with the recent discovery of effective learning behavior. Nevertheless, our time frame did not include the timing of the coronavirus disease 19 (COVID-19) pandemic outbreak, which began at the end of 2019. Hence, we might miss some important elements of learning behavior that are required for the successful implementation of PBL during the COVID-19 pandemic.

Surprisingly, the results obtained from this study are also applicable for the PBL sessions administration during the COVID-19 pandemic situation as one of the functional skills identified is digital proficiency. This skill is indeed important for the successful implementation of online PBL session.

This review identified the essential learning behaviors required for effective PBL in higher education and clustered them into three main themes: (i) intrinsic empowerment, (ii) entrustment, and (iii) functional skills. These learning behaviors must coexist to ensure the achievement of desired learning outcomes. In fact, the findings of this study indicated two important implications for future practice. Firstly, the identified learning behaviors can be incorporated as functional elements in the PBL framework and implementation. Secondly, the learning behaviors change and adaption can be considered to be a new domain of formative assessment related to PBL. It is noteworthy to highlight that these learning behaviors could help in fostering the development of lifelong skills for future workplace challenges. Nevertheless, considerably more work should be carried out to design a solid guideline on how to systematically adopt the learning behaviors in PBL sessions, especially during this COVID-19 pandemic situation.

Barrows HS. Problem-based learning in medicine and beyond: A brief overview. New Dir Teach Learn. 1996;68:3–12.

Article   Google Scholar  

Barrows H, Tamblyn R. Problem-based learning: An approach to medical education. Springer Publishing Company; 1980.

Taylor D, Miflin B. Problem-based learning: where are we now? Med Teach. Taylor & Francis. 2008;30(8):742–763.

Rakhudu MA. Use of problem based scenarios to prepare nursing students to address quality improvement in health care unit: Int J Educ Sci. 2015;10(1):72–80.

Google Scholar  

Radcliffe P, Kumar D. Is problem-based learning suitable for engineering ? Australas J Eng Educ. 2016;21(2):81–8.

Azer SA, Hasanato R, Al-Nassar S, Somily A, AlSaadi MM. Introducing integrated laboratory classes in a PBL curriculum: impact on student’s learning and satisfaction. BMC Med Educ. 2013;13(1):1–12.

Doherty DO, Mc Keague H, Harney S, Browne G, McGrath D. What can we learn from problem-based learning tutors at a graduate entry medical school? A mixed method approach. BMC Med Educ. 2018;18(1):1–12.

Choi E, Lindquist R, Song Y. Effects of problem-based learning vs. traditional lecture on Korean nursing students’ critical thinking, problem-solving, and self-directed learning. Nurse Educ Today. 2014;34(1):52–56.

Wong DKP, Lam DOB. Problem-based learning in social work: a study of student learning outcomes. Res Soc Work Pract. 2007;17(1):55–6.

Wijnen M, Loyens SMM, Smeets G, Kroeze M, van der Molen H. Comparing problem-based learning students to students in a lecture-based curriculum: learning strategies and the relation with self-study time. Eur J Psychol Educ. 2017;32(3):431–447.

Armitage A, Pihl O, Ryberg T. PBL and Creative Processes. Journal of Problem Based Learning in Higher Education. 2015;3(1).

Harun NF, Yusof KM, Jamaludin MZ, Hassan SAHS. Motivation in Problem-based Learning Implementation. Procedia Soc Behav Sci. 2012;56:233–242.

Smith GF. Problem-based learning: can it improve managerial thinking? J Manag Educ. 2005;29(2):357–78.

Akcay B. Problem-based learning in science education. Journal of Turkish Science Education. 2009;6(1):28–38.

Van Barneveld A, Strobel J. Problem-based learning: Effectiveness, drivers, and implementation challenges. In Research on PBL practice in engineering education; 2009. pp. 35–44.

Siew NM, Mapeala R. The effects of problem based learning with thinking maps on fifth graders’ science critical thinking. J Balt Sci Educ. 2016;15(5):602.

Li HC, Stylianides AJ. An examination of the roles of the teacher and students during a problem-based learning intervention: lessons learned from a study in a Taiwanese primary mathematics classroom. Interact Learn Environ. 2018;26(1):106–17.

Wilder S. Impact of problem-based learning on academic achievement in high school: a systematic review. Educ Rev. 2015;67(4):414–35.

Dolmans D, Grave W, Wolfhagen I, Van der Vleuten C. Problem‐based learning: Future challenges for educational practice and research. Med Educ. 2005;1;39(7):732–41.

Wood DF. Problem based learning. BMJ. 2003;326(7384):328–30.

Ansari MT, Rahman SA, Badgujar VB, Sami F, Abdullah MS. Problem based learning (PBL): A novel and effective tool of teaching and learning. Indian J Pharm Educ Res. 2015;49(4):258–65.

Ertmer PA, Newby TJ. Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Perform Improv Q. 1993;6(4):50–72.

Ertmer PA, Newby TJ. The expert learner: strategic, self-regulated, and reflective. Instr Sci. 1996;24(1):1–24.

Billett S. Situated learning: bridging sociocultural and cognitive theorising. Learn Instr. 1996;6(3):263–80.

Dillenbourg P, Baker M, Blaye A, Malley CO. The evolution of research on collaborative learning. In: Spada E and Reimann P, editors. Learning in human machines: Towards an interdisciplinary learning science. 1996;189–211.

Ates O, Eryilmaz A. Strengths and weaknesses of problem-based learning: students’ and tutors’ perceptives. Journal of the Buca Educational Science Faculty. 2010;28:40–58.

Cónsul-giribet M, Medina-Moya JL. Strengths and weaknesses of problem based learning from the professional perspective of registered nurses. Rev Lat Am Enfermagem. 2014;22(5):724–30.

McKendree J. Experiences of problem-based learning in the UK. Clin Teach. 2010;7(4):262–5.

Hemker HC. Critical perceptions on problem-based learning. Eur Rev. 2001;9(3):269–74.

Davis MH, Harden RM. AMEE Medical Education Guide No. 15 : Problem-based learning: A practical guide. Med Teach. 1999;21(15):130–140.

Newblen DI, Entwistle NJ. Learning styles and approaches: Implications for medical education. Med Educ. 1986;20(3):162–75.

Albanese MA, Mitchell S. Problem-based learning: a review of literature on its outcomes and implementation issues. Acad Med. 1993;68(1):52–81.

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32.

Khoiriyah U, Roberts C, Jorm C, Van Der Vleuten CPM. Enhancing students’ learning in problem based learning: validation of a self-assessment scale for active learning and critical thinking. BMC Med Educ. 2015;15(1):140.

Li H. Facilitating learning through PBL in a Chinese context: Students’ learning outcomes and attitudes. Int J Educ Res. 2018;17(7):80–93.

Gutman M. The influence of problem-based learning communities on research literacy and achievement goal motivation. Int J Educ. 2018;6(4):31–41.

Khumsikiew J, Donsamak S, Saeteaw M. A model of small-group problem-based learning in pharmacy education: teaching in the clinical environment. IAFOR J Educ. 2015;3(2):95–108.

William L, Abdul Rahim Z, Wu L, De Souza R. Effectiveness of supply chain games in problem-based learning environment. Game-Based Assessment Revisited. 2019:257–80.

Chung P, Yeh RC, Chen YC. Influence of problem-based learning strategy on enhancing student’s industrial oriented competences learned: An action research on learning weblog analysis. Int J Technol Des Educ. 2016;26(2):285–307.

Dawilai S, Kamyod C, Champakaew W. Proposed problem-based blended learning in creative writing: self-regulated learning in EFL Learners. Int J Appl Eng Res. 2018;13(7):4834–41.

Asad MR, Tadvi N, Amir KM, Afzal K, Irfan A, Hussain SA. Medical student’s feedback towards problem based learning and interactive lectures as a teaching and learning method in an outcome-based curriculum. Int J Med Res Health Sci. 2019;8(4):78–84.

Johnson M, Hayes MJ. A comparison of problem-based and didactic learning pedagogies on an electronics engineering course. Int J Electr Eng Educ. 2016;53(1):3–22.

Tarhan L, Ayyildiz Y. The views of undergraduates about problem-based learning applications in a biochemistry course. J Biol Educ. 2015;49(2):116–26.

Hursen C. The effect of technology supported problem-based learning approach on adults’ self-efficacy perception for research-inquiry. Educ Inf Technol. 2019;24(2):1131–45.

Asmi SO, Wonorahardjo S, Widarti HR. The application of problem based learning assisted by blended learning in atomic spectroscopy material on cognitive learning outcomes and students’ self system based on marzano taxonomy. European Journal of Open Education and E-learning Studies. 2019;4(1):88–99.

Arana-Arexolaleiba N, Zubizarreta MI. The impact of PBL learning environment and supervision of engineering faculty of Mondragon University in the student learning approach. 2015:479–491.

Geitz G, Ten BDJ, Kirschner PA. Sustainable feedback: students’ and tutors’ perceptions. Qual Rep. 2016;21(11):2103–23.

Chou FC, Kwan CY, Hsin DHC. Examining the effects of interprofessional problem-based clinical ethics: findings from a mixed methods study. J Interprof Care. 2016;30(3):362–9.

Meyer H. Teachers’ thoughts on student decision making during engineering design lessons. Educ Sci. 2018;8(1):9–19.

Rubenstein LDV, Callan GL, Speirs Neumeister K, Ridgley LM, Hernández FM. How problem identification strategies influence creativity outcomes. Contemp Educ Psychol. 2020;60:101840.

Kartamiharja MR, Sopandi W, Anggraeni D. Implementation of problem-based learning (PBL) approach in chemistry instructional with context of tofu liquid waste treatment. Int J Educ Res. 2020;19(5):47–77.

Jeong H, Hmelo-Silver CE. Productive use of learning resources in an online problem-based learning environment. Comput Hum Behav. 2010;26(1):84–99.

Wong L. Student Engagement with online resources and its impact on learning outcomes. Journal of Information Technology Education Innovation in Practice. 2013;12:129–46.

Lee JY, Donkers J, Jarodzka H, van Merriënboer JJG. How prior knowledge affects problem-solving performance in a medical simulation game: Using game-logs and eye-tracking. Comput Hum Behav. 2019;99:268–77.

Larue C. Group learning strategies for nursing students: Reflections on the tutor role. Int J Nurs Educ Scholarsh. 2008;5(1).

Kirk CM, Lewis RK, Brown K, Karibo B, Park E. The power of student empowerment: Measuring classroom predictors and individual indicators. J Educ Res. 2016;109(6):589–95.

Mohd H, Darus NM, Saip MA, Baharom F, Puteh N, Husin MZ, et al. Success factors of problem based learning for IT courses: measurements on PBL characteristics, PBL assessments and PBL practices. J Eng Appl Sci. 2017;12(21):5514–7.

Daud NM, Kassim NLA, Daud‏ NSM. Students as Assessors. 2011.

Boud D, Falchikov N. Aligning assessment with long-term learning. Assess Eval High Educ. 2006;31(4):399–413.

Charoensakulchai S, Kantiwong A, Piyaraj P. Factors influencing problem-based learning: Students’ and teachers’ perspectives. MedEdPublish. 2019;8(3).

Sukrajh V. The use of peer teaching to promote active learning amongst senior medical students. Doctoral dissertation, Stellenbosch University. 2018.

Almomani JA. Preferred cognitive learning patterns (VAK) among secondary students admitted to King Saud University and its effect on their academic achievement in physics. Int Educ Stud. 2019;12(6):108–19.

Hamdani D Al. Exploring students’ learning style at a Gulf University: A contributing factor to effective instruction. Procedia Soc Behav Sci. 2015;176:124–128.

Anbarasi M, Rajkumar G, Krishnakumar S, Rajendran P, Venkatesan R, Dinesh T, et al. Learning style-based teaching harvests a superior comprehension of respiratory physiology. Adv Physiol Educ. 2015;39:214–7.

Kamp RJA, Dolmans DHJM, Van Berkel HJM, Schmidt HG. The effect of midterm peer feedback on student functioning in problem-based tutorials. 2013;18:199–213.

Parikh A, McReelis K, Hodges B. Student feedback in problem based learning: a survey of 103 final year students across five Ontario medical schools. Med Educ. 2001;35(7):632–6.

Perera J, Lee N, Win K, Perera J, Wijesuriya L. Formative feedback to students: The mismatch between faculty perceptions and student expectations. 2008;30(4):395–9.

De Jong LH, Favier RP, Van der Vleuten CPM, Bok HGJ. Students’ motivation toward feedback-seeking in the clinical workplace. Med Teach. 2017;39(9):954–8.

Bose MM, Gijselaers WH. Why supervisors should promote feedback-seeking behaviour in medical residency. Med Teach. 2013;35(11):e1573–83.

Entwistle N. Promoting deep learning through teaching and assessment. In assessment to promote deep learning: Insights from AAHF’s 2000 and 1999 Assessment Conferences. 2000:9–20.

Tadjer H, Lafifi Y, Seridi-Bouchelaghem H, Gülseçen S. Improving soft skills based on students’ traces in problem-based learning environments. Interact Learn Environ. 2020:1–18.

Maule AJ, Hockey GRJ, Bdzola L. Effects of time-pressure on decision-making under uncertainty: changes in affective state and information processing strategy. Acta Physiol (Oxf). 2000;104(3):283–301.

Amabile TM, DeJong W, Lepper MR. Effects of externally imposed deadlines on subsequent intrinsic motivation. J Pers Soc Psychol. 1976;34(1):92–8.

Ballard T, Vancouver JB, Neal A. On the pursuit of multiple goals with different deadlines. J Appl Psychol. 2018;103(11):1242–64.

Taradi SK, Taradi M, Radić K, Pokrajac N. Blending problem-based learning with Web technology positively impacts student learning outcomes in acid-base physiology. Adv Physiol Educ. 2005;29(1):35–9.

Stewart T, MacIntyre W, Galea V, Steel C. Enhancing problem-based learning designs with a single e-learning scaffolding tool: two case studies using challenge FRAP. Interact Learn Environ. 2007;15(1):77–91.

Hidayati N, Zubaidah S, Suarsini E, Praherdhiono H. Cognitive learning outcomes: Its relationship with communication skills and collaboration skills through digital mind maps-integrated PBL. Int J Inf Educ Technol. 2020;10(6):433–48.

Zheng L, Huang R. The effects of sentiments and co-regulation on group performance in computer supported collaborative learning. Internet High Educ. 2016;28:59–67.

Maraj M, Hale CP, Kogelbauer A, Hellgardt K. Teaming with confidence: How peer connections in problem-based learning impact the team and academic self-efficacies of engineering students. ASEE Annu Conf Expo. 2019:1–14.

Baranova T, Kobicheva A, Olkhovik N, Tokareva E. Analysis of the communication competence dynamics in integrated learning. In: Proceedings of the Conference “Integrating Engineering Education and Humanities for Global Intercultural Perspectives.” Springer; 2020:425–38.

Lyonga NAN. Peer learning amongst students of higher technical teachers’ training college (HTTTC) of the university of buea in kumba. Cameroon Int J High Educ. 2018;7(2):216–26.

Britton BK, Tesser A. Effects of time-management practices on college grades. J Educ Psychol. 1991;83(3):405–10.

Pagani L, Argentin G, Gui M, Stanca L. The impact of digital skills on educational outcomes: evidence from performance tests. Educ Stud. 2016;42(2):137–62.

Okoli C, Schabram K. A guide to conducting a systematic literature review of information systems research. Work Pap Inf Syst. 2010;10(26):1–51.

Kraus S, Breier M, Dasí-Rodríguez S. The art of crafting a systematic literature review in entrepreneurship research. Int Entrep Manag J. 2020;16(3):1023–42.

Download references

This study was supported by Postgraduate Incentive Grant-PhD (GIPS-PhD, grant number: 311/PPSP/4404803).

Author information

Authors and affiliations.

Department of Basic Medical Sciences, Kulliyah of Medicine, Bandar Indera Mahkota Campus, International Islamic University Malaysia, Kuantan, 25200, Pahang, Malaysia

Azril Shahreez Abdul Ghani

Department of Medical Education, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia

Azril Shahreez Abdul Ghani, Ahmad Fuad Abdul Rahim & Muhamad Saiful Bahri Yusoff

Department of Anatomy, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia

Siti Nurma Hanim Hadie

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Siti Nurma Hanim Hadie .

Ethics declarations

Ethics approval.

The study has received an ethical approval from the Human Research Ethics Committee of Universiti Sains Malaysia.

Informed Consent

No informed consent required for the scoping review.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Ghani, A.S.A., Rahim, A.F.A., Yusoff, M.S.B. et al. Effective Learning Behavior in Problem-Based Learning: a Scoping Review. Med.Sci.Educ. 31 , 1199–1211 (2021). https://doi.org/10.1007/s40670-021-01292-0

Download citation

Accepted : 13 April 2021

Published : 21 April 2021

Issue Date : June 2021

DOI : https://doi.org/10.1007/s40670-021-01292-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Student behavior
  • Effective learning behavior
  • Problem-based learning
  • Higher education
  • Academic outcomes
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Med Sci Educ
  • v.31(3); 2021 Jun

Logo of medsciedu

Effective Learning Behavior in Problem-Based Learning: a Scoping Review

Azril shahreez abdul ghani.

1 Department of Basic Medical Sciences, Kulliyah of Medicine, Bandar Indera Mahkota Campus, International Islamic University Malaysia, Kuantan, 25200 Pahang Malaysia

2 Department of Medical Education, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, 16150 Kelantan Malaysia

Ahmad Fuad Abdul Rahim

Muhamad saiful bahri yusoff, siti nurma hanim hadie.

3 Department of Anatomy, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan Malaysia

Problem-based learning (PBL) emphasizes learning behavior that leads to critical thinking, problem-solving, communication, and collaborative skills in preparing students for a professional medical career. However, learning behavior that develops these skills has not been systematically described. This review aimed to unearth the elements of effective learning behavior in a PBL context, using the protocol by Arksey and O’Malley. The protocol identified the research question, selected relevant studies, charted and collected data, and collated, summarized, and reported results. We discovered three categories of elements—intrinsic empowerment, entrustment, and functional skills—proven effective in the achievement of learning outcomes in PBL.

Introduction

Problem-based learning (PBL) is an educational approach that utilizes the principles of collaborative learning in small groups, first introduced by McMaster Medical University [ 1 ]. The shift of the higher education curriculum from traditional, lecture-based approaches to an integrated, student-centered approach was triggered by concern over the content-driven nature of medical knowledge with minimal clinical application [ 2 ]. The PBL pedagogy uses a systematic approach, starting with an authentic, real-life problem scenario as a context in which learning is not separated from practice as students collaborate and learn [ 3 ]. The tutor acts as a facilitator who guides the students’ learning, while students are required to solve the problems by discussing them with group members [ 4 ]. The essential aspect of the PBL process is the ability of the students to recognize their current knowledge, determine the gaps in their knowledge and experience, and acquire new knowledge to bridge the gaps [ 5 ]. PBL is a holistic approach that gives students an active role in their learning.

Since its inception, PBL has been used in many undergraduate and postgraduate degree programs, such as medicine [ 6 , 7 ], nursing [ 8 ], social work education [ 9 ], law [ 10 ], architecture [ 11 ], economics [ 12 ], business [ 13 ], science [ 14 ], and engineering [ 15 ]. It has also been applied in elementary and secondary education [ 16 – 18 ]. Despite its many applications, its implementation is based on a single universal workflow framework that contains three elements: problem as the initiator for learning, tutor as a facilitator in the group versions, and group work as a stimulus for collaborative interaction [ 19 ]. However, there are various versions of PBL workflow, such as the seven-step technique based on the Maastricht “seven jumps” process. The tutor’s role is to ensure the achievement of learning objectives and to assess students’ performance [ 20 , 21 ].

The PBL process revolves around four types of learning principles: constructive, self-directed, collaborative, and contextual [ 19 ]. Through the constructive learning process, the students are encouraged to think about what is already known and integrate their prior knowledge with their new understanding. This process helps the student understand the content, form a new opinion, and acquire new knowledge [ 22 ]. The PBL process encourages students to become self-directed learners who plan, monitor, and evaluate their own learning, enabling them to become lifelong learners [ 23 ]. The contextualized collaborative learning process also promotes interaction among students, who share similar responsibilities to achieve common goals relevant to the learning context [ 24 ]. By exchanging ideas and providing feedback during the learning session, the students can attain a greater understanding of the subject matter [ 25 ].

Dolmans et al. [ 19 ] pointed out two issues related to the implementation of PBL: dominant facilitators and dysfunctional PBL groups. These problems inhibit students’ self-directed learning and reduce their satisfaction level with the PBL session. A case study by Eryilmaz [ 26 ] that evaluated engineering students’ and tutors’ experience of PBL discovered that PBL increased the students’ self-confidence and improved essential skills such as problem-solving, communications, critical thinking, and collaboration. Although most of the participants in the study found PBL satisfactory, many complained about the tutor’s poor guidance and lack of preparation. Additionally, it was noted that 64% of the first-year students were unable to adapt to the PBL system because they had been accustomed to conventional learning settings and that 43% of students were not adequately prepared for the sessions and thus were minimally involved in the discussion.

In a case study by Cónsul-giribet [ 27 ], newly graduated nursing professionals reported a lack of perceived theoretical basic science knowledge at the end of their program, despite learning through PBL. The nurses perceived that this lack of knowledge might affect their expertise, identity, and professional image.

Likewise, a study by McKendree [ 28 ] reported the outcomes of a workshop that explored the strengths and weaknesses of PBL in an allied health sciences curriculum in the UK. The workshop found that problems related to PBL were mainly caused by students, the majority of whom came from conventional educational backgrounds either during high school or their first degree. They felt anxious when they were involved in PBL, concerned about “not knowing when to stop” in exploring the learning needs. Apart from a lack of basic science knowledge, the knowledge acquired during PBL sessions remains unorganized [ 29 ]. Hence, tutors must guide students in overcoming this situation by instilling appropriate insights and essential skills for the achievement of the learning outcomes [ 30 ]. It was also evident that the combination of intention and motivation to learn and desirable learning behavior determined the quality of learning outcomes [ 31 , 32 ]. However, effective learning behaviors that help develop these skills have not been systematically described. Thus, this scoping review aimed to unearth the elements of effective learning behavior in the PBL context.

Scoping Review Protocol

This scoping review was performed using a protocol by Arksey and O’Malley [ 33 ]. The protocol comprises five phases: (i) identification of research questions, (ii) identification of relevant articles, (iii) selection of relevant studies, (iv) data collection and charting, and (v) collating, summarizing, and reporting the results.

Identification of Research Questions

This scoping review was designed to unearth the elements of effective learning behavior that can be generated from learning through PBL instruction. The review aimed to answer one research question: “What are the effective learning behavior elements related to PBL?” For the purpose of the review, an operational definition of effective learning behavior was constructed, whereby it was defined as any learning behavior that is related to PBL instruction and has been shown to successfully attain the desired learning outcomes (i.e., cognitive, skill, or affective)—either quantitatively or qualitatively—in any intervention conducted in higher education institutions.

The positive outcome variables include student viewpoint or perception, student learning experience and performance, lecturer viewpoint and expert judgment, and other indirect variables that may be important indicators of successful PBL learning (i.e., attendance to PBL session, participation in PBL activity, number of interactions in PBL activity, and improvement in communication skills in PBL).

Identification of Relevant Articles

An extensive literature search was conducted on articles published in English between 2015 and 2019. Three databases—Google Scholar, Scopus, and PubMed—were used for the literature search. Seven search terms with the Boolean combination were used, whereby the keywords were identified from the Medical Subject Headings (MeSH) and Education Resources Information Center (ERIC) databases. The search terms were tested and refined with multiple test searches. The final search terms with the Boolean operation were as follows: “problem-based learning” AND (“learning behavior” OR “learning behaviour”) AND (student OR “medical students” OR undergraduate OR “medical education”).

Selection of Relevant Articles

The articles from the three databases were exported manually into Microsoft Excel. The duplicates were removed, and the remaining articles were reviewed based on the inclusion and exclusion criteria. These criteria were tested on titles and abstracts to ensure their robustness in capturing the articles related to learning behavior in PBL. The shortlisted articles were reviewed by two independent researchers, and a consensus was reached either to accept or reject each article based on the set criteria. When a disagreement occurred between the two reviewers, the particular article was re-evaluated independently by the third and fourth researchers (M.S.B.Y and A.F.A.R), who have vast experience in conducting qualitative research. The sets of criteria for selecting abstracts and final articles were developed. The inclusion and exclusion criteria are listed in Table ​ Table1 1 .

Inclusion and exclusion criteria

Data Charting

The selected final articles were reviewed, and several important data were extracted to provide an objective summary of the review. The extracted data were charted in a table, including the (i) title of the article, (ii) author(s), (iii) year of publication, (iv) aim or purpose of the study, (v) study design and method, (iv) intervention performed, and (v) study population and sample size.

Collating, Summarizing, and Reporting the Results

A content analysis was performed to identify the elements of effective learning behaviors in the literature by A.S.A.G and S.N.H.H, who have experience in conducting qualitative studies. The initial step of content analysis was to read the selected articles thoroughly to gain a general understanding of the articles and extract the elements of learning behavior which are available in the articles. Next, the elements of learning behavior that fulfil the inclusion criteria were extracted. The selected elements that were related to each other through their content or context were grouped into subtheme categories. Subsequently, the combinations of several subthemes expressing similar underlying meanings were grouped into themes. Each of the themes and subthemes was given a name, which was operationally defined based on the underlying elements. The selected themes and subthemes were presented to the independent researchers in the team (M.S.B.Y and A.F.A.R), and a consensus was reached either to accept or reformulate each of the themes and subthemes. The flow of the scoping review methods for this study is illustrated in Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 40670_2021_1292_Fig1_HTML.jpg

The flow of literature search and article selection

Literature Search

Based on the keyword search, 1750 articles were obtained. Duplicate articles that were not original articles found in different databases and resources were removed. Based on the inclusion and exclusion criteria of title selection, the eligibility of 1750 abstracts was evaluated. The articles that did not fulfil the criteria were removed, leaving 328 articles for abstract screening. A total of 284 articles were screened according to the eligibility criteria for abstract selection. Based on these criteria, 284 articles were selected and screened according to the eligibility criteria for full article selection. Fourteen articles were selected for the final review. The information about these articles is summarized in Table ​ Table2 2 .

Studies characteristics

Study Characteristics

The final 14 articles were published between 2015 and 2019. The majority of the studies were conducted in Western Asian countries ( n  = 4), followed by China ( n  = 3), European countries ( n  = 2), Thailand ( n  = 2), Indonesia ( n  = 1), Singapore ( n  = 1), and South Africa ( n  = 1). Apart from traditional PBL, some studies incorporated other pedagogic modalities into their PBL sessions, such as online learning, blended learning, and gamification. The majority of the studies targeted a single-profession learner group, and one study was performed on mixed interprofessional health education learners.

Results of Thematic Analysis

The thematic analysis yielded three main themes of effective learning behavior: intrinsic empowerment, entrustment, and functional skills. Intrinsic empowerment overlies four proposed subthemes: proactivity, organization, diligence, and resourcefulness. For entrustment, there were four underlying subthemes: students as assessors, students as teachers, feedback-giving, and feedback-receiving. The functional skills theme contains four subthemes: time management, digital proficiency, data management, and collaboration.

Theme 1: Intrinsic Empowerment

Intrinsic empowerment enforces student learning behavior that can facilitate the achievement of learning outcomes. By empowering the development of these behaviors, students can become lifelong learners [ 34 ]. The first element of intrinsic empowerment is proactive behavior. In PBL, the students must be proactive in analyzing problems [ 35 , 36 ] and their learning needs [ 35 , 37 ], and this can be done by integrating prior knowledge and previous experience through a brainstorming session [ 35 , 38 ]. The students must be proactive in seeking guidance to ensure they stay focused and confident [ 39 , 40 ]. Finding ways to integrate content from different disciplines [ 35 , 41 ], formulate new explanations based on known facts [ 34 , 35 , 41 ], and incorporate hands-on activity [ 35 , 39 , 42 ] during a PBL session are also proactive behaviors.

The second element identified is “being organized” which reflects the ability of students to systematically manage their roles [ 43 ], ideas, and learning needs [ 34 ]. The students also need to understand the task for each learning role in PBL, such as chairperson or leader, scribe, recorder, and reflector. This role needs to be assigned appropriately to ensure that all members take part in the discussion [ 43 ]. Similarly, when discussing ideas or learning needs, the students need to follow the steps in the PBL process and organize and prioritize the information to ensure that the issues are discussed systematically and all aspects of the problems are covered accordingly [ 34 , 37 ]. This team organization and systematic thought process is an effective way for students to focus, plan, and finalize their learning tasks.

The third element of intrinsic empowerment is “being diligent.” Students must consistently conduct self-revision [ 40 ] and keep track of their learning plan to ensure the achievement of their learning goal [ 4 , 40 ]. The students must also be responsible for completing any given task and ensuring good understanding prior to their presentation [ 40 ]. Appropriate actions need to be undertaken to find solutions to unsolved problems [ 40 , 44 ]. This effort will help them think critically and apply their knowledge for problem-solving.

The fourth element identified is “being resourceful.” Students should be able to acquire knowledge from different resources, which include external resources (i.e., lecture notes, textbooks, journal articles, audiovisual instructions, the Internet) [ 38 , 40 , 45 ] and internal resources (i.e., students’ prior knowledge or experience) [ 35 , 39 ]. The resources must be evidence-based, and thus should be carefully selected by evaluating their cross-references and appraising them critically [ 37 ]. Students should also be able to understand and summarize the learned materials and explain them using their own words [ 4 , 34 ]. The subthemes of the intrinsic empowerment theme are summarized in Table ​ Table3 3 .

 Intrinsic empowerment subtheme with the learning behavior elements

Theme 2: Entrustment

Entrustment emphasizes the various roles of students in PBL that can promote effective learning. The first entrusted role identified is “student as an assessor.” This means that students evaluate their own performance in PBL [ 46 ]. The evaluation of their own performance must be based on the achievement of the learning outcomes and reflect actual understanding of the content as well as the ability to apply the learned information in problem-solving [ 46 ].

The second element identified in this review is “student as a teacher.” To ensure successful peer teaching in PBL, students need to comprehensively understand the content of the learning materials and summarize the content in an organized manner. The students should be able to explain the gist of the discussed information using their own words [ 4 , 34 ] and utilize teaching methods to cater to differences in learning styles (i.e., visual, auditory, and kinesthetic) [ 41 ]. These strategies help capture their group members’ attention and evoke interactive discussions among them.

The third element of entrustment is to “give feedback.” Students should try giving constructive feedback on individual and group performance in PBL. Feedback on individual performance must reflect the quality of the content and task presented in the PBL. Feedback on group performance should reflect the ways in which the group members communicate and complete the group task [ 47 ]. To ensure continuous constructive feedback, students should be able to generate feedback questions beforehand and immediately deliver them during the PBL sessions [ 44 , 47 ]. In addition, the feedback must include specific measures for improvement to help their peers to take appropriate action for the future [ 47 ].

The fourth element of entrustment is “receive feedback.” Students should listen carefully to the feedback given and ask questions to clarify the feedback [ 47 ]. They need to be attentive and learn to deal with negative feedback [ 47 ]. Also, if the student does not receive feedback, they should request it either from peers or teachers and ask specific questions, such as what aspects to improve and how to improve [ 47 ]. The data on the subthemes of the entrustment theme are summarized in Table ​ Table4 4 .

Entrustment subtheme with the learning behavior elements

Theme 3: Functional Skills

Functional skills refer to essential skills that can help students learn independently and competently. The first element identified is time management skills. In PBL, students must know how to prioritize learning tasks according to the needs and urgency of the tasks [ 40 ]. To ensure that students can self-pace their learning, a deadline should be set for each learning task within a manageable and achievable learning schedule [ 40 ].

Furthermore, students should have digital proficiency, the ability to utilize digital devices to support learning [ 38 , 40 , 44 ]. The student needs to know how to operate basic software (e.g., Words and PowerPoints) and the basic digital tools (i.e., social media, cloud storage, simulation, and online community learning platforms) to support their learning [ 39 , 40 ]. These skills are important for peer learning activities, which may require information sharing, information retrieval, online peer discussion, and online peer feedback [ 38 , 44 ].

The third functional skill identified is data management, the ability to collect key information in the PBL trigger and analyze that information to support the solution in a problem-solving activity [ 39 ]. Students need to work either individually or in a group to collect the key information from a different trigger or case format such as text lines, an interview, an investigation, or statistical results [ 39 ]. Subsequently, students also need to analyze the information and draw conclusions based on their analysis [ 39 ].

The fourth element of functional skill is collaboration. Students need to participate equally in the PBL discussion [ 41 , 46 ]. Through discussion, confusion and queries can be addressed and resolved by listening, respecting others’ viewpoints, and responding professionally [ 35 , 39 , 43 , 44 ]. In addition, the students need to learn from each other and reflect on their performance [ 48 ]. Table ​ Table5 5 summarizes the data on the subthemes of the functional skills theme.

Functional skills subtheme with the learning behavior elements

This scoping review outlines three themes of effective learning behavior elements in the PBL context: intrinsic empowerment, entrustment, and functional skills. Hence, it is evident from this review that successful PBL instruction demands students’ commitment to empower themselves with value-driven behaviors, skills, and roles.

In this review, intrinsic empowerment is viewed as enforcement of students’ internal strength in performing positive learning behaviors related to PBL. This theme requires the student to proactively engage in the learning process, organize their learning activities systematically, persevere in learning, and be intelligently resourceful. One of the elements of intrinsic empowerment is the identification and analysis of problems related to complex scenarios. This element is aligned with a study by Meyer [ 49 ], who observed students’ engagement in problem identification and clarification prior to problem-solving activities in a PBL session related to multiple engineering design. Rubenstein and colleagues [ 50 ] discovered in a semi-structured interview the importance of undergoing a problem identification process before proposing a solution during learning. It was reported that the problem identification process in PBL may enhance the attainment of learning outcomes, specifically in the domain of concept understanding [ 51 ].

The ability of the students to acquire and manage learning resources is essential for building their understanding of the learned materials and enriching discussion among team members during PBL. This is aligned with a study by Jeong and Hmelo-Silver [ 52 ], who studied the use of learning resources by students in PBL. The study concluded that in a resource-rich environment, the students need to learn how to access and understand the resources to ensure effective learning. Secondly, they need to process the content of the resources, integrate various resources, and apply them in problem-solving activities. Finally, they need to use the resources in collaborative learning activities, such as sharing and relating to peer resources.

Wong [ 53 ] documented that excellent students spent considerably more time managing academic resources than low achievers. The ability of the student to identify and utilize their internal learning resources, such as prior knowledge and experience, is also important. A study by Lee et al. [ 54 ] has shown that participants with high domain-specific prior knowledge displayed a more systematic approach and high accuracy in visual and motor reactions in solving problems compared to novice learners.

During the discussion phase in PBL, organizing ideas—e.g., arranging relevant information gathered from the learning resources into relevant categories—is essential for communicating the idea clearly [ 34 ]. This finding is in line with a typology study conducted by Larue [ 55 ] on second-year nursing students’ learning strategies during a group discussion. The study discovered that although the content presented by the student is adequate, they unable to make further progress in the group discussion until they are instructed by the tutor on how to organize the information given into a category [ 55 ].

Hence, the empowerment of student intrinsic behavior may enhance students’ learning in PBL by allowing them to make a decision in their learning objectives and instilling confidence in them to achieve goals. A study conducted by Kirk et al. [ 56 ] proved that highly empowered students obtain better grades, increase learning participation, and target higher educational aspirations.

Entrustment is the learning role given to students to be engaging and identify gaps in their learning. This theme requires the student to engage in self-assessment, prepare to teach others, give constructive feedback, and value the feedback received. One of the elements of entrustment is the ability to self-assess. In a study conducted by Mohd et al. [ 57 ] looking at the factors in PBL that can strengthen the capability of IT students, they discovered that one of the critical factors that contribute to these skills is the ability of the student to perform self-assessment in PBL. As mentioned by Daud, Kassim, and Daud [ 58 ], the self-assessment may be more reliable if the assessment is performed based on the objectives set beforehand and if the criteria of the assessment are understood by the learner. This is important to avoid the fact that the result of the self-assessment is influenced by the students’ perception of themselves rather than reflecting their true performance. However, having an assessment based on the learning objective only focuses on the immediate learning requirements in the PBL. To foster lifelong learning skills, it should also be balanced with the long-term focus of assessment, such as utilizing the assessment to foster the application of knowledge in solving real-life situations. This is aligned with the review by Boud and Falchikov [ 59 ] suggesting that students need to become assessors within the concept of participation in practice, that is, the kind that is within the context of real life and work.

The second subtheme of entrustment is “students as a teacher” in PBL. In our review, the student needs to be well prepared with the teaching materials. A cross-sectional study conducted by Charoensakulchai and colleagues discovered that student preparation is considered among the important factors in PBL success, alongside other factors such as “objective and contents,” “student assessment,” and “attitude towards group work” [ 60 ]. This is also aligned with a study conducted by Sukrajh [ 61 ] using focus group discussion on fifth-year medical students to explore their perception of preparedness before conducting peer teaching activity. In this study, the student in the focus group expressed that the preparation made them more confident in teaching others because preparing stimulated them to activate and revise prior knowledge, discover their knowledge gaps, construct new knowledge, reflect on their learning, improve their memory, inspire them to search several resources, and motivate them to learn the topics.

The next element of “student as a teacher” is using various learning styles to teach other members in the group. A study conducted by Almomani [ 62 ] showed that the most preferred learning pattern by the high school student is the visual pattern, followed by auditory pattern and then kinesthetic. However, in the university setting, Hamdani [ 63 ] discovered that students prefer a combination of the three learning styles. Anbarasi [ 64 ] also explained that incorporating teaching methods based on the student’s preferred learning style further promotes active learning among the students and significantly improved the long-term retrieval of knowledge. However, among the three learning styles group, he discovered that the kinesthetic group with the kinesthetic teaching method showed a significantly higher post-test score compared to the traditional group with the didactic teaching method, and he concluded that this is because of the involvement of more active learning activity in the kinesthetic group.

The ability of students to give constructive feedback on individual tasks is an important element in promoting student contribution in PBL because feedback from peers or teachers is needed to reassure themselves that they are on the right track in the learning process. Kamp et al. [ 65 ] performed a study on the effectiveness of midterm peer feedback on student individual cognitive, collaborative, and motivational contributions in PBL. The experimental group that received midterm peer feedback combined with goal-setting with face-to-face discussion showed an increased amount of individual contributions in PBL. Another element of effective feedback is that the feedback is given immediately after the observed behavior. Parikh and colleagues survey student feedback in PBL environments among 103 final-year medical students in five Ontario schools, including the University of Toronto, McMaster University, Queens University, the University of Ottawa, and the University of Western Ontario. They discovered that there was a dramatic difference between McMaster University and other universities in the immediacy of feedback they practiced. Seventy percent of students at McMaster reported receiving immediate feedback in PBL, compared to less than 40 percent of students from the other universities, in which most of them received feedback within one week or several weeks after the PBL had been conducted [ 66 ]. Another study, conducted among students of the International Medical University of Kuala Lumpur examining the student expectation on feedback, discovered that immediate feedback is effective if the feedback is in written form, simple but focused on the area of improvement, and delivered by a content expert. If the feedback is delivered by a content non-expert and using a model answer, it must be supplemented with teacher dialogue sessions to clarify the feedback received [ 67 ].

Requesting feedback from peers and teachers is an important element of the PBL learning environment, enabling students to discover their learning gaps and ways to fill them. This is aligned with a study conducted by de Jong and colleagues [ 68 ], who discovered that high-performing students are more motivated to seek feedback than low-performing students. The main reason for this is because high-performing students seek feedback as a tool to learn from, whereas low-performing students do so as an academic requirement. This resulted in high-performing students collecting more feedback. A study by Bose and Gijselaers [ 69 ] examined the factors that promote feedback-seeking behavior in medical residency. They discovered that feedback-seeking behavior can be promoted by providing residents with high-quality feedback to motivate them to ask for feedback for improvement.

By assigning an active role to students as teachers, assessors, and feedback providers, teachers give them the ownership and responsibility to craft their learning. The learner will then learn the skills to monitor and reflect on their learning to achieve academic success. Furthermore, an active role encourages students to be evaluative experts in their own learning, and promoting deep learning [ 70 ].

Functional skills refer to essential abilities for competently performing a task in PBL. This theme requires the student to organize and plan time for specific learning tasks, be digitally literate, use data effectively to support problem-solving, and work together efficiently to achieve agreed objectives. One of the elements in this theme is to have a schedule of learning tasks with deadlines. In a study conducted by Tadjer and colleagues [ 71 ], they discovered that setting deadlines with a restricted time period in a group activity improved students’ cognitive abilities and soft skills. Although the deadline may initially cause anxiety, coping with it encourages students to become more creative and energetic in performing various learning strategies [ 72 , 73 ]. Ballard et al. [ 74 ] reported that students tend to work harder to complete learning tasks if they face multiple deadlines.

The students also need to be digitally literate—i.e., able to demonstrate the use of technological devices and tools in PBL. Taradi et al. [ 75 ] discovered that incorporating technology in learning—blending web technology with PBL—removes time and place barriers in the creation of a collaborative environment. It was found that students who participated in web discussions achieved a significantly higher mean grade on a physiology final examination than those who used traditional methods. Also, the incorporation of an online platform in PBL can facilitate students to develop investigation and inquiry skills with high-level cognitive thought processes, which is crucial to successful problem-solving [ 76 ].

In PBL, students need to work collaboratively with their peers to solve problems. A study by Hidayati et al. [ 77 ] demonstrated that effective collaborative skills improve cognitive learning outcomes and problem-solving ability among students who undergo PBL integrated with digital mind maps. To ensure successful collaborative learning in PBL, professional communication among students is pertinent. Research by Zheng and Huang [ 78 ] has proven that co-regulation (i.e., warm and responsive communication that provides support to peers) improved collaborative effort and group performance among undergraduate and master’s students majoring in education and psychology. This is also in line with a study by Maraj and colleagues [ 79 ], which showed the strong team interaction within the PBL group leads to a high level of team efficacy and academic self-efficacy. Moreover, strengthening communication competence, such as by developing negotiation skills among partners during discussion sessions, improves student scores [ 80 ].

PBL also includes opportunities for students to learn from each other (i.e., peer learning). A study by Maraj et al. [ 79 ] discovered that the majority of the students in their study perceived improvement in their understanding of the learned subject when they learned from each other. Another study by Lyonga [ 81 ] documented the successful formation of cohesive group learning, where students could express and share their ideas with their friends and help each other. It was suggested that each student should be paired with a more knowledgeable student who has mastered certain learning components to promote purposeful structured learning within the group.

From this scoping review, it is clear that functional skills equip the students with abilities and knowledge needed for successful PBL. Studies have shown that strong time management skills, digital literacy, data management, and collaborative skills lead to positive academic achievement [ 77 , 82 , 83 ].

Limitation of the Study

This scoping review is aimed to capture the recent effective learning behavior in problem-based learning; therefore, the literature before 2015 was not included. Without denying the importance of publication before 2015, we are relying on Okoli and Schabram [ 84 ] who highlighted the impossibility of retrieving all the published articles when conducting a literature search. Based on this ground, we decided to focus on the time frame between 2015 and 2019, which is aligned with the concepts of study maturity (i.e., the more mature the field, the higher the published articles and therefore more topics were investigated) by Kraus et al. [ 85 ]. In fact, it was noted that within this time frame, a significant number of articles have been found as relevant to PBL with the recent discovery of effective learning behavior. Nevertheless, our time frame did not include the timing of the coronavirus disease 19 (COVID-19) pandemic outbreak, which began at the end of 2019. Hence, we might miss some important elements of learning behavior that are required for the successful implementation of PBL during the COVID-19 pandemic.

Surprisingly, the results obtained from this study are also applicable for the PBL sessions administration during the COVID-19 pandemic situation as one of the functional skills identified is digital proficiency. This skill is indeed important for the successful implementation of online PBL session.

This review identified the essential learning behaviors required for effective PBL in higher education and clustered them into three main themes: (i) intrinsic empowerment, (ii) entrustment, and (iii) functional skills. These learning behaviors must coexist to ensure the achievement of desired learning outcomes. In fact, the findings of this study indicated two important implications for future practice. Firstly, the identified learning behaviors can be incorporated as functional elements in the PBL framework and implementation. Secondly, the learning behaviors change and adaption can be considered to be a new domain of formative assessment related to PBL. It is noteworthy to highlight that these learning behaviors could help in fostering the development of lifelong skills for future workplace challenges. Nevertheless, considerably more work should be carried out to design a solid guideline on how to systematically adopt the learning behaviors in PBL sessions, especially during this COVID-19 pandemic situation.

This study was supported by Postgraduate Incentive Grant-PhD (GIPS-PhD, grant number: 311/PPSP/4404803).

Declarations

The study has received an ethical approval from the Human Research Ethics Committee of Universiti Sains Malaysia.

No informed consent required for the scoping review.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Quickcut: S2E173 Problem Solving 101 It's a Good Life

  • Entrepreneurship

If you can successfully solve other people’s problems, you will be both highly compensated and highly trusted. In this episode, Brian teaches why effective problem solving is a mindset and a skill and explains how learning to creatively solve problems for yourself and others will help you to live the good life.       YOU WILL LEARN: ·     Why people repeatedly encounter the same problems. ·     Why problem solving is such a valued skill. ·     How to become a problem solver.     MENTIONED IN THIS EPISODE:    “You2,” by Price Pritchett   S1E164 The Best Interview of My Life with Neil Armstrong   INSPIRATIONAL QUOTES FROM THIS EPISODE:   “Creativity and problem solving are the same thing.” – Brian Buffini “Solving problems gives you confidence and it also builds your momentum.” – Brian Buffini   “You can't solve a problem until you're asking the right questions.” – Brian Buffini   “Long after your physical strength is not what it used to be, your problem solving can be at an all-time high.” – Brian Buffini   “Don't just be a talker, be a doer.” – Brian Buffini itsagoodlife.com Hosted on Acast. See acast.com/privacy for more information.

  • More Episodes

Help | Advanced Search

Computer Science > Machine Learning

Title: an efficient learning-based solver comparable to metaheuristics for the capacitated arc routing problem.

Abstract: Recently, neural networks (NN) have made great strides in combinatorial optimization. However, they face challenges when solving the capacitated arc routing problem (CARP) which is to find the minimum-cost tour covering all required edges on a graph, while within capacity constraints. In tackling CARP, NN-based approaches tend to lag behind advanced metaheuristics, since they lack directed arc modeling and efficient learning methods tailored for complex CARP. In this paper, we introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics while exhibiting superior efficiency. First, we propose the direction-aware attention model (DaAM) to incorporate directionality into the embedding process, facilitating more effective one-stage decision-making. Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy for subsequent reinforcement fine-tuning. It proves particularly valuable for solving CARP that has a higher complexity than the node routing problems (NRPs). Finally, a path optimization method is proposed to adjust the depot return positions within the path generated by DaAM. Experiments illustrate that our approach surpasses heuristics and achieves decision quality comparable to state-of-the-art metaheuristics for the first time while maintaining superior efficiency.

Submission history

Access paper:.

  • Download PDF
  • HTML (experimental)
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. Problem Based Learning

    problem solving e problem based learning

  2. Applying Problem Based Learning (PBL)

    problem solving e problem based learning

  3. differenza tra problem solving e problem based learning

    problem solving e problem based learning

  4. 7 Steps to Improve Your Problem Solving Skills

    problem solving e problem based learning

  5. Developing Problem-Solving Skills for Kids

    problem solving e problem based learning

  6. Applying Problem Based Learning (PBL)

    problem solving e problem based learning

COMMENTS

  1. Problem-Based Learning (PBL)

    PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and ...

  2. Problem-Based Learning

    Nilson (2010) lists the following learning outcomes that are associated with PBL. A well-designed PBL project provides students with the opportunity to develop skills related to: Working in teams. Managing projects and holding leadership roles. Oral and written communication. Self-awareness and evaluation of group processes. Working independently.

  3. Problem-Based Learning: An Overview of its Process and Impact on

    Problem-based learning (PBL) has been widely adopted in diverse fields and educational contexts to promote critical thinking and problem-solving in authentic learning situations. Its close affiliation with workplace collaboration and interdisciplinary learning contributed to its spread beyond the traditional realm of clinical education 1 to ...

  4. Problem-Based Learning (PBL)

    Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and ...

  5. Problem-based learning

    Problem-based learning (PBL) is a student-centered pedagogy in which students learn about a subject through the experience of solving an open-ended problem found in trigger material. The PBL process does not focus on problem solving with a defined solution, but it allows for the development of other desirable skills and attributes.

  6. 5 Strategies for Aligning PBL to Real-World Problem-Solving

    In this strategy, students engage with people outside the classroom at the beginning, middle, and end of a project to hear stories that relate to the problem context, receive guidance on the technical aspects of the content they are learning, and ask questions. 5: Groups work together in small bursts of time to solve problems.

  7. Problem-Based Learning: What and How Do Students Learn?

    Problem-based approaches to learning have a long history of advocating experience-based education. Psychological research and theory suggests that by having students learn through the experience of solving problems, they can learn both content and thinking strategies. Problem-based learning (PBL) is an instructional method in which students learn through facilitated problem solving. In PBL ...

  8. What is Problem-Based Learning? A Complete Guide for Educators

    Final Thoughts on Problem-Based Learning. Problem-based learning (PBL) is a student-centered teaching method that encourages students to learn by actively solving real-world problems. Unlike traditional instructional methods, PBL does not focus on delivering content but rather on facilitating student learning through problem-solving.

  9. Problem-Based Learning and Case-Based Learning

    Problem-based learning has originally been introduced in order to promote active learning and transfer of learning (see also Chap. 49, "First Principles of Instruction Revisited," by Merrill, this volume). Some of the design elements making PBL such as active learning approach (e.g., Silverthorn, 2020) are (1) active and applied problem-solving, (2) small-group learning, and (3 ...

  10. Problem-Based Learning: What and How Do Students Learn?

    Cindy E. Hmelo-Silver1'2 Problem-based approaches to learning have a long history of advocating experience-based education. Psychological research and theory suggests that by having students learn through the experience of solving problems, they can learn both content and thinking strategies. Problem-based learning (PEL) is

  11. The effectiveness of collaborative problem solving in promoting

    Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with ...

  12. Problem-Based Learning

    Definition. Problem-based learning (PBL) is an instructional method aimed at preparing students for real-world settings. By requiring students to solve problems, PBL enhances students' learning outcomes by promoting their abilities and skills in applying knowledge, solving problems, practicing higher order thinking, and self-directing their ...

  13. Problem-based learning.

    Problem-based learning (PBL) is an active approach to learning in which learners collaborate in understanding and solving complex, ill-structured problems. Because of their complex and illstructured nature, these problems require learners to share their current knowledge, negotiate among alternative ideas, search for information, and construct principled arguments to support their proposed ...

  14. PDF Problem Based Learning: A Student-Centered Approach

    Keywords: problem based learning, curriculum, collaborative learning, team work, approach, method 1. Introduction Problem based learning is a student-centered educational method which aims to develop problem - solving skills through a self- directed learning as a life time habit and team work skills. Untidy, messy, ill structured situations

  15. The process of implementing problem-based learning in a teacher

    This study aimed to explore how the problem-based learning (PBL) ... I observed that the higher the students' learning engagement and problem-solving performance, the higher their professional knowledge in the course (Rr_20181224). Additionally, this study demonstrated that the PBL approach enhances pre-service teachers' positive learning ...

  16. An Integrative Framework for Problem-Based Learning and Action Learning

    Problem-based learning (PBL) and action learning (AL) are two examples of these interventions used for developing agile practitioners while solving challenges found in the workplace. Addressing the complexity of these approaches, this article presents a framework that integrates PBL and AL design features to facilitate research into these ...

  17. E-Learning Environments and Problem-Based Learning

    Project-based learning (PBL) has been identified as an effective pedagogy for instructors to help students to learn interdisciplinary knowledge, problem-solving skills, modes of thinking, and ...

  18. Elevating Math Education Through Problem-Based Learning

    The Traditional Approach. Problem-based learning has a rich history in American education, with John Dewey laying the theoretical groundwork in 1916 and McMaster University pioneering the PBL program for medical education in 1969. More recently, the National Council of Teachers of Mathematics published Principles and Standards for School Mathematics in 2000, setting forth a vision that ...

  19. PDF How do secondary students engage in complex problem- solving processes

    to apply subject knowledge to explore real-world problems through inquiry-based learning activities (e.g., Chen et al., 2018) and/or design solutions to solve real-world problems through design-based learning activities (e.g., Cunningham et al., 2020). Research indicated that integrated STEM education through authentic projects provides

  20. An e-Problem-Based Learning Program for Infection Control in Nursing

    The practical reasoning process in recognizing and dealing with new infectious cases could be improved by an educational strategy focused on problem-solving . Moreover, as e-learning improves learning ability through self-directed learning and repetition , the program's educational effect was enhanced through e-PBL, which combines the ...

  21. Problem Solving & Problem-based Learning

    Problem Solving and Problem-based Learning in the Geosciences. Learning approaches to address the messy problems of the real world is critical in students learning to "think like a scientist" (Hunter et al., 2006; Lopatto, 2004). Given the grand challenges facing society that include resource issues and climate change, geoscientists depend upon ...

  22. PDF The effectiveness of environment-oriented e- books based on problem

    The Result of Application Environment Oriented E-Books Based on Problem-Based Learning (PBL) on Problem Solving Ability The normality test in the study used the Shapiro-Wilk test because the study sample was less than 100 (González-Estrada & Cosmes, 2019). The results of the normality test with SPSS 16 on the pretest and

  23. Effective Learning Behavior in Problem-Based Learning: a ...

    Problem-based learning (PBL) emphasizes learning behavior that leads to critical thinking, problem-solving, communication, and collaborative skills in preparing students for a professional medical career. However, learning behavior that develops these skills has not been systematically described. This review aimed to unearth the elements of effective learning behavior in a PBL context, using ...

  24. Effective Learning Behavior in Problem-Based Learning: a Scoping Review

    Problem-based learning (PBL) emphasizes learning behavior that leads to critical thinking, problem-solving, communication, and collaborative skills in preparing students for a professional medical career. However, learning behavior that develops these skills has not been systematically described. This review aimed to unearth the elements of ...

  25. Problem-Based Learning and Applied Mathematics

    Problem-based learning (PBL) is a teaching method that appeared in the early 1960s and is widely applied in distinct areas nowadays. In the presented manuscript, we describe a PBL methodology use restricted to applied mathematics for problem solving among a group of engineering students in a Portuguese university. In the pandemic context, it was a huge challenge both for the students and for ...

  26. The Influence Of The Problem Based Learning Model With Differentiated

    DOI: 10.4108/eai.24-10-2023.2343057 Corpus ID: 267591870; The Influence Of The Problem Based Learning Model With Differentiated Learning On Problem Solving Ability @article{Elvani2024TheIO, title={The Influence Of The Problem Based Learning Model With Differentiated Learning On Problem Solving Ability}, author={Cindi Elvani and Ridwan Sani and Rita Juliani}, journal={Proceedings of the 5th ...

  27. ‎It's a Good Life: Quickcut: S2E173 Problem Solving 101 on Apple Podcasts

    In this episode, Brian teaches why effective problem solving is a mindset and a skill and explains how learning to creatively solve problems for yourself and others will help you to live the good life. YOU WILL LEARN: · Why people repeatedly encounter the same problems. · Why problem solving is such a valued skill.

  28. An Efficient Learning-based Solver Comparable to ...

    Recently, neural networks (NN) have made great strides in combinatorial optimization. However, they face challenges when solving the capacitated arc routing problem (CARP) which is to find the minimum-cost tour covering all required edges on a graph, while within capacity constraints. In tackling CARP, NN-based approaches tend to lag behind advanced metaheuristics, since they lack directed arc ...

  29. PDF The Effect of Problem-Based Learning on Middle School Students

    of a problem-based learning model on 8th-grade students' environmental literacy and problem-solving skills in the context of Sustainable Development. In this aim, the following research questions were investigated: 1) Is there a significant effect of the Problem-Based Learning (PBL) model in the context of Sustainable

  30. [2403.07028] An Efficient Learning-based Solver Comparable to

    Recently, neural networks (NN) have made great strides in combinatorial optimization. However, they face challenges when solving the capacitated arc routing problem (CARP) which is to find the minimum-cost tour covering all required edges on a graph, while within capacity constraints. In tackling CARP, NN-based approaches tend to lag behind advanced metaheuristics, since they lack directed arc ...