77 interesting medical research topics for 2024

Last updated

25 November 2023

Reviewed by

Brittany Ferri, PhD, OTR/L

Medical research is the gateway to improved patient care and expanding our available treatment options. However, finding a relevant and compelling research topic can be challenging.

Use this article as a jumping-off point to select an interesting medical research topic for your next paper or clinical study.

  • How to choose a medical research topic

When choosing a research topic , it’s essential to consider a couple of things. What topics interest you? What unanswered questions do you want to address? 

During the decision-making and brainstorming process, here are a few helpful tips to help you pick the right medical research topic:

Focus on a particular field of study

The best medical research is specific to a particular area. Generalized studies are often too broad to produce meaningful results, so we advise picking a specific niche early in the process. 

Maybe a certain topic interests you, or your industry knowledge reveals areas of need.

Look into commonly researched topics

Once you’ve chosen your research field, do some preliminary research. What have other academics done in their papers and projects? 

From this list, you can focus on specific topics that interest you without accidentally creating a copycat project. This groundwork will also help you uncover any literature gaps—those may be beneficial areas for research.

Get curious and ask questions

Now you can get curious. Ask questions that start with why, how, or what. These questions are the starting point of your project design and will act as your guiding light throughout the process. 

For example: 

What impact does pollution have on children’s lung function in inner-city neighborhoods? 

Why is pollution-based asthma on the rise? 

How can we address pollution-induced asthma in young children? 

  • 77 medical research topics worth exploring in 2023

Need some research inspiration for your upcoming paper or clinical study? We’ve compiled a list of 77 topical and in-demand medical research ideas. Let’s take a look. 

  • Exciting new medical research topics

If you want to study cutting-edge topics, here are some exciting options:

COVID-19 and long COVID symptoms

Since 2020, COVID-19 has been a hot-button topic in medicine, along with the long-term symptoms in those with a history of COVID-19. 

Examples of COVID-19-related research topics worth exploring include:

The long-term impact of COVID-19 on cardiac and respiratory health

COVID-19 vaccination rates

The evolution of COVID-19 symptoms over time

New variants and strains of the COVID-19 virus

Changes in social behavior and public health regulations amid COVID-19

Vaccinations

Finding ways to cure or reduce the disease burden of chronic infectious diseases is a crucial research area. Vaccination is a powerful option and a great topic to research. 

Examples of vaccination-related research topics include:

mRNA vaccines for viral infections

Biomaterial vaccination capabilities

Vaccination rates based on location, ethnicity, or age

Public opinion about vaccination safety 

Artificial tissues fabrication

With the need for donor organs increasing, finding ways to fabricate artificial bioactive tissues (and possibly organs) is a popular research area. 

Examples of artificial tissue-related research topics you can study include:

The viability of artificially printed tissues

Tissue substrate and building block material studies

The ethics and efficacy of artificial tissue creation

  • Medical research topics for medical students

For many medical students, research is a big driver for entering healthcare. If you’re a medical student looking for a research topic, here are some great ideas to work from:

Sleep disorders

Poor sleep quality is a growing problem, and it can significantly impact a person’s overall health. 

Examples of sleep disorder-related research topics include:

How stress affects sleep quality

The prevalence and impact of insomnia on patients with mental health conditions

Possible triggers for sleep disorder development

The impact of poor sleep quality on psychological and physical health

How melatonin supplements impact sleep quality

Alzheimer’s and dementia 

Cognitive conditions like dementia and Alzheimer’s disease are on the rise worldwide. They currently have no cure. As a result, research about these topics is in high demand. 

Examples of dementia-related research topics you could explore include:

The prevalence of Alzheimer’s disease in a chosen population

Early onset symptoms of dementia

Possible triggers or causes of cognitive decline with age

Treatment options for dementia-like conditions

The mental and physical burden of caregiving for patients with dementia

  • Lifestyle habits and public health

Modern lifestyles have profoundly impacted the average person’s daily habits, and plenty of interesting topics explore its effects. 

Examples of lifestyle and public health-related research topics include:

The nutritional intake of college students

The impact of chronic work stress on overall health

The rise of upper back and neck pain from laptop use

Prevalence and cause of repetitive strain injuries (RSI)

  • Controversial medical research paper topics

Medical research is a hotbed of controversial topics, content, and areas of study. 

If you want to explore a more niche (and attention-grabbing) concept, here are some controversial medical research topics worth looking into:

The benefits and risks of medical cannabis

Depending on where you live, the legalization and use of cannabis for medical conditions is controversial for the general public and healthcare providers.

Examples of medical cannabis-related research topics that might grab your attention include:

The legalization process of medical cannabis

The impact of cannabis use on developmental milestones in youth users

Cannabis and mental health diagnoses

CBD’s impact on chronic pain

Prevalence of cannabis use in young people

The impact of maternal cannabis use on fetal development 

Understanding how THC impacts cognitive function

Human genetics

The Human Genome Project identified, mapped, and sequenced all human DNA genes. Its completion in 2003 opened up a world of exciting and controversial studies in human genetics.

Examples of human genetics-related research topics worth delving into include:

Medical genetics and the incidence of genetic-based health disorders

Behavioral genetics differences between identical twins

Genetic risk factors for neurodegenerative disorders

Machine learning technologies for genetic research

Sexual health studies

Human sexuality and sexual health are important (yet often stigmatized) medical topics that need new research and analysis.

As a diverse field ranging from sexual orientation studies to sexual pathophysiology, examples of sexual health-related research topics include:

The incidence of sexually transmitted infections within a chosen population

Mental health conditions within the LGBTQIA+ community

The impact of untreated sexually transmitted infections

Access to safe sex resources (condoms, dental dams, etc.) in rural areas

  • Health and wellness research topics

Human wellness and health are trendy topics in modern medicine as more people are interested in finding natural ways to live healthier lifestyles. 

If this field of study interests you, here are some big topics in the wellness space:

Gluten sensitivity

Gluten allergies and intolerances have risen over the past few decades. If you’re interested in exploring this topic, your options range in severity from mild gastrointestinal symptoms to full-blown anaphylaxis. 

Some examples of gluten sensitivity-related research topics include:

The pathophysiology and incidence of Celiac disease

Early onset symptoms of gluten intolerance

The prevalence of gluten allergies within a set population

Gluten allergies and the incidence of other gastrointestinal health conditions

Pollution and lung health

Living in large urban cities means regular exposure to high levels of pollutants. 

As more people become interested in protecting their lung health, examples of impactful lung health and pollution-related research topics include:

The extent of pollution in densely packed urban areas

The prevalence of pollution-based asthma in a set population

Lung capacity and function in young people

The benefits and risks of steroid therapy for asthma

Pollution risks based on geographical location

Plant-based diets

Plant-based diets like vegan and paleo diets are emerging trends in healthcare due to their limited supporting research. 

If you’re interested in learning more about the potential benefits or risks of holistic, diet-based medicine, examples of plant-based diet research topics to explore include:

Vegan and plant-based diets as part of disease management

Potential risks and benefits of specific plant-based diets

Plant-based diets and their impact on body mass index

The effect of diet and lifestyle on chronic disease management

Health supplements

Supplements are a multi-billion dollar industry. Many health-conscious people take supplements, including vitamins, minerals, herbal medicine, and more. 

Examples of health supplement-related research topics worth investigating include:

Omega-3 fish oil safety and efficacy for cardiac patients

The benefits and risks of regular vitamin D supplementation

Health supplementation regulation and product quality

The impact of social influencer marketing on consumer supplement practices

Analyzing added ingredients in protein powders

  • Healthcare research topics

Working within the healthcare industry means you have insider knowledge and opportunity. Maybe you’d like to research the overall system, administration, and inherent biases that disrupt access to quality care. 

While these topics are essential to explore, it is important to note that these studies usually require approval and oversight from an Institutional Review Board (IRB). This ensures the study is ethical and does not harm any subjects. 

For this reason, the IRB sets protocols that require additional planning, so consider this when mapping out your study’s timeline. 

Here are some examples of trending healthcare research areas worth pursuing:

The pros and cons of electronic health records

The rise of electronic healthcare charting and records has forever changed how medical professionals and patients interact with their health data. 

Examples of electronic health record-related research topics include:

The number of medication errors reported during a software switch

Nurse sentiment analysis of electronic charting practices

Ethical and legal studies into encrypting and storing personal health data

Inequities within healthcare access

Many barriers inhibit people from accessing the quality medical care they need. These issues result in health disparities and injustices. 

Examples of research topics about health inequities include:

The impact of social determinants of health in a set population

Early and late-stage cancer stage diagnosis in urban vs. rural populations

Affordability of life-saving medications

Health insurance limitations and their impact on overall health

Diagnostic and treatment rates across ethnicities

People who belong to an ethnic minority are more likely to experience barriers and restrictions when trying to receive quality medical care. This is due to systemic healthcare racism and bias. 

As a result, diagnostic and treatment rates in minority populations are a hot-button field of research. Examples of ethnicity-based research topics include:

Cancer biopsy rates in BIPOC women

The prevalence of diabetes in Indigenous communities

Access inequalities in women’s health preventative screenings

The prevalence of undiagnosed hypertension in Black populations

  • Pharmaceutical research topics

Large pharmaceutical companies are incredibly interested in investing in research to learn more about potential cures and treatments for diseases. 

If you’re interested in building a career in pharmaceutical research, here are a few examples of in-demand research topics:

Cancer treatment options

Clinical research is in high demand as pharmaceutical companies explore novel cancer treatment options outside of chemotherapy and radiation. 

Examples of cancer treatment-related research topics include:

Stem cell therapy for cancer

Oncogenic gene dysregulation and its impact on disease

Cancer-causing viral agents and their risks

Treatment efficacy based on early vs. late-stage cancer diagnosis

Cancer vaccines and targeted therapies

Immunotherapy for cancer

Pain medication alternatives

Historically, opioid medications were the primary treatment for short- and long-term pain. But, with the opioid epidemic getting worse, the need for alternative pain medications has never been more urgent. 

Examples of pain medication-related research topics include:

Opioid withdrawal symptoms and risks

Early signs of pain medication misuse

Anti-inflammatory medications for pain control

  • Identify trends in your medical research with Dovetail

Are you interested in contributing life-changing research? Today’s medical research is part of the future of clinical patient care. 

As your go-to resource for speedy and accurate data analysis , we are proud to partner with healthcare researchers to innovate and improve the future of healthcare.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 5 March 2024

Last updated: 25 November 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

Explore the Best Medical and Health Research Topics Ideas

image

Table of contents

  • 1 How to Choose Medical Research Paper Topics
  • 2 New Medical Research Paper Topics
  • 3 Medical Research Topics for College Students
  • 4 Controversial Medical Topics for Research Paper
  • 5 Health Research Topics
  • 6 Medicine Research Topics
  • 7 Healthcare Research Topics
  • 8 Public Health Research Topics
  • 9 Mental Health Research Paper Topics
  • 10 Anatomy Research Topics
  • 11 Biomedical Research Topics
  • 12 Bioethics Research Topics
  • 13 Cancer Research Topics
  • 14 Clinical Research Topics
  • 15 Critical Care Research Topics
  • 16 Pediatric Research Topics
  • 17 Dental Research Topics Ideas
  • 18 Dermatology Research Topics
  • 19 Primary Care Research Topics
  • 20 Pharmaceutical Research Topics
  • 21 Medical Anthropology Research Topics
  • 22 Paramedic Research Paper Topics
  • 23 Surgery Research Topics
  • 24 Radiology Research Paper Topics
  • 25 Anatomy and Physiology Research Paper Topics
  • 26 Healthcare Management Research Paper Topics
  • 27 Medical Ethics Research Paper Topics
  • 28 Conclusion

In such a complex and broad field as medicine, writing an original and compelling research paper is a daunting task. From investigating public care concerns to cancer treatment studies, each student decides where his interests lie. Our goal is to help students find new angles to study and focus on relevant topics. With our resources, you can write an engaging and rigorous paper.

How to Choose Medical Research Paper Topics

Choosing good research paper topics is often more challenging than the writing process itself. You need to select a captivating subject matter that will grab the reader’s attention, showcase your knowledge of a specific field, help you progress in your studies, and perhaps even inspire future research.

To accomplish that, you need to start with brainstorming, followed by thorough research. Here are some great tips to follow:

  • Pick an interesting topic – The key is to pick something that you find interesting, and yet make sure it’s not too general or too narrow. It should allow you to delve deep into the subject matter and show that you’re a professional who is ready to take on a challenge when it comes to your chosen field of medicine.
  • Narrow down your focus – Once you have a list of potential topics, sift through recent medical research papers to get up-to-date with the latest trends, developments, and issues in medicine and healthcare. Check out textbooks, news articles, and other relevant sources for more information related to your potential topics. If a particular condition or disease interests you (perhaps something that drew you to a career in medicine), there’s your cue for narrowing down your topic.
  • Pinpoint the “why,” “how,” and “what” – Whether you are looking into nutrition research paper topics , controversial medical topics, nursing research topics, or anything in-between, ask yourself why each of them is important. How could they contribute to the available medical studies, if any? What new information could they bring to improve the future of medicine? Asking these questions will help you pick the right medical research paper topic that suits you and helps you move forward and reach your aspirations.

To help you on that quest, we’ve compiled a list of topics that you could use or that might inspire you to come up with something unique. Let’s dive in.

New Medical Research Paper Topics

Are you interested in the newest and most interesting developments in medicine? We put hours of effort into identifying the current trends in health research so we could provide you with these examples of topics. Whether you hire a research paper writing service for students or write a paper by yourself, you need an appealing topic to focus on.

  • Epidemics versus pandemics
  • Child health care
  • Medical humanitarian missions in the developing world
  • Homoeopathic medicines – the placebo effect
  • Virus infections – causes and treatment
  • Is medical research on animals ethical
  • Vaccination – dangers versus benefits
  • Artificial tissues and organs
  • Rare genetic diseases
  • Brain injuries

Medical Research Topics for College Students

You don’t know where to start with your medical research paper? There are so many things you could write about that the greatest challenge is to narrow them down. This is why we decided to help.

  • Antibiotics treatments
  • Chronic diseases
  • Palliative treatment
  • Battling Alzheimer’s disease
  • How modern lifestyle affects public health
  • Professional diseases
  • Sleep disorders
  • Changes in physical and mental health due to aging
  • Eating disorders
  • Terminal diseases

Controversial Medical Topics for Research Paper

In healthcare, new discoveries can change people’s lives in the blink of an eye. This is also the reason why there are so many controversial topics in medicine, which involve anything from religion to ethics or social responsibility. Read on to discover our top controversial research topics.

  • Implementing food standards
  • Gluten allergy
  • Assisted suicide for terminal patients
  • Testing vaccines on animals – ethical concerns
  • Moral responsibilities regarding cloning
  • Marijuana legalization for medical purposes
  • Abortion – medical approaches
  • Vegan diets – benefits and dangers
  • Increased life expectancy: a burden on the healthcare system?
  • Circumcision effects

Health Research Topics

Students conducting health research struggle with finding good ideas related to their medical interests. If you want to write interesting college papers, you can select a good topic for our list.

  • How environmental changes affect human health
  • Deafness: communication disorders
  • Household air pollution
  • Diabetes – a public danger
  • Coronaviruses
  • Oral health assessment
  • Tobacco and alcohol control
  • Diseases caused by lack of physical exercise
  • How urban pollution affects respiratory diseases
  • Healthy diets

Medicine Research Topics

Regardless of the requirements in your research assignment, you can write about something that is both engaging and useful in your future career. Choose a topic from below.

  • Causes for the increasing cancer cases
  • Insulin resistance
  • How terrorism affects mental health
  • AIDS/HIV – latest developments
  • Treating pregnant women versus non-pregnant women
  • Latest innovations in medical instruments
  • Genetic engineering
  • Successful treatment of mental diseases
  • Is autism a disease
  • Natural coma versus artificial coma

Healthcare Research Topics

Healthcare research includes political and social aspects, besides medical. For college students who want to explore how medicine is affected by society’s values or principles, we provide examples of topics for papers. Select yours from the list below.

  • Government investment in healthcare services in the EU versus the USA
  • Inequalities in healthcare assistance and services
  • Electronic health records systems – pros and cons
  • Can asylums treat mental issues
  • Health care for prison inmates
  • Equipment for improving treatment of AIDS
  • Correlation between economic development and health care services across countries
  • Impact of smoking on organs
  • Heart attacks – causes and effects
  • Breast cancer – recent developments

Public Health Research Topics

For current examples of public health topics, browse our list. We provide only original, researchable examples for which you can easily find supporting data and evidence.

  • Public versus private hospitals
  • Health care professionals – management principles
  • Surgery failures – who is responsible
  • What legal responsibilities has the hospital administration
  • Patient service quality in public versus private hospitals
  • What benefits national health care systems have
  • Estimated costs of cancer treatments
  • Public health in developing countries
  • Banning tobacco ads – importance for public health
  • Government solutions to the anti-vaccine’s movement

Mental Health Research Paper Topics

Mental health is one of the most complex areas of medicine, where things are never as clear as with other medical issues. This increases the research potential of the field with plenty of topics left for debate.

  • Causes of anxiety disorders
  • Bulimia versus anorexia
  • Childhood trauma
  • Mental health public policies
  • Postpartum Depression
  • Posttraumatic Stress Disorder
  • Seasonal Affective Disorder
  • Schizophrenia

Anatomy Research Topics

Anatomy covers everything about the human body and how it works. If you find that intriguing and want to pay for medical research paper, start by selecting a topic.

  • Chemotherapy: how it affects the body
  • Thyroid glands – functions in the body
  • Human endocrine system
  • Heart diseases
  • How does the human muscular system develop
  • Lymphatic system – importance
  • Investigating genetic diseases
  • Digestive system

Biomedical Research Topics

Biology and medicine often work together. For the newest changes in the biomedical field, check our topics.

  • Alzheimer’s disease – paths for treatment
  • Vaccines and drug development in the treatment of Ebola
  • Antibiotic resistance
  • Biological effects caused by aging
  • Air pollution effects on health
  • Infectious disease past versus present
  • Regenerative medicine
  • Biomedical diagnostics
  • Biomedical technology

Bioethics Research Topics

A controversial area of medicine, bioethics is where you get the chance to add personal input to a research topic and come up with new insights. You could consider these subjects.

  • Organ donation
  • Alternative or complementary medicine
  • Assisted suicide or the right to die
  • Artificial insemination or surrogacy
  • Chemical and biological warfare
  • Contraception
  • Environmental bioethics
  • In Vitro fertilization

Cancer Research Topics

Are you writing a paper related to cancer causes, diagnosis, treatment or effects? Look below for a hot topic that it’s easy to research and important for medical advance.

  • Ability of immune system cells to fight cancer
  • Computational oncology
  • Metastasis affected by drug resistance
  • Stem cells – applications for cancer treatment
  • Tumor microenvironment
  • Obesity and age in cancer occurrence
  • Early cancer detection – benefits
  • Artificial intelligence predicting cancer
  • Hematologic malignancies
  • Pathogen-related cancers

Clinical Research Topics

Learn more about clinical medicine by conducting more in-depth research. We prepared for you a list of relevant issues to touch upon.

  • Ethical concerns regarding research on human subjects
  • Subject recruitment
  • Budget preparation
  • Human subject protection
  • Clinical trials – financial support
  • Clinical practices for health professionals
  • Using vulnerable populations in clinical research
  • Quality assurance in clinical research
  • Academic clinical trials versus clinical trials units
  • Data collection and management

Critical Care Research Topics

Critical care is a key area in medical studies. Explore these topics in your research paper to gain more valuable knowledge in this field. You can also get in contact with nursing research paper writers .

  • Obesity and asthma – clinical manifestations
  • Chronic obstructive pulmonary disease
  • Rhythm analysis for cardiac arrest
  • Traumatic brain injury – fluid resuscitation
  • Hydrocortisone for multiple trauma patients
  • Care and nutrition for critically ill adults
  • Diagnosis of hypersensitivity pneumonitis
  • Coma and sedation scales
  • Artificial airways suctioning
  • Arterial puncture and arterial line

Pediatric Research Topics

Any topic that refers to health care for children, pregnant women, mothers, and adolescents goes under pediatric care.

  • Attention deficit hyperactivity disorder (ADHD)
  • Congenital heart disease in newborns
  • Adolescent medicine
  • Neonatal medicine
  • Rare diseases in children and teenagers
  • Obesity and weight fluctuations
  • Behavioral sleep problems in children
  • Children with anemia

Dental Research Topics Ideas

Choose a topic on oral health or dental care from this list of the most interesting topics in the field.

  • How smoking affects oral health
  • Children’s risk for dental caries
  • Dental anxiety
  • Types of dental materials – new advances
  • Bad breath bacteria
  • How diabetes affects oral health
  • Oral cancer
  • Dental pain – types, causes
  • Dental implants
  • Oral health-related quality of life

Dermatology Research Topics

Find the best research topic for your dermatology paper among our examples.

  • Atopic dermatitis
  • Contact dermatitis
  • Epidemiology behind uncommon skin disorders
  • Cutaneous aging
  • Risk factors of melanoma skin cancer
  • Acne versus rosacea
  • Genetic testing for skin conditions
  • Effects of cosmetic agents on skin health
  • Improving skin barrier with pharmaceutical agents
  • Skin manifestations of autoimmune disorders

Primary Care Research Topics

Write a primary care paper that can demonstrate your research skills and interest in powerful scientific findings.

  • Primary care for vulnerable/uninsured populations
  • Interpersonal continuity in care treatment
  • How primary care contributes to health systems
  • Primary care delivery models
  • Developments in family medicine
  • Occupational/environmental health
  • Pharmacotherapy approaches
  • Formal allergy testing
  • Oral contraception side effects
  • Dietary or behavioral interventions for obesity management

Pharmaceutical Research Topics

Pharma students who need paper topics can use one from our list. We include all things related to pharmacy life.

  • Drugs that can treat cancer
  • Drug excretion
  • Elimination rate constant
  • Inflammatory stress drug treatment
  • Aspirin poising
  • Ibuprofen – dangers versus benefits
  • Toxicodynamics
  • Opioid use disorder
  • Pharmacotherapy for schizophrenia
  • Ketamine in depression treatment

Medical Anthropology Research Topics

Medical anthropology unites different areas of human knowledge. Find powerful ideas for a paper below.

  • Cultural contexts regarding reproductive health
  • Women sexuality
  • Anthropological aspects of health care
  • Contributions of social sciences to public health
  • Euthanasia and medical ethics across cultures
  • Health-related behavior in adults across cultures
  • Transcultural nursing
  • Forensic psychiatry
  • Symptoms of Celiac Disease – a disease with no symptoms
  • Nursing ethics

Paramedic Research Paper Topics

Topics for paramedic research must be based on evidence, data, statistics, or practical experience. Just like ours.

  • Trends and statistics in EMS
  • Disaster medicine
  • Mass casualties
  • Pandemics and epidemics
  • Infection control
  • Basic versus advanced life support
  • Scene safety in EMS
  • Shock management
  • Motor vehicle accidents

Surgery Research Topics

Discover all the intricacies of surgeries that save lives by writing about our topics.

  • Medical malpractice and legal issues
  • Methicillin-resistant Staphylococcus aureus
  • Pain management
  • Perioperative nursing
  • Wound management
  • Colorectal cancer surgery
  • Breast cancer surgery
  • Minimally invasive surgeries
  • Vascular disease

Radiology Research Paper Topics

Find a radiology topic related to your academic interests to write a successful paper.

  • Using MRI to diagnose hepatic focal lesions
  • Multidetector computer tomography
  • Ultrasound elastography in breast cancer
  • Assessing traumatic spinal cord injuries with MRI diffusion tensor imaging
  • Sonographic imaging to detect male infertility
  • Role of tomography in diagnosing cancer
  • Brain tumor surgery with magnetic resonance imaging
  • Bacterial meningitis imaging

Anatomy and Physiology Research Paper Topics

Any ideas for a medical research paper? We have included the most important topics for an anatomy and physiology paper.

  • What role has the endocrine system
  • Staphylococcus aureus
  • Environmental factors that affect development of human muscular system
  • What role has the lymphatic system
  • An investigation of genetic diseases
  • Explaining the aging process
  • The digestive tract
  • Effects of stress on cells and muscles
  • Evolution of the human nervous system
  • What role has the cardiovascular system

Healthcare Management Research Paper Topics

There are numerous topics you could write about when it comes to healthcare management. There’s a wide range of options to pick, from infrastructure, staff, and financial management to HR and patient management. Here are some of the top healthcare management research paper options.

  • Medical talent acquisition and retention
  • Best methods for enhancing preventative care measures
  • The role of telemedicine in reinventing healthcare management
  • Patient care and the ability to pay for healthcare
  • Mid-level healthcare providers in the emergency department
  • The opioid crisis: policies and programs
  • Urgent care and walk-in clinics
  • Hospital emergency management plan during an epidemic
  • Hospital records management and patient privacy
  • Financial crises: challenges and opportunities

Medical Ethics Research Paper Topics

Medical ethics is a field that opens the door to numerous compelling topics for research papers. Here are some of the most appealing ones you could tackle.

  • Clinical research on humans
  • Vaccines and immunization
  • Religious beliefs in healthcare
  • Euthanasia and physician-assisted suicide
  • Ethical issues across cultures
  • Amniocentesis or prenatal birth defect testing
  • Medical malpractice and going back to work
  • Racial and ethnic preferences and perceptions in organ donations
  • Racial and ethnic disparities in healthcare
  • Ethical concerns of AI in healthcare

If you need further assistance with your medical research paper, PapersOwl is here for you. Our expert writers can provide you with top-notch research and help you write an impressive paper. Contact us anytime, pick your writer, tell them more about your topic, and get a unique, plagiarism-free research paper with impeccable grammar and formatting.

Readers also enjoyed

Principles of Drug Addiction Treatment: A Research-Based Guide

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

research topic for medical technology students

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » 500+ Medical Research Topic Ideas

500+ Medical Research Topic Ideas

Table of Contents

Medical Research Topic Ideas

Medical research plays a crucial role in advancing healthcare and improving human health. It involves the scientific study of various aspects of medicine and health, including the causes, prevention, diagnosis, and treatment of diseases. Medical research is a dynamic and ever-evolving field, with new discoveries and breakthroughs happening all the time. It encompasses a wide range of disciplines, from basic science to clinical research, and involves collaboration between scientists, doctors, and other healthcare professionals. In this article, we will explore some exciting new and latest medical research topic ideas that are currently trending in the field. These Research Topics cover a variety of areas, including genetics, infectious diseases, mental health, and more.

Medical Research Topic Ideas

Medical Research Topic Ideas are as follows:

  • The efficacy of mindfulness meditation in reducing symptoms of depression and anxiety
  • The effects of vitamin D supplementation on bone health in postmenopausal women
  • The impact of social media on body image and eating disorders in adolescents
  • The effectiveness of telemedicine in improving access to healthcare in rural communities
  • The benefits and risks of long-term use of statins for cholesterol management
  • The role of gut microbiota in the development of autoimmune diseases
  • The potential of gene therapy for the treatment of genetic disorders
  • The relationship between sleep disorders and cardiovascular disease
  • The use of artificial intelligence in diagnosing and treating cancer
  • The effect of exercise on cognitive function in older adults
  • The impact of environmental factors on the development of asthma in children
  • The effectiveness of cognitive-behavioral therapy for the treatment of PTSD in veterans
  • The potential benefits of psychedelic-assisted therapy for the treatment of mental illness
  • The relationship between diet and risk of developing type 2 diabetes
  • The role of epigenetics in the development of psychiatric disorders
  • The impact of COVID-19 on mental health and well-being
  • The effectiveness of mindfulness-based stress reduction in improving quality of life in cancer patients
  • The impact of childhood trauma on the development of mental illness in adulthood
  • The benefits and risks of hormone replacement therapy for menopausal women
  • The effect of music therapy on reducing symptoms of dementia in older adults
  • The relationship between gut microbiota and obesity
  • The impact of socioeconomic status on health outcomes
  • The effectiveness of acupuncture in treating chronic pain
  • The use of stem cells in regenerative medicine
  • The impact of air pollution on respiratory health
  • The potential of nanotechnology in drug delivery
  • The relationship between social support and mental health
  • The effectiveness of mindfulness-based interventions for addiction treatment
  • The role of inflammation in the development of Alzheimer’s disease
  • The use of virtual reality in pain management
  • The impact of exercise on mental health in adolescents
  • The effectiveness of group therapy for the treatment of substance abuse
  • The relationship between sleep and weight management
  • The benefits and risks of using medical marijuana for chronic pain management
  • The role of the immune system in the development of autoimmune diseases
  • The effectiveness of cognitive rehabilitation therapy for traumatic brain injury patients
  • The impact of maternal stress on fetal development
  • The relationship between physical activity and cardiovascular health
  • The potential of gene editing for the treatment of genetic disorders
  • The effectiveness of mindfulness-based interventions for reducing symptoms of postpartum depression.
  • The impact of social media on mental health
  • Investigating the use of virtual reality in pain management
  • The effectiveness of mindfulness-based interventions for depression
  • Exploring the relationship between sleep and anxiety
  • Examining the efficacy of telemedicine in delivering mental health care
  • Investigating the impact of environmental factors on the development of cancer
  • The effect of exercise on cognitive function in elderly individuals
  • Examining the potential benefits of psychedelic-assisted therapy for PTSD
  • The relationship between diet and cardiovascular disease
  • Investigating the impact of air pollution on respiratory health
  • Examining the effects of social isolation on mental and physical health
  • The use of machine learning in diagnosing medical conditions
  • Investigating the effectiveness of acupuncture in pain management
  • The impact of childhood trauma on mental and physical health outcomes in adulthood
  • Examining the relationship between stress and autoimmune diseases
  • The effect of music therapy on mental health outcomes
  • Investigating the impact of gender on healthcare outcomes
  • Examining the relationship between sleep apnea and cardiovascular disease
  • The effectiveness of mindfulness-based interventions for chronic pain
  • Investigating the potential benefits of medical marijuana for chronic pain management
  • Examining the impact of climate change on infectious disease transmission
  • The use of robotics in surgery
  • Investigating the relationship between alcohol consumption and cancer risk
  • The effect of meditation on blood pressure control
  • Examining the impact of social determinants of health on healthcare outcomes
  • The role of genetics in the development of mental health conditions
  • Investigating the efficacy of cognitive-behavioral therapy for anxiety disorders
  • Examining the relationship between inflammation and depression
  • The impact of shift work on sleep and circadian rhythms
  • Investigating the potential benefits of probiotics in gut health
  • Examining the relationship between diet and mental health outcomes
  • The effectiveness of art therapy for individuals with dementia
  • Investigating the relationship between chronic pain and mental health outcomes
  • The impact of artificial intelligence on medical diagnosis and treatment
  • Examining the effectiveness of exercise in treating depression
  • Investigating the relationship between inflammation and cardiovascular disease
  • The effect of aromatherapy on anxiety and stress
  • Examining the impact of social support on mental health outcomes
  • The effectiveness of hypnotherapy in pain management.
  • The role of gut microbiota in immune system modulation
  • Effects of intermittent fasting on insulin sensitivity in obese individuals
  • Impact of smartphone usage on sleep quality and quantity
  • The potential therapeutic effects of CBD on anxiety disorders
  • Association between shift work and cardiovascular disease
  • Efficacy and safety of psychedelic-assisted psychotherapy in treating depression
  • The relationship between stress and autoimmune diseases
  • Novel therapies for Alzheimer’s disease
  • The effects of high-intensity interval training on metabolic syndrome
  • The role of epigenetics in the development of cancer
  • The effectiveness of virtual reality in pain management
  • The effects of social media on body image and eating disorders
  • The association between air pollution and respiratory diseases
  • Effects of mindfulness meditation on stress and anxiety in healthcare workers
  • The potential benefits of ketogenic diet in treating epilepsy
  • The relationship between sleep apnea and cardiovascular disease
  • The impact of climate change on infectious disease outbreaks
  • The effectiveness of exercise in preventing falls in the elderly
  • The effects of blue light exposure on circadian rhythm and sleep quality
  • The association between alcohol consumption and liver disease
  • The effectiveness of cognitive-behavioral therapy in treating obsessive-compulsive disorder
  • The role of gut-brain axis in mental health disorders
  • The association between chronic inflammation and cancer
  • The efficacy and safety of probiotics in treating irritable bowel syndrome
  • The effects of social isolation on mental health in the elderly
  • The impact of exercise on cognitive function in Parkinson’s disease patients
  • The association between vitamin D deficiency and autoimmune diseases
  • The potential therapeutic effects of music therapy in dementia patients
  • The effects of second-hand smoke on cardiovascular health
  • The association between maternal smoking and infant health outcomes
  • The role of microbiome in the development of allergies
  • The association between sleep duration and obesity
  • The effects of blue light-blocking glasses on sleep quality and quantity
  • The potential therapeutic effects of ketamine in treating depression
  • The association between gut dysbiosis and inflammatory bowel disease
  • The effectiveness of cognitive rehabilitation therapy in traumatic brain injury patients
  • The impact of early childhood stress on adult mental health
  • The role of inflammation in the development of type 2 diabetes
  • The potential benefits of plant-based diets in preventing chronic diseases.
  • The effects of exercise on cognitive function in aging adults
  • The association between sleep disorders and cardiovascular disease
  • The potential therapeutic effects of psilocybin in treating addiction
  • The role of gut microbiota in the development of autism spectrum disorder
  • The effectiveness of mindfulness-based interventions in treating depression
  • The effects of air pollution on cognitive function
  • The association between maternal mental health and child development
  • The potential therapeutic effects of cannabis in treating chronic pain
  • The role of diet in the prevention and management of diabetes
  • The effects of social support on mental health in cancer patients
  • The association between shift work and mental health disorders
  • The efficacy of antiviral therapies in treating COVID-19
  • The effects of exercise on bone health in postmenopausal women
  • The association between sleep disorders and obesity
  • The potential therapeutic effects of mindfulness meditation in treating anxiety disorders
  • The role of gut microbiota in the development of metabolic disorders
  • The effectiveness of virtual reality therapy in treating phobias
  • The association between social support and immune system function
  • The impact of early life stress on adult cardiovascular health
  • The potential benefits of intermittent fasting in cancer prevention
  • The effects of air pollution on pregnancy outcomes
  • The association between maternal obesity and child health outcomes
  • The efficacy of cognitive-behavioral therapy in treating post-traumatic stress disorder
  • The effects of sedentary behavior on metabolic health
  • The potential therapeutic effects of omega-3 fatty acids in treating depression
  • The role of microbiome in the development of obesity
  • The association between social isolation and cognitive decline in older adults
  • The impact of environmental toxins on child development
  • The potential benefits of plant-based diets in treating metabolic disorders
  • The effects of sleep deprivation on cognitive function
  • The association between maternal stress and fetal development
  • The efficacy of pharmacological interventions in treating anxiety disorders
  • The effects of air pollution on respiratory health in children
  • The association between social support and cardiovascular health
  • The potential therapeutic effects of mindfulness meditation in treating chronic pain
  • The role of diet in the prevention and management of cardiovascular disease
  • The effects of exercise on mental health in children and adolescents
  • The association between social support and cancer survival rates
  • The impact of environmental factors on epigenetic modifications and disease susceptibility.
  • The effects of exercise on immune function
  • The association between maternal obesity and infant health outcomes
  • The impact of air pollution on cognitive function in children
  • The association between sleep deprivation and mental health disorders
  • The effectiveness of virtual reality in rehabilitation after stroke
  • The role of the microbiome in the development of obesity
  • The impact of noise pollution on cardiovascular health
  • The association between depression and cardiovascular disease
  • The association between periodontal disease and cardiovascular health
  • The impact of social support on mental health outcomes in cancer patients
  • The potential therapeutic effects of melatonin in treating sleep disorders
  • The association between air pollution and cognitive decline in older adults
  • The effectiveness of group therapy in treating social anxiety disorder
  • The impact of exercise on bone health in postmenopausal women
  • The association between alcohol consumption and breast cancer risk
  • The effects of blue light exposure on melatonin secretion and sleep quality
  • The potential therapeutic effects of stem cells in treating Parkinson’s disease
  • The role of inflammation in the development of depression
  • The association between gut dysbiosis and depression
  • The effectiveness of music therapy in reducing anxiety in cancer patients
  • The impact of social media on mental health in adolescents
  • The potential therapeutic effects of ketamine in treating post-traumatic stress disorder
  • The association between vitamin D deficiency and cardiovascular disease
  • The effects of chronic stress on immune function
  • The potential benefits of Mediterranean diet in preventing cardiovascular disease
  • The impact of noise pollution on sleep quality and quantity
  • The association between sedentary behavior and depression
  • The effects of air pollution on fetal development and pregnancy outcomes
  • The potential therapeutic effects of acupuncture in treating anxiety disorders
  • The role of microbiome in the development of multiple sclerosis
  • The effectiveness of mindfulness-based stress reduction in treating chronic pain
  • The impact of artificial sweeteners on metabolic health
  • The association between sleep duration and cardiovascular disease
  • The effects of social isolation on immune function in older adults
  • The potential therapeutic effects of omega-3 fatty acids in treating depression.
  • The effects of exercise on cognitive function in older adults
  • The association between maternal mental health and infant development
  • The potential therapeutic effects of probiotics in treating depression
  • The impact of air pollution on lung health in children
  • The association between sleep quality and academic performance in adolescents
  • The effectiveness of cognitive-behavioral therapy in treating insomnia
  • The role of gut microbiota in the development of metabolic syndrome
  • The potential therapeutic effects of ayahuasca in treating addiction
  • The impact of green space on mental health in urban areas
  • The association between sedentary behavior and cardiometabolic risk factors
  • The effects of blue light on mood and cognitive performance in shift workers
  • The potential benefits of vegan diets in preventing chronic diseases
  • The impact of social support on mental health in older adults
  • The association between air pollution and lung cancer risk
  • The effects of exercise on mental health in cancer survivors
  • The potential therapeutic effects of ketamine in treating bipolar disorder
  • The role of the microbiome in the development of rheumatoid arthritis
  • The association between maternal nutrition and fetal development
  • The effects of sleep deprivation on immune function
  • The potential benefits of mindfulness meditation in managing chronic pain
  • The impact of noise pollution on sleep-disordered breathing
  • The association between sedentary behavior and breast cancer risk
  • The effects of blue light exposure on retinal health
  • The potential therapeutic effects of deep brain stimulation in treating depression
  • The role of gut microbiota in the development of non-alcoholic fatty liver disease
  • The association between air pollution and neurodegenerative diseases
  • The effects of social support on immune function in cancer patients
  • The potential therapeutic effects of acupuncture in treating migraines
  • The impact of light pollution on sleep quality and quantity
  • The association between sedentary behavior and type 2 diabetes risk
  • The effects of mindfulness meditation on cognitive function in older adults
  • The potential benefits of the DASH diet in preventing hypertension
  • The impact of social media on body dissatisfaction and eating disorders in adolescents
  • The association between air pollution and kidney disease
  • The effects of chronic stress on cardiovascular health
  • The potential therapeutic effects of gene therapy in treating inherited diseases
  • The role of microbiome in the development of atopic dermatitis
  • The association between maternal smoking and childhood obesity
  • The effects of blue light exposure on visual function and eye health
  • The potential therapeutic effects of electroconvulsive therapy in treating depression.

Healthcare Research Topics for College Students

  • The impact of healthcare policies on patient outcomes
  • The effectiveness of telemedicine in improving access to healthcare
  • The role of cultural competency in healthcare delivery
  • The impact of social determinants of health on healthcare outcomes
  • The effectiveness of different types of healthcare interventions
  • The role of genetics in predicting and preventing chronic diseases
  • The impact of the opioid epidemic on healthcare delivery
  • The effectiveness of alternative medicine in managing chronic conditions
  • The role of technology in improving patient safety
  • The impact of healthcare provider burnout on patient care
  • The effectiveness of different healthcare models in managing chronic diseases
  • The role of patient education in improving healthcare outcomes
  • The impact of healthcare disparities on access to care and health outcomes
  • The effectiveness of healthcare systems in responding to public health emergencies
  • The role of nutrition in disease prevention and management
  • The impact of healthcare policy on healthcare costs and spending
  • The effectiveness of mental health interventions in improving overall health outcomes
  • The role of healthcare systems in addressing health disparities
  • The impact of healthcare data analytics on clinical decision making
  • The effectiveness of healthcare interventions in reducing healthcare-associated infections
  • The role of patient-centered care in improving healthcare outcomes
  • The impact of healthcare regulations on patient safety
  • The effectiveness of vaccination programs in preventing infectious diseases
  • The role of healthcare systems in promoting healthy lifestyle behaviors
  • The impact of chronic diseases on healthcare costs and quality of life
  • The effectiveness of preventative healthcare in improving health outcomes
  • The role of healthcare technology in improving healthcare delivery
  • The impact of healthcare funding on healthcare outcomes
  • The effectiveness of healthcare interventions in managing chronic pain
  • The role of healthcare providers in promoting health equity.

Community Medicine Research Topics for Medical Students

  • The impact of community-based interventions on reducing the burden of non-communicable diseases in low-income communities.
  • The effectiveness of vaccination campaigns in preventing infectious diseases in marginalized communities.
  • The relationship between air pollution and respiratory health in urban communities.
  • The prevalence and risk factors of substance abuse among homeless populations.
  • The impact of social determinants of health on health outcomes in rural communities.
  • The role of community health workers in improving maternal and child health outcomes in low-resource settings.
  • The association between food insecurity and obesity in low-income populations.
  • The prevalence and risk factors of mental health disorders among adolescents in urban communities.
  • The effectiveness of school-based health promotion programs in improving health behaviors among children and adolescents.
  • The role of community-based participatory research in addressing health disparities in underserved populations.
  • The impact of social support networks on mental health outcomes among elderly populations.
  • The relationship between access to healthcare services and health outcomes in rural communities.
  • The effectiveness of smoking cessation interventions in reducing the burden of tobacco-related diseases.
  • The prevalence and risk factors of sexually transmitted infections among young adults in urban communities.
  • The role of community-based organizations in promoting healthy behaviors and preventing chronic diseases.
  • The impact of climate change on the incidence and distribution of infectious diseases.
  • The prevalence and risk factors of intimate partner violence among women in low-income communities.
  • The effectiveness of health education programs in improving health literacy and health outcomes in underserved populations.
  • The relationship between social support and adherence to treatment among patients with chronic diseases.
  • The prevalence and risk factors of hypertension and diabetes in urban communities.
  • The impact of community-based interventions on reducing healthcare costs and improving health outcomes.
  • The role of mobile health technologies in improving access to healthcare services in rural communities.
  • The prevalence and risk factors of obesity among children and adolescents in low-income communities.
  • The effectiveness of community-based interventions in promoting healthy behaviors among pregnant women.
  • The impact of housing conditions on health outcomes in marginalized communities.
  • The relationship between access to healthy food and health outcomes in urban communities.
  • The prevalence and risk factors of depression among elderly populations in rural communities.
  • The role of social media in promoting healthy behaviors and preventing diseases among young adults.
  • The effectiveness of telemedicine in improving access to healthcare services in underserved populations.
  • The prevalence and risk factors of infectious diseases among migrant populations in urban areas.

Surgery Research Topics for Medical Students

  • The efficacy and safety of minimally invasive surgery for various conditions
  • Comparison of laparoscopic and open surgery for common procedures
  • The impact of surgeon experience on surgical outcomes
  • Analysis of postoperative complications and their management
  • The role of robotics in surgery
  • Investigating the use of artificial intelligence in surgery
  • The effectiveness of non-pharmacological pain management techniques after surgery
  • The effect of preoperative anxiety on postoperative recovery
  • Evaluation of different surgical approaches for breast cancer treatment
  • The benefits and risks of surgical treatment for obesity
  • Investigating the use of stem cells in tissue repair following surgery
  • The influence of nutrition on postoperative recovery and wound healing
  • Analysis of the psychological impact of surgery on patients
  • The effect of different anesthesia methods on postoperative outcomes
  • Comparison of outcomes between day surgery and inpatient surgery
  • Evaluation of the use of surgical checklists in improving patient safety
  • The impact of age on surgical outcomes and recovery
  • Investigating the use of 3D printing in surgical planning and implant design
  • The benefits and risks of bariatric surgery in patients with diabetes
  • The role of surgery in the treatment of chronic pain
  • The efficacy of arthroscopic surgery for joint conditions
  • The use of lasers in surgery
  • Investigating the use of virtual reality in surgical training and education
  • The effect of preoperative counseling on patient satisfaction and outcomes
  • The impact of comorbidities on surgical outcomes
  • Analysis of the economic impact of different surgical approaches
  • Investigating the use of telemedicine in surgical consultations and follow-up care
  • The effectiveness of surgical treatment for endometriosis
  • Comparison of outcomes between single-incision and multiport laparoscopic surgery
  • The use of robotics in urologic surgery.

Research Projects for Undergraduate Medical Students

  • Investigating the role of genetics in the development of cancer
  • Analyzing the effectiveness of different types of pain management strategies in postoperative patients
  • Evaluating the impact of diet and exercise on obesity-related health outcomes
  • Examining the relationship between sleep quality and mental health in medical students
  • Investigating the efficacy of different types of antibiotics in treating common bacterial infections
  • Analyzing the impact of electronic medical record systems on patient care
  • Evaluating the effectiveness of different types of vaccines in preventing infectious diseases
  • Examining the relationship between maternal nutrition and fetal development
  • Investigating the use of telemedicine in delivering healthcare services to rural populations
  • Analyzing the impact of smoking on lung function and respiratory health
  • Evaluating the effectiveness of different types of rehabilitation programs for stroke patients
  • Examining the relationship between physical activity and cardiovascular health
  • Investigating the use of stem cells in treating various medical conditions
  • Analyzing the impact of stress on mental and physical health outcomes
  • Evaluating the effectiveness of different types of medical interventions in managing chronic pain
  • Examining the relationship between social support and mental health outcomes in patients with chronic illnesses
  • Investigating the use of mindfulness-based interventions in reducing anxiety and depression
  • Analyzing the impact of environmental factors on health outcomes in urban populations
  • Evaluating the effectiveness of different types of cancer treatments, such as chemotherapy, radiation therapy, and surgery
  • Examining the relationship between nutrition and mental health in older adults
  • Investigating the use of mobile health technologies in promoting healthy behaviors
  • Analyzing the impact of air pollution on respiratory health in children
  • Evaluating the effectiveness of different types of treatments for substance use disorders
  • Examining the relationship between socioeconomic status and health outcomes
  • Investigating the use of music therapy in managing pain and anxiety in hospitalized patients
  • Analyzing the impact of social media on mental health outcomes in adolescents
  • Evaluating the effectiveness of different types of interventions in managing symptoms of depression and anxiety in cancer patients
  • Examining the relationship between sleep and cognitive function in older adults
  • Investigating the use of animal-assisted therapy in promoting physical and mental health
  • Analyzing the impact of climate change on health outcomes in vulnerable populations

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

Grad Coach

Research Topics & Ideas: Healthcare

100+ Healthcare Research Topic Ideas To Fast-Track Your Project

Healthcare-related research topics and ideas

Finding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. If you’ve landed on this post, chances are you’re looking for a healthcare-related research topic , but aren’t sure where to start. Here, we’ll explore a variety of healthcare-related research ideas and topic thought-starters across a range of healthcare fields, including allopathic and alternative medicine, dentistry, physical therapy, optometry, pharmacology and public health.

NB – This is just the start…

The topic ideation and evaluation process has multiple steps . In this post, we’ll kickstart the process by sharing some research topic ideas within the healthcare domain. This is the starting point, but to develop a well-defined research topic, you’ll need to identify a clear and convincing research gap , along with a well-justified plan of action to fill that gap.

If you’re new to the oftentimes perplexing world of research, or if this is your first time undertaking a formal academic research project, be sure to check out our free dissertation mini-course. In it, we cover the process of writing a dissertation or thesis from start to end. Be sure to also sign up for our free webinar that explores how to find a high-quality research topic.

Overview: Healthcare Research Topics

  • Allopathic medicine
  • Alternative /complementary medicine
  • Veterinary medicine
  • Physical therapy/ rehab
  • Optometry and ophthalmology
  • Pharmacy and pharmacology
  • Public health
  • Examples of healthcare-related dissertations

Allopathic (Conventional) Medicine

  • The effectiveness of telemedicine in remote elderly patient care
  • The impact of stress on the immune system of cancer patients
  • The effects of a plant-based diet on chronic diseases such as diabetes
  • The use of AI in early cancer diagnosis and treatment
  • The role of the gut microbiome in mental health conditions such as depression and anxiety
  • The efficacy of mindfulness meditation in reducing chronic pain: A systematic review
  • The benefits and drawbacks of electronic health records in a developing country
  • The effects of environmental pollution on breast milk quality
  • The use of personalized medicine in treating genetic disorders
  • The impact of social determinants of health on chronic diseases in Asia
  • The role of high-intensity interval training in improving cardiovascular health
  • The efficacy of using probiotics for gut health in pregnant women
  • The impact of poor sleep on the treatment of chronic illnesses
  • The role of inflammation in the development of chronic diseases such as lupus
  • The effectiveness of physiotherapy in pain control post-surgery

Research topic idea mega list

Topics & Ideas: Alternative Medicine

  • The benefits of herbal medicine in treating young asthma patients
  • The use of acupuncture in treating infertility in women over 40 years of age
  • The effectiveness of homoeopathy in treating mental health disorders: A systematic review
  • The role of aromatherapy in reducing stress and anxiety post-surgery
  • The impact of mindfulness meditation on reducing high blood pressure
  • The use of chiropractic therapy in treating back pain of pregnant women
  • The efficacy of traditional Chinese medicine such as Shun-Qi-Tong-Xie (SQTX) in treating digestive disorders in China
  • The impact of yoga on physical and mental health in adolescents
  • The benefits of hydrotherapy in treating musculoskeletal disorders such as tendinitis
  • The role of Reiki in promoting healing and relaxation post birth
  • The effectiveness of naturopathy in treating skin conditions such as eczema
  • The use of deep tissue massage therapy in reducing chronic pain in amputees
  • The impact of tai chi on the treatment of anxiety and depression
  • The benefits of reflexology in treating stress, anxiety and chronic fatigue
  • The role of acupuncture in the prophylactic management of headaches and migraines

Research topic evaluator

Topics & Ideas: Dentistry

  • The impact of sugar consumption on the oral health of infants
  • The use of digital dentistry in improving patient care: A systematic review
  • The efficacy of orthodontic treatments in correcting bite problems in adults
  • The role of dental hygiene in preventing gum disease in patients with dental bridges
  • The impact of smoking on oral health and tobacco cessation support from UK dentists
  • The benefits of dental implants in restoring missing teeth in adolescents
  • The use of lasers in dental procedures such as root canals
  • The efficacy of root canal treatment using high-frequency electric pulses in saving infected teeth
  • The role of fluoride in promoting remineralization and slowing down demineralization
  • The impact of stress-induced reflux on oral health
  • The benefits of dental crowns in restoring damaged teeth in elderly patients
  • The use of sedation dentistry in managing dental anxiety in children
  • The efficacy of teeth whitening treatments in improving dental aesthetics in patients with braces
  • The role of orthodontic appliances in improving well-being
  • The impact of periodontal disease on overall health and chronic illnesses

Free Webinar: How To Find A Dissertation Research Topic

Tops & Ideas: Veterinary Medicine

  • The impact of nutrition on broiler chicken production
  • The role of vaccines in disease prevention in horses
  • The importance of parasite control in animal health in piggeries
  • The impact of animal behaviour on welfare in the dairy industry
  • The effects of environmental pollution on the health of cattle
  • The role of veterinary technology such as MRI in animal care
  • The importance of pain management in post-surgery health outcomes
  • The impact of genetics on animal health and disease in layer chickens
  • The effectiveness of alternative therapies in veterinary medicine: A systematic review
  • The role of veterinary medicine in public health: A case study of the COVID-19 pandemic
  • The impact of climate change on animal health and infectious diseases in animals
  • The importance of animal welfare in veterinary medicine and sustainable agriculture
  • The effects of the human-animal bond on canine health
  • The role of veterinary medicine in conservation efforts: A case study of Rhinoceros poaching in Africa
  • The impact of veterinary research of new vaccines on animal health

Topics & Ideas: Physical Therapy/Rehab

  • The efficacy of aquatic therapy in improving joint mobility and strength in polio patients
  • The impact of telerehabilitation on patient outcomes in Germany
  • The effect of kinesiotaping on reducing knee pain and improving function in individuals with chronic pain
  • A comparison of manual therapy and yoga exercise therapy in the management of low back pain
  • The use of wearable technology in physical rehabilitation and the impact on patient adherence to a rehabilitation plan
  • The impact of mindfulness-based interventions in physical therapy in adolescents
  • The effects of resistance training on individuals with Parkinson’s disease
  • The role of hydrotherapy in the management of fibromyalgia
  • The impact of cognitive-behavioural therapy in physical rehabilitation for individuals with chronic pain
  • The use of virtual reality in physical rehabilitation of sports injuries
  • The effects of electrical stimulation on muscle function and strength in athletes
  • The role of physical therapy in the management of stroke recovery: A systematic review
  • The impact of pilates on mental health in individuals with depression
  • The use of thermal modalities in physical therapy and its effectiveness in reducing pain and inflammation
  • The effect of strength training on balance and gait in elderly patients

Topics & Ideas: Optometry & Opthalmology

  • The impact of screen time on the vision and ocular health of children under the age of 5
  • The effects of blue light exposure from digital devices on ocular health
  • The role of dietary interventions, such as the intake of whole grains, in the management of age-related macular degeneration
  • The use of telemedicine in optometry and ophthalmology in the UK
  • The impact of myopia control interventions on African American children’s vision
  • The use of contact lenses in the management of dry eye syndrome: different treatment options
  • The effects of visual rehabilitation in individuals with traumatic brain injury
  • The role of low vision rehabilitation in individuals with age-related vision loss: challenges and solutions
  • The impact of environmental air pollution on ocular health
  • The effectiveness of orthokeratology in myopia control compared to contact lenses
  • The role of dietary supplements, such as omega-3 fatty acids, in ocular health
  • The effects of ultraviolet radiation exposure from tanning beds on ocular health
  • The impact of computer vision syndrome on long-term visual function
  • The use of novel diagnostic tools in optometry and ophthalmology in developing countries
  • The effects of virtual reality on visual perception and ocular health: an examination of dry eye syndrome and neurologic symptoms

Topics & Ideas: Pharmacy & Pharmacology

  • The impact of medication adherence on patient outcomes in cystic fibrosis
  • The use of personalized medicine in the management of chronic diseases such as Alzheimer’s disease
  • The effects of pharmacogenomics on drug response and toxicity in cancer patients
  • The role of pharmacists in the management of chronic pain in primary care
  • The impact of drug-drug interactions on patient mental health outcomes
  • The use of telepharmacy in healthcare: Present status and future potential
  • The effects of herbal and dietary supplements on drug efficacy and toxicity
  • The role of pharmacists in the management of type 1 diabetes
  • The impact of medication errors on patient outcomes and satisfaction
  • The use of technology in medication management in the USA
  • The effects of smoking on drug metabolism and pharmacokinetics: A case study of clozapine
  • Leveraging the role of pharmacists in preventing and managing opioid use disorder
  • The impact of the opioid epidemic on public health in a developing country
  • The use of biosimilars in the management of the skin condition psoriasis
  • The effects of the Affordable Care Act on medication utilization and patient outcomes in African Americans

Topics & Ideas: Public Health

  • The impact of the built environment and urbanisation on physical activity and obesity
  • The effects of food insecurity on health outcomes in Zimbabwe
  • The role of community-based participatory research in addressing health disparities
  • The impact of social determinants of health, such as racism, on population health
  • The effects of heat waves on public health
  • The role of telehealth in addressing healthcare access and equity in South America
  • The impact of gun violence on public health in South Africa
  • The effects of chlorofluorocarbons air pollution on respiratory health
  • The role of public health interventions in reducing health disparities in the USA
  • The impact of the United States Affordable Care Act on access to healthcare and health outcomes
  • The effects of water insecurity on health outcomes in the Middle East
  • The role of community health workers in addressing healthcare access and equity in low-income countries
  • The impact of mass incarceration on public health and behavioural health of a community
  • The effects of floods on public health and healthcare systems
  • The role of social media in public health communication and behaviour change in adolescents

Examples: Healthcare Dissertation & Theses

While the ideas we’ve presented above are a decent starting point for finding a healthcare-related research topic, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses to see how this all comes together.

Below, we’ve included a selection of research projects from various healthcare-related degree programs to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • Improving Follow-Up Care for Homeless Populations in North County San Diego (Sanchez, 2021)
  • On the Incentives of Medicare’s Hospital Reimbursement and an Examination of Exchangeability (Elzinga, 2016)
  • Managing the healthcare crisis: the career narratives of nurses (Krueger, 2021)
  • Methods for preventing central line-associated bloodstream infection in pediatric haematology-oncology patients: A systematic literature review (Balkan, 2020)
  • Farms in Healthcare: Enhancing Knowledge, Sharing, and Collaboration (Garramone, 2019)
  • When machine learning meets healthcare: towards knowledge incorporation in multimodal healthcare analytics (Yuan, 2020)
  • Integrated behavioural healthcare: The future of rural mental health (Fox, 2019)
  • Healthcare service use patterns among autistic adults: A systematic review with narrative synthesis (Gilmore, 2021)
  • Mindfulness-Based Interventions: Combatting Burnout and Compassionate Fatigue among Mental Health Caregivers (Lundquist, 2022)
  • Transgender and gender-diverse people’s perceptions of gender-inclusive healthcare access and associated hope for the future (Wille, 2021)
  • Efficient Neural Network Synthesis and Its Application in Smart Healthcare (Hassantabar, 2022)
  • The Experience of Female Veterans and Health-Seeking Behaviors (Switzer, 2022)
  • Machine learning applications towards risk prediction and cost forecasting in healthcare (Singh, 2022)
  • Does Variation in the Nursing Home Inspection Process Explain Disparity in Regulatory Outcomes? (Fox, 2020)

Looking at these titles, you can probably pick up that the research topics here are quite specific and narrowly-focused , compared to the generic ones presented earlier. This is an important thing to keep in mind as you develop your own research topic. That is to say, to create a top-notch research topic, you must be precise and target a specific context with specific variables of interest . In other words, you need to identify a clear, well-justified research gap.

Need more help?

If you’re still feeling a bit unsure about how to find a research topic for your healthcare dissertation or thesis, check out Topic Kickstarter service below.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Topic Kickstarter: Research topics in education

15 Comments

Mabel Allison

I need topics that will match the Msc program am running in healthcare research please

Theophilus Ugochuku

Hello Mabel,

I can help you with a good topic, kindly provide your email let’s have a good discussion on this.

sneha ramu

Can you provide some research topics and ideas on Immunology?

Julia

Thank you to create new knowledge on research problem verse research topic

Help on problem statement on teen pregnancy

Derek Jansen

This post might be useful: https://gradcoach.com/research-problem-statement/

vera akinyi akinyi vera

can you provide me with a research topic on healthcare related topics to a qqi level 5 student

Didjatou tao

Please can someone help me with research topics in public health ?

Gurtej singh Dhillon

Hello I have requirement of Health related latest research issue/topics for my social media speeches. If possible pls share health issues , diagnosis, treatment.

Chikalamba Muzyamba

I would like a topic thought around first-line support for Gender-Based Violence for survivors or one related to prevention of Gender-Based Violence

Evans Amihere

Please can I be helped with a master’s research topic in either chemical pathology or hematology or immunology? thanks

Patrick

Can u please provide me with a research topic on occupational health and safety at the health sector

Biyama Chama Reuben

Good day kindly help provide me with Ph.D. Public health topics on Reproductive and Maternal Health, interventional studies on Health Education

dominic muema

may you assist me with a good easy healthcare administration study topic

Precious

May you assist me in finding a research topic on nutrition,physical activity and obesity. On the impact on children

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Med Internet Res
  • PMC10407648

Logo of jmir

Ten Topics to Get Started in Medical Informatics Research

Markus wolfien.

1 Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany

2 Center for Scalable Data Analytics and Artificial Intelligence, Dresden, Germany

Najia Ahmadi

3 Core Unit Data Integration Center, University Medicine Greifswald, Greifswald, Germany

Sophia Grummt

Kilian-ludwig heine, dagmar krefting.

4 Department of Medical Informatics, University Medical Center, Goettingen, Germany

Andreas Kühn

Ines reinecke, julia scheel.

5 Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany

Tobias Schmidt

6 Institute for Medical Informatics, University of Applied Sciences Mannheim, Mannheim, Germany

Paul Schmücker

Christina schüttler.

7 Central Biobank Erlangen, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Dagmar Waltemath

8 Department of Medical Informatics, University Medicine Greifswald, Greifswald, Germany

Michele Zoch

Martin sedlmayr.

The vast and heterogeneous data being constantly generated in clinics can provide great wealth for patients and research alike. The quickly evolving field of medical informatics research has contributed numerous concepts, algorithms, and standards to facilitate this development. However, these difficult relationships, complex terminologies, and multiple implementations can present obstacles for people who want to get active in the field. With a particular focus on medical informatics research conducted in Germany, we present in our Viewpoint a set of 10 important topics to improve the overall interdisciplinary communication between different stakeholders (eg, physicians, computational experts, experimentalists, students, patient representatives). This may lower the barriers to entry and offer a starting point for collaborations at different levels. The suggested topics are briefly introduced, then general best practice guidance is given, and further resources for in-depth reading or hands-on tutorials are recommended. In addition, the topics are set to cover current aspects and open research gaps of the medical informatics domain, including data regulations and concepts; data harmonization and processing; and data evaluation, visualization, and dissemination. In addition, we give an example on how these topics can be integrated in a medical informatics curriculum for higher education. By recognizing these topics, readers will be able to (1) set clinical and research data into the context of medical informatics, understanding what is possible to achieve with data or how data should be handled in terms of data privacy and storage; (2) distinguish current interoperability standards and obtain first insights into the processes leading to effective data transfer and analysis; and (3) value the use of newly developed technical approaches to utilize the full potential of clinical data.

Introduction

Digital health care information, as opposed to analog information, empowers clinicians, researchers, and patients with a wealth of information aiming to improve diagnosis, therapy outcome, and clinical care in general. According to Wyatt and Liu [ 1 ], medical informatics is the study and application of methods to improve the management of patient data, clinical knowledge, population data, and other information relevant to patient care and community health. Medical informatics can be seen as the subset of health informatics that is focused on clinical care, while the latter encompasses a wider range of applications. However, knowing, integrating, and using current computational technologies bears numerous pitfalls, limitations, and questions [ 2 ]. To shed light on current standards, applications, and underlying technologies, we present 10 topics to get started in the field of medical informatics research. Our key objective here was to improve interdisciplinary communication among stakeholders (eg, clinicians, experimental researchers, computer scientists, students, patient representatives), thereby bringing everyone on the same page of state-of-the-art medical informatics practices. In particular, improved interdisciplinary communication is essential in real-world problems and can be motivated by the following aspects:

  • Advancing open research: Open collaboration between parties from different disciplines can lead to new research questions, innovative approaches, and novel discoveries [ 3 ].
  • Bridging knowledge domains: Interdisciplinary communication can stimulate novel solutions, allowing researchers to gain a more comprehensive understanding of a specific problem or phenomenon [ 4 ], or can improve clinical decision-making [ 5 ].
  • Addressing complex problems: Complex problems, such as the latest disease outbreak, require input from multiple domains to be comprehensively understood. Here, interdisciplinary communication is one key aspect to pinpoint the root causes and develop effective solutions [ 6 ].
  • Promoting scientific inclusivity and diversity: Interdisciplinary communication was recently shown to foster diversity and inclusivity in science, by bringing together researchers from different backgrounds, cultures, and perspectives [ 7 , 8 ].

Here, we describe in detail how the initial topics have been selected from the literature and what design principles and structure each topic follows. A brief outline of the utilized methods for topic dissemination and an exemplary embedding into an educational training program are also presented.

Topic Selection

The initial topics were defined based on current developments in the health informatics field and an increasing number of published manuscripts between 2000 and 2021 (based on title-abstract-keyword screening in Scopus using the keywords “Health” AND “Informatics” AND “domain”) in the respective subdomains ( Figure 1 A). After a first definition of the specific topics, these were critically revised by internal and external domain experts, as well as scientists previously not familiar with medical informatics research.

An external file that holds a picture, illustration, etc.
Object name is jmir_v25i1e45948_fig1.jpg

Schematic summary and representation of the presented topics: (A) brief literature screening (title-abstract-keywords) for published manuscripts between 2000 and 2021, and the y-axis gap provides improved visibility of the less-occurring keywords; (B) most common topic terminologies, keywords (color-coded sections), and potential connections (grey) among topics in the medical informatics research domain. CDSS: clinical decision support system; CIS: clinical information system; EHR: electronic health record; ETL: extract, transform, and load; FAIR: findable, accessible, interoperable, reusable; FHIR: Fast Healthcare Interoperability Resources; GDPR: General Data Protection Regulation; i2b2: Informatics for Integrating Biology and the Bedside; OMOP: Observational Medical Outcomes Partnership.

Topic Design

The initial number of important topics and keywords exceeded the anticipated number of 10 topics, which found inspiration from the “Ten Simple Rules” collection in PLOS Computational Biology [ 9 ]. This is why the authors merged the most matching terms topic wise into groups. These groups finally produced topics that represent the broad range of the medical informatics domain in 3 main concepts, namely “Regulations and concepts,” “Harmonization and processing,” and “Evaluation, visualization, and dissemination” ( Figure 1 B). Figure 1 B also shows the initial keywords for each individual topic, as well as potential cross references between topics, which are highlighted in grey. The following sections provide important “do's and don'ts,” practical hints, and best practice guidelines. Further in-depth resources and practical tutorials will provide basic introductions to the referred domains. Kohane et al [ 10 ] already showed the importance of such clarifying introductions. This work extends the initial study and, in addition, provides detailed examples from the German national Medical Informatics Initiative (MII) [ 11 ].

All topics were divided into 3 parts to improve comprehension by the readers:

  • Introduction: Background definitions for the specific context that motivated the topic
  • Insight: Practical context to get started, including how to avoid pitfalls, state current limitations, and address current challenges
  • Impact: Take home message and useful resources and best practices to deepen knowledge about the topic

Topic Utilization, Extension, and Embedding

Since it is of the utmost importance to keep the content current and as versatile as possible, we initiated an online resource at GitHub, in which contributions are highly emphasized [ 12 ]. Here, keywords and the corresponding literature are collected to allow for swift extension of the currently presented literature body in this article. In addition, the introduction of novel important topics that are not covered in this article might be included. To additionally demonstrate the practicability and adaptability of our proposed topic content, we exemplarily present how these can be embedded in higher education training and share external, introductory hands-on material ( Table 1 ).

Summary of tutorials and hands-on material about medical informatics standards and applications.

a SNOMED CT: Systematized Nomenclature of Medicine and Clinical Terms.

b ETL: extract, transform, and load.

c OMOP: Observational Medical Outcomes Partnership.

d CDM: common data model.

e FHIR: Fast Healthcare Interoperability Resources.

f OHDSI: Observational Health Data Sciences and Informatics.

g PLP: patient-level prediction.

h ODI: Open Data Institute.

Regulations and Concepts

Topic 1: privacy and ethics—“data privacy and ethics are the most important assets in the clinical domain.”.

Health information is sensitive and hence needs to be highly protected and should not be generously shared. Sharing regulations and data privacy matters are defined in the European General Data Protection Regulation (GDPR) [ 13 ]. The implementation of the GDPR is an ongoing process as the quickly evolving technology, data, and scientific practices demand continuous improvement, which include periodic adaptations of the technical and legal aspects [ 14 , 15 ]. In terms of ethics and with the rise of novel technologies, like artificial intelligence (AI), the possible re-identification of data, such as images and genomic information, is a major concern [ 16 , 17 ].

Anonymization is one important way to keep data private. It can also be achieved for high-dimensional data by changing patient-specific identifiers through removal, substitution, distortion, generalization, or aggregation [ 18 ]. In contrast, data pseudonymization is another de-identification procedure by which personally identifiable information fields within a data record are replaced by one or more artificial identifiers or pseudonyms [ 19 ]. To overcome the paucity of annotated medical data in real-world settings and (fully) save the patients’ anonymity, synthetic data generation is used to increase the diversity in data sets and to enhance the robustness and adaptability of AI models [ 20 ]. To conform with ethical regulations in a research context, medical data are only available in a highly controlled manner and according to strict procedures. New concepts, such as “systemic oversight” [ 21 ] or “embedded ethics” [ 22 ], might be needed to tackle the new data-driven developments around “medical big data” and AI in health care. To engage with the adoption of broad consent, systemic oversight was suggested as an approach, in which mechanisms like auditing mechanisms, expert advice, and public engagement initiatives (among others) should be adapted as additional layers to the newly arising ecosystem of health data [ 21 ]. Recently, embedded ethics was jointly suggested by ethicists and developers to address ethical issues via an iterative and continuous process from the outset of development, which could be an effective means of integrating robust ethical considerations into practical development [ 22 ]. A digital representation of information encoded in signed consent forms is needed to facilitate common data use and sharing, as already implemented in an MII informed consent template [ 23 ].

As a researcher in medical informatics, it is inevitable to be informed and knowledgeable about the fact that patients own their medical records and any use of those data requires great care. In Germany, health care providers can only use the data for first medical use. Secondary use, like research, needs to be approved by either broad or individual consent, which can be made available via the electronic health record (EHR). In addition to digitization efforts, it is still a considerable hurdle to convince patients to make their data available for medical research because personal skepticism commonly makes the entire data acquisition process more difficult [ 24 ]. Here, well-received external communication, transparency, and increased awareness are necessary for substantial improvements. In general, it is a balance between privacy, patient needs, and the use of data for the common good versus economic interests [ 25 ]. In particular, one should be aware of the specific legal regulations that apply within the country and additionally get in touch with the relevant data protection departments. Following this, a plan for infrastructure that meets these regulations and that contains, for example, a trustee for the electronic recording of patient consent and anonymization or direct pseudonymization processes to collect the data needs to be developed. Risk assessments for potential data leakage, approvals by ethics committee, as well as consultation with a data protection officer are essential considerations to further assure data security.

Topic 2: EHR and Clinical Information Systems—“Get to Know Your Clinical Information System to Understand the Required Data.”

Hospitals run clinical information systems (CIS) to collect, store, and alter clinical data about patients. A CIS, independent of the specialization and specific vendor, covers many clinical subdomains and integrates patient-related data to support doctors in their daily routine. Without a doubt, medical data are only useful if meaningful information can be derived from them. This requires high-quality data sets, seamless communication across IT systems, and standard data formats that can be processed by humans and machines [ 2 ]. Typical challenges in clinical IT implementations, especially for patient recruitment systems, were recently evaluated by Fitzer et al [ 26 ] for 10 German university hospitals, including requirements for data, infrastructure, and workflow integration. The implementation of an EHR, including an individual's medical data in a bundled form, into the CIS is a key aspect to prevent low reliability and poor user-friendliness of EHRs, which has recently been shown to affect time pressure among medical staff [ 27 ]. For example, in Scandinavia, the United States, and the United Kingdom, the Open Notes initiative [ 28 ] facilitates patients’ access to EHRs and health data sharing via “PatientsKnowBest ” to give health care professionals and families direct access to medical information [ 29 ].

An EHR is used primarily for the purposes of setting objectives and planning patient care, documenting the delivery of care, and assessing the outcomes of care [ 30 ]. EHRs have so far consisted of unstructured, narrative text as well as structured, coded data. Thus, it will be necessary to implement more systematic terminologies and codes so that the data contained in these records can be reused in clinical research, health care management, health services planning, and government reporting in an improved manner [ 31 , 32 ]. Since the domain of medical informatics is rather new, there are many possibilities for software solutions to improve EHR-related issues [ 33 ]. Exemplary for the EHR domain, the Systematized Nomenclature of Medicine and Clinical Terms (SNOMED CT) is utilized to develop comprehensive high-quality clinical content [ 34 ]. It provides a standardized way to represent clinical phrases captured by the clinician and enables automatic interpretation of these, which is showcased in a “five-step briefing” [ 35 ]. Interestingly, the number of annual publications on this subject has decreased since 2012. However, the need for a formal semantic representation of free text in health care remains, and automatic encoding into a compositional ontology could be a solution [ 36 ]. In terms of usability and user acceptance, evaluations and improvements of EHRs and clinical decision support systems (CDSS) are currently ongoing [ 37 ], for which already well-received examples can be attributed to CeoSYS [ 38 ] or the IPSS-M Risk Calculator [ 39 ]. Moreover, the actions of patients directly contributing to their own EHR records are also being evaluated. The study by Klein et al [ 40 ] indicates that such an approach facilitates the development of individual solutions for each patient, which in turn requires a flexible EHR during the course of a treatment process. Additionally, it was argued that data incorporation via different devices can also facilitate the convenient utilization of the application and, hence, may increase secondary use.

Modern CIS support the interaction by doctors and patients with the recorded patient data (eg, using the EHR or patient portals, eHealth platforms). It is important to understand the basic architecture, especially challenges [ 26 ], of the hospital IT infrastructure to know where data are located and how they can be retrieved and integrated. Major improvements can be made when supporting international standards for data exchange. Beyond standard EHR, this includes interoperability standards like Fast Healthcare Interoperability Resources (FHIR; see Topic 6) and standard data models like the Observational Medical Outcomes Partnership (OMOP; see Topic 7). These criteria should be considered with every new order of clinical systems.

Topic 3: Data Provenance—“Trace Your Data, Even Within Large-scale Efforts.”

Meaningful and standardized metadata facilitate the interpretation of, retrieval of, and access to data [ 41 ]. When explainable data are processed with interoperable tools, scientists can create automated and reusable workflows and provide access to reproducible research outcomes and data analysis pipelines [ 42 ].

Data provenance describes the history of digital objects, where they came from, how they came to be in their present state, and who or what acted upon them [ 43 ]. In health care, provenance maintains the integrity of digital objects (eg, the results of data analyses engender greater trust if their provenance shows how they were obtained). In addition, it can be used to deliver auditability and transparency, specifically, in learning health systems, and it is applicable across a range of applications [ 44 ]. Inau et al [ 45 ] argued that the lessons learned from “FAIRification” processes in other domains will also support evidence-based clinical practice and research transparency in the era of big medical data and open research. Further work demonstrated that a findable, accessible, interoperable, reusable (FAIR) research data management plan can provide a data infrastructure in the hospital for machine-actionable digital objects [ 46 ]. Recently, the openEHR approach was also suggested for creating FAIR-compliant clinical data repositories as an alternative representation [ 47 ].

Key data management requirements are defined by the FAIR guiding principles [ 48 ]. Since data protection laws led to additional requirements for data privacy and data security, the FAIR-Health principles focused on defining additional requirements for information on the sample material used from biobanks, for provenance information, and incentive schemes [ 49 ]. Further work is needed to establish provenance frameworks in health research infrastructures [ 50 ].

Topic 4: Data Sharing—“If Data Won’t Come to the Model, the Model Must Go to the Data.”

Cross-sectional medical data-sharing is critical in modern clinical practice and medical research, in which the challenge of privacy-preserving transfer and utility needs to be addressed [ 51 ]. In order to facilitate high reuse of the data, a decentralized computational scheme that treats the available data as part of a federated (virtual) database, avoiding centralized data collection, processing, and raw data exchanges, is still needed in many countries to analyze large and widespread clinical data [ 52 ].

One possible solution for this federated learning approach is DataSHIELD [ 53 ]. In particular, orchestrating privacy-protected analyses of “medical big data'' from different resources is applicable within R and DataSHIELD [ 54 ]. Here, the developed computerized models represent mathematical concepts or trained machine learning (ML)–based approaches to solve a specific task. In this sense, the model is applied to distributed data sets of the protected (clinical) server infrastructure, and the user only sees the model results but does not retrieve any medical records. Moreover, implementations in other programming languages (eg, Python, Julia) have been introduced in the genomic domain and beyond [ 55 ]. Further concepts, such as Personal Health Train, specifically follow the FAIR principles during distributed analyses [ 56 ]. Secure multiparty computation (SMPC) is also a viable technology for solving clinical use cases that require cross-institution data exchange and collaboration [ 57 ]. Current limitations are thought to be addressed in a stepwise manner [ 58 ] or as blockchain [ 59 ].

By using approaches for distributed analyses, researchers are able to train, test, and validate their models on large-scale real-world clinical data. In combination with standardized data formats, these 2 concepts facilitate the use of those models in clinical routine, potentially in the form of a CDSS. This provides a basis for secondary use of observational data in the context of clinical trials, which show particular potential for identifying data characteristics in small cohorts (eg, identification of the individual patient risk for rare diseases or comorbidities).

Harmonization and Processing

Topic 5: extract, transform, and load (etl)—“ etl processes are computational approaches for data harmonization and data unification.”.

Data handling in medical informatics remains a major challenge. Even though most data in medicine are available electronically, the data often lack interoperability [ 60 ]. As a first step to actually use the data, processes to extract, transform, and load (ETL) are needed to obtain harmonized data from different data systems or clinical entities. One important example, among many others, reflects the uniform representation of the date and time in a common format (eg, Year-Month-Date, not Date-Month-Year). The ETL process is therefore a crucial, individual step toward data unification in large clinical systems, which must be secure, safe, and accurate [ 61 ].

The design of an ETL process faces several challenges, including the following: (1) The ETL process should be able to process huge amounts of data at once [ 62 ]; (2) the ETL process should be repeatable—if the source data change, the ETL process needs to be rerun to process the source data (Observational Health Data Sciences and Informatics [OHDSI]) [ 63 ]; (3) expert-level anonymization methodologies might be integrated into ETL workflows whenever possible [ 61 ]; and (4) there is a need to check for loss of data and compromised data integrity. The latter was highlighted in a recent study, in which inaccurate cohort identification took place because erroneous vocabulary mappings of a common data model were used (eg, ETL programming bugs and errors not captured during the quality assurance stages) [ 64 ]. Common solutions to implement ETL processes are code-based (eg, FHIR-to-OMOP [ 65 ]) or via Pentaho Data Integration, which is one of many ETL tools. Further subsequent processing may also include loading data into research data repositories, like OMOP (see Topic 7), tranSMART, and Talend Open Studio, which is a central component of the Integrated Data Repository Toolkit [ 66 ].

Since ETL processes are at the core of data handling, all risks associated with the ETL process need to be thoroughly checked, identified, and assessed, and contingency plans to mitigate these risks should be in place [ 67 ]. Once the ETL processes are executed, the resulting data will be trusted by researchers, who heavily rely on comprehensively checked data integrity to be able to conduct their research on this basis.

Topic 6: FHIR—“Set FHIR to Gain a Communication Standard for Real-time Applications at the Device-to-Device Level.”

Interoperability levels can be divided into technical, syntactic, semantic, and organizational interoperability [ 2 ]. Semantic and syntactic interoperability can be ensured by communication exchange standards, such as the FHIR [ 68 ] standard of Health Level 7 (HL7) and medical terminologies. A suitable starting point for the basic procedures is offered by FHIR drills [ 69 ] or fire.ly [ 70 ].

FHIR is one of many communication standards but will likely change the domain of clinical IT significantly [ 71 , 72 ]. As a communication standard, FHIR harmonizes data formats coming from different CIS and enables data exchange between institutions via a RESTful approach [ 73 ]. Moreover, FHIR is used to connect devices with each other, which means, in particular, that the Integrating the Healthcare Enterprise (IHE) [ 74 ] standard has been revised to support HL7 messaging as well. In turn, IHE has been developing an open-source device tool set for home and hospital use that recently enabled device control capabilities, a capability accelerated during the COVID-19 pandemic to allow nurses and physicians to operate ventilators and infusion devices outside the contaminated patient room [ 75 ].

Utilizing FHIR in multiple applications already shows its versatile and flexible use (eg, in mobile health applications [ 76 ], electrocardiogram monitoring [ 77 ], or wearable devices and precision medicine in digital health [ 72 ]). In particular, the SMART-on-FHIR technology enables third-party app development for health care applications [ 78 ] and encompasses feasible, secure, and time- and resource-efficient solutions [ 79 , 80 ].

Topic 7: OMOP—“Use Common Data Models as Well-defined Representations of Large-scale Research Projects.”

Data harmonization enables research teams to run real-world observational studies based on heterogeneous data across country borders. Thus, harmonized data embedded in a common data model (CDM), which is an agreement about the utilization of standardized terminologies for data representation, is crucial to exchange data and results on a large scale. To foster reliability and trust in the results of observational research on real-world data, it is essential to utilize CDMs whenever possible to ensure a high degree of data analysis reproducibility.

Several CDMs exist for that purpose; the OMOP CDM from the OHDSI community is one of the most promising and established approaches. In comparison with other CDMs, such as the Sentinel CDM or Informatics for Integrating Biology and the Bedside (i2b2), the OMOP CDM has broader terminology coverage [ 81 ]. The importance of the OMOP CDM increased a lot over the last years [ 82 ], not least since the European Medicines Agency initiated the Data Analysis and Real World Interrogation Network (DARWIN) [ 83 ] project to establish a research network in Europe to gain real-world evidence based on OMOP. Moreover, representations of genomic data [ 84 ], oncology [ 85 ], and imaging projects [ 86 ] are also suitable. In addition, the common representation of the data in OMOP semantic interoperability is ensured by utilizing international terminologies and vocabularies, such as SNOMED-CT, the International Statistical Classification of Diseases and Related Health Problems (ICD), the Logical Observation Identifiers Names and Codes (LOINC), and RxNorm to represent every clinical fact in OMOP. Additionally, the open-source OHDSI software stack provides standardized methodology and libraries for data analyses (Athenahene, Atlas, HADES) and training (EHDEN Academy) [ 87 ], as well as a framework to assess and improve data quality to foster reliability and trust in research results [ 88 ].

The OMOP CDM is one possibility to represent and analyze clinical data on a research scale. Definition of new cohorts within OMOP enables researchers to quickly investigate questions spanning multiple research entities. Collectively, both FHIR and OMOP can define the structure and relations of the clinical data corpus, and the individual EHRs provide content to these standardized data reservoirs. In comparison, OMOP is commonly used for static large-scale data analysis of research data, and FHIR is more suitable for rapid data integration scenarios (ie, for real-time applications and analysis). In summary, it is important to know and utilize newly established standards to participate in broader clinical networks for research. This way, all information within the EHR is comparable across different clinical sites and research settings.

Evaluation, Visualization, and Dissemination

Topic 8: data quality—“guarantee high quality and then publish the data.”.

What is meant to be appropriate data quality for health informatics research? In this domain, data quality depends on the quality of single data elements, data completeness, data conformance, and data plausibility aspects that may considerably determine the validity and veracity of analysis results [ 89 , 90 ]. Moreover, data quality across different institutional entities and even health sectors requires additional efforts concerning the different personnel, instruments, and more [ 91 ]. High-quality data at hand is one fundamental requirement that is often difficult or impossible to achieve, which is why the generation of synthetic data can be an alternative that satisfies privacy problems as well as research needs when data are expensive, scarce, or unavailable by augmentation [ 92 ].

First, a major problem is that clinical data have to be electronically recorded, accessed, and standardized in order to run quality assessment processes [ 26 ]. In addition, it would be important to design and use the same data quality tool, standard operating procedures, or ETL mapping rules in all involved institutions. However, in real-life scenarios, there is a lack of both centrally coordinated data quality indicators and formalization of plausibility rules, as well as a repository for automatic querying of the rules, especially in ETL processes [ 93 ]. Although numerous data quality evaluation frameworks exist, no clear and widespread approach has been adopted so far [ 67 , 94 - 96 ]. Even after a well-chosen data quality procedure is properly implemented, clinical data as such cannot be published along with the performed study. As an alternative, synthetic data generation models function in the following 2 different ways: (1) The model is trained, for example, using real-world data and, once trained, will not require any data in the future (model-based approaches), and (2) the model is constantly fed with data to generate synthetic data (data-driven approaches). There are 3 different categories of algorithms used in the generation of synthetic data: probabilistic models, such as Bayesian networks [ 97 ] and Copulas [ 98 ]; ML, such as Classification and Regression Trees (CART); and deep learning methods, such as a generative adversarial network (GAN) [ 99 - 101 ] and variational autoencoder (VAE) [ 102 ].

A combination of appropriate data quality evaluation and synthetic data generation highly facilitates the development of accurate AI models, which are essential in medical studies [ 103 ]. Thus, a corpus of high-quality synthetic data with many patients can be reused by other AI experts for model development and benchmarking. Moreover, it is essential to create an infrastructure that is used across a large community of hospitals; maps the entire treatment process electronically; and only generates interoperable, structured data based on FHIR (Topic 6) and OMOP (Topic 7) in accordance with the FAIR principles (Topic 3). Afterward, one can finally run quality assessment processes.

Topic 9: Clinical Decision Support Systems—“Bring Insights, Not Additional Work, Back to the Clinics via a CDSS and Other User-Centric Applications.”

CDSS are computer systems designed to assist the medical staff with decision-making tasks about individual patients and based on clinical data [ 104 ]. The decision-making process is still, and will remain, on the shoulders of the physician [ 105 ]. The categories of CDSS include knowledge-based systems that make use of clinical rules, nonknowledge-based systems (eg, AI-based systems), and hybrid CDSS that likewise utilize clinical models and knowledge in combination with AI.

The use of a CDSS in a well-implemented clinical workflow has many positive aspects. It may lead to fewer error rates [ 106 ], accelerate rare disease diagnosis [ 107 ], increase radiologists’ job satisfaction [ 108 ], offer personalized cancer treatment [ 109 ], or help with real-time cardiovascular risk assessment [ 110 ]. Interestingly, computerized alerting systems, which are one of the most disseminated CDSS, can decrease drug-drug interactions significantly [ 111 ]. On the other hand, if done improperly, a CDSS can cause alert fatigue by creating too many alerts. If a system is not context-sensitive, alerts can even be inappropriate [ 112 ]. According to Olakotan et al [ 112 ], influencing factors of a well-designed CDSS need to include aspects about the (1) technology (eg, usability, alert presentation, workload, and data entry), (2) human (eg, training, knowledge, skills, attitude, and behavior), (3) organization (eg, rules and regulations, privacy, and security), and (4) and process (eg, waste, delay, tuning, and optimization). To avoid a lack of transparency and facilitate acceptance by physicians, especially with nonknowledge-based systems, current CDSS seek to use explainable AI approaches; however, the selection of methods used to present explanations in an informative and efficient ( clinically useful ) manner remains challenging [ 113 ]. Of note, a CDSS may also have a negative influence on the performance of physicians, especially if inadequate suggestions occur more often, which cannot be compensated with explanations [ 114 ]. However, one among many other prominent approaches to obtain such explanations via ML-based feature selection and ranking can be found in the work from Wolfien et al [ 115 ]. In terms of an OMOP-based implementation in research, there is patient-level prediction (PLP), which is designed to foster the clinical decision-making process concerning diagnoses or treatment pathways based on the EHR of the patient and the current clinical guideline. It is used to answer questions, such as identifying patients among a larger population at higher risk of a certain outcome (eg, occurrence of cancer, severe side effects, or death) by using data in standardized formats (eg, as previously described via OMOP CDM). Once the model is designed, the covariates will be extracted from the respective CDM of the target person within the cohort, and the respective outcome will be predicted (eg, via PLP [ 116 , 117 ] or other customized prediction algorithms). Importantly, the results from model prediction should first be internally validated with previously unseen data and afterward compared with established scoring systems (eg, Framingham Risk Score [ 118 ], SCORE2 [ 119 ]) to connect with already known domain-specific contexts and to prove its benefit in clinical practice. An additional validation with external data, as part of a multicenter study, can be seen as highly beneficial, in which the already presented topics of federated learning (Topic 4) and OMOP (Topic 7) could significantly foster such an essential scenario [ 120 ].

Collectively, a CDSS increases patient safety, assists in clinical management, and can be cost-effective [ 104 ]. In general, findings of even erroneous CDSS can be used to guide the design of new CDSS alerts. However, the existing risks cannot be solved solely on a technical basis and require an interdisciplinary effort. In particular, continuous, clear communication between IT professionals (developers) and health professionals (end users) during the design process is key. Only a profound understanding of the needs and requirements of either of the involved parties can lead to well-designed systems that are actually able to support and relieve physicians in doing their job.

Topic 10: Visualizations—“Improved Dissemination of Local and External Data From Computational Models by Well-defined Interactive Visualizations.”

Large volumes of data collected from patient registries, health centers, genomic databases, and public records can potentially improve the efficiency and quality of health care via enhancing the interoperability of medical systems, assisting in clinical decision-making, and delivering feedback on effective procedures [ 121 ]. However, each and every raw data point must go through different analytical processes until they become useful and interpretable at the point of care.

R and Python are 2 versatile open-source programming languages that have gained popularity for different purposes, such as preprocessing (eg, tidyverse), statistical tests (eg, dplyr), ML and deep learning (eg, mlr package, caret), visualization (eg, ggplot), and writing reports directly using knitr and R markdown (RStudio education [ 122 ]). Like R, Python offers different libraries for data science tasks (eg, open mined [ 123 ]) in addition to a library specifically for health predictive models, namely PyHealth [ 124 ]. Another versatile visualization functionality is offered for both languages via R Shiny [ 125 ] and Plotly Dash [ 126 ]. These 2 platforms enable data scientists to create interactive web applications directly from a script. The applications can be extended using embedded CSS themes, HTML widgets, and Javascript actions. There is already evidence that implementing clinical dashboards or CDSS for immediate access to current patient information can improve processes and patient outcomes [ 127 ], especially if the data sets are further evaluated and refined [ 128 ]. Similar to FHIR, OHDSI provides tools for analyzing data in the OMOP CDM, which are written in R and use Shiny for the visualization. As a plus, data already stored in the OMOP CDM format can be used in systematic studies, patient-level analysis, and population-based estimations from scratch. The cBioPortal is one prime example of a web resource for exploring, visualizing, and analyzing multidimensional data, which reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events [ 129 ]. It was recently demonstrated how cBioPortal can be extended and integrated with other tools to a comprehensive and easily deployable software solution that supports the work of a molecular tumor board [ 130 ] and even deliver meaningful scientific insights [ 131 ]. Another translational research platform for the construction and integration of modern clinical research charts is Informatics for i2b2, which is also at the heart of clinical research [ 132 , 133 ].

Computational approaches and data analyses are tightly connected with medical research; the visualization of such complex data for clinicians in a routine setting especially plays a larger role. The current developments of translational research platforms, such as cBioPortal and i2b2, enable swift translation of research results into the clinic, if adequately adopted and enough trained people supervise the process.

The need for qualified IT specialists in medical informatics has increased continuously in recent years and will continue to grow in the future. On the other hand, medical informatics in Germany faces problems with the ​​promotion of young researchers. These current developments mean that vacancies in IT in hospitals and the health care industry can often not be filled or only after very long vacancies. In addition, these positions often have to be filled with nonspecialist staff due to a lack of applications. To keep track of these recent developments and provide a basis for interdisciplinary communication, we provide our list of 10 topics that could be used by different stakeholders individually ( Figure 2 ). With a particular focus in medicine, improved interdisciplinary communication has already been shown to positively impact patient outcomes and enhance employee engagement [ 134 ].

An external file that holds a picture, illustration, etc.
Object name is jmir_v25i1e45948_fig2.jpg

Exemplary outcome visualization of the underlying study, in which the color coding reflects the initial colors of the proposed sections; it starts with an individual perception of the term medical informatics (MI) based on the individual’s background and ends with acquisition of common domain knowledge for current important topics. CDSS: clinical decision support system; EHR: electronic health record; ETL; extract, transform, and load; FAIR; findable, accessible, interoperable, reusable; FHIR; Fast Healthcare Interoperability Resources; OMOP: Observational Medical Outcomes Partnership.

Furthermore, medical informatics has developed rapidly in recent years. This applies, for example, to new methods, techniques, tools, framework conditions, and organizational structures, especially in the field of medical data science. In particular, definitions of standards and a national digitized data corpus, namely the German Core Dataset [ 135 ], were agreed upon. The actual assessment and collection of digitized data in local university hospitals are utilized in so-called data integration centers. These interoperable research data infrastructures enable rapid multisite research, for example, with complex COVID-19 research data sets (German Corona Consensus Dataset [GECCO]) [ 136 ] including clinical data and data on biosamples from all German university hospitals in pseudonymized form (CODEX) [ 137 , 138 ] or the COVID-19 Data Portal [ 139 ]. The subsequent formation of the Network University Medicine (NUM) strengthens the existing interaction between research and patient care, stabilizes existing structures, and creates new structures that ensure more effective feedback and close cooperation between the clinics. The presented examples of NUM and CODEX, among others [ 140 ], attempt a central approach to bundle and harmonize necessary resources like broad consent or the elektronische Patientenakte (ePa), which is the implementation of EHR as a national entity to ultimately facilitate an interconnected health care system.

Finally, all those involved in medical informatics are called upon to engage in lifelong learning and continuously acquire further qualifications.

Exemplary Implementation of the Addressed Topics in the German Medical Informatics in Research and Care in University Medicine Consortium

This article offers newcomers to medical informatics a first introduction and a wealthy overview of current IT-related topics in research and patient care. Nevertheless, there is also a need for further qualification of employees through new, innovative offers for training, further education, and further training. As part of the MII [ 11 ], all consortia were asked to develop and set up appropriate offers and formats. The Medical Informatics in Research and Care in University Medicine (MIRACUM) consortium [ 141 ] has reacted and set up the part-time training and further education program “Biomedical Informatics and Data Science” [ 142 ] and introduced it at the Mannheim University of Applied Sciences in October 2020. The program includes a time-flexible and individually adaptable part-time online master’s course, as well as certificate courses and programs for further scientific education. In addition to the establishment and continuous further development of a cloud-based learning platform, many new digital and target group–oriented learning resources and application-oriented learning environments were developed and introduced for the master's program.

All 10 topics listed in this article are reflected in the curriculum of the master’s degree and have been offered and dealt with in-depth in the individual courses for more than 2 years. The demand for the master’s program and certificate courses is high, and the evaluation has shown that these topic-specific foci correspond to the training and further education needs of the target groups. One particular aspect that was not covered in the final topics refers to the underlying infrastructure needed to provide the data storage and processing backbone. This aspect would have been too technical for a more broadly set, introductory article, such as this article. A starting point for more in-depth information about this aspect can be obtained from further literature [ 143 , 144 ]. However, to offer a practical start to the 10 topics, we provide links to well-known tutorials and hands-on materials ( Table 1 ).

We suggest a set of 10 topics to ease the start for researchers and clinicians to become engaged with basic concepts in health informatics research. We provide current review articles for more in-depth reading about the specific topic and present practical hands-on material. The presented topics likewise serve as a broad overview of the medical informatics research domain but also guide individuals and their specific interests. For example, a computer scientist familiar with CDSS development could more easily connect with important aspects, such as data privacy, FHIR, and specific EHRs that are highly relevant for daily work. In contrast, medical experts can obtain an overview of behind-the-scenes technologies, like ETL processes and underlying data quality approaches that are finally visualized as a summarizing clinical dashboard. For readers, we provided a first step toward an improved understanding of a lively and quickly expanding field, but more novel technologies and practical knowledge are ahead. Suggestions and contributions to improve the current topics can be made at GitHub, which will likewise enable content and readers to stay current [ 12 ].

Acknowledgments

This work was supported by the Federal Ministry of Health (BMG) and the German Federal Ministry of Education and Research (BMBF) within the Medical Informatics Initiative Medical Informatics in Research and Care in University Medicine (MIRACUM) Consortium (FKZ: 01ZZ180L [Dresden]; FZK: 01ZZ180A [Erlangen]; FKZ: 01ZZ1801M [Greifswald]). The article processing charge was funded by the joint publication funds of the Technische Universität (TU) Dresden, including the Carl Gustav Carus Faculty of Medicine; Saxon State and University Library (SLUB) Dresden; and the Open Access Publication Funding of the German Research Foundation (DFG).

The funding sources had no involvement in the conduct of the research and preparation of the article.

Abbreviations

Authors' Contributions: MW conceptualized the study, curated the data, and wrote the original manuscript draft. MW also defined the initial topics 1 and 2; MZ defined the initial topics 3 and 4; YP defined the initial topics 5 and 6; IR defined the initial topics 7 and 8; and NA defined the initial topics 8, 9, and 10. MS provided the resources and supervised the study. The topics were revised and extended by KF, AK, SG, DK, KLH, ICJ, CS, JS, TS, PS, and DW. MW, NA, YP, MZ, IR, and MS performed the formal analysis, and MW, NA, and MS created the visualizations. NA, YP, MZ, IR, and MS wrote, reviewed, and edited the manuscript, and all authors read and agreed to the final version of the manuscript.

Conflicts of Interest: None declared.

Current Technology in Advancing Medical Education: Perspectives for Learning and Providing Care

  • In Depth Article: Commentary
  • Published: 13 June 2018
  • Volume 42 , pages 796–799, ( 2018 )

Cite this article

  • Joshua Moran 1 ,
  • Gregory Briscoe 2 &
  • Stephanie Peglow 2  

22k Accesses

79 Citations

2 Altmetric

Explore all metrics

Avoid common mistakes on your manuscript.

Healthcare and medical training have no immunity to universal, rapidly changing technology. In medical education, advances like simulations, virtual patients, and e-learning have evolved as pedagogical strategies to facilitate an active, learner-centered teaching approach. According to Chhetri et al., contemporary generations of trainees have grown up immersed in various technologies and are now less functional in the traditional classroom setting [ 1 ]. Yet, not all of today’s medical trainees or educators are equally adept and comfortable with technology. Educators are tasked with selecting and filtering appropriate technology-based curricula [ 1 ].

Advancement in education requires discerning which learning-assisting technologies merit usage in specific scenarios. To better improve patient care in contemporary times, continual innovative efforts between psychiatric educators and trainees remain essential for fully exploiting technology’s potential. The objective of this commentary is to discuss the various available medical training technologies and subsequent perceptions of trainees to these modalities. Additionally, this commentary considers how education-based technologies could improve or hinder the learning experience of medical trainees.

We conducted a review of articles published from 2007 to 2018 utilizing an online literature search with PubMed and Google Scholar, as well as a professional medical library search via the EVMS Brickell Medical Science Library System using the following key phrases: medical education or medical students and technology, e-learning, simulators, virtual reality, mobile devices, audience participation, computer based, medical illustration, or social media. To identify relevant systematic review articles, MeSH terms were also employed in the search to include these additional terms—medical students, attitude to computers, technology, computers, computer-assisted instruction, computer simulation, simulation training, internet, medical education, medical illustration, computer based, or curriculum. A second search was created to include multimedia use in medical lectures; search terms included the following: medical education, medical students and audiovisual aids, medical illustration, or educational technology. Additionally, the following MeSH terms were included in the second search: medical education, medical students, attitude to computers, multimedia, audiovisual aids, computer-based, or curriculum.

Inclusion and exclusion criteria for eligibility were established; no formal scoring system was employed. Systematic reviews written in English between the years of 2007–2018 were deemed eligible via inclusion criteria if written to inform medical educators on the fields of undergraduate medical training, postgraduate medical training, or continued medical education. An article met exclusionary criteria if only contributing redundant information seen in other (included) systematic reviews or otherwise failed to meet the above conditions. One author (GB) screened titles and abstracts of candidate articles to isolate studies which met the inclusion criteria; selected articles were then reviewed more thoroughly to analyze content.

To organize data from each systematic review meeting inclusion criteria, contributing authors read each review study in its entirety and subsequently consolidated article details into a shared Google Docs table. Chosen systematic reviews were organized into the following medical education topics of interest: e-learning, multimedia in lectures, technology-assisted audience participation, virtual reality and simulators, mobile devices, and social media. Systematic reviews not contributing to any of these specific technology-associated topics were deleted from our analysis. To appraise the quality and design of eligible systematic reviews, each review article was itemized based on outcome measures, review population studied, study purpose, results, identified conclusions, and reported or observed review limitations.

Database searches using our key terms of interest yielded 958 articles. As planned, one author scanned each title and abstract of searched articles to compile a list of 81 relevant systematic reviews (those passing inclusion criteria and escaping exclusion criteria). Sixty-two of the articles passing inclusion criteria failed to fit into any of our six-addressed technology-associated topics of interest; so, these articles were excluded. Of the articles passing inclusion criteria, 19 reviews were relevant to the following technology-associated educational modalities: 4 reviews on e-learning, 1 review on multimedia, 6 reviews on virtual patients and simulators, 3 reviews on audience response systems, 2 reviews on mobile devices, and 3 reviews on social media. No systematic reviews were found specific to multimedia usage in medical education lectures. Three of the smaller systematic reviews in the virtual patient and simulators category were assessed to only contribute information redundant to the other three larger systematic reviews; therefore, these smaller reviews were excluded. Our review appraisal yielded a final 16 articles to be included in our reflection on medical education technology.

A few exceptions were made for this commentary regarding cited articles. First, a non-systematic review (a brief literature review) was included in the introductory background information to provide a contemporary perspective on technological opportunities in medical education. Secondly, no systematic reviews were found specifically addressing the use of multimedia in medical education; therefore, a single review was included to reveal how media has altered the trainee’s experience in medical school classroom. Lastly, the Accreditation Council for Graduate Medical Education (ACGME) guidelines were included to address how the conclusion of our commentary may affect current and future postgraduate residency training in psychiatry.

Flexibility and active learning methods take precedence in contemporary medical education. E-learning—a web-based technology that extends teaching past the classroom—permits learners to hear and engage educators in lieu of or in addition to traditional classroom lectures. To formulate an effective e-learning course, collaboration must occur among course directors, teaching faculty, and technology experts.

Despite time and fiscal costs of initial creation, e-learning curricula offer a platform for easy tracking of trainee improvement in knowledge and performance mastery. E-learning helped clinicians circumvent geographic and scheduling restraints and therein promote participation in continuing medical education [ 2 ]. Web-based learning was perceived as most valuable when associated with real-time feedback, self-assessments, simple interface, extended time for completion, and topic relevance [ 3 , 4 ]. E-learning interventions that are perceived as too cursory and lacking relevance or interactivity are viewed less favorably [ 2 ]. A study interviewing orthopedic surgery trainees found that e-learning not only accelerated the learning of psychomotor skills but also offered superiority in cost-effectiveness, learner satisfaction, and self-directed pace and focus [ 5 ]. These qualities make e-learning ideal for exposing trainees to rare and complex medical scenarios. Such training interventions reinforce recognition of clinical patterns and orchestrate trainee reflection on key training points [ 5 ].

Various technological media categories have been employed to enhance the presentation of medical science topics to trainees. A meta-analysis of 266 studies conducted in 2010 revealed that 89% of web-based medical training courses included paragraph-form static written text, in addition to multimedia tools like videos, diagrams, and pictures [ 6 ]. Multimedia (such as tutorials and diagrams) and interactive self-assessments (such as patient cases, quizzes, or other feedback) were incorporated into over half of e-learning courses. Videos simultaneously fuse both auditory and visual information. Videos engage various areas of the trainee’s cognition during lectures [ 7 ]. Video-based lectures enable trainees to harness repetition, self-paced practice, and active learning. As with e-learning, trainees benefit the most from videos containing self-assessments, integrated lecture objectives, images, lecture PowerPoint slides, limited duration (< 15 min), quality design, and reputable featured lectures [ 7 ]. In fact, multimedia transforms the role of medical educators from that of hosting formal lectures to that of leading discussions and creatively maximizing trainee comprehension via media intervention tools [ 7 ].

Technology in Audience Participation

Audience response systems (ARS) technology has been increasingly utilized to stimulate more active learning in the classroom. ARS may facilitate student in-classroom participation and encourage group problem solving (depending on how the ARS is integrated into the experience) [ 8 ]. Anonymity in responses allows the learner to engage without fear of embarrassment or being singled out by peers or the instructor [ 9 ]. Regarding the incorporation of ARS into curricula, learners report strong positive acceptance, increased attentiveness, and enhanced engagement and enjoyment of the lecture experience. One controlled study suggested that immediate feedback after questions (as facilitated by ARS) may improve knowledge condensation [ 10 ]. Unfortunately, ARS have shown weak or equivocal results in long-term knowledge retention and learning outcomes; these inconclusive results have impaired academic institutional implementation of the ARS technology [ 8 ].

Virtual Reality and Simulations

As in the military and aerospace industry, medicine has helped to pioneer the use of simulators and virtual reality. To enhance knowledge application, educators have developed virtual patient (VP) encounters (realistic, animated clinical scenarios portraying a broad array of pathologies) to exercise the medical decision-making skills. Virtual reality has been frequently employed by procedural specialty trainees to improve skill development.

Research has yielded mixed reviews of the efficacy of simulations in medical training. A meta-analysis involving various medical professionals across 4 controlled trials compared simulation-based interventions to non-technological interventions [ 11 ]. Except for 1 trial, each of the other 3 trials revealed that high-fidelity simulations lacked superiority in areas of trainee confidence, performance, and knowledge [ 11 ]. In contrast, two meta-analysis studies comparing simulations to other non-technology-based interventions concluded that simulations yielded significant advantages in knowledge improvement, skill mastery, time to skill acquisition, and trainee satisfaction [ 12 , 13 ].

If designed and selected properly, simulation usage may bring specific advantages to medical education. Trainees have identified feedback, opportunities for repeated practice, realism, and team-focused communication skills as predictive variables contributing to a simulation’s success rate and acceptance. Although data regarding actual patient outcome improvement was not found, the use of simulators in medical education appears effective in engaging a medical trainee in active learning [ 13 ].

Mobile Devices

Mobile devices have evolved to accommodate the numerous demands of the highly mobile clinician and trainee. As of 2006, 85% of healthcare providers have adopted mobile devices in patient care [ 14 ]. Smartphones enable trainees the ability to multitask, while instantly refreshing knowledge on diagnoses, medical management, patient health information, medical calculations, or the most contemporary literature [ 15 ]. Now able to receive real-time, point-of-care computation, trainees can employ idle time and maximize learning by utilizing web-based study material and current literature. Mobile device apps offer improved accessibility to clinical literature, continued medical education, and error prevention tools [ 14 , 15 ]. Additionally, these devices also permit faster clinical communication and subsequent response times to patient’s needs [ 14 ]. Mobile devices remain limited in areas of battery life, malware risks, potential privacy breaches, or erroneous information in searches. Trainees express concern about smartphone usage appearing disrespectful to patients, attendings, or coworkers [ 15 ]. No current studies exist regarding mobile devices improving actual patient outcomes [ 14 , 15 ].

Social Media

Due to its prevalence, social media represents a potentially valuable tool for educators. As of 2012, 14.2% of the world’s population were active Facebook users; such estimates speak to the global prevalence of social media usage [ 16 ]. Medical students who blogged exhibited improved knowledge, empathy, exam scores, and reflective writing skills but failed to improve test scores [ 17 ]. Social media sites can function as a platform for students to exchange advice and medical information throughout their healthcare training [ 18 ]. Technical issues, variable participation levels, and privacy or security concerns were primary factors that thwarted full acceptance of blogging by medical students and educators [ 16 , 17 ]. Most learners described positive overall reactions to social media and blogging interventions [ 17 ]. Additionally, social media creates an avenue through which mental health professionals might be able to educate the public on mental health topics. Medical professionals must be taught and reminded to abstain from unprofessional conduct and privacy breaches while utilizing social media sites [ 16 ].

Increasingly integral to the practice of medicine, technology endeavors to streamline a clinician’s work and to offer credible, easily accessible information. To enhance trainee growth and empower innovative scientific leaders, educators should play a crucial role in how technology transforms medical education. Trainees prefer technology-associated modalities that offer learning material that is interactive, reputable, simple, pragmatic, and coupled with relevant feedback. Innovations like virtual reality and simulations effectively increase knowledge, performance skills, and team communication through realistic clinical cases. Educators utilize social media to promote student reflection and to address difficulties that trainees experience. The ACGME tasks psychiatry residencies with guiding trainees to employ technology to attain the following milestones: self-reflection and assimilation of relevant information for informed decision-making [ 19 ].

Educators must consider whether the benefits of added flexibility and real-time feedback implemented by technology-assisted learning outweigh the downsides of the social isolation associated with classroom-independent learning. This potential decline in camaraderie sparks some of medical educators’ support for implementing blogs and social media into curricula. In the presence of technology overload, educators must innovate curriculum that bolsters each trainee’s humanistic touch. Additionally, medical educators may advocate testing basic technological competencies in the Medical College Admission Test before matriculation or requiring continued education on technologies throughout medical training.

With the amount and variety of technology-based resources ballooning, educators receive expanding opportunity to create and modify new training techniques. Medical educators must instruct trainees how to consistently find the most pertinent, trustworthy, and contemporary information. Medical educators in psychiatry may enhance psychiatric training education by discovering ways to incorporate virtual reality into curricula. For example, educators could consider programming virtual patients and simulators to mimic psychotropic medication side effects, delirium, or drug intoxications. As artificial intelligence evolves, trainees may utilize virtual patients for psychotherapy skill development. Continued research into how integrated technology affects the trainee’s attitude and patient care outcomes remains vital for future advancement.

This commentary does not strive for exhaustive assessment or concluding judgment concerning each educational technology. Most reviews looked at studies of single-site implementation of educational outcomes, and few had non-technology controls; hence, the quality of the evidence was limited. Additionally, our literature search unearthed no actual patient outcome measures regarding each incorporated medical technology. Numerous factors, ranging from practice setting, personal preferences, and treatment population, affect how each trainee and physician perceives and adopts technological changes in medicine. Therefore, conclusions made from the experience of medical trainees cannot be generalized to all generations of practicing physicians. Further research into technology usage among different generations and practice types would isolate the most ideal technology-related training goals. Such innovation could help foster development of the best practice models for technology training in undergraduate and postgraduate medical education.

Chhetri S. E-learning in neurology education: principles, opportunities and challenges in combating neurophobia. J Clin Neurosci. 2017;44:80–3.

Article   Google Scholar  

Cook D, Steinert Y. Online learning for faculty development: a review of the literature. Med Teach. 2013;35(11):930–7.

Wong G, Greenhalgh T, Pawson R. Internet-based medical education: a realist review of what works, for whom and in what circumstances. BMC Med Educ. 2010;12 https://doi.org/10.1186/1472-6920-10-12 .

Maertens H, Madani A, Landry T, Vermassen F, van Herzeele I, Aggarwal R. Systematic review of e-learning for surgical training. Br J Surg. 2016;103:1428–37.

Article   CAS   Google Scholar  

Tarpada S, Morris M, Burton D. E-learning in orthopedic surgery training: a systematic review. J Orthop. 2016;13(4):425–30.

Cook D, Garside S, Levinson A, et al. What do we mean by web-based learning? A systematic review of the variability of interventions. Med Educ. 2010;44:765–74.

Dong C, Goh P. Twelve tips for the effective use of videos in medical education. Med Teach. 2015;37:140–5.

Atlantis E, Cheema B. Effect of audience response system technology on learning outcomes in health students and professionals: an updated systematic review. Int J Evid Based Healthc. 2015;13:3–8.

Grzeskowiak L, Thomas A, To J, et al. Enhancing continued educational activities using audience response systems: a single-blind controlled trial. J Contin Educ Heal Prof. 2015;35(1):38–45.

Nelson C, Hartling L, Campbell S, et al. The effects of audience response systems on learning outcomes in health professions education. A BEME systematic review: BEME Guide No. 21. Med Teach. 2012;34:e386–405.

Rackshasbhuvankar A, Patole S. Benefits of simulation based training for neonatal resuscitation training: a systematic review. Resuscitation. 2014;85:1320–3.

Cook D, Brydges R, Hamstra S, et al. Comparative effectiveness of technology-enhanced simulation versus other instructional methods: a systematic review and meta-analysis. Simul Healthc. 2012;7:308–20.

Mundell W, Kennedy C, Szostek J, et al. Simulation technology for resuscitation training: a systematic review and meta-analysis. Resuscitation. 2013;84:1174–83.

Prgomet M, Georgiou A, Westbrook J. The impact of mobile handheld technology on hospital physicians’ work practices and patient care: a systematic review. J Am Med Inform Assoc. 2009;16(6):792–801.

Mosa A, Yoo I, Sheets L. A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak. 2012;12: https://doi.org/10.1186/1472-6947-12-67 .

Cheston C, Flickinger T, Chisolm M. Social media use in medical education: a systematic review. Acad Med. 2013;88(6):893–901.

Pinilla S, Weckbach L, Alig S, Bauer H, Noerenberg D, Singer K, et al. Blogging medical students: a qualitative analysis. GMS Z Med Ausbild. 2013;30(1):Doc9. https://doi.org/10.3205/zma000852.

Article   PubMed   PubMed Central   Google Scholar  

Hollinderbäumer A, Hartz T, and Ückert F. Education 2.0—how has social media and Web 2.0 been integrated into medical education? A systematic literature review. GMS Z Med Ausbil. 2013;30(1). https://doi.org/10.3205/zma000857 .

The Psychiatry Milestone Project. Accreditation Council for Graduate Medical Education. 2015. https://www.acgme.org/Portals/0/PDFs/Milestones/PsychiatryMilestones.pdf?ver=2015-11-06-120520-753 . Accessed 9 Jan 2018.

Download references

Acknowledgements

The authors would like to thank Esther May Sarino, MLIS, for her expert help in crafting and refining the literary search.

Author information

Authors and affiliations.

Edward via College of Osteopathic Medicine, Blacksburg, VA, USA

Joshua Moran

Eastern Virginia Medical School, Norfolk, VA, USA

Gregory Briscoe & Stephanie Peglow

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stephanie Peglow .

Ethics declarations

Ethical considerations.

IRB approval was not necessary due to this being a review of literature. EVMS IRB reviewed the proposal and determined it to be not human subjects research (IRB # 17-12-NH-0272).

On behalf of all authors, the corresponding author states that there are no financial or personal conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Moran, J., Briscoe, G. & Peglow, S. Current Technology in Advancing Medical Education: Perspectives for Learning and Providing Care. Acad Psychiatry 42 , 796–799 (2018). https://doi.org/10.1007/s40596-018-0946-y

Download citation

Received : 18 January 2018

Accepted : 25 May 2018

Published : 13 June 2018

Issue Date : December 2018

DOI : https://doi.org/10.1007/s40596-018-0946-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 19 June 2020

What do medical students actually need to know about artificial intelligence?

  • Liam G. McCoy   ORCID: orcid.org/0000-0002-4468-2256 1 , 2 ,
  • Sujay Nagaraj   ORCID: orcid.org/0000-0002-8231-7305 1 , 3 ,
  • Felipe Morgado   ORCID: orcid.org/0000-0003-3000-9455 1 , 4 ,
  • Vinyas Harish   ORCID: orcid.org/0000-0001-6364-2439 1 , 2 ,
  • Sunit Das 1 , 5 &
  • Leo Anthony Celi   ORCID: orcid.org/0000-0001-6712-6626 6 , 7 , 8  

npj Digital Medicine volume  3 , Article number:  86 ( 2020 ) Cite this article

17k Accesses

84 Citations

100 Altmetric

Metrics details

  • Health care
  • Medical ethics

With emerging innovations in artificial intelligence (AI) poised to substantially impact medical practice, interest in training current and future physicians about the technology is growing. Alongside comes the question of what, precisely, should medical students be taught. While competencies for the clinical usage of AI are broadly similar to those for any other novel technology, there are qualitative differences of critical importance to concerns regarding explainability, health equity, and data security. Drawing on experiences at the University of Toronto Faculty of Medicine and MIT Critical Data’s “datathons”, the authors advocate for a dual-focused approach: combining robust data science-focused additions to baseline health research curricula and extracurricular programs to cultivate leadership in this space.

Introduction

With emerging innovations in artificial intelligence (AI) poised to substantially impact medical practice, interest in training current and future physicians about AI is growing 1 . Alongside this interest comes the question of what, precisely, medical students should learn 2 . While competencies for the clinical usage of AI are broadly similar to those for any other novel technology in medicine, there are qualitative differences of critical importance to concerns regarding explainability, health equity, and data security 3 , 4 , 5 . We advocate for a dual-focused approach: combining robust, learner-centered AI additions to baseline curricula and extracurricular programs to cultivate leadership in this space.

What do physicians need to understand about AI in the clinical context?

Most directly, physicians need to understand AI in the same way that they need to understand any technology impacting clinical decision-making. A physician utilizing MRI, for example, does not need to understand the particle spin physics differentiating T1 and T2 weighted scans, but they do need to be able to:

Use it—identify when the technology is appropriate for a given clinical context, and what inputs are required to receive meaningful results.

Interpret it—understand and interpret the results with a reasonable degree of accuracy, including awareness of sources of error, bias, or clinical inapplicability.

Explain it—be able to communicate the results and the processes underlying them in a way that others (e.g. allied health professionals and patients) can understand.

These skills take on particular nuances in the context of AI. For (i) and (ii), it is critical for physicians to appreciate the highly context-specific nature of AI, and the fact that performance in a single restricted context may not always be transferable. It is also important to be aware of factors which may decrease the performance of algorithms for specific patient groups 3 .

AI has been commonly criticized for the “black box” effect—that is, the mechanism by which a model arrives at a decision may be indecipherable 1 . This lack of technical “explainability”, however, does not discharge the obligations of (iii). To satisfy requirements of informed consent and clinical collaboration, a physician may be called upon to communicate their understanding of the origin, nature, and justification of an algorithm’s results to patients, families, and colleagues.

What do physicians need to understand about AI in the broader professional context?

The professional obligations of physicians extend beyond the clinical role into leadership and health advocacy. The disruptive prospects of AI in healthcare raise significant ethical and operational challenges which physicians must collectively be prepared to engage with for the sake of ensuring patient welfare.

Substantial concerns exist regarding the impact of algorithmic clinical decision support on health equity, due to factors such as the use of datasets lacking representation from minority populations 3 , and the possibility for algorithms to learn from and perpetuate existing biases 4 . Risks around data security and privacy are also becoming rapidly apparent 5 . There is also, however, the potential for AI itself to alleviate some of medicine’s existing problems with bias and unfairness 6 . Physicians should be aware of both possibilities and be equipped to advocate for the development and deployment of ethical and equitable systems. Finally, physicians must act as responsible stewards for patient data to ensure that the foundational trust between provider and patient is not violated.

How might medical students learn what they need to learn?

Concerted efforts should be taken to cultivate physician-leaders who are fluent in both AI and medicine. Such dual competence is important, as it is no simple task to select clinically relevant and computationally feasible targets for AI in medicine. A siloed approach may lead to clear clinical targets going unnoticed and worsen the production of technical “solutions in search of problems” 7 . A multidisciplinary, integrated approach to learning will serve to facilitate this goal.

When approaching such a complex topic, it is critical to distinguish between that which all physicians must know for everyday practice, and that which some physicians should know to drive innovation. Curricular components should be targeted to address the former, while robust extracurricular programs can be targeted toward the latter. Both components serve to promote discussions on how the convergence between AI and medicine is currently impacting and will continue to impact the physician’s identity. This aligns with the concept of the “reimagined medical school”, which establishes a framework of core knowledge while supporting students who seek deep dives into specific subject areas 8 .

This approach has been piloted at the University of Toronto (UofT) Faculty of Medicine and has been embraced by administration as an important part of the Faculty’s strategic plan 8 . Lectures in the preclinical curriculum introduce all students to these concepts, and the 2-year-long “Computing for Medicine” certificate program provides particularly interested students with practical programming skills and immersion into clinical data science projects 9 . Additionally, an “AI in Medicine” student interest group hosts extracurricular seminars on the subject and helps to facilitate connections between medical students and a city’s broader AI ecosystem (in academia and industry) (see Supplementary Table 1 for a list of AI in Medicine offerings in the last two years).

Harvard Medical School has engaged in a similar approach, offering clinical informatics training as an elective for medical students 10 . During this elective, students are paired with faculty mentors in their area of interest and engage in a mix of didactic and hands-on learning to explore how informatics is embedded into health systems. The School has also collaborated with the MIT Critical Data group to offer a project-based course on data science in medicine 11 . Extracurricularly, the MIT Critical Data Group has worked to spur interest in AI through “datathons” (brief competitions wherein computer scientists and clinicians work together to use data to solve clinical problems) 12 . These collaborations are emblematic of the possibilities for collaboration with non-medical faculties to enrich the education of medical students.

With insight from these experiences, we identify a series of important opportunities in both the curricular and extracurricular realms (outlined in Table 1 ). We wish to emphasize the importance of finding synergy between the learning objectives and their delivery, and of maintaining a learner-centered ethos with a focus upon student engagement rather than passive knowledge transfer. These concepts should be integrated with other aspects of the curriculum wherever appropriate (such as the inclusion of an AI case study in a workshop about ethical clinical decision-making), as the competencies required to effectively work with AI will often overlap with those required to fulfil other core aspects of the physician role such as advocacy, leadership, and communication. Medical schools have a critical role to play not only in helping their students learn but also in nurturing their academic interests and sowing the seeds of future leadership. These recommendations can and should be tailored to the context and strengths of each medical school, its partnerships, and its student body.

What about after medical school?

While detailed discussion on postgraduate medical education (PGME) and continuing medical education (CME) is outside the scope of this work, it is important to consider that medical education is viewed as a life-long pursuit and attention needs to be provided to learners at later career stages 13 . Competencies around AI could be integrated in PGME curricula in existing research or Quality Improvement (QI) blocks. Research training, for medical or surgical trainees, could be in technical areas such as data science or biomedical engineering but also in ethics, health services research, and medical education. QI would focus on translating and evaluating proven innovations into care. CME offerings through online or in-person workshops can not only allow clinicians to refresh their competencies over the course of their career but also empower established practitioners with the skills and knowledge to keep up with this field 14 . The various curricular aspects in Table 1 can be modified to suit learners at different stages in their careers.

Ultimately, medical schools are tasked with training physicians for a future in which artificial intelligence is poised to play a significant role. In order to succeed at this task, it will be essential for students to have curricular and extracurricular learning opportunities around the clinical usage, technical limitations, and ethical implications of the tools at their disposal. Given the importance and potential impact of this technology, we must act both to ensure a base of artificial intelligence literacy among physicians at-large and to nurture the skills and interests of the future leaders who will drive innovation in this space.

Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25 , 44–56 (2019).

Article   CAS   Google Scholar  

Wartman, S. A. The empirical challenge of 21st-century medical education. Academic Med. 94 , 1412–1415 (2019).

Article   Google Scholar  

Adamson, A. S. & Smith, A. Machine learning and health care disparities in dermatology. JAMA Dermatol 154 , 1247–1248 (2018).

Parikh, R. B., Teeple, S. & Navathe, A. S. Addressing bias in artificial intelligence in health care. JAMA . http://jamanetwork.com/journals/jama/fullarticle/2756196 . (2019)

Price, W. N. & Cohen, I. G. Privacy in the age of medical big data. Nat. Med. 25 , 37–43 (2019).

Chen, I. Y., Joshi, S. & Ghassemi, M. Treating health disparities with artificial intelligence. Nat. Med. 26 , 16–17 (2020).

Wiens, J. et al. Do no harm: a roadmap for responsible machine learning for health care. Nat. Med. 25 , 1337–1340 (2019).

Prober, C. G. & Khan, S. Medical education reimagined: a call to action. Acad. Med. 88 , 1407–1410 (2013).

Law, M., Veinot, P., Campbell, J., Craig, M. & Mylopoulos, M. Computing for medicine: can we prepare medical students for the future? Acad. Med. 94 , 353 (2019).

Harvard Medical School Course Catalogue. PD530.7 Clinical Informatics. http://www.medcatalog.harvard.edu/coursedetails.aspx?cid=PD530.7&did=260&yid=2020&fbclid=IwAR3FRgDGVFK4ca_wHGGnXBwf3zRLkN8LMiJXBph1q3tFc_g3ZAVT5gK1qAI (2020).

MIT Critical Data. 2019.HST.953: Collaborative Data Science in Medicine. https://criticaldata.mit.edu/blog/2019/08/06/hst-953-2019/ . (2020).

Aboab, J. et al. A “datathon” model to support cross-disciplinary collaboration. Sci. Transl. Med. 8 , 333ps8 (2016).

Aschenbrener, C. A., Ast, C. & Kirch, D. G. Graduate medical education: its role in achieving a true medical education continuum. Acad. Med. 90 , 1203–1209 (2015).

McMahon, G. T. The leadership case for investing in continuing professional development. Acad. Med. 92 , 1075–1077 (2017).

Floridi, L. et al. AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds Mach. 28 , 689–707 (2018).

Download references

Acknowledgements

We would like to acknowledge the Faculty of Medicine, MD Program, and Medical Society at the University of Toronto for their support and commitment to AI in Medicine Students’ Society and other initiatives driven by students in service of our profession and its changing needs. L.A.C. is funded by the National Institute of Health through the NIBIB R01 grant EB017205.

Author information

Authors and affiliations.

Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King’s College Cir, Toronto, ON, M5S 1A8, Canada

Liam G. McCoy, Sujay Nagaraj, Felipe Morgado, Vinyas Harish & Sunit Das

Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, 155 College St 4th Floor, Toronto, ON, M5T 3M6, Canada

Liam G. McCoy & Vinyas Harish

Department of Computer Science, University of Toronto, 40 St. George Street, Room 4283, Toronto, ON, M5S 2E4, Canada

Sujay Nagaraj

Department of Medical Biophysics, University of Toronto, 101 College St, Suite 15-701, Toronto, ON, M5G 1L7, Canada

Felipe Morgado

Centre for Ethics, University of Toronto, 15 Devonshire Pl, Toronto, ON, M5S 1H8, Canada

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-505, Cambridge, MA, 02139, USA

Leo Anthony Celi

Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA

Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA

You can also search for this author in PubMed   Google Scholar

Contributions

Initial conceptions and design: L.G.M, S.N., V.H., F.M. L.A.C. Drafting of the paper: L.G.M., S.N., V.H., F.M. Critical revision of the paper for important intellectual content: L.G.M., S.N., V.H., F.M., S.D., L.A.C. All authors approve the submitted version of the paper and have agreed to be personally accountable for both their own contributions and the accuracy and integrity of the overall work.

Corresponding author

Correspondence to Liam G. McCoy .

Ethics declarations

Competing interests.

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

McCoy, L.G., Nagaraj, S., Morgado, F. et al. What do medical students actually need to know about artificial intelligence?. npj Digit. Med. 3 , 86 (2020). https://doi.org/10.1038/s41746-020-0294-7

Download citation

Received : 26 January 2020

Accepted : 26 May 2020

Published : 19 June 2020

DOI : https://doi.org/10.1038/s41746-020-0294-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Awareness and level of digital literacy among students receiving health-based education.

  • Alp Aydınlar
  • Levent Altıntaş

BMC Medical Education (2024)

Exploring patient perspectives on how they can and should be engaged in the development of artificial intelligence (AI) applications in health care

  • Samira Adus
  • Jillian Macklin
  • Andrew Pinto

BMC Health Services Research (2023)

The need for digital health education among next-generation health workers in China: a cross-sectional survey on digital health education

  • Yuanheng Li

BMC Medical Education (2023)

Psychometric properties of the persian version of the Medical Artificial Intelligence Readiness Scale for Medical Students (MAIRS-MS)

  • AmirAli Moodi Ghalibaf
  • Maryam Moghadasin
  • Haniye Mastour

Public health practice and artificial intelligence: views of future professionals

  • Nandi S. Mwase
  • Sean M. Patrick
  • Janine Wichmann

Journal of Public Health (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

research topic for medical technology students

  • Frontiers in Medicine
  • Healthcare Professions Education
  • Research Topics

Impact of Technology on Human Behaviors in Medical Professions Education

Total Downloads

Total Views and Downloads

About this Research Topic

Human behaviors are essential in understanding how individuals engage in medical science academic activities. Healthcare systems across the globe have witnessed a significant shift in recent years by integrating technology in innovating new methods and practices to improve educational practices. Therefore, ...

Keywords : healthcare education, medical education, teachers’ behavior, students’ behavior, human behavior, technology in medical sciences, program development, curriculum development, teacher and student performance

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, recent articles, submission deadlines, participating journals.

Manuscripts can be submitted to this Research Topic via the following journals:

total views

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

research topic for medical technology students

Head Start Your Radiology Residency [Online] ↗️

  • Radiology Thesis – More than 400 Research Topics (2022)!

Please login to bookmark

Radiology Thesis Topics RadioGyan.com

Introduction

A thesis or dissertation, as some people would like to call it, is an integral part of the Radiology curriculum, be it MD, DNB, or DMRD. We have tried to aggregate radiology thesis topics from various sources for reference.

Not everyone is interested in research, and writing a Radiology thesis can be daunting. But there is no escape from preparing, so it is better that you accept this bitter truth and start working on it instead of cribbing about it (like other things in life. #PhilosophyGyan!)

Start working on your thesis as early as possible and finish your thesis well before your exams, so you do not have that stress at the back of your mind. Also, your thesis may need multiple revisions, so be prepared and allocate time accordingly.

Tips for Choosing Radiology Thesis and Research Topics

Keep it simple silly (kiss).

Retrospective > Prospective

Retrospective studies are better than prospective ones, as you already have the data you need when choosing to do a retrospective study. Prospective studies are better quality, but as a resident, you may not have time (, energy and enthusiasm) to complete these.

Choose a simple topic that answers a single/few questions

Original research is challenging, especially if you do not have prior experience. I would suggest you choose a topic that answers a single or few questions. Most topics that I have listed are along those lines. Alternatively, you can choose a broad topic such as “Role of MRI in evaluation of perianal fistulas.”

You can choose a novel topic if you are genuinely interested in research AND have a good mentor who will guide you. Once you have done that, make sure that you publish your study once you are done with it.

Get it done ASAP.

In most cases, it makes sense to stick to a thesis topic that will not take much time. That does not mean you should ignore your thesis and ‘Ctrl C + Ctrl V’ from a friend from another university. Thesis writing is your first step toward research methodology so do it as sincerely as possible. Do not procrastinate in preparing the thesis. As soon as you have been allotted a guide, start researching topics and writing a review of the literature.

At the same time, do not invest a lot of time in writing/collecting data for your thesis. You should not be busy finishing your thesis a few months before the exam. Some people could not appear for the exam because they could not submit their thesis in time. So DO NOT TAKE thesis lightly.

Do NOT Copy-Paste

Reiterating once again, do not simply choose someone else’s thesis topic. Find out what are kind of cases that your Hospital caters to. It is better to do a good thesis on a common topic than a crappy one on a rare one.

Books to help you write a Radiology Thesis

Event country/university has a different format for thesis; hence these book recommendations may not work for everyone.

How to Write the Thesis and Thesis Protocol: A Primer for Medical, Dental, and Nursing Courses: A Primer for Medical, Dental and Nursing Courses

  • Amazon Kindle Edition
  • Gupta, Piyush (Author)
  • English (Publication Language)
  • 206 Pages - 10/12/2020 (Publication Date) - Jaypee Brothers Medical Publishers (P) Ltd. (Publisher)

In A Hurry? Download a PDF list of Radiology Research Topics!

Sign up below to get this PDF directly to your email address.

100% Privacy Guaranteed. Your information will not be shared. Unsubscribe anytime with a single click.

List of Radiology Research /Thesis / Dissertation Topics

  • State of the art of MRI in the diagnosis of hepatic focal lesions
  • Multimodality imaging evaluation of sacroiliitis in newly diagnosed patients of spondyloarthropathy
  • Multidetector computed tomography in oesophageal varices
  • Role of positron emission tomography with computed tomography in the diagnosis of cancer Thyroid
  • Evaluation of focal breast lesions using ultrasound elastography
  • Role of MRI diffusion tensor imaging in the assessment of traumatic spinal cord injuries
  • Sonographic imaging in male infertility
  • Comparison of color Doppler and digital subtraction angiography in occlusive arterial disease in patients with lower limb ischemia
  • The role of CT urography in Haematuria
  • Role of functional magnetic resonance imaging in making brain tumor surgery safer
  • Prediction of pre-eclampsia and fetal growth restriction by uterine artery Doppler
  • Role of grayscale and color Doppler ultrasonography in the evaluation of neonatal cholestasis
  • Validity of MRI in the diagnosis of congenital anorectal anomalies
  • Role of sonography in assessment of clubfoot
  • Role of diffusion MRI in preoperative evaluation of brain neoplasms
  • Imaging of upper airways for pre-anaesthetic evaluation purposes and for laryngeal afflictions.
  • A study of multivessel (arterial and venous) Doppler velocimetry in intrauterine growth restriction
  • Multiparametric 3tesla MRI of suspected prostatic malignancy.
  • Role of Sonography in Characterization of Thyroid Nodules for differentiating benign from
  • Role of advances magnetic resonance imaging sequences in multiple sclerosis
  • Role of multidetector computed tomography in evaluation of jaw lesions
  • Role of Ultrasound and MR Imaging in the Evaluation of Musculotendinous Pathologies of Shoulder Joint
  • Role of perfusion computed tomography in the evaluation of cerebral blood flow, blood volume and vascular permeability of cerebral neoplasms
  • MRI flow quantification in the assessment of the commonest csf flow abnormalities
  • Role of diffusion-weighted MRI in evaluation of prostate lesions and its histopathological correlation
  • CT enterography in evaluation of small bowel disorders
  • Comparison of perfusion magnetic resonance imaging (PMRI), magnetic resonance spectroscopy (MRS) in and positron emission tomography-computed tomography (PET/CT) in post radiotherapy treated gliomas to detect recurrence
  • Role of multidetector computed tomography in evaluation of paediatric retroperitoneal masses
  • Role of Multidetector computed tomography in neck lesions
  • Estimation of standard liver volume in Indian population
  • Role of MRI in evaluation of spinal trauma
  • Role of modified sonohysterography in female factor infertility: a pilot study.
  • The role of pet-CT in the evaluation of hepatic tumors
  • Role of 3D magnetic resonance imaging tractography in assessment of white matter tracts compromise in supratentorial tumors
  • Role of dual phase multidetector computed tomography in gallbladder lesions
  • Role of multidetector computed tomography in assessing anatomical variants of nasal cavity and paranasal sinuses in patients of chronic rhinosinusitis.
  • magnetic resonance spectroscopy in multiple sclerosis
  • Evaluation of thyroid nodules by ultrasound elastography using acoustic radiation force impulse (ARFI) imaging
  • Role of Magnetic Resonance Imaging in Intractable Epilepsy
  • Evaluation of suspected and known coronary artery disease by 128 slice multidetector CT.
  • Role of regional diffusion tensor imaging in the evaluation of intracranial gliomas and its histopathological correlation
  • Role of chest sonography in diagnosing pneumothorax
  • Role of CT virtual cystoscopy in diagnosis of urinary bladder neoplasia
  • Role of MRI in assessment of valvular heart diseases
  • High resolution computed tomography of temporal bone in unsafe chronic suppurative otitis media
  • Multidetector CT urography in the evaluation of hematuria
  • Contrast-induced nephropathy in diagnostic imaging investigations with intravenous iodinated contrast media
  • Comparison of dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging and single photon emission computed tomography in patients with little’s disease
  • Role of Multidetector Computed Tomography in Bowel Lesions.
  • Role of diagnostic imaging modalities in evaluation of post liver transplantation recipient complications.
  • Role of multislice CT scan and barium swallow in the estimation of oesophageal tumour length
  • Malignant Lesions-A Prospective Study.
  • Value of ultrasonography in assessment of acute abdominal diseases in pediatric age group
  • Role of three dimensional multidetector CT hysterosalpingography in female factor infertility
  • Comparative evaluation of multi-detector computed tomography (MDCT) virtual tracheo-bronchoscopy and fiberoptic tracheo-bronchoscopy in airway diseases
  • Role of Multidetector CT in the evaluation of small bowel obstruction
  • Sonographic evaluation in adhesive capsulitis of shoulder
  • Utility of MR Urography Versus Conventional Techniques in Obstructive Uropathy
  • MRI of the postoperative knee
  • Role of 64 slice-multi detector computed tomography in diagnosis of bowel and mesenteric injury in blunt abdominal trauma.
  • Sonoelastography and triphasic computed tomography in the evaluation of focal liver lesions
  • Evaluation of Role of Transperineal Ultrasound and Magnetic Resonance Imaging in Urinary Stress incontinence in Women
  • Multidetector computed tomographic features of abdominal hernias
  • Evaluation of lesions of major salivary glands using ultrasound elastography
  • Transvaginal ultrasound and magnetic resonance imaging in female urinary incontinence
  • MDCT colonography and double-contrast barium enema in evaluation of colonic lesions
  • Role of MRI in diagnosis and staging of urinary bladder carcinoma
  • Spectrum of imaging findings in children with febrile neutropenia.
  • Spectrum of radiographic appearances in children with chest tuberculosis.
  • Role of computerized tomography in evaluation of mediastinal masses in pediatric
  • Diagnosing renal artery stenosis: Comparison of multimodality imaging in diabetic patients
  • Role of multidetector CT virtual hysteroscopy in the detection of the uterine & tubal causes of female infertility
  • Role of multislice computed tomography in evaluation of crohn’s disease
  • CT quantification of parenchymal and airway parameters on 64 slice MDCT in patients of chronic obstructive pulmonary disease
  • Comparative evaluation of MDCT  and 3t MRI in radiographically detected jaw lesions.
  • Evaluation of diagnostic accuracy of ultrasonography, colour Doppler sonography and low dose computed tomography in acute appendicitis
  • Ultrasonography , magnetic resonance cholangio-pancreatography (MRCP) in assessment of pediatric biliary lesions
  • Multidetector computed tomography in hepatobiliary lesions.
  • Evaluation of peripheral nerve lesions with high resolution ultrasonography and colour Doppler
  • Multidetector computed tomography in pancreatic lesions
  • Multidetector Computed Tomography in Paediatric abdominal masses.
  • Evaluation of focal liver lesions by colour Doppler and MDCT perfusion imaging
  • Sonographic evaluation of clubfoot correction during Ponseti treatment
  • Role of multidetector CT in characterization of renal masses
  • Study to assess the role of Doppler ultrasound in evaluation of arteriovenous (av) hemodialysis fistula and the complications of hemodialysis vasular access
  • Comparative study of multiphasic contrast-enhanced CT and contrast-enhanced MRI in the evaluation of hepatic mass lesions
  • Sonographic spectrum of rheumatoid arthritis
  • Diagnosis & staging of liver fibrosis by ultrasound elastography in patients with chronic liver diseases
  • Role of multidetector computed tomography in assessment of jaw lesions.
  • Role of high-resolution ultrasonography in the differentiation of benign and malignant thyroid lesions
  • Radiological evaluation of aortic aneurysms in patients selected for endovascular repair
  • Role of conventional MRI, and diffusion tensor imaging tractography in evaluation of congenital brain malformations
  • To evaluate the status of coronary arteries in patients with non-valvular atrial fibrillation using 256 multirow detector CT scan
  • A comparative study of ultrasonography and CT – arthrography in diagnosis of chronic ligamentous and meniscal injuries of knee
  • Multi detector computed tomography evaluation in chronic obstructive pulmonary disease and correlation with severity of disease
  • Diffusion weighted and dynamic contrast enhanced magnetic resonance imaging in chemoradiotherapeutic response evaluation in cervical cancer.
  • High resolution sonography in the evaluation of non-traumatic painful wrist
  • The role of trans-vaginal ultrasound versus magnetic resonance imaging in diagnosis & evaluation of cancer cervix
  • Role of multidetector row computed tomography in assessment of maxillofacial trauma
  • Imaging of vascular complication after liver transplantation.
  • Role of magnetic resonance perfusion weighted imaging & spectroscopy for grading of glioma by correlating perfusion parameter of the lesion with the final histopathological grade
  • Magnetic resonance evaluation of abdominal tuberculosis.
  • Diagnostic usefulness of low dose spiral HRCT in diffuse lung diseases
  • Role of dynamic contrast enhanced and diffusion weighted magnetic resonance imaging in evaluation of endometrial lesions
  • Contrast enhanced digital mammography anddigital breast tomosynthesis in early diagnosis of breast lesion
  • Evaluation of Portal Hypertension with Colour Doppler flow imaging and magnetic resonance imaging
  • Evaluation of musculoskeletal lesions by magnetic resonance imaging
  • Role of diffusion magnetic resonance imaging in assessment of neoplastic and inflammatory brain lesions
  • Radiological spectrum of chest diseases in HIV infected children High resolution ultrasonography in neck masses in children
  • with surgical findings
  • Sonographic evaluation of peripheral nerves in type 2 diabetes mellitus.
  • Role of perfusion computed tomography in the evaluation of neck masses and correlation
  • Role of ultrasonography in the diagnosis of knee joint lesions
  • Role of ultrasonography in evaluation of various causes of pelvic pain in first trimester of pregnancy.
  • Role of Magnetic Resonance Angiography in the Evaluation of Diseases of Aorta and its Branches
  • MDCT fistulography in evaluation of fistula in Ano
  • Role of multislice CT in diagnosis of small intestine tumors
  • Role of high resolution CT in differentiation between benign and malignant pulmonary nodules in children
  • A study of multidetector computed tomography urography in urinary tract abnormalities
  • Role of high resolution sonography in assessment of ulnar nerve in patients with leprosy.
  • Pre-operative radiological evaluation of locally aggressive and malignant musculoskeletal tumours by computed tomography and magnetic resonance imaging.
  • The role of ultrasound & MRI in acute pelvic inflammatory disease
  • Ultrasonography compared to computed tomographic arthrography in the evaluation of shoulder pain
  • Role of Multidetector Computed Tomography in patients with blunt abdominal trauma.
  • The Role of Extended field-of-view Sonography and compound imaging in Evaluation of Breast Lesions
  • Evaluation of focal pancreatic lesions by Multidetector CT and perfusion CT
  • Evaluation of breast masses on sono-mammography and colour Doppler imaging
  • Role of CT virtual laryngoscopy in evaluation of laryngeal masses
  • Triple phase multi detector computed tomography in hepatic masses
  • Role of transvaginal ultrasound in diagnosis and treatment of female infertility
  • Role of ultrasound and color Doppler imaging in assessment of acute abdomen due to female genetal causes
  • High resolution ultrasonography and color Doppler ultrasonography in scrotal lesion
  • Evaluation of diagnostic accuracy of ultrasonography with colour Doppler vs low dose computed tomography in salivary gland disease
  • Role of multidetector CT in diagnosis of salivary gland lesions
  • Comparison of diagnostic efficacy of ultrasonography and magnetic resonance cholangiopancreatography in obstructive jaundice: A prospective study
  • Evaluation of varicose veins-comparative assessment of low dose CT venogram with sonography: pilot study
  • Role of mammotome in breast lesions
  • The role of interventional imaging procedures in the treatment of selected gynecological disorders
  • Role of transcranial ultrasound in diagnosis of neonatal brain insults
  • Role of multidetector CT virtual laryngoscopy in evaluation of laryngeal mass lesions
  • Evaluation of adnexal masses on sonomorphology and color Doppler imaginig
  • Role of radiological imaging in diagnosis of endometrial carcinoma
  • Comprehensive imaging of renal masses by magnetic resonance imaging
  • The role of 3D & 4D ultrasonography in abnormalities of fetal abdomen
  • Diffusion weighted magnetic resonance imaging in diagnosis and characterization of brain tumors in correlation with conventional MRI
  • Role of diffusion weighted MRI imaging in evaluation of cancer prostate
  • Role of multidetector CT in diagnosis of urinary bladder cancer
  • Role of multidetector computed tomography in the evaluation of paediatric retroperitoneal masses.
  • Comparative evaluation of gastric lesions by double contrast barium upper G.I. and multi detector computed tomography
  • Evaluation of hepatic fibrosis in chronic liver disease using ultrasound elastography
  • Role of MRI in assessment of hydrocephalus in pediatric patients
  • The role of sonoelastography in characterization of breast lesions
  • The influence of volumetric tumor doubling time on survival of patients with intracranial tumours
  • Role of perfusion computed tomography in characterization of colonic lesions
  • Role of proton MRI spectroscopy in the evaluation of temporal lobe epilepsy
  • Role of Doppler ultrasound and multidetector CT angiography in evaluation of peripheral arterial diseases.
  • Role of multidetector computed tomography in paranasal sinus pathologies
  • Role of virtual endoscopy using MDCT in detection & evaluation of gastric pathologies
  • High resolution 3 Tesla MRI in the evaluation of ankle and hindfoot pain.
  • Transperineal ultrasonography in infants with anorectal malformation
  • CT portography using MDCT versus color Doppler in detection of varices in cirrhotic patients
  • Role of CT urography in the evaluation of a dilated ureter
  • Characterization of pulmonary nodules by dynamic contrast-enhanced multidetector CT
  • Comprehensive imaging of acute ischemic stroke on multidetector CT
  • The role of fetal MRI in the diagnosis of intrauterine neurological congenital anomalies
  • Role of Multidetector computed tomography in pediatric chest masses
  • Multimodality imaging in the evaluation of palpable & non-palpable breast lesion.
  • Sonographic Assessment Of Fetal Nasal Bone Length At 11-28 Gestational Weeks And Its Correlation With Fetal Outcome.
  • Role Of Sonoelastography And Contrast-Enhanced Computed Tomography In Evaluation Of Lymph Node Metastasis In Head And Neck Cancers
  • Role Of Renal Doppler And Shear Wave Elastography In Diabetic Nephropathy
  • Evaluation Of Relationship Between Various Grades Of Fatty Liver And Shear Wave Elastography Values
  • Evaluation and characterization of pelvic masses of gynecological origin by USG, color Doppler and MRI in females of reproductive age group
  • Radiological evaluation of small bowel diseases using computed tomographic enterography
  • Role of coronary CT angiography in patients of coronary artery disease
  • Role of multimodality imaging in the evaluation of pediatric neck masses
  • Role of CT in the evaluation of craniocerebral trauma
  • Role of magnetic resonance imaging (MRI) in the evaluation of spinal dysraphism
  • Comparative evaluation of triple phase CT and dynamic contrast-enhanced MRI in patients with liver cirrhosis
  • Evaluation of the relationship between carotid intima-media thickness and coronary artery disease in patients evaluated by coronary angiography for suspected CAD
  • Assessment of hepatic fat content in fatty liver disease by unenhanced computed tomography
  • Correlation of vertebral marrow fat on spectroscopy and diffusion-weighted MRI imaging with bone mineral density in postmenopausal women.
  • Comparative evaluation of CT coronary angiography with conventional catheter coronary angiography
  • Ultrasound evaluation of kidney length & descending colon diameter in normal and intrauterine growth-restricted fetuses
  • A prospective study of hepatic vein waveform and splenoportal index in liver cirrhosis: correlation with child Pugh’s classification and presence of esophageal varices.
  • CT angiography to evaluate coronary artery by-pass graft patency in symptomatic patient’s functional assessment of myocardium by cardiac MRI in patients with myocardial infarction
  • MRI evaluation of HIV positive patients with central nervous system manifestations
  • MDCT evaluation of mediastinal and hilar masses
  • Evaluation of rotator cuff & labro-ligamentous complex lesions by MRI & MRI arthrography of shoulder joint
  • Role of imaging in the evaluation of soft tissue vascular malformation
  • Role of MRI and ultrasonography in the evaluation of multifidus muscle pathology in chronic low back pain patients
  • Role of ultrasound elastography in the differential diagnosis of breast lesions
  • Role of magnetic resonance cholangiopancreatography in evaluating dilated common bile duct in patients with symptomatic gallstone disease.
  • Comparative study of CT urography & hybrid CT urography in patients with haematuria.
  • Role of MRI in the evaluation of anorectal malformations
  • Comparison of ultrasound-Doppler and magnetic resonance imaging findings in rheumatoid arthritis of hand and wrist
  • Role of Doppler sonography in the evaluation of renal artery stenosis in hypertensive patients undergoing coronary angiography for coronary artery disease.
  • Comparison of radiography, computed tomography and magnetic resonance imaging in the detection of sacroiliitis in ankylosing spondylitis.
  • Mr evaluation of painful hip
  • Role of MRI imaging in pretherapeutic assessment of oral and oropharyngeal malignancy
  • Evaluation of diffuse lung diseases by high resolution computed tomography of the chest
  • Mr evaluation of brain parenchyma in patients with craniosynostosis.
  • Diagnostic and prognostic value of cardiovascular magnetic resonance imaging in dilated cardiomyopathy
  • Role of multiparametric magnetic resonance imaging in the detection of early carcinoma prostate
  • Role of magnetic resonance imaging in white matter diseases
  • Role of sonoelastography in assessing the response to neoadjuvant chemotherapy in patients with locally advanced breast cancer.
  • Role of ultrasonography in the evaluation of carotid and femoral intima-media thickness in predialysis patients with chronic kidney disease
  • Role of H1 MRI spectroscopy in focal bone lesions of peripheral skeleton choline detection by MRI spectroscopy in breast cancer and its correlation with biomarkers and histological grade.
  • Ultrasound and MRI evaluation of axillary lymph node status in breast cancer.
  • Role of sonography and magnetic resonance imaging in evaluating chronic lateral epicondylitis.
  • Comparative of sonography including Doppler and sonoelastography in cervical lymphadenopathy.
  • Evaluation of Umbilical Coiling Index as Predictor of Pregnancy Outcome.
  • Computerized Tomographic Evaluation of Azygoesophageal Recess in Adults.
  • Lumbar Facet Arthropathy in Low Backache.
  • “Urethral Injuries After Pelvic Trauma: Evaluation with Uretrography
  • Role Of Ct In Diagnosis Of Inflammatory Renal Diseases
  • Role Of Ct Virtual Laryngoscopy In Evaluation Of Laryngeal Masses
  • “Ct Portography Using Mdct Versus Color Doppler In Detection Of Varices In
  • Cirrhotic Patients”
  • Role Of Multidetector Ct In Characterization Of Renal Masses
  • Role Of Ct Virtual Cystoscopy In Diagnosis Of Urinary Bladder Neoplasia
  • Role Of Multislice Ct In Diagnosis Of Small Intestine Tumors
  • “Mri Flow Quantification In The Assessment Of The Commonest CSF Flow Abnormalities”
  • “The Role Of Fetal Mri In Diagnosis Of Intrauterine Neurological CongenitalAnomalies”
  • Role Of Transcranial Ultrasound In Diagnosis Of Neonatal Brain Insults
  • “The Role Of Interventional Imaging Procedures In The Treatment Of Selected Gynecological Disorders”
  • Role Of Radiological Imaging In Diagnosis Of Endometrial Carcinoma
  • “Role Of High-Resolution Ct In Differentiation Between Benign And Malignant Pulmonary Nodules In Children”
  • Role Of Ultrasonography In The Diagnosis Of Knee Joint Lesions
  • “Role Of Diagnostic Imaging Modalities In Evaluation Of Post Liver Transplantation Recipient Complications”
  • “Diffusion-Weighted Magnetic Resonance Imaging In Diagnosis And
  • Characterization Of Brain Tumors In Correlation With Conventional Mri”
  • The Role Of PET-CT In The Evaluation Of Hepatic Tumors
  • “Role Of Computerized Tomography In Evaluation Of Mediastinal Masses In Pediatric patients”
  • “Trans Vaginal Ultrasound And Magnetic Resonance Imaging In Female Urinary Incontinence”
  • Role Of Multidetector Ct In Diagnosis Of Urinary Bladder Cancer
  • “Role Of Transvaginal Ultrasound In Diagnosis And Treatment Of Female Infertility”
  • Role Of Diffusion-Weighted Mri Imaging In Evaluation Of Cancer Prostate
  • “Role Of Positron Emission Tomography With Computed Tomography In Diagnosis Of Cancer Thyroid”
  • The Role Of CT Urography In Case Of Haematuria
  • “Value Of Ultrasonography In Assessment Of Acute Abdominal Diseases In Pediatric Age Group”
  • “Role Of Functional Magnetic Resonance Imaging In Making Brain Tumor Surgery Safer”
  • The Role Of Sonoelastography In Characterization Of Breast Lesions
  • “Ultrasonography, Magnetic Resonance Cholangiopancreatography (MRCP) In Assessment Of Pediatric Biliary Lesions”
  • “Role Of Ultrasound And Color Doppler Imaging In Assessment Of Acute Abdomen Due To Female Genital Causes”
  • “Role Of Multidetector Ct Virtual Laryngoscopy In Evaluation Of Laryngeal Mass Lesions”
  • MRI Of The Postoperative Knee
  • Role Of Mri In Assessment Of Valvular Heart Diseases
  • The Role Of 3D & 4D Ultrasonography In Abnormalities Of Fetal Abdomen
  • State Of The Art Of Mri In Diagnosis Of Hepatic Focal Lesions
  • Role Of Multidetector Ct In Diagnosis Of Salivary Gland Lesions
  • “Role Of Virtual Endoscopy Using Mdct In Detection & Evaluation Of Gastric Pathologies”
  • The Role Of Ultrasound & Mri In Acute Pelvic Inflammatory Disease
  • “Diagnosis & Staging Of Liver Fibrosis By Ultraso Und Elastography In
  • Patients With Chronic Liver Diseases”
  • Role Of Mri In Evaluation Of Spinal Trauma
  • Validity Of Mri In Diagnosis Of Congenital Anorectal Anomalies
  • Imaging Of Vascular Complication After Liver Transplantation
  • “Contrast-Enhanced Digital Mammography And Digital Breast Tomosynthesis In Early Diagnosis Of Breast Lesion”
  • Role Of Mammotome In Breast Lesions
  • “Role Of MRI Diffusion Tensor Imaging (DTI) In Assessment Of Traumatic Spinal Cord Injuries”
  • “Prediction Of Pre-eclampsia And Fetal Growth Restriction By Uterine Artery Doppler”
  • “Role Of Multidetector Row Computed Tomography In Assessment Of Maxillofacial Trauma”
  • “Role Of Diffusion Magnetic Resonance Imaging In Assessment Of Neoplastic And Inflammatory Brain Lesions”
  • Role Of Diffusion Mri In Preoperative Evaluation Of Brain Neoplasms
  • “Role Of Multidetector Ct Virtual Hysteroscopy In The Detection Of The
  • Uterine & Tubal Causes Of Female Infertility”
  • Role Of Advances Magnetic Resonance Imaging Sequences In Multiple Sclerosis Magnetic Resonance Spectroscopy In Multiple Sclerosis
  • “Role Of Conventional Mri, And Diffusion Tensor Imaging Tractography In Evaluation Of Congenital Brain Malformations”
  • Role Of MRI In Evaluation Of Spinal Trauma
  • Diagnostic Role Of Diffusion-weighted MR Imaging In Neck Masses
  • “The Role Of Transvaginal Ultrasound Versus Magnetic Resonance Imaging In Diagnosis & Evaluation Of Cancer Cervix”
  • “Role Of 3d Magnetic Resonance Imaging Tractography In Assessment Of White Matter Tracts Compromise In Supra Tentorial Tumors”
  • Role Of Proton MR Spectroscopy In The Evaluation Of Temporal Lobe Epilepsy
  • Role Of Multislice Computed Tomography In Evaluation Of Crohn’s Disease
  • Role Of MRI In Assessment Of Hydrocephalus In Pediatric Patients
  • The Role Of MRI In Diagnosis And Staging Of Urinary Bladder Carcinoma
  • USG and MRI correlation of congenital CNS anomalies
  • HRCT in interstitial lung disease
  • X-Ray, CT and MRI correlation of bone tumors
  • “Study on the diagnostic and prognostic utility of X-Rays for cases of pulmonary tuberculosis under RNTCP”
  • “Role of magnetic resonance imaging in the characterization of female adnexal  pathology”
  • “CT angiography of carotid atherosclerosis and NECT brain in cerebral ischemia, a correlative analysis”
  • Role of CT scan in the evaluation of paranasal sinus pathology
  • USG and MRI correlation on shoulder joint pathology
  • “Radiological evaluation of a patient presenting with extrapulmonary tuberculosis”
  • CT and MRI correlation in focal liver lesions”
  • Comparison of MDCT virtual cystoscopy with conventional cystoscopy in bladder tumors”
  • “Bleeding vessels in life-threatening hemoptysis: Comparison of 64 detector row CT angiography with conventional angiography prior to endovascular management”
  • “Role of transarterial chemoembolization in unresectable hepatocellular carcinoma”
  • “Comparison of color flow duplex study with digital subtraction angiography in the evaluation of peripheral vascular disease”
  • “A Study to assess the efficacy of magnetization transfer ratio in differentiating tuberculoma from neurocysticercosis”
  • “MR evaluation of uterine mass lesions in correlation with transabdominal, transvaginal ultrasound using HPE as a gold standard”
  • “The Role of power Doppler imaging with trans rectal ultrasonogram guided prostate biopsy in the detection of prostate cancer”
  • “Lower limb arteries assessed with doppler angiography – A prospective comparative study with multidetector CT angiography”
  • “Comparison of sildenafil with papaverine in penile doppler by assessing hemodynamic changes”
  • “Evaluation of efficacy of sonosalphingogram for assessing tubal patency in infertile patients with hysterosalpingogram as the gold standard”
  • Role of CT enteroclysis in the evaluation of small bowel diseases
  • “MRI colonography versus conventional colonoscopy in the detection of colonic polyposis”
  • “Magnetic Resonance Imaging of anteroposterior diameter of the midbrain – differentiation of progressive supranuclear palsy from Parkinson disease”
  • “MRI Evaluation of anterior cruciate ligament tears with arthroscopic correlation”
  • “The Clinicoradiological profile of cerebral venous sinus thrombosis with prognostic evaluation using MR sequences”
  • “Role of MRI in the evaluation of pelvic floor integrity in stress incontinent patients” “Doppler ultrasound evaluation of hepatic venous waveform in portal hypertension before and after propranolol”
  • “Role of transrectal sonography with colour doppler and MRI in evaluation of prostatic lesions with TRUS guided biopsy correlation”
  • “Ultrasonographic evaluation of painful shoulders and correlation of rotator cuff pathologies and clinical examination”
  • “Colour Doppler Evaluation of Common Adult Hepatic tumors More Than 2 Cm  with HPE and CECT Correlation”
  • “Clinical Relevance of MR Urethrography in Obliterative Posterior Urethral Stricture”
  • “Prediction of Adverse Perinatal Outcome in Growth Restricted Fetuses with Antenatal Doppler Study”
  • Radiological evaluation of spinal dysraphism using CT and MRI
  • “Evaluation of temporal bone in cholesteatoma patients by high resolution computed tomography”
  • “Radiological evaluation of primary brain tumours using computed tomography and magnetic resonance imaging”
  • “Three dimensional colour doppler sonographic assessment of changes in  volume and vascularity of fibroids – before and after uterine artery embolization”
  • “In phase opposed phase imaging of bone marrow differentiating neoplastic lesions”
  • “Role of dynamic MRI in replacing the isotope renogram in the functional evaluation of PUJ obstruction”
  • Characterization of adrenal masses with contrast-enhanced CT – washout study
  • A study on accuracy of magnetic resonance cholangiopancreatography
  • “Evaluation of median nerve in carpal tunnel syndrome by high-frequency ultrasound & color doppler in comparison with nerve conduction studies”
  • “Correlation of Agatston score in patients with obstructive and nonobstructive coronary artery disease following STEMI”
  • “Doppler ultrasound assessment of tumor vascularity in locally advanced breast cancer at diagnosis and following primary systemic chemotherapy.”
  • “Validation of two-dimensional perineal ultrasound and dynamic magnetic resonance imaging in pelvic floor dysfunction.”
  • “Role of MR urethrography compared to conventional urethrography in the surgical management of obliterative urethral stricture.”

Search Diagnostic Imaging Research Topics

You can also search research-related resources on our custom search engine .

A Search Engine for Radiology Presentations

Free Resources for Preparing Radiology Thesis

  • Radiology thesis topics- Benha University – Free to download thesis
  • Radiology thesis topics – Faculty of Medical Science Delhi
  • Radiology thesis topics – IPGMER
  • Fetal Radiology thesis Protocols
  • Radiology thesis and dissertation topics
  • Radiographics

Proofreading Your Thesis:

Make sure you use Grammarly to correct your spelling ,  grammar , and plagiarism for your thesis. Grammarly has affordable paid subscriptions, windows/macOS apps, and FREE browser extensions. It is an excellent tool to avoid inadvertent spelling mistakes in your research projects. It has an extensive built-in vocabulary, but you should make an account and add your own medical glossary to it.

Grammarly spelling and grammar correction app for thesis

Guidelines for Writing a Radiology Thesis:

These are general guidelines and not about radiology specifically. You can share these with colleagues from other departments as well. Special thanks to Dr. Sanjay Yadav sir for these. This section is best seen on a desktop. Here are a couple of handy presentations to start writing a thesis:

Read the general guidelines for writing a thesis (the page will take some time to load- more than 70 pages!

A format for thesis protocol with a sample patient information sheet, sample patient consent form, sample application letter for thesis, and sample certificate.

Resources and References:

  • Guidelines for thesis writing.
  • Format for thesis protocol
  • Thesis protocol writing guidelines DNB
  • Informed consent form for Research studies from AIIMS 
  • Radiology Informed consent forms in local Indian languages.
  • Sample Informed Consent form for Research in Hindi
  • Guide to write a thesis by Dr. P R Sharma
  • Guidelines for thesis writing by Dr. Pulin Gupta.
  • Preparing MD/DNB thesis by A Indrayan
  • Another good thesis reference protocol

Hopefully, this post will make the tedious task of writing a Radiology thesis a little bit easier for you. Best of luck with writing your thesis and your residency too!

More guides for residents :

  • Guide for the MD/DMRD/DNB radiology exam!
  • Guide for First-Year Radiology Residents
  • FRCR Exam: THE Most Comprehensive Guide (2022)!
  • Radiology Practical Exams Questions compilation for MD/DNB/DMRD !

Radiology Exam Resources (Oral Recalls, Instruments, etc )!

  • Tips and Tricks for DNB/MD Radiology Practical Exam
  • FRCR 2B exam- Tips and Tricks !

FRCR exam preparation – An alternative take!

  • Why did I take up Radiology?
  • Radiology Conferences – A comprehensive guide!
  • ECR (European Congress Of Radiology)
  • European Diploma in Radiology (EDiR) – The Complete Guide!
  • Radiology NEET PG guide – How to select THE best college for post-graduation in Radiology (includes personal insights)!
  • Interventional Radiology – All Your Questions Answered!
  • What It Means To Be A Radiologist: A Guide For Medical Students!
  • Radiology Mentors for Medical Students (Post NEET-PG)
  • MD vs DNB Radiology: Which Path is Right for Your Career?
  • DNB Radiology OSCE – Tips and Tricks

More radiology resources here: Radiology resources This page will be updated regularly. Kindly leave your feedback in the comments or send us a message here . Also, you can comment below regarding your department’s thesis topics.

Note: All topics have been compiled from available online resources. If anyone has an issue with any radiology thesis topics displayed here, you can message us here , and we can delete them. These are only sample guidelines. Thesis guidelines differ from institution to institution.

Image source: Thesis complete! (2018). Flickr. Retrieved 12 August 2018, from https://www.flickr.com/photos/cowlet/354911838 by Victoria Catterson

About The Author

Dr. amar udare, md, related posts ↓.

FRCR exam preparation

7 thoughts on “Radiology Thesis – More than 400 Research Topics (2022)!”

Amazing & The most helpful site for Radiology residents…

Thank you for your kind comments 🙂

Dr. I saw your Tips is very amazing and referable. But Dr. Can you help me with the thesis of Evaluation of Diagnostic accuracy of X-ray radiograph in knee joint lesion.

Wow! These are excellent stuff. You are indeed a teacher. God bless

Glad you liked these!

happy to see this

Glad I could help :).

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Get Radiology Updates to Your Inbox!

This site is for use by medical professionals. To continue, you must accept our use of cookies and the site's Terms of Use. Learn more Accept!

research topic for medical technology students

Wish to be a BETTER Radiologist? Join 14000 Radiology Colleagues !

Enter your email address below to access HIGH YIELD radiology content, updates, and resources.

No spam, only VALUE! Unsubscribe anytime with a single click.

Subscribe

Get the week's top news shaping the future of medicine

StatAnalytica

300+ Health Related Research Topics For Medical Students(2023)

Health Related Research Topics

In the world of academia and healthcare, finding the right health-related research topics is essential. Whether you are a medical student, a college student, or a seasoned researcher, the choice of your research topic greatly impacts the quality and relevance of your work. This blog, health related research topics, is your guide to selecting the perfect subject for your research.

In this post, we will share 5 invaluable tips to help you pick suitable health-related research topics. Additionally, we will outline the crucial elements that every health-related research paper should incorporate.

Furthermore, we’ve compiled a comprehensive list of 300+ health-related research topics for medical students in 2023. These include categories like mental health, public health, nutrition, chronic diseases, healthcare policy, and more. We also offer guidance on selecting the right topic to ensure your research is engaging and meaningful.

So, whether you are delving into mental health, investigating environmental factors, or exploring global health concerns, health-related research topics will assist you in making informed and impactful choices for your research journey, even within the hardest medical specialties .

What Is Health Research?

Table of Contents

Health research is like detective work to understand how our bodies work and how to keep them healthy. It’s like asking questions and finding answers about things like sickness, medicine, and how to live better. Scientists and doctors do health research to learn new ways to treat illnesses, like finding better medicines or discovering new ways to prevent diseases.

Health research is a puzzle, where scientists collect information, do experiments, and study many people to find out what makes us healthy or sick. They want to find clues and put them together to help us stay well and live longer. So, health research is like a quest to learn more about our bodies and find ways to make them work their best, keeping us happy and strong.

5 Useful Tips For Choosing Health Related Research Topics

Here are some useful tips for choosing health related research topics: 

Tip 1: Follow Your Interests

When picking a health research topic, it’s a good idea to choose something you’re curious and excited about. If you’re interested in a subject, you’ll enjoy learning more about it, and you’ll be motivated to do your best. So, think about what aspects of health catch your attention and explore those areas for your research.

Tip 2: Consider Relevance

Your research topic should be meaningful and have real-world importance. Think about how your research can contribute to solving health problems or improving people’s well-being. Topics that are relevant and can make a positive impact on health and healthcare are usually more valuable.

Tip 3: Check Available Resources

Before deciding on a research topic, make sure you have access to the necessary resources, like books, articles, or equipment. It’s important that you can find the information and tools you need to conduct your research effectively.

Tip 4: Keep It Manageable

Select a research topic that you can handle within the available time and resources. It’s better to choose a more focused and manageable topic rather than something too broad or complex. This way, you can delve deep into the subject and produce meaningful results.

Tip 5: Seek Guidance

Don’t hesitate to ask for guidance from teachers, professors, or experts in the field. They can help you refine your research topic, provide valuable insights, and suggest improvements. Seeking advice can make your research journey smoother and more successful.

Important Elements That Must Be Present In A Health Related Research Paper

Here are some important elements that must be present in a health related research paper: 

1. Clear Title and Introduction

A good health research paper needs a clear title that tells people what it’s about. The introduction should explain why the research is important and what the paper will discuss. It’s like the map that shows the way.

2. Methods and Data

You should describe how you did your research and the data you collected. This helps others understand how you found your information. It’s like showing your work in math so that others can check it.

3. Results and Conclusions

After doing your research, you need to show what you discovered. Share the results and what they mean. Conclusions tell people what you found out and why it’s important. It’s like the “So what?” part of your paper.

4. Citations and References

When you use other people’s ideas or words, you need to give them credit. Citations and references show where you got your information. It’s like saying, “I learned this from here.”

5. Clear Language and Organization

Make sure your paper is easy to read and well-organized. Use clear and simple language so that everyone can understand. Organize your paper logically, with a beginning, middle, and end, like a good story. This makes your research paper more effective and useful.

In this section, we will discuss 300+ health related research topics for medical students(2023): 

Health Related Research Topics

  • How living choices affect health and how long people live.
  • Ways to make it easier for people in underserved areas to get medical care.
  • The role of DNA in determining susceptibility to different diseases.
  • There are differences in health between race and ethnic groups and between socioeconomic groups.
  • Checking how well health education programs encourage people to behave in a healthy way.
  • The effects that stress has on the body and mind.
  • Looking at the pros and cons of different vaccine plans.
  • The link between how well you sleep and your general health.
  • The use of technology to make health care better.
  • How cultural beliefs and habits affect how people seek health care.

Mental Health Related Research Topics

  • Identifying the factors contributing to the rise in mental health disorders among adolescents.
  • Examining the effectiveness of different therapeutic approaches for treating depression and anxiety.
  • How social media can hurt your mental health and self-esteem.
  • We are looking into the link between traumatic events in youth and mental health problems later in life.
  •  Stigma and racism in mental health care, and how they make people less healthy.
  •  Ways to lower the suicide rate among people who are at high risk.
  •  Exercise and other forms of physical action can help your mental health.
  •  The link between using drugs and having mental health problems.
  •  Mental health support for frontline healthcare workers during and after the COVID-19 pandemic.
  •  Exploring the potential of digital mental health interventions and apps.

Health Related Research Topics For College Students

  • The impact of college stress on physical and mental health.
  •  Assessing the effectiveness of college mental health services.
  •  The role of peer influence on college students’ health behaviors.
  •  Nutrition and dietary habits among college students.
  •  Substance use and abuse on college campuses.
  •  Investigating the prevalence of sleep disorders among college students.
  •  Exploring sexual health awareness and behaviors among college students.
  •  Evaluating the relationship between academic performance and overall health.
  •  The influence of social media on college students’ health perceptions and behaviors.
  •  Ideas for getting people on college grounds to be more active and eat better.

Public Health Related Research Topics

  • Evaluating the impact of public health campaigns on smoking cessation.
  •  The effectiveness of vaccination mandates in preventing disease outbreaks.
  •  Looking into the link between the health of the people in cities and the quality of the air.
  •  Strategies for addressing the opioid epidemic through public health initiatives.
  •  The role of public health surveillance in early disease detection and response.
  •  Assessing the impact of food labeling on consumer choices and nutrition.
  •  Looking at how well public health measures work to lower the number of overweight and obese kids.
  •  The importance of water quality in maintaining public health.
  •  This paper examines various strategies aimed at enhancing mother and child health outcomes in emerging nations.
  •  Addressing the mental health crisis through public health interventions.

Mental Disorder Research Topics

  • The mental health effects of social isolation, with a particular focus on the COVID-19 pandemic.
  •  Exploring the relationship between mental health and creative expression.
  •  Cultural differences influence the way in which mental health disorders are perceived and treated.
  •  The use of mindfulness and meditation techniques in managing mental health.
  •  Investigating the mental health challenges faced by LGBTQ+ individuals.
  •  Examining the role of nutrition and dietary habits in mood disorders.
  •  The influence of childhood experiences on adult mental health.
  •  Innovative approaches to reducing the stigma surrounding mental health.
  •  Mental health support for veterans and active-duty military personnel.
  •  The relation between sleep disorders and mental health.

Nutrition and Diet-Related Research Topics

  • The impact of dietary patterns (e.g., Mediterranean, ketogenic) on health outcomes.
  •  Investigating the role of gut microbiota in digestion and overall health.
  •  The effects of food labeling and nutritional education on dietary choices.
  •  The correlation between chronic disease prevention and nutrition.
  •  Assessing the nutritional needs of different age groups (children, adults, elderly).
  •  Exploring the benefits and drawbacks of various diet fads (e.g., intermittent fasting, veganism).
  •  The role of nutrition in managing obesity and weight-related health issues.
  •  Studying nutrition and mental wellness.
  •   Impact of food insecure areas on population health and diet.
  •  Strategies for promoting healthy eating in schools and workplaces.

Chronic Disease Research Topics

  • The contribution of inflammation to the progression and development of chronic diseases.
  •  Evaluating the effectiveness of lifestyle modifications in managing chronic conditions.
  •  The impact of chronic stress on various health conditions.
  •  Investigating disparities in the management and treatment of chronic diseases among different populations.
  •  Exploring the genetics of chronic diseases and potential gene therapies.
  •  The impact that environmental factors, including pollution, have on the prevalence of chronic diseases.
  •  Assessing the long-term health consequences of childhood obesity.
  •  Strategies for improving the quality of life for individuals living with chronic diseases.
  •  The importance of maintaining a healthy level of physical activity and exercise for both the prevention and treatment of chronic illnesses.
  •  Investigating innovative treatments and therapies for chronic diseases, such as gene editing and personalized medicine.

Healthcare Policy and Access Research Topics

  • Assessing how the Affordable Care Act affects healthcare access and outcomes.
  •  Telehealth’s impact on rural healthcare access.
  •  Investigating the cost-effectiveness of various healthcare payment models (e.g., single-payer, private insurance).
  •  Assessing healthcare disparities among different racial and socioeconomic groups.
  •  The influence of political ideologies on healthcare policy and access.
  •  Healthcare professional shortage solutions, including nurses and doctors.
  •  The impact of malpractice reform on healthcare quality and access.
  •  Examining the role of pharmaceutical pricing and regulation in healthcare access.
  •  The use of technology in streamlining healthcare administration and improving access.
  •  Exploring the intersection of healthcare policy, ethics, and patient rights.

Environmental Health Research Topics

  • The impact of climate change on public health, including increased heat-related illnesses and vector-borne diseases.
  •  Studying air pollution’s effects on the cardiovascular and respiratory systems.
  •  Assessing the health consequences of exposure to environmental toxins and pollutants.
  •  Exploring the role of green spaces and urban planning in promoting public health.
  •  The impact of water quality and sanitation on community health.
  •  Strategies for minimizing the health risks linked with natural catastrophes and extreme weather events.
  •  Investigating the health implications of food and water security in vulnerable populations.
  •  The influence of environmental justice on health disparities.
  •  Evaluating the benefits of renewable energy sources in reducing air pollution and promoting health.
  •  The role of public policy in addressing environmental health concerns.

Infectious Disease Research Topics

  • Tracking the evolution and spread of infectious diseases, including COVID-19.
  •  Investigating the effectiveness of vaccination campaigns in preventing outbreaks.
  •  Antimicrobial resistance and strategies to combat it.
  •  Assessing the role of vector-borne diseases in global health, such as malaria and Zika virus.
  •  The impact of travel and globalization on the spread of infectious diseases.
  •  Strategies for early detection and containment of emerging infectious diseases.
  •  The role of hygiene and sanitation in reducing infectious disease transmission.
  •  Investigating the cultural factors that influence infectious disease prevention and treatment.
  •  The use of technology in disease surveillance and response.
  • Examining the ethical and legal considerations in managing infectious disease outbreaks.

Women’s Health Research Topics

  • Exploring the gender-specific health issues faced by women, such as reproductive health and menopause.
  • Investigating the impact of hormonal contraception on women’s health.
  • Assessing the barriers to accessing quality maternal healthcare in low-income countries.
  • The role of gender-based violence in women’s mental and physical health.
  • Strategies for promoting women’s sexual health and reproductive rights.
  • Exploring the relationship between breast cancer and genetics.
  • The influence of body image and societal pressures on women’s mental health.
  • Investigating healthcare disparities among different groups of women, including racial and ethnic disparities.
  • Strategies for improving access to women’s healthcare services, including family planning and prenatal care.
  • The use of telemedicine and technology to address women’s health needs, especially in remote areas.

Children’s Health Research Topics

  • The impact of early childhood nutrition on long-term health and development.
  • Environmental toxin exposure and child health.
  • Assessing the role of parenting styles in children’s mental and emotional well-being.
  • Strategies for preventing and managing childhood obesity.
  • The influence of media and technology on children’s physical and mental health.
  • Exploring the challenges faced by children with chronic illnesses and disabilities.
  • The relevance of early child mental wellness and developmental condition intervention.
  • Investigating the role of schools in promoting children’s health and well-being.
  • Strategies for addressing child healthcare disparities, including access to vaccines and preventive care.
  • Adverse childhood experiences and adult health.

Aging and Gerontology Research Topics

  • Investigating the factors contributing to healthy aging and longevity.
  • Assessing the impact of dementia and Alzheimer’s disease on elderly individuals and their families.
  • Strategies for improving elder care services and addressing the aging population’s healthcare needs.
  • Exploring the social isolation and mental health challenges faced by the elderly.
  • The importance of nutrition and exercise in old age.
  • Investigating the impact of age-related chronic diseases, such as arthritis and osteoporosis.
  • Assessing the financial and ethical aspects of end-of-life care for the elderly.
  • Strategies for promoting intergenerational relationships and support networks.
  • The influence of cultural differences on aging and health outcomes.
  • Exploring technology and innovation in elder care, including assistive devices and telemedicine.

Health Technology and Innovation Research Topics

  • The impact of telemedicine and virtual health platforms on patient care and outcomes.
  • Investigating the use of wearable health technology in monitoring and managing chronic conditions.
  • Assessing the ethical and privacy considerations of health data collection through technology.
  • Investigating medical diagnoses and treatment with AI and ML.
  • The role of robotics in healthcare, including surgical procedures and elder care.
  • Investigating the use of 3D printing in healthcare, such as prosthetics and medical devices.
  • The influence of mobile health apps on patient engagement and self-care.
  • Strategies for implementing electronic health records (EHRs) and interoperability.
  • The impact of precision medicine and genomics on personalized healthcare.
  • Exploring the future of healthcare delivery through telehealth, remote monitoring, and AI-driven diagnostics.

Global Health Research Topics

  • Investigating the challenges of global health equity and healthcare access in low- and middle-income countries.
  • Assessing the effectiveness of international health organizations in addressing global health crises.
  • Resource-limited mother and child health strategies.
  • Exploring the impact of infectious diseases in global health, including tuberculosis and HIV/AIDS.
  • The role of clean water and sanitation in improving global health outcomes.
  • Investigating the social determinants of health in different global regions.
  • Assessing the impact of humanitarian aid and disaster relief efforts on public health.
  • Strategies for combating malnutrition and food insecurity in developing countries.
  • The influence of climate change on global health, including the spread of vector-borne diseases.
  • Exploring innovative approaches to global health, such as community health workers and telemedicine initiatives.
  • Exploring the artificial intelligence and machine learning in medical treatment.

Health Disparities and Equity Research Topics

  • The impact of socioeconomic status on healthcare access and health outcomes.
  • Strategies to decrease racial and ethnic disparities in maternal and child health.
  • LGBTQ+ healthcare disparities and interventions for equitable care.
  • Health disparities among rural and urban populations in developed and developing countries.
  • Cultural competence in healthcare and its role in reducing disparities.
  • The intersection of gender, race, and socioeconomic status in health disparities.
  • Addressing health disparities in the elderly population.
  • The role of discrimination in perpetuating health inequities.
  • Strategies to improve healthcare access for individuals with disabilities.
  • The impact of COVID-19 on health disparities and lessons learned for future pandemics.

Cancer Research Topics

  • Advancements in precision medicine for personalized cancer treatment.
  • Immunotherapy breakthroughs in cancer treatment.
  • Environmental factors and cancer risk: A comprehensive review.
  • The role of genomics in understanding cancer susceptibility.
  • Cancer treatment and survivorship, as well as quality of life following cancer therapy.
  • The economics of cancer treatment and its impact on patients.
  • Cancer prevention and early detection strategies in underserved communities.
  • Palliative care and end-of-life decisions in cancer patients.
  • Emerging trends in cancer epidemiology and global burden.
  • Ethical considerations in cancer clinical trials and research.

Pharmaceutical Research Topics

  • Repurposing existing medications in order to address uncommon illnesses.
  • The impact of nanotechnology in drug delivery and targeting.
  • Pharmacogenomics and personalized medicine: Current status and future prospects.
  • Challenges and opportunities in developing vaccines for emerging infectious diseases.
  • Quality control and safety in the pharmaceutical manufacturing process.
  • Drug pricing and access: A global perspective.
  • Green chemistry approaches in sustainable pharmaceutical development.
  • The part that artificial intelligence plays in the search for new drugs and their development.
  • Biopharmaceuticals and the future of protein-based therapies.
  • Regulatory challenges in ensuring drug safety and efficacy.

Epidemiology Research Topics

  • Emerging infectious diseases and global preparedness.
  • The COVID-19 pandemic will have long-term effect on the health of the general population.
  • Social determinants of health and their impact on disease prevalence.
  • Environmental epidemiology and the study of health effects of pollution.
  • Big data and its role in modern epidemiological research.
  • Spatial epidemiology and the study of disease clusters.
  • Epidemiological aspects of non-communicable diseases (NCDs) like diabetes and obesity.
  • Genetic epidemiology and the study of hereditary diseases.
  • Epidemiological methods for studying mental health disorders.
  • Epidemiology of zoonotic diseases and their prevention.

Alternative and Complementary Medicine Research Topics

  • Efficacy and safety of herbal remedies in complementary medicine.
  • Mind-body interventions and their role in managing chronic pain.
  • Acupuncture and its potential in the treatment of various conditions.
  • Integrating traditional and complementary medicine into mainstream healthcare.
  • Yoga and meditation for stress reduction and mental health.
  • Biofield therapies and their impact on well-being.
  • Ayurvedic medicine and its modern applications in health and wellness.
  • Chiropractic care and its use in musculoskeletal health.
  • Ethical considerations in the practice and regulation of alternative medicine.
  • Integrating traditional Chinese medicine into Western healthcare systems.

Occupational Health and Safety Research Topics

  • Occupational hazards in healthcare settings and strategies for prevention.
  • The impact of remote work on occupational health and well-being.
  • Ergonomics and its role in preventing workplace injuries.
  • Occupational exposure to hazardous chemicals and long-term health effects.
  • Mental health in the office: Stress, burnout, and interventions.
  • Occupational safety in the construction industry: Recent developments.
  • Role of technology in enhancing workplace safety.
  • Occupational health disparities among different industries and occupations.
  • The economics of workplace safety and the cost-benefit analysis.
  • Business impacts of OSHA regulations.

Addiction and Substance Abuse Research Topics

  • The opioid epidemic: Current status and future strategies.
  • Dual diagnosis: Co-occurring mental health disorders and substance abuse.
  • Harm reduction approaches in addiction treatment.
  • The role of family and social support in addiction recovery.
  • Behavioral addictions: Understanding and treating non-substance-related addictions.
  • Novel pharmacotherapies for addiction treatment.
  • The impact of COVID-19 on substance abuse and addiction.
  • Substance abuse prevention programs in schools and communities.
  • Stigmatization of addiction and its impact on treatment-seeking behavior.
  • Substance abuse in the elderly population: Unique challenges and solutions.

Biomedical Research Topics

  • Recent advancements in gene editing technologies (e.g., CRISPR-Cas9).
  • Regenerative medicine and tissue engineering for organ replacement.
  • Bioinformatics and its role in analyzing large-scale biological data.
  • Stem cell research and its important applications in regenerative medicine.
  • Biomarker discovery for early disease detection and monitoring.
  • Precision medicine and its potential to transform healthcare.
  • The microbiome and its impacts on human health and disease.
  • Aging-related research and interventions for healthy aging.
  • Neurodegenerative diseases and potential therapeutic approaches.
  • Biomedical ethics in the age of cutting-edge research.

Maternal and Child Health Research Topics

  • The influence of the mother’s nutrition on the development and health of the fetus.
  • Maternal mental health and its positive effects on child development.
  • Preterm birth prevention and interventions for at-risk pregnancies.
  • Neonatal screening and early diagnosis of congenital diseases.
  • Breastfeeding promotion and support for new mothers.
  • Pediatric immunization programs and vaccine hesitancy.
  • Child obesity prevention and intervention strategies.
  • Maternal and child health in low-resource and conflict-affected areas.
  • Maternal mortality reduction and improving access to obstetric care.
  • Adverse childhood experiences (ACEs) and their long-term health consequences.

Mental Health Stigma Research Topics

  • Understanding the origins and perpetuation of mental health stigma.
  • Media and pop culture’s impact on mental disease views.
  • Reducing stigma in the workplace and promoting mental health support.
  • Stigma associated with specific mental health conditions (e.g., schizophrenia, bipolar disorder).
  • Intersectionality and how it influences mental health stigma.
  • Anti-stigma campaigns and their effectiveness in changing public attitudes.
  • Stigma in online communities and the role of social media in shaping opinions.
  • Cultural and cross-cultural perspectives on mental health stigma.
  • The impact of self-stigma on individuals seeking mental health treatment.
  • Legislative and policy efforts to combat mental health stigma.

Health Education and Promotion Research Topics

  • Health literacy and its impact on informed decision-making.
  • Promoting healthy behaviors in schools and educational settings.
  • Social marketing campaigns for health behavior change.
  • Community-based health promotion programs in underserved areas.
  • The role of technology and social media in health education.
  • Tailoring health messages to diverse populations and cultural sensitivity.
  • The use of behavioral economics in health promotion strategies.
  • Investigating the effectiveness of school-based sex education programs.
  • Health education for the elderly population: Challenges and solutions.
  • Promoting mental health awareness and resilience through education.

Healthcare Quality and Patient Safety Research Topics

  • Patient-centered care and its impact on healthcare quality.
  • Reducing medical errors and negative events in healthcare settings.
  • Continuous quality improvement in healthcare organizations.
  • The role of healthcare accreditation in ensuring quality and safety.
  • Patient engagement and shared decision-making in healthcare.
  • Electronic health records and patient safety.
  • The ethics of telling patients and families about medical blunders.
  • Medication safety and preventing adverse drug events.
  • Cultural competence in healthcare and its effect on patient safety.
  • Disaster preparedness and response in healthcare settings.

Health Informatics and Data Analytics Research Topics

  • Big data analytics in healthcare for predictive modeling.
  • Artificial intelligence in medical image analysis and diagnostics.
  • Health information exchange and interoperability challenges.
  • Electronic health record (EHR) usability and user satisfaction.
  • Patient data privacy and security in health informatics.
  • Telemedicine and its impact on healthcare delivery and data management.
  • Real-time monitoring and data analytics for disease outbreaks.
  • Health informatics applications in personalized medicine.
  • Natural language processing for clinical notes and text analysis.
  • The role of data analyticsin enhancing healthcare quality and outcomes.

Neurological Disorders Research Topics

  • Neuroinflammation in neurodegenerative diseases (e.g., Alzheimer’s and Parkinson’s).
  • Stroke prevention and rehabilitation strategies.
  • Advances in brain imaging techniques for diagnosing neurological disorders.
  • Pediatric neurological disorders: Diagnosis and intervention.
  • Neurogenetics and the role of genetics in neurological conditions.
  • Traumatic brain injury: Long-term effects and rehabilitation.
  • Neurorehabilitation and quality of life improvement in patients with neurological disorders.
  • Neurological consequences of long COVID and post-viral syndromes.
  • The gut-brain connection and its implications for neurological health.
  • Ethical considerations in neurological research and treatment.

Bioethics in Health Research Topics

  • Informed consent and its challenges in clinical trials and research.
  • Ethical considerations in human genome editing and gene therapy.
  • Allocation of healthcare resources and the principles of distributive justice.
  • The ethics of organ transplantation and organ trafficking.
  • End-of-life decision-making, including physician-assisted suicide.
  • Ethical issues in the use of Artficial intelligence in healthcare decision-making.
  • Research involving vulnerable populations: Balancing benefits and risks.
  • Ethical considerations in global health research and disparities.
  • Ethical implications of emerging biotechnologies, such as CRISPR-Cas9.
  • Autonomy and decision-making capacity in healthcare ethics.

Read More 

  • Biology Research Topics
  • Neuroscience Research Topics

Points To Be Remembered While Selecting Health Related Research Topics

When selecting a health-related research topic, there are several important considerations to keep in mind to ensure your research is meaningful and effective. Here are 7 key points to remember:

  • Interest and Passion: Choose a topic that is according to your interests you, as your enthusiasm will fuel your research.
  • Relevance: Ensure your topic addresses a real health issue or concern that can make a positive impact.
  • Resources Availability: Confirm that you have access to the necessary materials and information for your research.
  • Manageability: Pick a topic that is not too broad, ensuring it’s something you can investigate thoroughly.
  • Guidance: Seek advice from experts or mentors to refine your topic and receive valuable insights.
  • Ethical Considerations : Always consider the ethical implications of your research and ensure it complies with ethical guidelines.
  • Feasibility: Ensure that the research can be completed within the available time and resources.

In the ever-evolving landscape of health research, selecting the right topic is the foundation for meaningful contributions. This blog has provided a roadmap for choosing health-related research topics, emphasizing the importance of personal interest, relevance, available resources, manageability, and expert guidance. Additionally, it has offered 300+ research topics across various domains, including mental health, public health, nutrition, chronic diseases, healthcare policy, and more. 

In addition, with these insights, researchers, students, and healthcare professionals can embark on journeys that not only align with their passions but also address critical healthcare challenges. By making informed choices, we can collectively advance the frontiers of health and well-being.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Thesis Helpers

research topic for medical technology students

Find the best tips and advice to improve your writing. Or, have a top expert write your paper.

201 Stellar Medical Researches Topics For Any Taste

medical research Topics

If you are in a medical college, you probably understand the struggle students face in finding medical research topics. On top of having to view corpses during practical sessions, there is another scary part of looking for best-rated medical research topic ideas.

What Is A Medical Research Paper?

It refers to an academic paper designed to test medical students’ understanding of medicine’s various aspects. These include nursing, psychotherapy, surgery, diseases, and many more.

Finding great medical research paper topics is not as hard as most students perceive it to be. It is only the fear that turns down most students, preventing them from unleashing their potential. However, here are some of the readily available sources that will give you medical topics for research papers:

Reputable medicine-related websites such as the WHO’s Known books and scholarly journals in medicine A credible online writing site (such as ours)

Through this paper’s help, you will know how to write top-rated medical research papers topics in an easy-to-understand manner.

Medical Research Topics For College Students

  • Discuss why doctors use a snake in their logo
  • Why is the field of medicine not preferred by most students?
  • Evaluate the effectiveness of using simulations instead of natural bodies in a medical class
  • The role of therapy in advancing the economic and political status of a country
  • Why schools should incorporate First Aid skills as part of their curriculum
  • Are the medical internships too long for students?
  • Assess the possibility of paying doctors more than any other workers
  • Should all the staff in a medical facility have a background in medicine?
  • Discuss the impact of technological advancements on medicine
  • Do movies depict the unfair practice of medicine?
  • The perception of students towards medicine: A case study of middle school students
  • What is the greatest challenge facing doctors and clinicians?
  • Does the medical curriculum cover every aspect of medicine
  • Discuss the impact of online learning on medical students
  • Should doctors down their tools in case of a disagreement with their employers?
  • How often should one go for a dental check-up?
  • Analyze the number of medical colleges in the US
  • Should doctors undergo a psychological check-up after every three months?
  • What is the role of the government in ensuring a sustainable healthcare program?
  • The impact of long shifts to the mental state of a doctor

Med Research Topics in Nursing

  • Analyze the factors affecting elderly nursing care programs
  • Discuss why memory loss is associated with advancement in age
  • Should first responders to an accident scene dress the wounds of the victims?
  • Why is the field of nursing not a favorite for men?
  • Compare and contrast the roles of a doctor versus those of a nurse
  • Evaluate the effectiveness of nursing shifts in case of a pandemic
  • Why is the uniform of most nurses white in color?
  • Analyze the different ethical challenges associated with the nursing profession
  • What is the motivation story behind most of the nurses in work?
  • The impact of domestic violence on the effectiveness of a nurse
  • How nurses manage to stay sober despite the horrific scenes they encounter daily
  • Are nurses born or made: A case study of nurses at a hospital of your choice
  • The role of nurses in caring for those in Acoma
  • The impact of the nursing profession on one’s social interactions
  • Compare and contrast nursing in developing countries versus developed countries
  • Describe the effect of negligence on the part of the nurses to patients
  • Are nurses compensated enough for their labor?
  • Describe what constitutes a typical day of a nurse
  • Is stereotyping a leading cause for the dominance of females in the nursing profession
  • Conduct a critical analysis of the role of nurses in a surgery room

Interesting Medical Topics on Health

  • The impact of global warming on the behavior of disease-causing micro-organisms
  • Dealing with the problem of poor sanitation in developing countries
  • Why are the whites primarily susceptible to malaria attacks
  • Discuss why vaccines can only be effective if made within one year
  • Conduct a comparative analysis of the effectiveness of syringes versus tablets
  • What is the impact of taking a dose and not completing it?
  • Evaluate why sourcing doctors from outside may not be effective
  • Are the research papers on health conclusive enough?
  • Why governments need to invest more in the health systems of a nation
  • Barriers to affordable medical care among low-income families
  • What are the considerations for an effective universal healthcare program?
  • Analyze the various factors that impede the productivity of healthcare workers
  • The effectiveness of counseling and psychology before a surgery
  • Is it possible to achieve a healthy world with the ravaging effects of greenhouse gases?
  • The impact of private health firms on the existing public one
  • How to regulate the sale of medical products
  • Discuss why most people opt for advanced medical procedures overseas
  • Analyze the challenges encountered in maternity wards
  • The role of religious persons in a medical facility
  • Should the government tax medical products?

Medical Research Topics For High School Students

  • Discuss why HIV/AIDS has not found a cure to date
  • What is the impact of alternative medicine in promoting healthcare services?
  • The role of exercises and fitness in leading a healthy lifestyle
  • Why is there a need for health care reform measures
  • The part of fast-food restaurants in deteriorating the health of a country
  • Evaluate the impact of dietary supplements on one’s health
  • Reasons why Over-the-Counter prescription drugs are killing many
  • Considerations before going for a weight loss surgery
  • What are the medical reasons behind vegetarianism?
  • The impact of organic foods on the health of a person
  • Why depression is the leading cause of health complications among teens
  • Discuss drug abuse in the line of health impacts
  • Practical ways of helping a smoking addict to reform
  • Discuss the relationship between fat diets and obesity
  • Why do people who work in offices predominantly suffer from obesity?
  • Compare and contrast between cycling and jogging: Which is advisable?
  • Why do some people prefer injections while others opt for syrups?
  • Should medicine as a course be introduced at the high school level?
  • What are the physical traits and qualities of a person aspiring to do the treatment?
  • Evaluate the time taken to complete a medical course: is it long or short?

COVID-19 Medical Topics To Write About

  • Why is the world experiencing second and third waves of COVID-19?
  • Assess the viability and effectiveness of the coronavirus vaccines?
  • How does washing hands prevent one from contracting COVID-19?
  • Compare and contrast the point of a surgical mask and one made of cloth
  • Discuss why there are more COVID-19 related deaths in European countries than African countries
  • The impact of quarantines on the mental state of a person
  • What is the maximum number of nasal swabs that a person should take?
  • Discuss the science behind social distancing in curbing the spread of the virus
  • Why coronavirus cases are still on the rise despite the availability of vaccines
  • What determines the immunity of a person against coronavirus?
  • Evaluate the chances of contracting coronavirus from handling a corpse
  • Is it possible to eliminate coronavirus?
  • How effective are the COVID-19 certificates for travelers?
  • Is it possible to curb the spread of coronavirus in kindergartens?
  • Critically evaluate COVID-19 treatment and containment measures in developed and developing countries
  • The role of researchers in providing medical information during the COVID-19 pandemic
  • What are the differences between coronavirus and the Spanish flu?
  • Impact of economic recessions on the containment of the virus
  • Analyze the roles of various stakeholders in containing coronavirus
  • Discuss the mutation of the coronavirus

Top Topics For Medical Research Paper

  • Discuss the differences between epidemic and pandemics
  • Analyze the critical considerations for a child health care program
  • The role of humanitarian medical missions in reaching the developing nations
  • Why are most people suffering from heart diseases of late?
  • Discuss the dangers and benefits of vaccination
  • Critically analyze the ethical considerations of conducting medical research on animals
  • The impact of rare genetic disorders on the stability of families
  • What are the effects of surgeries on organs and artificial tissues
  • Discuss why brain surgeries are always a matter between life and death
  • Evaluate the various causes and treatments of virus infections
  • Are antibiotics treatments effective for complex diseases?
  • Discuss the ethical considerations in ending the life of a person with a terminal illness
  • The causes and remedies of eating disorders
  • How age affects mental health and physical development
  • Analyze the shortcomings of palliative treatment
  • The impact of modern lifestyles on people’s health
  • How technology is helping patients battling with Alzheimer’s disease
  • Considerations before being part of a blood donation exercise
  • How to care for cancer patients in their critical stages
  • Are professional conditions only for specific careers?

Controversial Medical Topics For Research Paper

  • Do doctors have the right to conduct abortions when it is a matter between life and death?
  • The ethical underlining of artificial insemination in man
  • Discuss why most surrogate parents are not considered
  • Is it right to use birth control pills for school-going children?
  • Discuss the impact of stem cell research on a society’s morals
  • Is plastic surgery, for whatever case, unethical?
  • Should male doctors attend to female patients?
  • Is it possible to achieve confidentiality in a hospital set-up?
  • Why do most male patients prefer being treated by female nurses?
  • Discuss the ethical implications behind sperm and egg donation
  • Is donating blood unethical? A case study of selected religious sects
  • Should families pay for medical bills after their death of their beloved one?
  • Discuss the implication of LGBTQ on medical care
  • Is it ethical to sell body organs before or after death?
  • Critically discuss the impact of transplanting a sexual organ
  • Discuss how to deal with teen pregnancy
  • How do religion, culture, and tradition differ from the field of medicine?
  • Are health insurance companies to cover all healthcare costs?
  • Discuss the impact of taxing on medical supplies
  • Who should be paid more between doctors and nurses?

Researchable Medical Research Topics Examples

  • Discuss the medical implications of male circumcision
  • The impact of political action on the effectiveness of health care systems
  • The role of international collaborations in improving medical care
  • Evaluate the challenges faced in the regulation of biomedical research
  • A survey of the different attitudes towards psychiatry in the United States
  • Evaluate the occupational safety concerns of medical laboratories
  • Discuss the considerations of a controlled clinical trial
  • Challenges during mass medical reparations: A case study of terrorist attacks
  • The essence of introducing research training in psychiatry
  • Evaluate the effectiveness of the courses offered in the medical colleges
  • Discuss the impact of the US-African medical partnerships
  • Why scientists need to collaborate in the case of a pandemic
  • Are vaccines the best way to prevent one from contracting a disease?
  • The impact of community-based participatory approaches in improving hygiene standards
  • The vital role of pharmacy workers in a medical profession
  • The critical place of knowledge and experience in the field of medicine
  • The role of stakeholders in developing better health care policies
  • The impact of demoralization of HIV/AIDS
  • Discuss the process of production and distribution of medical products
  • Analyze the critical aspect of globalization in medical research

Hot Medical Research Paper Topics For College Students

  • The role of medicine in setting and implementing food standards
  • What are the critical causes of gluten allergy
  • Is it ethical to conduct assisted suicide for terminal patients?
  • Ethical concerns of charging fees for patients who die in the process of treatment
  • The ethical considerations when conducting a postmortem
  • How is virtual reality transforming medicine?
  • An analysis of the myths and misconceptions surrounding medicine?
  • Why many people are against cloning
  • Is it legal to use marijuana as a medical product?
  • Evaluate the benefits and dangers of immunization at a tender age
  • Is increased life expectancy a burden on the healthcare system?
  • Analyze the health effects of female genital mutilation
  • The impact of the environment on human health
  • How to deal with deafness as a communication disorder
  • Discuss air pollution in the context of a household
  • Alcohol control practices
  • The public danger of diabetes
  • Urban population and respiratory diseases
  • Effectiveness of oral health assessments
  • Unhealthy diets

Unbeatable Research Topics in Medical Field

  • Factors leading to increased cancer cases
  • Resistance to insulin
  • Treating autism
  • Genetic engineering
  • Latest developments in cancer
  • Terrorism and mental health
  • Dealing with coma
  • Treating mental diseases
  • Inequalities in healthcare
  • Effects of smoking on body organs
  • Healthcare considerations for prison inmates
  • Economic development and healthcare
  • The role of infrastructure in healthcare systems
  • Recent developments in coronavirus
  • Genetic mutations
  • Benefits of banning tobacco ads
  • Dealing with anti-vaccine movements
  • How to deal with childhood trauma
  • Effects of posttraumatic stress disorder
  • Importance of the lymphatic system
  • How to care for the liver

From the marvelous medical research topics ideas above, we hope you find one that suits your task. If not, you can still opt for our quality research paper writing help.

Let an expert complete your paper quickly and fast at a cheap rate today!

genetics research topics

Make PhD experience your own

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • How It Works
  • PhD thesis writing
  • Master thesis writing
  • Bachelor thesis writing
  • Dissertation writing service
  • Dissertation abstract writing
  • Thesis proposal writing
  • Thesis editing service
  • Thesis proofreading service
  • Thesis formatting service
  • Coursework writing service
  • Research paper writing service
  • Architecture thesis writing
  • Computer science thesis writing
  • Engineering thesis writing
  • History thesis writing
  • MBA thesis writing
  • Nursing dissertation writing
  • Psychology dissertation writing
  • Sociology thesis writing
  • Statistics dissertation writing
  • Buy dissertation online
  • Write my dissertation
  • Cheap thesis
  • Cheap dissertation
  • Custom dissertation
  • Dissertation help
  • Pay for thesis
  • Pay for dissertation
  • Senior thesis
  • Write my thesis

241 Medical Research Topics: Original Ideas List

241 Medical Research Topics

As an applied science, attaining the level of becoming a professional requires getting a medical science certificate. To get this, you need to have studied in a university and fulfilled all professional academic requirements.

However, when it comes to writing your project or contributing a paper to a journal, it may be very difficult to wrap your head around good medical surgical research topics or controversial medical research topics to discuss.

This article shares custom medical topics for research papers for you. Before you see them, get to know a few things that must be seen in a good medical research paper.

Medicine is a field that deals with human health. It requires the activities of people like doctors, nurses, and many other specialists handling the different sections of the field.

Medicine as a profession encompasses the tests, treatment, and prevention of diseases through medical research and the actual application of such research. The goal is always to promote and maintain the collective health of everyone in the globe.

Characteristics of a Good Medical Research Paper

Every research has distinct things that make it exceptional. When these things are lacking in some field, it’s a failure. This is why your professors and teachers will be pleased if your paper have these.

  • Research is Based on Great Research Questions

Your research is developed on research questions that are relevant to the field. This is where you get to define the scope and the cases you want to base your research. To formulate your research question, you must assess its feasibility, newness, ethics, and relevance to the current discussions.

  • Significant Research Methodology

This is what determines the success of your paper. You must note that you need both qualitative and quantitative methodologies. Adhering to these means that your paper examined patients’ experiences and behaviors as well as the observation of various data.

  • Discuss Previous Knowledge on the Subject

A good paper must show knowledge on the topic by discussing previous works done on the subject. Through this, you can shed light on the darker parts and evaluate your objectives.

  • The Use of Relevant Data

Your paper must not be based on what you believe. They must be reliable, which is why there is a need for unbiased evidence. For this, you must collect data, analyze them, and apply them while writing.

  • It is Reproductive

Your research must not be one without consistency or productivity. Your research must be available and transparent to specialists or researchers who are taking it up. Your paper must include how you examined the subject, the details of the research, and how you reached the conclusions of your discussion.

  • Your Research Should Be Ethical

Your research may have limits, but that’s what makes it ethical. You must research using standards of objectivity, accountability, honesty, and other medical values which ensures that you don’t violate anybody or objects in the course of research. Aside from this, your research must not be plagiarized, falsified, or fabricated.

Your research must also be appropriately structured into introduction, main body, discussion, and conclusions. Examine this structure:

Introduction Your introduction is a short review of your title. It must include the shortcomings of existing research, the aim, and objectives of your study, the scope, as well as the methodology to attain a full understanding of your topic. Your introduction may be chapter one if you’re writing a project or it may take a few pages of your paper. The Main Body This is where you share the reasons for some of the tests you conducted and your analysis of such tests. If you’re also engaged in statistical analysis, you also need to discuss the results here. This is where you tender your data, correlate them, and draw your conclusions. In all these, you must emphasize your message and the reasons for it. Conclusion This is where you write the advantages and limitations of your study. You can also recommend other authors whose work clarifies some of the things your work hasn’t clarified. The conclusions is also where you give a summary of your paper.

Now that you know the characteristics of a good medical paper as well as the structure, you can choose any of these topics for your use. On the other side, you always have an opportunity to custom dissertation help from our expert team.

Medical Research Topics

As a necessity to fulfilling your academic or professional requirements, you need quality medical research paper topics to choose from. These are topics that encompass basic things about human health, even adult and teenage lifestyles.

  • The effect of eating disorder on teen development
  • Effects of systemic lupus on kids
  • How birth Injury affects the mental health of a child
  • How does a sickness become a stereotype?
  • The process of managing acute otitis media
  • Role of social workers in raising special children
  • The role of social workers in protecting abused kids
  • The importance of childhood cancer treatment
  • Why does cancer happen to kids
  • The dangers of continuous assault on kids
  • How do the microbes in the body affect or influence the growth
  • The role of immunity in disease prevention
  • How to improve the probability of recovering from a stroke in adult women
  • Describe the ways of attenuation in issues of bone tissue destruction
  • Examine how stroke affects the brain
  • What are the recent findings in the study of human microbial ecology?
  • How to diagnose a poisoned patient
  • What is the mechanism used in explaining seasonal affective disorder (SAD
  • What are the dangers surgery helps patients avoid
  • Is surgery the last resort for those who couldn’t achieve weight loss?
  • What are the limitations of the human physical structures
  • How has the human physical structure affected abilities in selected careers like athletics
  • Examine the evolution of HIV AIDS in Africa
  • Discuss the evolution of HIV AIDS in America
  • Study three bipolar disorder patients and document your findings
  • Study three cancer patients and discuss suggestions of treatment
  • How does stroke lead to communication difficulty?
  • The correlation of knee osteoarthritis to obesity
  • How the central lateral thalamus helps with consciousness
  • Risk of medically induced coma
  • Risks of sickness during post-transplantation
  • How sports promote mental health attitudes
  • Discuss the challenges facing public hospitals.

Medical Research Papers Topics

If you want to contribute to a journal or you’re required to write a paper in school, how do you intend to go about it? Finding a topic can give you troubled moments, it could even ruin your mood. This is why there are professional medical topics for research papers, some of which are:

  • Consequences of drug misuse drawing from 5 ADHD patients
  • The encounter of type 1 diabetes in kids
  • Differences in the challenge of movement disorders in adults and kids
  • How clinical trials can be a change or a societal menace
  • The concept of secondhand smoke and danger to kids
  • Predictive testing: what does it mean?
  • Genetic research and the ethics of integrating adults
  • Thorough overview of the omicron virus
  • Thoroughly examine the trends of pandemics
  • Infant death syndrome and the symptoms that causes it
  • Parkinson’s disease and its correlation to stroke
  • Recent trends in the study of autism spectrum disorder
  • How genetics helps in understanding hereditary diseases
  • Discuss the problems facing W.H.O.
  • What is social anxiety disorder (SAD)
  • Cerebral palsy: an overview of existing genetic study
  • Role of genetics in human wellness
  • The importance of health in the workplace
  • The limitations of insurance and how it affects healthcare
  • The challenges that put kids at risks
  • How meningitis’s risk increases in children
  • The relationship between genetics and nutrition
  • Relations between iron deficiency and obesity
  • Study the pros and cons of breastfeeding
  • Why do women’s breast sag while breastfeeding?
  • Recent ways to diagnose asthma
  • Healthcare challenges to understanding eye complications
  • What has hindered the performance of health organizations in the world
  • Discuss the medical approach to help in reducing suicide
  • Causes of eating disorders.

Medical Anthropology Research Topics

Anthropology is a field that studies humans through its social lens. It does this through both cultural and sometimes societal and historical perspectives. Medical anthropology is enthralled by this, which is why this field is also important in medicine. Consider these current medical research topics:

  • An examination of why people from a region are short
  • The medical culture of China
  • The medical culture in England
  • Multigenerational addiction and how it affects kids
  • The growth of subjective experience in healthcare
  • What are the challenges caused by disability
  • How caffeine endangers human health
  • Sleep disorders and the role of drugs
  • How medical pluralism came to be and its relevance in contemporary medicine
  • Impact of incarceration on health
  • Discuss how African history affect interest in western medicine
  • Dangers of racial healthcare treatment
  • Most critical cause of death in the US
  • Consequences of environmental disorders on human health
  • How much does the environment of India lead to its death rate
  • How does culture affect medical exposure?
  • The basis of chronic illness and premature death
  • Comparative assessment of disability and chronic health on children
  • An overview of cultural bias in anatomy studies
  • How speech hearing and loss affect growth
  • Contributions of Egypt to medicine
  • The contribution of Greek medical systems to medicine.

Controversial Medical Topics for Research Paper

Different topics remain highly controversial in today’s healthcare. These are topics that are both essential to discuss and significant in the future of medicine. These current medical research topics are worthy of examination:

  • Discuss any five contradictory arguments on the need for euthanasia
  • Difference between euthanasia on animals and humans
  • Ethical issues in stem cells
  • The question of abortion and the choice of women
  • How much is enough for a vaccine test?
  • How had gender bias affected medical research
  • Role of policies in regulating healthcare services
  • Antidepressants and the challenge of human growth
  • African supplements equate western drugs
  • Discuss any three medical conspiracy theories
  • How chronic fatigue affect human health
  • To what extent can individuals claim ownership of life?
  • To what extent can an owner claim ownership of the life of a pet?
  • What are the controversies regarding plastic surgeries?
  • Is the growth in medical know-how a threat to people?
  • The network between mental health and abortion
  • Sexual enhancement products and consequences
  • Challenges smoking pose on the society
  • Fast food and junk food: consequences
  • Dangers of genetic engineering
  • Dangers of genetic engineering in robots.

Medical Research Topics for College Students

As college students, you also need to discover topics that could help with your understanding of medicine better. These are topics that offer insights into the field itself; exploratory topics. You can consider these interesting medical research topics for your level:

  • Significant changes in consumption patterns in America
  • Relationship between obesity and food allergy
  • The role of music therapy in pain management
  • What are the roles of art in pain management?
  • Changes in food consumption globally
  • Side effects of obesity
  • Dangers of low sugar intake
  • Dangers of high sugar intake
  • The hazards of low fruit and vegetable consumption
  • Teenage pregnancy and challenges in Africa
  • Abortion and superstitions in the Middle East
  • Teenage pregnancy and challenges of healthcare in India
  • Rape and health repercussions to victims
  • The psychology of trauma
  • Concept of hereditary trauma
  • How to treat dementia in Africa
  • Dangers of the rise in dementia globally
  • Preventive strategy of social viruses like AIDS
  • An overview of leading researches on breast cancer
  • Challenge of lifestyle choices in middle-aged women
  • How teenage lifestyle choices could affect adults
  • Health challenges of boxing
  • Recent approaches to seizure disorders
  • Maintaining immune system in HIV patients
  • Strategies to enhance affordable public healthcare
  • Is digital health a threat to existing health systems
  • An overview of nanotechnology in healthcare
  • Importance of digital medical records
  • The consequences of greenhouse gas emissions
  • How ICT has influenced the healthcare sector
  • How to prevent workplace healthcare challenges.

Interesting Medical Research Topics

Would you like some interesting research topics? You can discuss any of these medical topics for research papers. They are interesting research topics for medical students which are often intriguing, serious, yet exciting.

  • What is autism?
  • Discuss the challenges of post-transplantation of liver
  • How does energy-dense food affect people?
  • Consequences of social media addiction on health
  • How to improve fresh food consumption
  • How to improve the services of social workers
  • How global warming affects global health
  • How to enhance health literacy
  • The Relationship between cultural awareness and literacy
  • The challenges of alcohol misuse in teenagers
  • Reasons for high blood pressure
  • High blood pressure in low-income countries and high-income countries
  • Factors leading to high mortality rates
  • Factors leading to population growth
  • Future predictions of healthcare
  • Tobacco and public health: the problem
  • Differences in health issues in low and high-income countries
  • How to prevent STDs in teenagers
  • How pregnancy could complicate hypertension
  • Preventive measures to birth accident
  • The consequences of the elderly population on global health
  • Comment on the healthcare concerns in America, England, and Nigeria
  • How has physical activity helped maintain health?
  • Influence of physical activities on mental health
  • The challenges of age-propelled illnesses
  • How does growth affect human abilities
  • Concerns of pharmaceutical companies in global health
  • Concerns of health tech companies in global health
  • Problems of healthcare with supplements
  • How supplements have helped avoid complications in healthcare.

Medical Ethics Research Paper Topics

As it is in many other professions, there are ethics to healthcare activities. These ethics are sometimes up for debate. If you’d like to discuss any of these, choose from these interesting research topics for medical students:

  • Everyone does not need to put on masks outdoor
  • How the coronavirus vaccine proved ineffective
  • The gross differences in results of vaccines in western countries and Africa
  • Replacement of nurses by robots: right step?
  • Lack of doctors’ allowance for extra hours of work
  • The challenges of assisted suicide in hospitals
  • Human organs and ethics
  • Ethics of saving a pregnant women
  • Crisis of selective reproduction
  • Crisis of healthcare services to low-income families
  • The need for counseling for HIV/AIDS patients
  • Confidentiality assurance of medical histories
  • Is it a criminal offense to give poor medical results leading to a patient’s death?
  • What are the possibilities of a disease-free globe
  • Why morticians need special psychological counseling.

Medical Sociology Research Topics

You may need to attempt topics on social health in medicine. These are topics that are likewise related to public health. You can attempt the following:

  • How malnutrition affects students
  • How obesity affects African children
  • High cholesterol and health consequences
  • How expensive drugs often lead to the death of low-income earners
  • Global efforts to reduce smoking
  • Influence of pollutants on health
  • An overview of the protective essence of alcohol on health
  • How to prevent chronic backache
  • How to avoid drunk driving
  • The crisis of supplements in Africa
  • Comment on the role of black magic in healthcare
  • Discuss the harmful objects leading to lung cancer
  • How to improve the quality of life
  • How to improve the high mortality rate
  • How video games can lead to illnesses
  • Impact of flights on public health
  • Significance of research in mental health
  • How stigma affects patients of HIV/AIDS
  • The devastating effects of tech innovations in public healthcare
  • How to control cancer through research.

Medical Microbiology Research Topics

Microbiology is a branch that delves into microorganisms and their consequences on living organisms. This extends to man and animals. In medicine, it implies how medical healthcare services and systems combat the consequences of these organisms. You can consider the following topics:

  • Reasons which lead to the exacerbation of sports Injuries leading to slow recovery
  • The challenges of managing limb loss and the statistics of the people it is affecting
  • How patient-based diagnosis remains underestimated in some cases of healthcare as well as the consequences
  • Challenges of imaging in biomedical research
  • Concept of bacterial meningitis and how to diagnose it
  • The concept of thermal rehabilitation approach in the cases of Neurodegeneration
  • The consequences of hemodialysis and how it affects victims of chronic kidney insufficiency
  • Growth of lung cancer and the attempt of repute authorities in attacking it
  • Leading research in the new variant of COVID-19, the omicron virus
  • Comment on the statements made by South African officials about the mildness of the omicron virus
  • Examine the virologic concepts of seasonal influenza and its effects
  • Examine in detail the ethics and regulations placed on using animals during biomedical research and testing
  • Discuss existing diagnoses and classifications of blood cells disorder and its role in healthcare
  • How aging is influenced by external changes
  • How to protect the laboratory during an earthquake
  • Examine recent discoveries in Alzheimer’s disease
  • How does the union of people help in avoiding stroke
  • A step by step guide to enhancing visual sights
  • Ways to approach viruses and their infestation in food
  • Revolutionary discoveries in microbiology.

Research Topics in Medical Biochemistry

You may also want to consider a few topics in biochemistry. These are topics that deal with the basis of chemistry, biology, and their relationship with medicine. You can discuss:

  • Investigate the height of potassium bromate in bread
  • Examine the performance of laboratory assistants in any pharmaceutical company of your choice
  • Discuss the number of chemicals in barber shops’ washing ingredients
  • How does the human skin react to toxic chemicals?
  • Discuss the different approaches to extracting or treating dental caries
  • Analyze a chemical particle in the soap of any two brands of your choice
  • Examine the pH value of water in any three brands of your choice
  • Cost of building delay in human health
  • The consequences of the swift resort to drugs at the perception of any illness
  • Walk to any market of your choice and select three different types of tomatoes. Comment on the phytochemical constituents
  • Evaluate the antioxidant constituents of the African nutmeg
  • Examine the anti-inflammatory challenges in Crateva adenosine dichloromethane fraction
  • The constituents of alcohol and the most dangerous properties
  • Ethics guiding home-brewed alcohol in the US
  • Content of Azadirachta Indica and its essence to human health
  • Comment on the physicochemical features of potatoes and sorghum
  • Disburse the chemical end mineral properties of hibiscus sabdariffa
  • Dangers of unprotected watercourses
  • The challenges of nuclear energy in a war triggered world.

Medical Research Paper Help

Would you like to access cheap, yet high quality research paper writers? These are professional writers with years of experience creating custom papers for college students and MBA students.

We are a custom dissertation writing service based online. We have experts across all academic fields and they integrate their experience into their papers.

If you need writing help, reach out to us online at a cheap price. Our writers will provide quality service for you before your deadline.

177 Human Rights Research Topics

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Comment * Error message

Name * Error message

Email * Error message

Save my name, email, and website in this browser for the next time I comment.

As Putin continues killing civilians, bombing kindergartens, and threatening WWIII, Ukraine fights for the world's peaceful future.

Ukraine Live Updates

Illustration

  • Research Paper Guides
  • Research Paper Topics
  • 450+ Technology Research Topics & Ideas for Your Paper
  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

450+ Technology Research Topics & Ideas for Your Paper

Technology Research Topics

Table of contents

Illustration

Use our free Readability checker

Technology is like a massive puzzle where each piece connects to form the big picture of our modern lives. Be it a classroom, office, or a hospital, technology has drastically changed the way we communicate and do business. But to truly understand its role, we need to explore different technology research topics.

And that's where this blog will be handy! Powered by solid experience, our professional term paper writers gathered multiple technology research paper topics in literally any direction. Whether you're a student looking for an intriguing subject for your project or just a tech enthusiast trying to broaden your understanding, we've got your back. Dive into this collection of tech topics and see how technological progress is shaping our world.

What Are Technology Topics?

Technology is the application of scientific knowledge for practical purposes. It's the smartphone in your hand, the electric car on your street, and the spacecraft exploring Mars. It might also be the code that protects your online privacy and the microscope that uncovers mysteries of the human cell.

Technology permeates our lives, revolutionizing the way we communicate, learn, work, and play. But, beyond the gadgets and gizmos, there's a world of diverse technology research topics, ideas, concepts, and challenges.

Technology topics zoom in on these ideas, peeling back the layers of the tech universe. As a researcher, you might study how AI is changing healthcare, explore the ethical implications of robotics, or investigate the latest innovations in renewable energy. Your project should probe into the 'how,' the 'why,' and the 'what next' of the technology that is reshaping our world. So, whether you're dissecting the impact of EdTech on traditional learning or predicting the future of space exploration, research topics in technology are limitless.

Branches of Technology Research Paper Topics

Undoubtedly, the reach of technology is extensive. It's woven its way into almost every corner of our lives. Before we move to technological research topics, let’s first see just where technology has left its mark. So, here are some areas where technology is really shaking things up:

  • Government services: E-governance, digital IDs, and digital voting are just a few examples of technology's application in government services.
  • Finance: Fintech innovations include cryptocurrencies, mobile banking, robo-advising, and contactless payments.
  • Education: Technology is used in a wide variety of educational contexts, from e-learning platforms and digital textbooks to educational games and virtual classrooms.
  • Communication: Social media, video conferencing, instant messaging, and email are all examples of tech's role in communication.
  • Healthcare: From electronic medical records and telemedicine to advanced imaging technology and robotic surgery, technology is surely transforming healthcare.
  • Agriculture: Technological advancements are revolutionizing agriculture through precision farming, automated machinery, drones, and genetic engineering.
  • Retail: It also influences retail through e-commerce, mobile payments, virtual fitting rooms, and personalized shopping experiences.
  • Environment: Tech is used in climate modeling, conservation efforts, renewable energy, and pollution control.

These are far from all sectors where technology can be applied. But this list shows how diverse topics in technology can be.

How to Choose a Technology Research Topic?

Before you select any idea, it’s important to understand what a good technology research topic is. In a nutshell, a decent topic should be interesting, relevant, and feasible to research within your available resources and time. Make sure it’s specific enough, but not to narrow so you can find enough credible resources. 

Your technology topic sets the course of your research. It influences the type and amount of information you'll search for, the methods you'll use to find it, and the way you'll interpret it. Ultimately, the right topic can make your research process not only more manageable but also more meaningful. But how to get started, you may ask. Don’t worry! Below we are going to share valuable tips from our thesis writers on how to choose a worthy topic about technology.

  • Make research Study the latest trends and explore relevant technology news. Your task is to come up with something unique that’s not been done before. Try to look for inspiration in existing literature, scientific articles, or in past projects.
  • Recognize your interests Start with what you are genuinely curious about in the field of technology. Passion can be a great motivator during the research process.
  • Consider the scope You want a topic that is neither too broad nor too narrow. It should provide enough material to explore without being overwhelming.
  • Check availability of resources Ensure there are sufficient trustworthy resources available for your chosen topic.
  • Evaluate the relevance Your technology research idea should be pertinent to your field of study and resonate with current trends. This can make your research more valuable and engaging for your audience.

Top List of Technology Research Topics

Are you looking for the best research topics about technology? Stop by! Here, we’ve carefully collected the topic ideas to ignite your curiosity and support your research. Each topic offers various data sources, allowing you to construct well-supported arguments. So, let's discover these fascinating subjects together!

  • AI's influence on healthcare.
  • Challenges of cybersecurity in a connected world.
  • Role of drones in modern agriculture.
  • Could renewable energy replace fossil fuels?
  • Impact of virtual reality on education.
  • Blockchain's potential beyond cryptocurrencies.
  • Ethical considerations in biotechnology.
  • Can smart cities enhance quality of life?
  • Autonomous vehicles – opportunities and threats.
  • Robotics in manufacturing.
  • Is big data changing decision-making processes?
  • E-waste : Challenges and solutions.
  • Role of IoT in smart homes.
  • Implications of 5G technology.
  • EdTech: A revolution in learning?

Good Technology Research Topics

Ready for another batch of inspiration? Get ready to discover great technology topics for a research paper across various disciplines. These ideas are designed to stimulate your creativity and provide substantial information for your research. So, let's explore these exciting themes together!

  • Impact of nanotechnology on medicine.
  • Harnessing quantum computing potential.
  • Augmented reality in tourism.
  • Can bioinformatics revolutionize disease prediction?
  • Sustainability in tech product design.
  • Darknet : A hidden side of the internet.
  • How does technology influence human behavior?
  • Assistive technology in special education.
  • Are smart textiles transforming the fashion industry?
  • Role of GIS in urban planning.
  • Space tourism: A reality or fantasy?
  • Potential of digital twins in engineering.
  • How is telemedicine shaping healthcare delivery?
  • Green IT : Addressing environmental issues.
  • Impact of machine learning on finance.

Interesting Technology Research Paper Topics

For those craving intriguing angles and fresh ideas, we present these interesting topics in technology. This collection is filled with thought-provoking subjects that cover the lesser-known areas of technology. Each topic is concise, clear, and ready to spark a fascinating research journey!

  • Cyber-physical systems in industry 4.0.
  • Social implications of deepfake technology.
  • Can gamification enhance learning outcomes?
  • Neuromorphic computing: Emulating the human brain.
  • Li-Fi : Light-based communication technology.
  • Health risks of prolonged screen time.
  • Quantum cryptography and secure communication.
  • Role of technology in sustainable agriculture.
  • Can we predict earthquakes with AI?
  • Virtual influencers: A new trend in marketing.
  • Tech solutions for wildlife conservation.
  • Role of 3D printing in organ transplantation.
  • Impact of automation on the job market.
  • Cloud gaming: A new era in the gaming industry.
  • Genomic editing: Possibilities and ethical concerns.

New Technology Research Topics

Understanding the fast-paced world of technology requires us to keep up with the latest developments. Hence, we bring you burning  technology research paper topics. These ideas reflect the most recent trends and advances in technology, offering fresh perspectives for your research. Let's take a look at these compelling subjects!

  • Potential of hyper automation in business processes.
  • How is AI changing digital marketing?
  • Brain-computer interfaces: The future of communication?
  • Quantum supremacy : Fact or fiction?
  • 5D data storage: Revolutionizing data preservation.
  • Rise of voice technology in consumer applications.
  • Using AI for mental health treatment.
  • Implications of edge computing for IoT devices.
  • Personalized learning with AI in education.
  • Role of technology in reducing food waste.
  • Digital twin technology in urban development.
  • Impact of AI on patent law.
  • Cybersecurity in the era of quantum computing.
  • Role of VR in disaster management training.
  • AI in talent recruitment: Pros and cons.

Unique Technology Research Topics

For those wanting to stand out with truly original research, we offer 100% authentic topics about technology. We understand that professors highly value unique perspectives. Below we've meticulously selected these technology paper topics to offer you something different. These are not your everyday technology subjects but rather unexpected gems ready to be explored.

  • Digital ethics in AI application.
  • Role of technology in countering climate change.
  • Is there a digital divide in developing countries?
  • Role of drones in disaster management.
  • Quantum internet: Possibilities and challenges.
  • Digital forensic techniques in cybersecurity.
  • Impact of technology on traditional art forms.
  • Biohacking: Can we really upgrade ourselves?
  • Technology and privacy: An inevitable trade-off?
  • Developing empathy through virtual reality.
  • AI and creativity: Can machines be artists?
  • Technology's impact on urban gardening.
  • Role of technology in accessible tourism.
  • Quantum biology: A frontier of science.
  • Unmanned underwater vehicles: Opportunities and threats.

Informative Research Topics in Technology

If you are seeking comprehensive information on technologies, this selection will definitely provide you with insights. As you may know, every study should be backed up by credible sources. Technology topics for research papers below are very easy to investigate, so you will surely find a bunch of academic resources.

  • Exploring  adaptive learning systems in online education.
  • Role of technology in modern archaeology.
  • Impact of immersive technology on journalism.
  • The rise of telehealth services.
  • Green data centers: A sustainable solution?
  • Cybersecurity in mobile banking.
  • 3D bioprinting : A revolution in healthcare?
  • How technology affects sleep quality.
  • AI in music production: A new era?
  • Technology's role in preserving endangered languages.
  • Smart grids for sustainable energy use.
  • The future of privacy in a digital world.
  • Can technology enhance sports performance?
  • Role of AR in interior design.
  • How technology is transforming public libraries.

Controversial Research Topics on Technology

Technological field touches upon areas where technology, ethics, and society intersect and often disagree. This has sparked debates and, sometimes, conspiracy theories, primarily because of the profound implications technologies have for our future. Take a look at these ideas, if you are up to a more controversial research topic about technology:

  • Facial recognition technology: Invasion of privacy?
  • Tech addiction: Myth or reality?
  • The ethics of AI in warfare.
  • Should social media platforms censor content?
  • Are cryptocurrencies a boon or a bane?
  • Is technology causing more harm than good to our health?
  • The bias in machine learning algorithms.
  • Genetic engineering: Playing God or advancing science?
  • Will AI replace human jobs?
  • Net neutrality: Freedom of internet or control?
  • The risk of AI superintelligence.
  • Tech companies' monopoly: Beneficial or detrimental?
  • Are we heading towards a surveillance society?
  • AI in law enforcement: Safeguard or threat?
  • Do we rely too much on technology?

Easy Technology Research Paper Topics

Who ever thought the tech field was only for the tech-savvy? Well, it's time to dispel that myth. Here in our collection of simple technology research topics, we've curated subjects that break down complex tech concepts into manageable chunks. We believe that every student should get a chance to run a tech related project without any hurdles.

  • Impact of social media on interpersonal communication.
  • Smartphones: A boon or a bane?
  • How technology improves accessibility for people with disabilities.
  • E-learning versus traditional learning.
  • Impact of technology on travel and tourism.
  • Pros and cons of online shopping.
  • How has technology changed entertainment?
  • Technology's role in boosting productivity at work.
  • Online safety: How to protect ourselves?
  • Importance of digital literacy in today's world.
  • How has technology influenced the music industry?
  • E-books vs printed books: A tech revolution?
  • Does technology promote loneliness?
  • Role of technology in shaping modern communication.
  • The impact of gaming on cognitive abilities.

Technology Research Topics Ideas for Students

As an experienced paper writing service online that helps students all the time, we understand that every learner has unique academic needs. With this in mind, the next section of our blog is designed to cater specifically to different academic levels. Whether you're a high school student just starting to explore technology or a doctoral candidate delving deep into a specialized topic, we've got different technology topics arranged by complexity.

Technology Research Topics for High School Students

High school students are expected to navigate complex topics, fostering critical thinking and promoting in-depth exploration. The proposed research paper topics on technology will help students understand how tech advancements shape various sectors of society and influence human life.

  • How have smartphones changed our communication?
  • Does virtual reality in museums enhance visitor experience?
  • Understanding privacy issues in social media.
  • How has technology changed the way we listen to music?
  • Role of technology in promoting fitness and healthy lifestyle.
  • Advantages and disadvantages of online learning.
  • Does excessive screen time affect sleep quality?
  • Do video games affect academic performance?
  • How do GPS systems work?
  • How has technology improved animation in films?
  • Pros and cons of using smart home devices.
  • Are self-driving cars safe?
  • Technology's role in modernizing local libraries.
  • Can technology help us lead more sustainable lifestyles?
  • Can technology help improve road safety for teenagers?

Technology Research Topics for College Students

Think technology research topics for college are all about rocket science? Think again! Our compilation of college-level tech research topics brings you a bunch of intriguing, conversation-stirring, and head-scratching questions. They're designed to let you sink into the world of technology while also pushing your academic boundaries. Time to dive in, explore, question, and take your own unique stance on hot-button issues.

  • Biometrics in identity verification: A privacy risk?
  • Impact of 5G on mobile gaming.
  • Are wearable fitness devices a true reflection of health?
  • Can machine learning help predict climate change effects?
  • Are digital currencies disrupting traditional finance?
  • Use of drones in search and rescue operations.
  • Impact of e-learning on academic performance.
  • Does artificial intelligence have a place in home security?
  • What are the ethical issues surrounding robotic surgery?
  • Are e-wallets a safer option for online transactions?
  • How has technology transformed news dissemination?
  • AI in language translation: How accurate can it be?
  • Personalized advertising: Boon or bane for online users?
  • Are smart classes making learning more interactive?
  • Influence of technology on homemade crafts and DIY culture.

Technology Research Topics for University Students

Are you browsing for university technology research ideas? We've got you covered. Whether you're about to dig deep into high-tech debates, or just taking your first steps, our list of technology research questions is your treasure chest.

  • Blockchain applications in ensuring academic integrity.
  • Impact of quantum computing on data security.
  • Are brain-computer interfaces a future communication tool?
  • Does digital currency pose a threat to the global economy?
  • Use of AI in predicting and managing natural disasters.
  • Can biometrics replace traditional identification systems?
  • Role of nanotechnology in waste management.
  • Machine learning's influence on climate change modeling.
  • Edge computing: Revolutionizing data processing?
  • Is virtual reality in psychological therapy a viable option?
  • Potential of synthetic biology in medical research.
  • Quantum cryptography: An uncrackable code?
  • Is space tourism achievable with current technology?
  • Ethical implications of gene editing technologies.
  • Artificial intelligence in governance.

Technology Research Paper Topics in Different Areas

In the next section, we've arranged a collection of technology research questions related to different areas like computer science, biotechnology, and medicine. Find an area you are interested in and look through subject-focused ideas and topics for a research paper on technology.

Technology Research Topics on Computer Science

Computer science is a field that has rapidly developed over the past decades. It deals with questions of technology's influence on society, as well as applications of cutting-edge technologies in various industries and sectors. Here are some computer science research topics on technology to get started:

  • Prospects of machine learning in malware detection.
  • Influence of cloud computing on business operations.
  • Quantum computing: potential impacts on cryptography.
  • Role of big data in personalized marketing.
  • Can AI models effectively simulate human decision-making?
  • Future of mobile applications: Towards augmented reality?
  • Pros and cons of open source software development.
  • Role of computer science in advancing virtual reality.
  • Natural language processing: Transforming human-computer interaction?
  • Developing secure e-commerce platforms: Challenges and solutions.
  • Green computing : solutions for reducing energy consumption.
  • Data mining in healthcare: An untapped opportunity?
  • Understanding cyber threats in the internet of things.
  • Algorithmic bias: Implications for automated decision-making.
  • Role of neural networks in image recognition.

Information Technology Research Topics

Information technology is a dynamic field that involves the use of computers and software to manage and process information. It's crucial in today's digital era, influencing a range of industries from healthcare to entertainment. Here are some captivating information technology related topics:

  • Impact of cloud technology on data management.
  • Role of information technology in disaster management.
  • Can artificial intelligence help improve data accuracy?
  • Cybersecurity measures for protecting personal information.
  • Evolving role of IT in healthcare administration.
  • Adaptive learning systems: A revolution in education?
  • E-governance : Impact on public administration.
  • Role of IT in modern supply chain management.
  • Bioinformatics and its role in personalized medicine.
  • Is data mining an invasion of privacy?
  • Can virtual reality enhance training and development programs?
  • Role of IT in facilitating remote work.
  • Smart devices and data security: A potential risk?
  • Harnessing IT for sustainable business practices.
  • How can big data support decision-making processes?

Technology Research Topics on Artificial Intelligence

Artificial Intelligence, or AI as we fondly call it, is all about creating machines that mimic human intelligence. It's shaping everything from how we drive our cars to how we manage our calendars. Want to understand the mind of a machine? Choose a topic about technology for a research paper from the list below:

  • AI's role in detecting fake news.
  • Chatbots in customer service: Are humans still needed?
  • Algorithmic trading: AI's impact on financial markets.
  • AI in agriculture: a step towards sustainable farming?
  • Facial recognition systems: an AI revolution or privacy threat?
  • Can AI outperform humans in creative tasks?
  • Sentiment analysis in social media: how effective is AI?
  • Siri, Alexa, and the future of AI.
  • AI in autonomous vehicles: safety concern or necessity?
  • How AI algorithms are transforming video games.
  • AI's potential in predicting and mitigating natural disasters.
  • Role of AI in combating cyber threats.
  • Influence of AI on job recruitment and HR processes.
  • Can AI help in advancing climate change research?
  • Can machines make accurate diagnoses?

Technology Research Topics in Cybersecurity Command

Cybersecurity Command focuses on strengthening digital protection. Its goal is to identify vulnerabilities, and outsmart cyber threats. Ready to crack the code of the cybersecurity command? Check out these technology topics for research designed to take you through the tunnels of cyberspace:

  • Cybersecurity strategies for a post-quantum world.
  • Role of AI in identifying cyber threats.
  • Is cybersecurity command in healthcare a matter of life and death?
  • Is there any connection between cryptocurrency and cybercrime?
  • Cyber warfare : The invisible battleground.
  • Mitigating insider threats in cybersecurity command.
  • Future of biometric authentication in cybersecurity.
  • IoT security: command challenges and solutions.
  • Cybersecurity and cloud technology: A secure match?
  • Influence of blockchain on cybersecurity command.
  • Machine learning's role in malware detection.
  • Cybersecurity protocols for mobile devices.
  • Ethics in cybersecurity: Hacking back and other dilemmas.
  • What are some steps to recovery after a breach?
  • Social engineering: Human factor in cybersecurity.

Technology Research Topics on Biotechnology

Biotechnology is an interdisciplinary field that has been gaining a lot of traction in the past few decades. It involves the application of biological principles to understand and solve various problems. The following research topic ideas for technology explore biotechnology's impact on medicine, environment, agriculture, and other sectors:

  • Can GMOs solve global hunger issues?
  • Understanding biotech's role in developing personalized medicine.
  • Using biotech to fight antibiotic resistance.
  • Pros and cons of genetically modified animals.
  • Biofuels – are they really a sustainable energy solution?
  • Ethical challenges in gene editing.
  • Role of biotech in combating climate change.
  • Can biotechnology help conserve biodiversity?
  • Biotech in beauty: Revolutionizing cosmetics.
  • Bioluminescence – a natural wonder or a biotech tool?
  • Applications of microbial biotechnology in waste management.
  • Human organ farming: Possibility or pipe dream?
  • Biotech and its role in sustainable agriculture.
  • Biotech advancements in creating allergy-free foods.
  • Exploring the future of biotech in disease detection.

>> Read more: Biology Topics to Research

Technology Research Paper Topics on Genetic Engineering

Genetic engineering is an area of science that involves the manipulation of genes to change or enhance biological characteristics. This field has raised tremendous ethical debates while offering promising solutions in medicine and agriculture. Here are some captivating topics for a technology research paper on genetic engineering:

  • Future of gene editing: Breakthrough or ethical dilemma?
  • Role of CRISPR technology in combating genetic diseases.
  • Pros and cons of genetically modified crops.
  • Impact of genetic engineering on biodiversity.
  • Can gene therapy provide a cure for cancer?
  • Genetic engineering and the quest for designer babies.
  • Legal aspects of genetic engineering.
  • Use of genetic engineering in organ transplantation.
  • Genetic modifications: Impact on human lifespan.
  • Genetically engineered pets: A step too far?
  • The role of genetic engineering in biofuels production.
  • Ethics of genetic data privacy.
  • Genetic engineering and its impact on world hunger.
  • Genetically modified insects: Solution for disease control?
  • Genetic engineering: A tool for biological warfare?

Reproduction Technology Research Paper Topics

Reproduction technology is all about the science that aids human procreation. It's a field teeming with innovation, from IVF advancements to genetic screening. Yet, it also stirs up ethical debates and thought-provoking technology topics to write about:

  • Advances in in Vitro Fertilization (IVF) technology .
  • The rise of surrogacy: Technological advancements and implications.
  • Ethical considerations in sperm and egg donation.
  • Genetic screening of embryos: A step forward or an ethical minefield?
  • Role of technology in understanding and improving fertility.
  • Artificial Wombs: Progress and prospects.
  • Ethical and legal aspects of posthumous reproduction.
  • Impact of reproductive technology on the LGBTQ+ community.
  • The promise and challenge of stem cells in reproduction.
  • Technology's role in preventing genetic diseases in unborn babies.
  • Social implications of childbearing technology.
  • The concept of 'designer babies': Ethical issues and future possibilities.
  • Reproductive cloning: Prospects and controversies.
  • Technology and the future of contraception.
  • Role of AI in predicting successful IVF treatment.

Medical Technology Topics for a Research Paper

The healthcare field is undergoing massive transformations thanks to cutting-edge medical technology. From revolutionary diagnostic tools to life-saving treatments, technology is reshaping medicine as we know it. To aid your exploration of this dynamic field, we've compiled medical technology research paper topics:

  • Role of AI in early disease detection.
  • Impact of telemedicine on rural healthcare.
  • Nanotechnology in cancer treatment: Prospects and challenges.
  • Can wearable technology improve patient outcomes?
  • Ethical considerations in genome sequencing.
  • Augmented reality in surgical procedures.
  • The rise of personalized medicine: Role of technology.
  • Mental health apps: Revolution or hype?
  • Technology and the future of prosthetics.
  • Role of Big Data in healthcare decision making.
  • Virtual reality as a tool for pain management.
  • Impact of machine learning on drug discovery.
  • The promise of medical drones for emergency response.
  • Technology's role in combating antimicrobial resistance.
  • Electronic Health Records (EHRs): Blessing or curse?

>> More ideas: Med Research Topics

Health Technology Research Topics

Health technology is driving modern healthcare to new heights. From apps that monitor vital stats to robots assisting in surgeries, technology's touch is truly transformative. Take a look at these topics related to technology applied in healthcare:

  • Role of mobile apps in managing diabetes.
  • Impact of health technology on patient privacy.
  • Wearable tech: Fad or future of personal health monitoring?
  • How can AI help in battling mental health issues?
  • Role of digital tools in promoting preventive healthcare.
  • Smart homes for the elderly: Boon or bane?
  • Technology and its impact on health insurance.
  • The effectiveness of virtual therapy sessions.
  • Can health chatbots replace human doctors?
  • Technology's role in fighting the obesity epidemic.
  • The use of blockchain in health data management.
  • Impact of technology on sleep health.
  • Social media and its effect on mental health.
  • Prospects of 3D printing in creating medical equipment.
  • Tele-rehabilitation: An effective solution for physical therapy?

>> View more: Public Health Topics to Research

Communication Technology Research Topics

With technology at the helm, our ways of communicating are changing at an unprecedented pace. From simple text messages to immersive virtual conferences, technology has rewritten the rules of engagement. So, without further ado, let's explore these communication research ideas for technology that capture the essence of this revolution.

  • AI chatbots: Re-defining customer service.
  • The impact of 5G on global communication.
  • Augmented Reality: The future of digital marketing?
  • Is 'digital divide' hindering global communication?
  • Social media's role in shaping public opinion.
  • Can holographic communication become a reality?
  • Influence of emojis in digital communication.
  • The cybersecurity challenges in modern communication.
  • Future of journalism in the digital age.
  • How technology is reshaping political communication.
  • The influence of streaming platforms on viewing habits.
  • Privacy concerns in the age of instant messaging.
  • Can technology solve the issue of language barriers?
  • The rise of podcasting: A digital renaissance.
  • Role of virtual reality in remote communication.

Research Topics on Technology in Transportation

Technology is the driving force behind the dramatic changes in transportation, making journeys safer, more efficient, and eco-friendly. Whether it's autonomous vehicles or the concept of Hyperloop, there are many transportation technology topics for a research paper to choose from:

  • Electric vehicles: A step towards sustainable travel.
  • The role of AI in traffic management.
  • Pros and cons of autonomous vehicles.
  • Hyperloop: An ambitious vision of the future?
  • Drones in goods delivery: Efficiency vs. privacy.
  • Technology's role in reducing aviation accidents.
  • Challenges in implementing smart highways.
  • The implications of blockchain in logistics.
  • Could vertical takeoff and landing (VTOL) vehicles solve traffic problems?
  • Impact of GPS technology on transportation.
  • How has technology influenced public transit systems?
  • Role of 5G in future transportation.
  • Ethical concerns over self-driving cars.
  • Technology in maritime safety: Progress and hurdles.
  • The evolution of bicycle technology: From spokes to e-bikes.

Technology Research Paper Topics on Education

The intersection of technology and education is an exciting frontier with limitless possibilities. From online learning to interactive classrooms, you can explore various technology paper topics about education:

  • How does e-learning affect student engagement?
  • VR classrooms: A glimpse into the future?
  • Can AI tutors revolutionize personalized learning?
  • Digital textbooks versus traditional textbooks: A comparison.
  • Gamification in education: Innovation or distraction?
  • The impact of technology on special education.
  • How are Massive Open Online Courses (MOOCs) reshaping higher education?
  • The role of technology in inclusive education.
  • Cybersecurity in schools: Measures and challenges.
  • The potential of Augmented Reality (AR) in classroom learning.
  • How is technology influencing homeschooling trends?
  • Balancing technology and traditional methods in early childhood education.
  • Risks and benefits of student data tracking.
  • Can coding be the new literacy in the 21st century?
  • The influence of social media on academic performance.

>> Learn more: Education Research Paper Topics

Relationships and Technology Research Topics

In the digital age, technology also impacts our relationships. It has become an integral part of how we communicate, meet people, and sustain our connections. Discover some thought-provoking angles with these research paper topics about technology:

  • How do dating apps affect modern relationships?
  • The influence of social media on interpersonal communication.
  • Is technology enhancing or hindering long-distance relationships?
  • The psychology behind online dating: A study.
  • How do virtual reality environments impact social interaction?
  • Social media friendships: Genuine or superficial?
  • How does technology-mediated communication affect family dynamics?
  • The impact of technology on work-life balance.
  • The role of technology in sustaining long-term relationships.
  • How does the 'always connected' culture influence personal boundaries?
  • Cyberbullying and its effect on teenage relationships.
  • Can technology predict compatibility in relationships?
  • The effects of 'ghosting' in digital communication.
  • How technology assists in maintaining relationships among elderly populations.
  • Social media: A boon or bane for marital relationships?

Agriculture Technology Research Paper Topics

Modern agriculture is far from just tilling the soil and harvesting crops. Technology has made remarkable strides into the fields, innovating and improving agricultural processes. Take a glance at these technology research paper topic ideas:

  • Can drone technology transform crop monitoring?
  • Precision agriculture: Benefits and challenges.
  • Aquaponics and the future of sustainable farming.
  • How is artificial intelligence aiding in crop prediction?
  • Impact of blockchain technology in food traceability.
  • The role of IoT in smart farming.
  • Vertical farming : Is it a sustainable solution for urban food supply?
  • Innovations in irrigation technology for water conservation.
  • Automated farming: A boon or a threat to employment in agriculture?
  • How satellite imagery is improving crop disease detection.
  • Biotechnology in crop improvement: Pros and cons.
  • Nanotechnology in agriculture: Scope and limitations.
  • Role of robotics in livestock management.
  • Agricultural waste management through technology.
  • Is hydroponics the future of farming?

Technological Research Topics on Environment

Our planet is facing numerous environmental challenges, and technology may hold the key to solving many of these. With innovations ranging from renewable energy sources to waste management systems, the realm of technology offers a plethora of research angles. So, if you're curious about the intersection of technology and environment, this list of research topics is for you:

  • Innovations in waste management: A technology review.
  • The role of AI in predicting climate change impacts.
  • Renewable energy: Advancements in solar technology.
  • The impact of electric vehicles on carbon emissions.
  • Can smart agriculture help solve world hunger?
  • Role of technology in water purification and conservation.
  • The impact of IoT devices on energy consumption.
  • Technology solutions for oil spills.
  • Satellite technology in environmental monitoring.
  • Technological advances in forest conservation.
  • Green buildings: Sustainable construction technology.
  • Bioengineering: A solution to soil erosion?
  • Impact of nanotechnology on environmental conservation.
  • Ocean clean-up initiatives: Evaluating existing technology.
  • How can technology help in reducing air pollution?

>> View more: Environmental Science Research Topics

Energy & Power Technology Topics for Research Paper

Energy and power are two pivotal areas where technology is bringing unprecedented changes. You can investigate renewable energy sources or efficient power transmission. If you're excited about exploring the intricacies of energy and power advancements, here are some engaging technology topics for research papers:

  • Assessing the efficiency of wind energy technologies.
  • Power storage: Current and future technology.
  • Solar panel technology: Recent advancements and future predictions.
  • Can nuclear fusion be the answer to our energy crisis?
  • Smart grid technology: A revolution in power distribution.
  • Evaluating the impact of hydropower on ecosystems.
  • The role of AI in optimizing power consumption.
  • Biofuels vs. fossil fuels: A comparative study.
  • Electric vehicle charging infrastructure: Technological challenges and solutions.
  • Technology advancements in geothermal power.
  • How is IoT technology helping in energy conservation?
  • Harnessing wave and tidal energy: Technological possibilities.
  • Role of nanotechnology in improving solar cell efficiency.
  • Power transmission losses: Can technology provide a solution?
  • Assessing the future of coal technology in the era of renewable energy.

Research Topics about Technology in Finance

The finance sector has seen drastic changes with the rise of technology, which has revolutionized the way financial transactions are conducted and services are offered. Consider these research topics in technology applied in the finance sector:

  • Rise of cryptocurrency: An evaluation of Bitcoin's impact.
  • Algorithmic trading: How does it reshape financial markets?
  • Role of AI and machine learning in financial forecasting.
  • Technological challenges in implementing digital banking.
  • How is blockchain technology transforming financial services?
  • Cybersecurity risks in online banking: Identifying solutions.
  • FinTech startups: Disrupting traditional finance systems.
  • Role of technology in financial inclusion.
  • Assessing the impact of mobile wallets on the banking sector.
  • Automation in finance: Opportunities and threats.
  • Role of big data analytics in financial decision making.
  • AI-based robo-advisors vs. human financial advisors.
  • The future of insurance technology (InsurTech).
  • Can technology solve the issue of financial fraud?
  • Impact of regulatory technology (RegTech) in maintaining compliance.

>> More ideas: Finance Research Topics

War Technology Research Paper Topics

The nature of warfare has transformed significantly with the evolution of technology, shifting the battlegrounds from land, sea, and air to the realms of cyber and space. This transition opens up a range of topics to explore. Here are some research topics in the realm of war technology:

  • Drones in warfare: Ethical implications.
  • Cyber warfare: Assessing threats and defense strategies.
  • Autonomous weapons: A boon or a curse?
  • Implications of artificial intelligence in modern warfare.
  • Role of technology in intelligence gathering.
  • Satellite technology and its role in modern warfare.
  • The future of naval warfare: Autonomous ships and submarines.
  • Hypersonic weapons: Changing the dynamics of war.
  • Impact of nuclear technology in warfare.
  • Technology and warfare: Exploring the relationship.
  • Information warfare: The role of social media.
  • Space warfare: Future possibilities and implications.
  • Bio-warfare: Understanding technology's role in development and prevention.
  • Impact of virtual reality on military training.
  • War technology and international law: A critical examination.

Food Technology Topics for Research Papers

Food technology is a field that deals with the study of food production, preservation, and safety. It involves understanding how various techniques can be applied to increase shelf life and improve nutrition value of foods. Check out our collection of food technology research paper topic ideas:

  • Lab-grown meats: Sustainable solution or a mere hype?
  • How AI is enhancing food safety and quality?
  • Precision agriculture: Revolutionizing farming practices.
  • GMOs: Assessing benefits and potential risks.
  • Role of robotics in food manufacturing and packaging.
  • Smart kitchens: Streamlining cooking through technology.
  • Nanofood: Tiny technology, big impact.
  • Sustainable food systems: Role of technology.
  • Food traceability: Ensuring transparency and accountability.
  • Food delivery apps: Changing the face of dining out.
  • The rise of plant-based alternatives and their production technologies.
  • Virtual and augmented reality in culinary experiences.
  • Technology in mitigating food waste.
  • Innovations in food packaging: Impact on freshness and sustainability.
  • IoT in smart farming: Improving yield and reducing waste.

Entertainment Technology Topics

Entertainment technology is reinventing the ways we experience amusement. This industry is always presenting new angles for research and discussion, be it the rise of virtual reality in movies or the influence of streaming platforms on the music industry. Here's a list of unique research topics related to entertainment technology:

  • Impact of virtual reality on the movie industry.
  • Streaming platforms vs traditional media: A comparative study.
  • Technology in music: Evolution and future prospects.
  • eSports: Rise of a new form of entertainment.
  • Augmented reality in theme parks.
  • The transformation of theater with digital technology.
  • AI and film editing: Redefining the art.
  • The role of technology in the rise of independent cinema.
  • Podcasts: Revolutionizing radio with technology.
  • Immersive technologies in art exhibitions.
  • The influence of technology on fashion shows and design.
  • Livestreaming concerts: A new norm in the music industry?
  • Drones in entertainment: Applications and ethics.
  • Social media as an entertainment platform.
  • The transformation of journalism in the era of digital entertainment.

Technology Research Questions

As we navigate the ever-changing landscape of technology, numerous intriguing questions arise. Below, we present new research questions about technology that can fuel your intellectual pursuit.

  • What potential does quantum computing hold for resolving complex problems?
  • How will advancements in AI impact job security across different sectors?
  • In what ways can blockchain technology reform the existing financial systems?
  • How is nanotechnology revolutionizing the field of medicine?
  • What are the ethical implications surrounding the use of facial recognition technology?
  • How will the introduction of 6G change our communication patterns?
  • In what ways is green technology contributing to sustainable development?
  • Can virtual reality transform the way we approach education?
  • How are biometrics enhancing the security measures in today's digital world?
  • How is space technology influencing our understanding of the universe?
  • What role can technology play in solving the global water crisis?
  • How can technology be leveraged to combat climate change effectively?
  • How is technology transforming the landscape of modern agriculture?
  • Can technological advancements lead to a fully renewable energy-dependent world?
  • How does technology influence the dynamics of modern warfare?

Bottom Line on Research Topics in Technology

Technology is a rapidly evolving field, and there's always something new to explore. Whether you're writing for the computer sciences, information technology or food technology realm, there are endless ideas that you can research on. Pick one of these technology research paper topics and jumpstart your project.

Illustration

Trust professionals to ‘ write a research paper for me !’ Our team of expert writers is ready to assist you in crafting an exceptional research paper on any topic. Just reach out, and we'll provide you with high-quality work tailored to your needs.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

how to write a research paper

  • See us on facebook
  • See us on twitter
  • See us on youtube
  • See us on linkedin
  • See us on instagram

AI improves accuracy of skin cancer diagnoses in Stanford Medicine-led study

Artificial intelligence algorithms powered by deep learning improve skin cancer diagnostic accuracy for doctors, nurse practitioners and medical students in a study led by the Stanford Center for Digital Health.

April 11, 2024 - By Krista Conger

test

Artificial intelligence helped clinicians diagnose skin cancer more accurately, a Stanford Medicine-led study found. Chanelle Malambo/peopleimages.com   -  stock.adobe.com

A new study led by researchers at Stanford Medicine finds that computer algorithms powered by artificial intelligence based on deep learning can help health care practitioners to diagnose skin cancers more accurately. Even dermatologists benefit from AI guidance, although their improvement is less than that seen for non-dermatologists.

“This is a clear demonstration of how AI can be used in collaboration with a physician to improve patient care,” said professor of dermatology and of epidemiology Eleni Linos , MD. Linos leads the Stanford Center for Digital Health , which was launched to tackle some of the most pressing research questions at the intersection of technology and health by promoting collaboration between engineering, computer science, medicine and the humanities.

Linos, associate dean of research and the Ben Davenport and Lucy Zhang Professor in Medicine, is the senior author of the study , which was published on April 9 in npj Digital Medicine . Postdoctoral scholar Jiyeong Kim , PhD, and visiting researcher Isabelle Krakowski, MD, are the lead authors of the research.

“Previous studies have focused on how AI performs when compared with physicians,” Kim said. “Our study compared physicians working without AI assistance with physicians using AI when diagnosing skin cancers.”

AI algorithms are increasingly used in clinical settings, including dermatology. They are created by feeding a computer hundreds of thousands or even millions of images of skin conditions labeled with information such as diagnosis and patient outcome. Through a process called deep learning, the computer eventually learns to recognize telltale patterns in the images that correlate with specific skin diseases including cancers. Once trained, an algorithm written by the computer can be used to suggest possible diagnoses based on an image of a patient’s skin that it has not been exposed to.

test

Eleni Linos

These diagnostic algorithms aren’t used alone, however. They are overseen by clinicians who also assess the patient, come to their own conclusions about a patient’s diagnosis and choose whether to accept the algorithm’s suggestion.

An accuracy boost

Kim and Linos’ team reviewed 12 studies detailing more than 67,000 evaluations of potential skin cancers by a variety of practitioners with and without AI assistance. They found that, overall, health care practitioners working without aid from artificial intelligence were able to accurately diagnose about 75% of people with skin cancer — a statistical measurement known as sensitivity. Conversely, the workers correctly diagnosed about 81.5% of people with cancer-like skin conditions but who did not have cancer — a companion measurement known as specificity.

Health care practitiones who used AI to guide their diagnoses did better. Their diagnoses were about 81.1% sensitive and 86.1% specific. The improvement may seem small, but the differences are critical for people told they don’t have cancer, but do, or for those who do have cancer but are told they are healthy.

When the researchers split the health care practitioners by specialty or level of training, they saw that medical students, nurse practitioners and primary care doctors benefited the most from AI guidance — improving on average about 13 points in sensitivity and 11 points in specificity. Dermatologists and dermatology residents performed better overall, but the sensitivity and specificity of their diagnoses also improved with AI.

“I was surprised to see everyone’s accuracy improve with AI assistance, regardless of their level of training,” Linos said. “This makes me very optimistic about the use of AI in clinical care. Soon our patients will not just be accepting, but expecting, that we use AI assistance to provide them with the best possible care.”

test

Jiyeong Kim

Researchers at the Stanford Center for Digital Health, including Kim, are interested in learning more about the promise of and barriers to integrating AI-based tools into health care. In particular, they are planning to investigate how the perceptions and attitudes of physicians and patients to AI will influence its implementation.

“We want to better understand how humans interact with and use AI to make clinical decisions,” Kim said. 

Previous studies have indicated that a clinician’s degree of confidence in their own clinical decision, the degree of confidence of the AI, and whether the clinician and the AI agree on the diagnosis all influence whether the clinician incorporates the algorithm’s advice when making clinical decisions for a patient.

Medical specialties like dermatology and radiology, which rely heavily on images — visual inspection, pictures, X-rays, MRIs and CT scans, among others — for diagnoses are low-hanging fruit for computers that can pick out levels of detail beyond what a human eye (or brain) can reasonably process. But even other more symptom-based specialties, or prediction modeling, are likely to benefit from AI intervention, Linos and Kim feel. And it’s not just patients who stand to benefit.

“If this technology can simultaneously improve a doctor’s diagnostic accuracy and save them time, it’s really a win-win. In addition to helping patients, it could help reduce physician burnout and improve the human interpersonal relationships between doctors and their patients,” Linos said. “I have no doubt that AI assistance will eventually be used in all medical specialties. The key question is how we make sure it is used in a way that helps all patients regardless of their background and simultaneously supports physician well-being.”

Researchers from the Karolinska Institute, the Karolinska University Hospital and the University of Nicosia contributed to the research.

The study was funded by the National Institutes of Health (grants K24AR075060 and R01AR082109), Radiumhemmet Research, the Swedish Cancer Society and the Swedish Research Council.

For more news about responsible AI in health and medicine,  sign up  for the RAISE Health newsletter.

Register  for the RAISE Health Symposium on May 14.

Krista Conger

About Stanford Medicine

Stanford Medicine is an integrated academic health system comprising the Stanford School of Medicine and adult and pediatric health care delivery systems. Together, they harness the full potential of biomedicine through collaborative research, education and clinical care for patients. For more information, please visit med.stanford.edu .

Artificial intelligence

Exploring ways AI is applied to health care

Stanford Medicine Magazine: AI

ScienceDaily

New AI method captures uncertainty in medical images

In biomedicine, segmentation involves annotating pixels from an important structure in a medical image, like an organ or cell. Artificial intelligence models can help clinicians by highlighting pixels that may show signs of a certain disease or anomaly.

However, these models typically only provide one answer, while the problem of medical image segmentation is often far from black and white. Five expert human annotators might provide five different segmentations, perhaps disagreeing on the existence or extent of the borders of a nodule in a lung CT image.

"Having options can help in decision-making. Even just seeing that there is uncertainty in a medical image can influence someone's decisions, so it is important to take this uncertainty into account," says Marianne Rakic, an MIT computer science PhD candidate.

Rakic is lead author of a paper with others at MIT, the Broad Institute of MIT and Harvard, and Massachusetts General Hospital that introduces a new AI tool that can capture the uncertainty in a medical image.

Known as Tyche (named for the Greek divinity of chance), the system provides multiple plausible segmentations that each highlight slightly different areas of a medical image. A user can specify how many options Tyche outputs and select the most appropriate one for their purpose.

Importantly, Tyche can tackle new segmentation tasks without needing to be retrained. Training is a data-intensive process that involves showing a model many examples and requires extensive machine-learning experience.

Because it doesn't need retraining, Tyche could be easier for clinicians and biomedical researchers to use than some other methods. It could be applied "out of the box" for a variety of tasks, from identifying lesions in a lung X-ray to pinpointing anomalies in a brain MRI.

Ultimately, this system could improve diagnoses or aid in biomedical research by calling attention to potentially crucial information that other AI tools might miss.

"Ambiguity has been understudied. If your model completely misses a nodule that three experts say is there and two experts say is not, that is probably something you should pay attention to," adds senior author Adrian Dalca, an assistant professor at Harvard Medical School and MGH, and a research scientist in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

Their co-authors include Hallee Wong, a graduate student in electrical engineering and computer science; Jose Javier Gonzalez Ortiz PhD '23; Beth Cimini, associate director for bioimage analysis at the Broad Institute; and John Guttag, the Dugald C. Jackson Professor of Computer Science and Electrical Engineering. Rakic will present Tyche at the IEEE Conference on Computer Vision and Pattern Recognition, where Tyche has been selected as a highlight.

Addressing ambiguity

AI systems for medical image segmentation typically use neural networks. Loosely based on the human brain, neural networks are machine-learning models comprising many interconnected layers of nodes, or neurons, that process data.

After speaking with collaborators at the Broad Institute and MGH who use these systems, the researchers realized two major issues limit their effectiveness. The models cannot capture uncertainty and they must be retrained for even a slightly different segmentation task.

Some methods try to overcome one pitfall, but tackling both problems with a single solution has proven especially tricky, Rakic says.

"If you want to take ambiguity into account, you often have to use an extremely complicated model. With the method we propose, our goal is to make it easy to use with a relatively small model so that it can make predictions quickly," she says.

The researchers built Tyche by modifying a straightforward neural network architecture.

A user first feeds Tyche a few examples that show the segmentation task. For instance, examples could include several images of lesions in a heart MRI that have been segmented by different human experts so the model can learn the task and see that there is ambiguity.

The researchers found that just 16 example images, called a "context set," is enough for the model to make good predictions, but there is no limit to the number of examples one can use. The context set enables Tyche to solve new tasks without retraining.

For Tyche to capture uncertainty, the researchers modified the neural network so it outputs multiple predictions based on one medical image input and the context set. They adjusted the network's layers so that, as data move from layer to layer, the candidate segmentations produced at each step can "talk" to each other and the examples in the context set.

In this way, the model can ensure that candidate segmentations are all a bit different, but still solve the task.

"It is like rolling dice. If your model can roll a two, three, or four, but doesn't know you have a two and a four already, then either one might appear again," she says.

They also modified the training process so it is rewarded by maximizing the quality of its best prediction.

If the user asked for five predictions, at the end they can see all five medical image segmentations Tyche produced, even though one might be better than the others.

The researchers also developed a version of Tyche that can be used with an existing, pretrained model for medical image segmentation. In this case, Tyche enables the model to output multiple candidates by making slight transformations to images.

Better, faster predictions

When the researchers tested Tyche with datasets of annotated medical images, they found that its predictions captured the diversity of human annotators, and that its best predictions were better than any from the baseline models. Tyche also performed faster than most models.

"Outputting multiple candidates and ensuring they are different from one another really gives you an edge," Rakic says.

The researchers also saw that Tyche could outperform more complex models that have been trained using a large, specialized dataset.

For future work, they plan to try using a more flexible context set, perhaps including text or multiple types of images. In addition, they want to explore methods that could improve Tyche's worst predictions and enhance the system so it can recommend the best segmentation candidates.

This research is funded, in part, by the National Institutes of Health, the Eric and Wendy Schmidt Center at the Broad Institute of MIT and Harvard, and Quanta Computer.

  • Medical Education and Training
  • Today's Healthcare
  • Medical Imaging
  • Diseases and Conditions
  • Medical Technology
  • Wearable Technology
  • Engineering
  • Confocal laser scanning microscopy
  • Scanning electron microscope
  • Radiography
  • Personalized medicine
  • Interventional radiology
  • Computational neuroscience

Story Source:

Materials provided by Massachusetts Institute of Technology . Original written by Adam Zewe. Note: Content may be edited for style and length.

Cite This Page :

Explore More

  • Quantum Effects in Electron Waves
  • Star Trek's Holodeck Recreated Using ChatGPT
  • Cloud Engineering to Mitigate Global Warming
  • Detecting Delayed Concussion Recovery
  • Genes for Strong Muscles: Healthy Long Life
  • Brightest Gamma-Ray Burst
  • Stellar Winds of Three Sun-Like Stars Detected
  • Fences Causing Genetic Problems for Mammals
  • Ozone Removes Mating Barriers Between Fly ...
  • Parkinson's: New Theory On Origins and Spread

Trending Topics

Strange & offbeat.

Graduate and medical students form science policy and communication group focused on Alzheimer's disease research

Ben Middelkamp Apr 08, 2024

Three people pose for photo at research event

From left to right, Soumilee Chadhuri, Sára Nemes and Valerie Dorsant-Ardon are executive members of IMPACT Indiana.

Soumilee Chaudhuri describes her training at Indiana University School of Medicine as “hardcore biomedical science.” She works with complex data, statistics and brain scans in her study of how vascular risk factors affect racially diverse Alzheimer’s disease patients.

While much of her study dives into the details, Chaudhuri, a PhD candidate in the Medical Neuroscience Graduate Program , doesn’t lose sight of why the research matters.

That’s why she and a group of her peers — doctoral and medical students — at IU School of Medicine and Marian University College of Osteopathic Medicine founded a group centered on health policy and science communication, specifically focusing on Alzheimer’s disease research.

The group, called the Initiative for Mobilizing Public health Advocacy, Care, and Translational research for Alzheimer’s disease in Indiana, or IMPACT Indiana , aims to bridge the gap between Alzheimer’s disease scientific research in the lab and engagement with Indiana public officials and community leaders about the implications of their research on public policy.

“I have always wanted to keep in touch with people, tell people what I'm doing as a scientist, and essentially just explain to my grandma what my science means,” Chaudhuri said.

logo of IMPACT Indiana

The group is also hosting its inaugural IMPACT Indiana Symposium on April 22 in the IU Health Neuroscience Center auditorium. Jared Brosch, MD , associate professor of clinical neurology, will give the keynote speech about clinical updates on lecanemab, a first-of-its-kind Food and Drug Administration-approved Alzheimer’s disease treatment . Laura Aust, advocacy manager for the Greater Indiana Chapter of the Alzheimer’s Association, will speak about how young scientists can engage with the public about their Alzheimer’s disease research.

Chaudhuri, a member of the laboratory of Andrew Saykin, PsyD , director of the Center for Neuroimaging and the , and Kwangsik Nho, PhD , associate professor of radiology and imaging sciences, presented her research at the Indiana Science Communication Day in 2023, and it was through that experience discussing health policy with peers and meeting lawmakers that prompted her to create IMPACT Indiana.

She later connected with trainees at IU School of Medicine and Marian University College of Osteopathic Medicine who also were interested in health policy to build a team of learners.

“We work on different pieces of the same puzzle with the overall goal of understanding Alzheimer’s disease,” Chaudhuri said.

group photo of scientists and lawmakers

“We want to be able to tell people about our research,” Chaudhuri said. “A lot of people came out to the science communications day to talk about their research, and they were not just Alzheimer's researchers. There was research about nuclear power. There was research about chemistry. All of us cared, and that's what bonded us together.”

Nemes studies early-onset Alzheimer’s disease research in the laboratory of Liana Apostolova, MD, MS , an Indiana University Distinguished Professor and the Barbara and Peer Baekgaard Professor in Alzheimer's Disease Research. Before she started graduate school, Nemes worked at the Indiana Alzheimer’s Disease Research Center and became involved with the center’s Community Advisory Board , which aims to reach underrepresented groups in Indianapolis, specifically the African American community, to educate about dementia care and research.

Now as a graduate student, Nemes is still involved with the board and community initiatives.

“I think it's really important not to lose that perspective and to understand that behind every number, behind every image, behind every single data point, is a real human with a profound story,” Nemes said. “The work and the analysis we're doing is going to tangibly touch people in the future and hopefully improve their lives.”

In addition to communicating their research with lawmakers, patients, caregivers and other members of the community, Chaudhuri and Nemes said IMPACT Indiana hopes to improve equity in research among diverse and underrepresented communities with dementia by starting and continuing conversations about translational research and public policy.

A student presents her research

“It’s perfectly logical and understandable why people who are most deeply impacted by that insidious history would have that degree of mistrust,” Nemes said. “It’s through their leadership and voices and empowering and engaging with these communities who have been hurt and marginalized that we can rebuild those bridges and create research that is more accessible and equitable and positive as we move forward.”

As IMPACT Indiana continues to grow, Chaudhuri and Nemes said they’re hoping to develop and maintain a solid membership base at IU and other institutions across Indiana, recruiting students and faculty from diverse disciplines, such as geriatric specialists, social workers, occupational therapists, physical therapists and speech-language pathologists, and from any career level — high school, undergraduate, graduate, early-career or established faculty.

“As one of my favorite physicians, Jason Karlawish, MD, says in his book, “The Problem with Alzheimer’s” — Alzheimer’s disease is not just a neurodegenerative disease, but a social, cultural, and political problem,” Chaudhuri said. “We need multidisciplinary expertise to solve this.”

Default Author Avatar IUSM Logo

Ben Middelkamp

Ben Middelkamp is a communications manager for the Department of Neurology, Department of Neurological Surgery and Stark Neurosciences Research Institute at Indiana University School of Medicine. Before joining the Office of Strategic Communications in December 2019, Ben spent nearly six years as a newspaper reporter in two Indiana cities. He earned a bachelor’s degree in Convergent Journalism from Indiana Wesleyan University in 2014. Ben enjoys translating his background in journalism to the communications and marketing needs of the school and its physicians and researchers.

SEARCH THE BLOG

Subscribe to this blog.

We've added you to our mailing list!

Sorry, there was a problem

Suggested for you

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

April 11, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Engineering students' device could make intubation safer for young babies

by Silvia Cernea Clark, Rice University

Rice engineering students' device could make intubation safer for young babies

TinyTrach, a team of interdisciplinary engineering students from Rice University, has created an innovative pediatric endotracheal tube (ETT) integrated with a camera and anchoring system that could make intubation procedures safer for babies 1 month and older by ensuring precise placement, stable anchoring and visibility access for up to 14 days.

The challenge was introduced to the team by Dr. Parag Jain, associate professor in pediatrics critical care at Texas Children's Hospital and Baylor College of Medicine, who served as TinyTrach's clinical advisor and one of its mentors.

"Intubation is a critical procedure for children undergoing surgery and critically ill patients, providing vital respiratory support while under sedation," Jain said. "However, existing solutions lack a complete video-assisted intubation for pediatric-sized ETTs, which often results in significant morbidity and sometimes mortality."

The TinyTrach team of Abi Parthasarathy, Mina Ghayour, Rian Philip, Shreya Majeti, Leighton Less, Jack Pearce and Sambhu Balakrishnan has addressed this gap with its capstone design project. The project will compete in the annual Harrell and Carolyn Huff engineering design showcase and competition on April 11.

"The current standard of care for securing an ETT is tape, but the issue with tape is that fluid secretions from the nose and mouth can make the tape loosen, so the tube could get dislodged," said Majeti, who added that she came to Rice knowing she wanted to be a doctor and was drawn by the opportunity to be near the Texas Medical Center.

The team went through multiple iterations of the prototype to arrive at the current design. The team members settled on a bevel-shaped piece for the anchoring mechanism, adjusting their design to make sure that there was not too much pressure being applied to the baby's face, that the strap securing the tube was the right thickness and that the materials they used were biocompatible and flexible to prevent skin irritation.

"The device we have come up with actually holds it all in place securely," Majeti said. "We just went to Texas Children's and had Jain test it. We were in a simulation lab that has this very expensive mannequin that is basically as realistic as you can get with a fake model with the baby. We tested our device by placing it on the mannequin, and despite vigorous shaking, the tube did not move at all. So I think the fact that we've got better attachment, better visualization and it's in an overall cohesive package that we're producing makes this a good project."

Dr. Chester Koh, professor at Texas Children's Hospital, Baylor College of Medicine and Rice and executive director of the Southwest National Pediatric Device Innovation Consortium, noted, "These novel pediatric device projects at Rice address the unmet needs that our pediatric specialists have identified in the hospital and provide the opportunity to partner with these engineering teams to improve the care for our smallest and often fragile patients. Our consortium is honored to sponsor these projects each year."

Ghayour, another senior on the team who plans to pursue medical studies after graduation, first started working on assembling and testing the anchoring system, then her role shifted to environmental testing.

"I would submerge our anchoring mechanism and the integrated tube into a simulated trachea environment and see how it would hold out," Ghayour said. "This included force testing to characterize the durability of the anchor and creating a mucosal environment using the correct temperature range."

For the ETT part of the device, the students had to make sure that the main tube had enough room to accommodate air flow while still being able to incorporate a light, camera and flush cord to clear secretions from the camera lens.

"I think our biggest challenge and success was getting all the components small enough to fit inside our integrated tube," said Parthasarathy. "A regular tube requires repositioning if it's misplaced, which can be tricky if the patient has a difficult airway."

Rice engineering students' device could make intubation safer for young babies

Currently, the only way to make sure that the breathing tube is correctly positioned on an intubated baby is using X-rays, which carries some risk and can be expensive.

"We wanted to find a way to be able to check that breathing tubes were in the correct place in the baby's airway without having to basically sting them with X-rays and without having to jostle them around that much," Philip said.

Visibility is especially important for patients 6 months and younger because their anatomy can be difficult to navigate.

"No ETTs sized for pediatric patients enable the person intubating to see inside the body during the procedure, but our device makes that possible," said Pearce, who plans on pursuing a doctorate in optical and computational imaging after graduation. Together with Balakrishnan, Pearce performed market reviews and testing to identify a camera that best fit the needs of the project and the right accompanying LED.

For Less, the project served as a way to delve into an unfamiliar area of engineering and "see what a mechanical engineer could do in the pediatric medical device world."

"I did go in blind, but I learned a lot," Less said.

Team TinyTrach was mentored by Sabia Abidi, a Rice bioengineering assistant teaching professor, and Gary Woods, a professor in the practice in electrical and computer engineering.

Explore further

Feedback to editors

research topic for medical technology students

Researchers demonstrate miniature brain stimulator in humans

18 hours ago

research topic for medical technology students

Study reveals potential to reverse lung fibrosis using the body's own healing technique

Apr 12, 2024

research topic for medical technology students

Researchers discover cell 'crosstalk' that triggers cancer cachexia

research topic for medical technology students

Study improves understanding of effects of household air pollution during pregnancy

research topic for medical technology students

Wearable sensors for Parkinson's can improve with machine learning, data from healthy adults

research topic for medical technology students

New insights on B cells: Researchers explore building better antibodies and curbing autoimmune diseases

research topic for medical technology students

Grieving pet owners comforted by 'supernatural' interactions

research topic for medical technology students

Study shows AI improves accuracy of skin cancer diagnoses

research topic for medical technology students

Cell's 'garbage disposal' may have another role: Helping neurons near skin sense the environment

research topic for medical technology students

Chlamydia vaccine shows promise in early trial

Related stories.

research topic for medical technology students

Researchers find a simple way to harvest more 'blue energy' from waves

Apr 3, 2024

research topic for medical technology students

Study shows video laryngoscope increases successful intubation on first attempt

Jun 16, 2023

research topic for medical technology students

Texas A&M students develop device to combat kidney failure in newborns

Oct 13, 2023

research topic for medical technology students

Researcher develops device to secure chest tubes without sutures

Oct 6, 2017

research topic for medical technology students

Improved air leak detection reduces chest tube duration: Study

Dec 1, 2023

research topic for medical technology students

Gastric suction device could curb preventable newborn mortality

Apr 24, 2023

Recommended for you

research topic for medical technology students

Using AI to spot parasites in stool samples

research topic for medical technology students

Infections after surgery are more likely due to bacteria already on your skin than from microbes in the hospital: Study

Apr 11, 2024

research topic for medical technology students

New microfluidic device for cancer detection achieves precise separation of tumor entities

research topic for medical technology students

Q&A: New technology may help identify neuromotor disease symptoms in infants

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

share this!

April 12, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

ProtoDUNE's argon filling underway, a significant step toward next era of neutrino research

by Chetna Krishna, CERN

ProtoDUNE's argon filling underway

CERN's Neutrino Platform houses a prototype of the Deep Underground Neutrino Experiment (DUNE) known as ProtoDUNE, which is designed to test and validate the technologies that will be applied to the construction of the DUNE experiment in the United States.

Recently, ProtoDUNE has entered a pivotal stage: the filling of one of its two particle detectors with liquid argon. Filling such a detector takes almost two months, as the chamber is gigantic—almost the size of a three-story building. ProtoDUNE's second detector will be filled in the autumn.

ProtoDUNE will use the proton beam from the Super Proton Synchrotron to test the detecting of charged particles. This argon-filled detector will be crucial to test the detector response for the next era of neutrino research. Liquid argon is used in DUNE due to its inert nature, which provides a clean environment for precise measurements .

When a neutrino interacts with argon, it produces charged particles that ionize the atoms, allowing scientists to detect and study neutrino interactions. Additionally, liquid argon's density and high scintillation light yield enhance the detection of these interactions, making it an ideal medium for neutrino experiments.

Interestingly, the interior of the partially filled detector now appears green instead of its usual golden color. This is because when the regular LED light is reflected inside the metal cryostat, the light travels through the liquid argon and the wavelength of the photons is shifted, producing a visible green effect.

The DUNE far detector, which will be roughly 20 times bigger than protoDUNE, is being built in the United States. DUNE will send a beam of neutrinos from Fermi National Accelerator Laboratory (Fermilab) near Chicago, Illinois, over a distance of more than 1,300 kilometers through the Earth to neutrino detectors located 1.5 km underground at the Sanford Underground Research Facility (SURF) in Sanford, South Dakota.

Provided by CERN

Explore further

Feedback to editors

research topic for medical technology students

The experimental demonstration of a verifiable blind quantum computing protocol

15 hours ago

research topic for medical technology students

A machine learning-based approach to discover nanocomposite films for biodegradable plastic alternatives

16 hours ago

research topic for medical technology students

Saturday Citations: Listening to bird dreams, securing qubits, imagining impossible billiards

17 hours ago

research topic for medical technology students

Physicists solve puzzle about ancient galaxy found by Webb telescope

18 hours ago

research topic for medical technology students

Researchers study effects of solvation and ion valency on metallopolymers

research topic for medical technology students

Chemists devise easier new method for making a common type of building block for drugs

research topic for medical technology students

Research team discovers more than 50 potentially new deep-sea species in one of the most unexplored areas of the planet

Apr 12, 2024

research topic for medical technology students

New study details how starving cells hijack protein transport stations

research topic for medical technology students

New species of ant found pottering under the Pilbara named after Voldemort

research topic for medical technology students

Searching for new asymmetry between matter and antimatter

Relevant physicsforums posts, sine rule for resultant vectors, could you use the moon to reflect sunlight onto a solar sail.

Apr 8, 2024

Biot Savart law gives us magnetic field strength or magnetic flux density?

Apr 6, 2024

Why charge density of moving dipole is dependent on time?

Apr 5, 2024

I have a question about energy & ignoring friction losses

Apr 3, 2024

What Causes the Einstein - de Haas Effect in Iron Rods?

Mar 31, 2024

More from Other Physics Topics

Related Stories

research topic for medical technology students

First particle tracks seen in prototype for international neutrino experiment

Sep 18, 2018

research topic for medical technology students

DUNE collaboration ready to ramp up mass production for first detector module

Mar 31, 2023

research topic for medical technology students

First physics results from prototype detector published

Dec 4, 2020

research topic for medical technology students

Tests start at CERN for large-scale prototype of new technology to detect neutrinos

Oct 10, 2019

research topic for medical technology students

Physicists celebrate as vital component of global neutrino experiment arrives at CERN

Jan 16, 2018

research topic for medical technology students

Excavation of colossal caverns for Fermilab's DUNE experiment completed

Feb 1, 2024

Recommended for you

research topic for medical technology students

Evidence of a new subatomic particle observed

research topic for medical technology students

Trapped in the middle: Billiards with memory framework leads to mathematical questions

Apr 11, 2024

research topic for medical technology students

ATLAS provides first measurement of the W-boson width at the LHC

Apr 10, 2024

research topic for medical technology students

Peter Higgs, physicist who proposed the existence of the 'God particle,' dies at 94

Apr 9, 2024

research topic for medical technology students

FASER measures high-energy neutrino interaction strength

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. 201 Impressive Medical Researches Topics For Students

    research topic for medical technology students

  2. 😱 Medical research topics for college students. 100+ Interesting

    research topic for medical technology students

  3. 🏷️ Simple research topics for medical students. 55 Brilliant Research

    research topic for medical technology students

  4. 🏆 Thesis topics for medical technology students. 100+ Greatest

    research topic for medical technology students

  5. 260 Excellent Medical Research Topics To Focus On

    research topic for medical technology students

  6. 260 Excellent Medical Research Topics To Focus On

    research topic for medical technology students

VIDEO

  1. Introduction of Medical Lab Technology in Hindi || Role || Ethics || Responsibility || First-Aid

  2. Careers in Medical Records Technology (Hindi)

  3. The Revolutionary Medical Breakthroughs

  4. PROGRAM FEATURE: College of Medical Technology

  5. Center for Applied Medical Research (CIMA) University of Navarra

  6. Life-changing medical innovations of 2022

COMMENTS

  1. Medical Laboratory Science Student Research Projects

    Graduate students in the Department of Medical Laboratory Science work with their research mentors on a wide array of topics, as highlighted below. Academic years 2019-2021 Academic year 2018-2019

  2. 77 Exciting Medical Research Topics (2024)

    For many medical students, research is a big driver for entering healthcare. If you're a medical student looking for a research topic, here are some great ideas to work from: Sleep disorders. Poor sleep quality is a growing problem, and it can significantly impact a person's overall health. Examples of sleep disorder-related research topics ...

  3. 399+ Amazing Medtech Research Topics

    Top 20 MedTech Research Topics On Advancements in Medical Imaging Technology. Emerging Trends in Medical Imaging Technology. Applications of Artificial Intelligence in Diagnostic Imaging. Role of Machine Learning in Improving Image Analysis. Advancements in 3D and 4D Medical Imaging. Augmented Reality in Surgical Navigation Systems.

  4. 100+ Interesting Medical Research Topics

    22 Paramedic Research Paper Topics. 23 Surgery Research Topics. 24 Radiology Research Paper Topics. 25 Anatomy and Physiology Research Paper Topics. 26 Healthcare Management Research Paper Topics. 27 Medical Ethics Research Paper Topics. 28 Conclusion. In such a complex and broad field as medicine, writing an original and compelling research ...

  5. 500+ Medical Research Topic Ideas

    Medical Research Topic Ideas. Medical Research Topic Ideas are as follows: The efficacy of mindfulness meditation in reducing symptoms of depression and anxiety. The effects of vitamin D supplementation on bone health in postmenopausal women. The impact of social media on body image and eating disorders in adolescents.

  6. Research in Medical Education

    Research in Medical Education: A Primer for Medical Students. What are examples of successful studies? Successful MedEd research projects are quite diverse with respect to topic and research methodology. The table below lists a small selection of the seminal articles that have shaped how we conceptualize and conduct MedEd research and practice ...

  7. 100+ Healthcare Research Topics (+ Free Webinar)

    Here, we'll explore a variety of healthcare-related research ideas and topic thought-starters across a range of healthcare fields, including allopathic and alternative medicine, dentistry, physical therapy, optometry, pharmacology and public health. NB - This is just the start….

  8. Perception of Technology-Enhanced Learning by Medical Students: an

    Abstract. This review aims to explore the perception of technology-enhanced learning by medical students. From the initial 2947 records found, 38 studies from journals indexed in the Web of Science database were included after screening. Several main topics were isolated, based on a thematic analysis: student's attitude towards e-learning and ...

  9. Ten Topics to Get Started in Medical Informatics Research

    Topic Selection. The initial topics were defined based on current developments in the health informatics field and an increasing number of published manuscripts between 2000 and 2021 (based on title-abstract-keyword screening in Scopus using the keywords "Health" AND "Informatics" AND "domain") in the respective subdomains (Figure 1 A).). After a first definition of the specific ...

  10. Frontiers in Medical Technology

    Rising Stars in MedTech Data Analytics. Yvonne Höller. Amit N. Pujari. Nisha Pillai. 311 views. An innovative journal that explores technologies which can maintain healthy lives and contribute to the global bioeconomy by addressing key medical and healthcare needs.

  11. Current Technology in Advancing Medical Education ...

    We conducted a review of articles published from 2007 to 2018 utilizing an online literature search with PubMed and Google Scholar, as well as a professional medical library search via the EVMS Brickell Medical Science Library System using the following key phrases: medical education or medical students and technology, e-learning, simulators, virtual reality, mobile devices, audience ...

  12. 300+ Medical Research Topics & Ideas for Students to Choose

    Medical research topics are the ideas or concepts related to health and medicine. They often explore new treatments, developments in diagnosis, prevention of illnesses, or even the effects of lifestyle choices. The scope of topics in medicine is vast and can include such aspects: Clinical medicine. Biomedical research.

  13. What do medical students actually need to know about artificial

    With emerging innovations in artificial intelligence (AI) poised to substantially impact medical practice, interest in training current and future physicians about the technology is growing ...

  14. Impact of Technology on Human Behaviors in Medical Professions

    Keywords: healthcare education, medical education, teachers' behavior, students' behavior, human behavior, technology in medical sciences, program development, curriculum development, teacher and student performance . Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements.

  15. Success in medical school: Research

    The American Medical Association offers a wide range of resources and programs to get you started and thriving in research, gaining valuable hands-on experience you can build on throughout your career. With an AMA membership, medical students can take advantage of these opportunities: Research Challenge: March 17, 2023-Feb. 29, 2024 ...

  16. 400+ Radiology Thesis Topics for Research [Updated 2022]

    Introduction. A thesis or dissertation, as some people would like to call it, is an integral part of the Radiology curriculum, be it MD, DNB, or DMRD. We have tried to aggregate radiology thesis topics from various sources for reference. Not everyone is interested in research, and writing a Radiology thesis can be daunting.

  17. 97 questions with answers in MEDICAL TECHNOLOGY

    Dec 24, 2014. Answer. Potassium EDTA (K2 or K3 ) is more preferred, rather than Sodium EDTA, because Sodium EDTA is less soluble in water.10% solution of potassium EDTA (w/v) in distilled water is ...

  18. Top 10 Research Topics To Pursue In Digital Health

    Prevention and detection are the key. Skin Checking Algorithms. A study in Nature in 2020 confirmed that on cleaned data for selected lesions, A.I. is as good as or even superior to human experts in image-based diagnosis. Which is a good thing, considering that there's a constant shortage of dermatologists, especially in rural areas.

  19. 300+ Health Related Research Topics For Medical Students(2023)

    Additionally, we will outline the crucial elements that every health-related research paper should incorporate. Furthermore, we've compiled a comprehensive list of 300+ health-related research topics for medical students in 2023. These include categories like mental health, public health, nutrition, chronic diseases, healthcare policy, and more.

  20. Understanding the Motivation of Medical Technology Students in Manila

    An online questionnaire was deployed to gather data from 328 respondents from all year levels of the Medical Technology department currently enrolled for AY 2021-2022 in a selected university in Manila. The data was analyzed using descriptive statistics using Pearson's correlation coefficient in the SPSS software.

  21. 201 Impressive Medical Researches Topics For Students

    Researchable Medical Research Topics Examples. Discuss the medical implications of male circumcision. The impact of political action on the effectiveness of health care systems. The role of international collaborations in improving medical care. Evaluate the challenges faced in the regulation of biomedical research.

  22. 241 Medical Research Topics

    Consider these current medical research topics: An examination of why people from a region are short. The medical culture of China. The medical culture in England. Multigenerational addiction and how it affects kids. The growth of subjective experience in healthcare. What are the challenges caused by disability.

  23. Any recommendation for a research proposal related to Medical

    I'm a 3rd-year Medical Technology student. Would really appreciate receiving suggestions from professionals here. ... Defining the Ph.D. research topic is a non-trivial task, and will influence a ...

  24. 450+ Technology Research Topics: Best Ideas for Students

    Technology topics for research papers below are very easy to investigate, so you will surely find a bunch of academic resources. Exploring adaptive learning systems in online education. Role of technology in modern archaeology. Impact of immersive technology on journalism. The rise of telehealth services.

  25. AI improves accuracy of skin cancer diagnoses in Stanford Medicine-led

    Researchers from the Karolinska Institute, the Karolinska University Hospital and the University of Nicosia contributed to the research. The study was funded by the National Institutes of Health (grants K24AR075060 and R01AR082109), Radiumhemmet Research, the Swedish Cancer Society and the Swedish Research Council.

  26. New AI method captures uncertainty in medical images

    Massachusetts Institute of Technology. "New AI method captures uncertainty in medical images." ScienceDaily. ScienceDaily, 11 April 2024. <www.sciencedaily.com / releases / 2024 / 04 ...

  27. Graduate and medical students form science policy and communication

    This year, the organizers of IMPACT Indiana — Chaudhuri, Sára Nemes and Valerie Dorsant-Ardon — each shared their research at the science communication day and interfaced with fellow students and lawmakers. Nemes is a PhD student in Medical Neuroscience Graduate Program, and Dorsant-Ardon is a PhD student in Medical and Molecular Genetics.

  28. Engineering students' device could make intubation ...

    TinyTrach, a team of interdisciplinary engineering students from Rice University, has created an innovative pediatric endotracheal tube (ETT) integrated with a camera and anchoring system that ...

  29. Faculty

    Program Director: Shiv Pillai, M.D., Ph.D., Professor of MedicineShiv Pillai is a Professor of Medicine and Health Sciences and Technology at Harvard Medical School. He is the director of the Harvard PhD and MMSc Immunology programs and of the HMS-HST MD student research program. He is also the program director of an NIH-funded Autoimmune Center of Excellence at Massachusetts General Hospital.

  30. ProtoDUNE's argon filling underway, a significant step toward next era

    More from Other Physics Topics. ... Tests start at CERN for large-scale prototype of new technology to detect neutrinos. Oct 10, 2019 ... Medical Xpress. Medical research advances and health news.