Advertisement

Advertisement

A comprehensive review on green buildings research: bibliometric analysis during 1998–2018

  • Environmental Concerns and Pollution control in the Context of Developing Countries
  • Published: 16 February 2021
  • Volume 28 , pages 46196–46214, ( 2021 )

Cite this article

  • Li Ying 1 , 2 ,
  • Rong Yanyu   ORCID: orcid.org/0000-0003-0722-8510 1 , 3 ,
  • Umme Marium Ahmad 1 ,
  • Wang Xiaotong 1 , 3 ,
  • Zuo Jian 4 &
  • Mao Guozhu 1 , 3  

17k Accesses

51 Citations

Explore all metrics

Buildings account for nearly 2/5ths of global energy expenditure. Due to this figure, the 90s witnessed the rise of green buildings (GBs) that were designed with the purpose of lowering the demand for energy, water, and materials resources while enhancing environmental protection efforts and human well-being over time. This paper examines recent studies and technologies related to the design, construction, and overall operation of GBs and determines potential future research directions in this area of study. This global review of green building development in the last two decades is conducted through bibliometric analysis on the Web of Science, via the Science Citation Index and Social Sciences Citation Index databases. Publication performance, countries’ characteristics, and identification of key areas of green building development and popular technologies were conducted via social network analysis, big data method, and S-curve predictions. A total of 5246 articles were evaluated on the basis of subject categories, journals’ performance, general publication outputs, and other publication characteristics. Further analysis was made on dominant issues through keyword co-occurrence, green building technologies by patent analysis, and S-curve predictions. The USA, China, and the UK are ranked the top three countries where the majority of publications come from. Australia and China had the closest relationship in the global network cooperation. Global trends of the top 5 countries showed different country characteristics. China had a steady and consistent growth in green building publications each year. The total publications on different cities had a high correlation with cities’ GDP by Baidu Search Index. Also, barriers and contradictions such as cost, occupant comfort, and energy consumption were discussed in developed and developing countries. Green buildings, sustainability, and energy efficiency were the top three hotspots identified through the whole research period by the cluster analysis. Additionally, green building energy technologies, including building structures, materials, and energy systems, were the most prevalent technologies of interest determined by the Derwent Innovations Index prediction analysis. This review reveals hotspots and emerging trends in green building research and development and suggests routes for future research. Bibliometric analysis, combined with other useful tools, can quantitatively measure research activities from the past and present, thus bridging the historical gap and predicting the future of green building development.

Similar content being viewed by others

green architecture research paper

Environmental-, social-, and governance-related factors for business investment and sustainability: a scientometric review of global trends

Hadiqa Ahmad, Muhammad Yaqub & Seung Hwan Lee

green architecture research paper

The impact of entrepreneurship on economic, social and environmental welfare and its determinants: a systematic review

Thomas Neumann

green architecture research paper

Green building practices to integrate renewable energy in the construction sector: a review

Lin Chen, Ying Hu, … Pow-Seng Yap

Avoid common mistakes on your manuscript.

Introduction

Rapid urban development has resulted in buildings becoming a massive consumer of energy (Yuan et al. 2013 ), liable for 39% of global energy expenditure and 68% of total electricity consumption in the USA (building). In recent years, green buildings (GBs) have become an alternative solution, rousing widespread attention. Also referred to as sustainable buildings, low energy buildings, and eco-buildings, GBs are designed to reduce the strain on environmental resources as well as curb negative effects on human health by efficiently using natural resources, reducing garbage, and ensuring the residents’ well-being through improved living conditions ( Agency USEP Indoor Air Quality ; Building, n.d ). As a strategy to improve the sustainability of the construction industry, GBs have been widely recognized by governments globally, as a necessary step towards a sustainable construction industry (Shen et al. 2017 ).

Zuo and Zhao ( 2014 ) reviewed the current research status and future development direction of GBs, focusing on connotation and research scope, the benefit-difference between GBs and traditional buildings, and various ways to achieve green building development. Zhao et al. ( 2019 ) presented a bibliometric report of studies on GBs between 2000 and 2016, identifying hot research topics and knowledge gaps. The verification of the true performance of sustainable buildings, the application of ICT, health and safety hazards in the development of green projects, and the corporate social responsibility were detected as future agenda. A scientometrics review of research papers on GB sources from 14 architectural journals between 1992 and 2018 was also presented (Wuni et al. 2019a ). The study reported that 44% of the world participated in research focusing on green building implementation; stakeholder management; attitude assessment; regulations and policies; energy efficiency assessment; sustainability performance assessment; green building certification, etc.

With the transmission of the COVID-19 virus, society is now aware of the importance of healthy buildings. In fact, in the past 20 years, the relationship between the built environment and health has aroused increasing research interest in the field of building science. Public spaces and dispersion of buildings in mixed-use neighborhoods are promoted. Furthermore, telecommuting has become a trend since the COVID-19 pandemic, making indoor air quality even more important in buildings, now (Fezi 2020 ).

The system for evaluating the sustainability of buildings has been established for nearly two decades. But, systems dedicated to identifying whether buildings are healthy have only recently appeared (McArthur and Powell 2020 ). People are paying more and more attention to health factors in the built environment. This is reflected in the substantial increase in related academic papers and the increase in health building certification systems such as WELE and Fitwel (McArthur and Powell 2020 ).

Taking the above into consideration, the aim of this study is to examine the stages of development of GBs worldwide and find the barriers and the hotpots in global trends. This study may be beneficial to foreign governments interested in promoting green building and research in their own nations.

Methodology

Overall description of research design.

Since it is difficult to investigate historical data and predict global trends of GBs, literature research was conducted to analyze their development. The number of published reports on a topic in a particular country may influence the level of industrial development in that certain area (Zhang et al. 2017 ). The bibliometric analysis allows for a quantitative assessment of the development and advancement of research related to GBs and where they are from. Furthermore, it has been shown that useful data has been gathered through bibliometrics and patent analysis (Daim et al. 2006 ).

In this report, the bibliometric method, social network analysis (SNA), CiteSpace, big data method, patent analysis, and S-curve analysis are used to assess data.

Bibliometrics analysis

Bibliometrics, a class of scientometrics, is a tool developed in 1969 for library and information science. It has since been adopted by other fields of study that require a quantitative assessment of academic articles to determine trends and predict future research scenarios by compiling output and type of publication, title, keyword, author, institution, and countries data (Ho 2008 ; Li et al. 2017 ).

Social network analysis

Social network analysis (SNA) is applied to studies by modeling network maps using mathematics and statistics (Mclinden 2013 ; Ye et al. 2013 ). In the SNA, nodes represent social actors, while connections between actors stand for their relationships (Zhang et al. 2017 ). Correlations between two actors are determined by their distance from each other. There is a variety of software for the visualization of SNA such as Gephi, Vosviewer, and Pajek. In this research, “Pajek” was used to model the sequence of and relationships between the objects in the map (Du et al. 2015 ).

CiteSpace is an open-source Java application that maps and analyzes trends in publication statistics gathered from the ISI-Thomson Reuters Scientific database and produces graphic representations of this data (Chen 2006 ; Li et al. 2017 ). Among its many functions, it can determine critical moments in the evolution of research in a particular field, find patterns and hotspots, locate areas of rapid growth, and breakdown the network into categorized clusters (Chen 2006 ).

Big data method

The big data method, with its 3V characters (volume, velocity, and variety), can give useful and accurate information. Enormous amounts of data, which could not be collected or computed manually through conventional methods, can now be collected through public data website. Based on large databases and machine learning, the big data method can be used to design, operate, and evaluate energy efficiency and other index combined with other technologies (Mehmood et al. 2019 ). The primary benefit of big data is that the data is gathered from entire populations as opposed to a small sample of people (Chen et al. 2018 ; Ho 2008 ). It has been widely used in many research areas. In this research, we use the “Baidu Index” to form a general idea of the trends in specific areas based on user interests. The popularity of the keywords could imply the user’s behavior, user’s demand, user’s portrait, etc. Thus, we can analyze the products or events to help with developing strategies. However, it must be noted that although big data can quantitatively represent human behavior, it cannot determine what motivates it. With the convergence of big data and technology, there are unprecedented applications in the field of green building for the improved indoor living environment and controlled energy consumption (Marinakis 2020 ).

  • Patent analysis

Bibliometrics, combined with patent analysis, bridges gaps that may exist in historical data when predicting future technologies (Daim et al. 2006 ). It is a trusted form of technical analysis as it is supported by abundant sources and commercial awareness of patents (Guozhu et al. 2018 ; Yoon and Park 2004 ). Therefore, we used patent analysis from the Derwent patent database to conduct an initial analysis and forecast GB technologies.

There are a variety of methods to predict the future development prospects of a technology. Since many technologies are developed in accordance with the S-curve trend, researchers use the S-curve to observe and predict the future trend of technologies (Bengisu and Nekhili 2006 ; Du et al. 2019 ; Liu and Wang 2010 ). The evolution of technical systems generally goes through four stages: emerging, growth, maturity, and decay (saturation) (Ernst 1997 ). We use the logistics model (performed in Loglet Lab 4 software developed by Rockefeller University) to simulate the S-curve of GB-related patents to predict its future development space.

Data collection

The Web of Science (WOS) core collection database is made up of trustworthy and highly ranked journals. It is considered the leading data portal for publications in many fields (Pouris and Pouris 2011 ). Furthermore, the WOS has been cited as the main data source in many recent bibliometric reviews on buildings (Li et al. 2017 ).

Access to all publications used in this paper was attained through the Science Citation Index-Expanded and the Social Sciences Citation Index databases. Because there is no relevant data in WOS before 1998, our examination focuses on 1998 to 2018. With consideration of synonyms, we set a series of green building-related words (see Appendix ) in titles, abstracts, and keywords for bibliometric analysis. For example, sustainable, low energy, zero energy, and low carbon can be substituted for green; housing, construction, and architecture can be a substitute for building (Zuo and Zhao 2014 ).

Analytical procedure

The study was conducted in three stages; data extraction was the first step where all the GB-related words were screened in WOS. Afterwards, some initial analysis was done to get a complete idea of GB research. Then, we made a further analysis on countries’ characteristics, dominant issues, and detected technology hotspots via patent analysis (Fig. 1 ).

figure 1

Analytical procedure of the article

Results and analysis

General results.

Of the 6140 publications searched in the database, 88.67% were articles, followed by reviews (6.80%), papers (3.72%), and others (such as editorial materials, news, book reviews). Most articles were written in English (96.78%), followed by German (1.77%), Spanish (0.91%), and other European languages. Therefore, we will only make a further analysis of the types of articles in English publications.

The subject categories and their distribution

The SCI-E and SSCI database determined 155 subjects from the pool of 5246 articles reviewed, such as building technology, energy and fuels, civil engineering, environmental, material science, and thermodynamics, which suggests green building is a cross-disciplinary area of research. The top 3 research areas of green buildings are Construction & Building Technology (36.98%), Energy & Fuels (30.39%), and Engineering Civil (29.49%), which account for over half of the total categories.

The journals’ performance

The top 10 journals contained 38.8% of the 5246 publications, and the distribution of their publications is shown in Fig. 2 . Impact factors qualitatively indicate the standard of journals, the research papers they publish, and researchers associated with those papers (Huibin et al. 2015 ). Below, we used 2017 impact factors in Journal Citation Reports (JCR) to determine the journal standards.

figure 2

The performance of top10 most productive journals

Publications on green building have appeared in a variety of titles, including energy, building, environment, materials, sustainability, indoor built environment, and thermal engineering. Energy and Buildings, with its impact factor 4.457, was the most productive journal apparently from 2009 to 2017. Sustainability (IF = 2.075) and Journal of Cleaner Production (IF = 5.651) rose to significance rapidly since 2015 and ranked top two journals in 2018.

Publication output

The total publication trends from 1998 to 2018 are shown in Fig. 3 , which shows a staggering increase across the 10 years. Since there was no relevant data before 1998, the starting year is 1998. Before 2004, the number of articles published per year fluctuated. The increasing rate reached 75% and 68% in 2004 and 2007, respectively, which are distinguished in Fig. 3 that leads us to believe that there are internal forces at work, such as appropriate policy creation and enforcement by concerned governments. There was a constant and steady growth in publications after 2007 in the worldwide view.

figure 3

The number of articles published yearly, between 1998 and 2018

The characteristics of the countries

Global distribution and global network were analyzed to illustrate countries’ characteristics. Many tools such as ArcGIS, Bibexcel, Pajek, and Baidu index were used in this part (Fig. 4 ).

figure 4

Analysis procedure of countries’ characteristics

Global distribution of publications

By extracting the authors’ addresses (Mao et al. 2015 ), the number of publications from each place was shown in Fig. 5 and Table 1 . Apparently, the USA was the most productive country accounting for 14.98% of all the publications. China (including Hong Kong and Taiwan) and the UK followed next by 13.29% and 8.27% separately. European countries such as Italy, Spain, and Germany also did a lot of work on green building development.

figure 5

Global geographical distribution of the top 20 publications based on authors’ locations

Global research network

Global networks illustrate cooperation between countries through the analysis of social networks. Academic partnerships among the 10 most productive countries are shown in Fig. 6 . Collaboration is determined by the affiliation of the co-authors, and if a publication is a collaborative research, all countries or institutions will benefit from it (Bozeman et al. 2013 ). Every node denotes a country and their size indicates the amount of publications from that country. The lines linking the nodes denote relationships between countries and their thickness indicates the level of collaboration (Mao et al. 2015 ).

figure 6

The top 10 most productive countries had close academic collaborative relationships

It was obvious that China and Australia had the strongest linking strength. Secondly, China and the USA, China, and the UK also had close cooperation with each other. Then, the USA with Canada and South Korea followed. The results indicated that cooperation in green building research was worldwide. At the same time, such partnerships could help countries increase individual productivity.

Global trend of publications

The time-trend analysis of academic inputs to green building from the most active countries is shown in Fig. 7 .

figure 7

The publication trends of the top five countriesbetween 1998 and 2018 countries areshown in Fig 7 .

Before 2007, these countries showed little growth per year. However, they have had a different, growing trend since 2007. The USA had the greatest proportion of publications from 2007, which rose obviously each year, reaching its peak in 2016 then declined. The number of articles from China was at 13 in 2007, close to the USA. Afterwards, there was a steady growth in China. Not until 2013 did China have a quick rise from 41 publications to 171 in 2018. The UK and Italy had a similar growth trend before 2016 but declined in the last 2 years.

Further analysis on China, the USA, and the UK

Green building development in china, policy implementation in china.

Green building design started in China with the primary goal of energy conservation. In September 2004, the award of “national green building innovation” of the Ministry of Construction was launched, which kicked off the substantive development of GB in China. As we can see from Fig. 7 , there were few publications before 2004 in China. In 2004, there were only 4 publications on GB.

The Ministry of Construction, along with the Ministry of Science and Technology, in 2005, published “The Technical Guidelines for Green Buildings,” proposing the development of GBs (Zhang et al. 2018 ). In June 2006, China had implemented the first “Evaluation Standard for Green Building” (GB/T 50378-2006), which promoted the study of the green building field. In 2007, the demonstration of “100 projects of green building and 100 projects of low-energy building” was launched. In August 2007, the Ministry of Construction issued the “Green Building Assessment Technical Regulations (try out)” and the “Green Building Evaluation Management,” following Beijing, Tianjin, Chongqing, and Shanghai, more than 20 provinces and cities issued the local green building standards, which promoted GBs in large areas in China.

At the beginning of 2013, the State Council issued the “Green Building Action Plan,” so the governments at all levels continuously issued incentive policies for the development of green buildings (Ye et al. 2015 ). The number of certified green buildings has shown a blowout growth trend throughout the country, which implied that China had arrived at a new chapter of development.

In August 2016, the Evaluation Standard for Green Renovation of Existing Buildings was released, encouraging the rise of residential GB research. Retrofitting an existing building is often more cost-effective than building a new facility. Designing significant renovations and alterations to existing buildings, including sustainability measures, will reduce operating costs and environmental impacts and improve the building’s adaptability, durability, and resilience.

At the same time, a number of green ecological urban areas have emerged (Zhang et al. 2018 ). For instance, the Sino-Singapore Tianjin eco-city is a major collaborative project between the two governments. Located in the north of Tianjin Binhai New Area, the eco-city is characterized by salinization of land, lack of freshwater, and serious pollution, which can highlight the importance of eco-city construction. The construction of eco-cities has changed the way cities develop and has provided a demonstration of similar areas.

China has many emerging areas and old centers, so erecting new, energy efficiency buildings and refurbishing existing buildings are the best steps towards saving energy.

Baidu Search Index of “green building”

In order to know the difference in performance among cities in China, this study employs the big data method “Baidu Index” for a smart diagnosis and assessment on green building at finer levels. “Baidu Index” is not equal to the number of searches but is positively related to the number of searches, which is calculated by the statistical model. Based on the keyword search of “green building” in the Baidu Index from 2013 to 2018, the top 10 provinces or cities were identified (Fig. 8 ).

figure 8

Baidu Search Index of green building in China 2013–2018 from high to low

The top 10 search index distributes the east part and middle part of China, most of which are the high GDP provinces (Fig. 9 ). Economically developed cities in China already have a relatively mature green building market. Many green building projects with local characteristics have been established (Zhang et al. 2018 ).

figure 9

TP GDP & Search Index were highly related

We compared the city search index (2013–2018) with the total publications of different cities by the authors’ address and the GDP in 2018. The correlation coefficient between the TP and the search index was 0.9, which means the two variables are highly related. The correlation coefficient between the TP and GDP was 0.73, which also represented a strong relationship. We inferred that cities with higher GDP had more intention of implementation on green buildings. The stronger the local GDP, the more relevant the economic policies that can be implemented to stimulate the development of green buildings (Hong et al. 2017 ). Local economic status (Yang et al. 2018 ), property developer’s ability, and effective government financial incentives are the three most critical factors for green building implementation (Huang et al. 2018 ). However, Wang et al. ( 2017 ) compared the existing green building design standards and found that they rarely consider the regional economy. Aiming at cities at different economic development phases, the green building design standards for sustainable construction can effectively promote the implementation of green buildings. Liu et al. ( 2020 ) mainly discussed the impact of sustainable construction on GDP. According to the data, there is a strong correlation between the percentage of GDP increments in China and the amount of sustainable infrastructure (Liu et al. 2020 ). The construction of infrastructure can create jobs and improve people’s living standards, increasing GDP as a result (Liu et al. 2020 ).

Green building development in the USA and the UK

The sign that GBs were about to take-off occurred in 1993—the formation of the United States Green Building Council (USGBC), an independent agency. The promulgation of the Energy Policy Act 2005 in the USA was the key point in the development of GBs. The Energy Policy Act 2005 paid great attention to green building energy saving, which also inspired publications on GBs.

Leadership in Energy and Environmental Design (LEED), a popular metric for sustainable buildings and homes (Jalaei and Jrade 2015 ), has become a thriving business model for green building development. It is a widely used measure of how buildings affect the environment.

Another phenomenon worth discussion, combined with Fig. 7 , the increasing rate peaked at 75% in 2004 and 68% in 2007 while the publications of the UK reached the peak in 2004 and 2007. The UK Green Building Council (UKGBC), a United Kingdom membership organization, created in 2007 with regard to the 2004 Sustainable Building Task Group Report: Better Buildings - Better Lives, intends to “radically transform,” all facets of current and future built environment in the UK. It is predicted that the establishment of the UKGBC promoted research on green buildings.

From the China, the USA, and the UK experience, it is predicted that the foundation of a GB council or the particular projects from the government will promote research in this area.

Barriers and contradicts of green building implement

On the other hand, it is obvious that the USA, the UK, and Italian publications have been declining since 2016. There might be some barriers and contradicts on the adoption of green buildings for developed countries. Some articles studied the different barriers to green building in developed and developing countries (Chan et al. 2018 ) (Table 2 ). Because the fraction of energy end-uses is different, the concerns for GBs in the USA, China, and the European Union are also different (Cao et al. 2016 ).

It is regarded that higher cost is the most deterring barrier to GB development across the globe (Nguyen et al. 2017 ). Other aspects such as lack of market demand and knowledge were also main considerations of green building implementation.

As for market demand, occupant satisfaction is an important factor. Numerous GB post-occupancy investigations on occupant satisfaction in various communities have been conducted.

Paul and Taylor ( 2008 ) surveyed personnel ratings of their work environment with regard to ambience, tranquility, lighting, sound, ventilation, heat, humidity, and overall satisfaction. Personnel working in GBs and traditional buildings did not differ in these assessments. Khoshbakht et al. ( 2018 ) identified two global contexts in spite of the inconclusiveness: in the west (mainly the USA and Britain), users experienced no significant differences in satisfaction between green and traditional buildings, whereas, in the east (mainly China and South Korea), GB user satisfaction is significantly higher than traditional building users.

Dominant issues

The dominant issues on different stages.

Bibliometric data was imported to CiteSpace where a three-stage analysis was conducted based on development trends: 1998–2007 initial development; 2008–2015 quick development; 2016–2018 differentiation phase (Fig. 10 ).

figure 10

Analysis procedure of dominant issues

CiteSpace was used for word frequency and co-word analysis. The basic principle of co-word analysis is to count a group of words appearing at the same time in a document and measure the close relationship between them by the number of co-occurrences. The top 50 levels of most cited or occurred items from each slice (1998 to 2007; 2008 to 2015; 2016 to 2018) per year were selected. After merging the similar words (singular or plural form), the final keyword knowledge maps were generated as follows.

Initial phase (1998–2007)

In the early stage (Fig. 11 ), “green building” and “sustainability” were the main two clusters. Economics and “environmental assessment method” both had high betweenness centrality of 0.34 which were identified as pivotal points. Purple rings denote pivotal points in the network. The relationships in GB were simple at the initial stage of development.

figure 11

Co-word analysis from 1998–2007

Sustainable construction is further enabled with tools that can evaluate the entire life cycle, site preparation and management, materials and their reusability, and the reduction of resource and energy consumption. Environmental building assessment methods were incorporated to achieve sustainable development, especially at the initial project appraisal stage (Ding 2008 ). Green Building Challenge (GBC) is an exceptional international research, development, and dissemination effort for developing building environmental performance assessments, primarily to help researchers and practitioners in dealing with difficult obstacles in assessing performance (Todd et al. 2001 ).

Quick development (2008–2015)

In the rapid growing stage (Fig. 12 ), pivot nodes and cluster centers were more complicated. Besides “green building” and “sustainability,” “energy efficiency” was the third hotspot word. The emergence of new vocabulary in the keyword network indicated that the research had made progress during 2008 – 2015. Energy performance, energy consumption, natural ventilation, thermal comfort, renewable energy, and embodied energy were all energy related. Energy becomes the most attractive field in achieving sustainability and green building. Other aspects such as “life cycle assessment,” “LEED,” and “thermal comfort” became attractive to researchers.

figure 12

Co-word analysis from 2008–2015

The life cycle assessment (LCA) is a popular technique for the analysis of the technical side of GBs. LCA was developed from environmental assessment and economic analysis which could be a useful method to evaluate building energy efficiency from production and use to end-use (Chwieduk 2003 ). Much attention has been paid to LCA because people began to focus more on the actual performance of the GBs. Essentially, LCA simplifies buildings into systems, monitoring, and calculating mass flow and energy consumption over different stages in their life cycle.

Leadership in Energy and Environmental Design (LEED) was founded by the USGBC and began in the early twenty-first century (Doan et al. 2017 ). LEED is a not-for-profit project based on consumer demand and consensus that offers an impartial GB certification. LEED is the preferred building rating tool globally, with its shares growing rapidly. Meanwhile, UK’s Building Research Establishment Assessment Method (BREEAM) and Japan’s Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) have been in use since the beginning of the twenty-first century, while New Zealand’s Green Star is still in its earlier stages. GBs around the world are made to suit regional climate concerns and need.

In practice, not all certified green buildings are necessarily performing well. Newsham et al. ( 2009 ) gathered energy-use information from 100 LEED-certified non-residential buildings. Results indicated that 28–35% of LEED structures actually consumed higher amounts of energy than the non-LEED structures. There was little connection in its actual energy consumption to its certification grade, meaning that further improvements are required for establishing a comprehensive GB rating metric to ensure consistent performance standards.

Thermal comfort was related to many aspects, such as materials, design scheme, monitoring system, and human behaviors. Materials have been a focus area for improving thermal comfort and reducing energy consumption. Wall (Schossig et al. 2005 ), floor (Ansuini et al. 2011 ), ceiling (Hu et al. 2018 ), window, and shading structures (Shen and Li 2016 ) were building envelopes which had been paid attention to over the years. Windows were important envelopes to improve thermal comfort. For existing and new buildings, rational use of windows and shading structures can enhance the ambient conditions of buildings (Mcleod et al. 2013 ). It was found that redesigning windows could reduce the air temperature by 2.5% (Elshafei et al. 2017 ), thus improving thermal comfort through passive features and reducing the use of active air conditioners (Perez-Fargallo et al. 2018 ). The monitoring of air conditioners’ performance could also prevent overheating of buildings (Ruellan and Park 2016 ).

Differentiation phase (2016–2018)

In the years from 2016 to 2018 (Fig. 13 ), “green building,” ”sustainability,” and “energy efficiency” were still the top three hotspots in GB research.

figure 13

Co-word analysis from 2016–2018

Zero-energy building (ZEB) became a substitute for low energy building in this stage. ZEB was first introduced in 2000 (Cao et al. 2016 ) and was believed to be the solution to the potential ramifications of future energy consumption by buildings (Liu et al. 2019 ). The EU has been using ZEB standards in all of its new building development projects to date (Communuties 2002 ). The USA passed the Energy Independence and Security Act of 2007, aiming for zero net energy consumption of 1 out of every 2 commercial buildings that are yet to be built by 2040 and for all by 2050 (Sartori et al. 2012 ). Energy consumption became the most important factor in new building construction.

Renewable energy was a key element of sustainable development for mankind and nature (Zhang et al. 2013 ). Using renewable energy was an important feature of ZEBs (Cao et al. 2016 ; Pulselli et al. 2007 ). Renewable energy, in the form of solar, wind, geothermal, clean bioenergy, and marine can be used in GBs. Solar energy has been widely used in recent years while wind energy is used locally because of its randomness and unpredictable features. Geothermal energy is mainly utilized by ground source heat pump (GSHP), which has been lauded as a powerful energy system for buildings (Cao et al. 2016 ). Bioenergy has gained much popularity as an alternative source of energy around the globe because it is more stable and accessible than other forms of energy (Zhang et al. 2015 ). There is relatively little use of marine energy, yet this may potentially change depending on future technological developments (Ellabban et al. 2014 ).

Residential buildings receive more attention because people spend 90% of their time inside. Contrary to popular belief, the concentration of contaminants found indoors is more than the concentration outside, sometimes up to 10 times or even 100 times more (agency). The renovation of existing buildings can save energy, upgrade thermal comfort, and improve people’s living conditions.

Energy is a substantial and widely recognized cost of building operations that can be reduced through energy-saving and green building design. Nevertheless, a consensus has been reached by academics and those in building-related fields that GBs are significantly more energy efficient than traditional buildings if designed, constructed, and operated with meticulousness (Wuni et al. 2019b ). The drive to reduce energy consumption from buildings has acted as a catalyst in developing new technologies.

Compared with the article analysis, patents can better reflect the practical technological application to a certain extent. We extracted the information of green building energy-related patent records between 1998 and 2018 from the Derwent Innovations Index database. The development of a technique follows a path: precursor–invention–development–maturity. This is commonly known as an S-type growth (Mao et al. 2018 ). Two thousand six hundred thirty-eight patents were found which were classified into “Derwent Manual Code,” which is the most distinct feature just like “keywords” in the Derwent Innovations Index. Manual codes refer to specific inventions, technological innovations, and unique codes for their applications. According to the top 20 Derwent Manual Code which accounted for more than 80% of the total patents, we classified the hotspots patents into three fields for further S-curve analysis, which are “structure,” “material,” and “energy systems” (Table 3 ).

Sustainable structural design (SSD) has gained a lot of research attention from 2006 to 2016 (Pongiglione and Calderini 2016 ). The S-curve of structure* (Fig. 14 ) has just entered the later period of the growth stage, accounting for 50% of the total saturation in 2018. Due to its effectiveness and impact, SSD has overtime gained recognition and is now considered by experts to be a prominent tool in attaining sustainability goals (Pongiglione and Calderini 2016 ).

figure 14

The S-curves of different Structure types from patents

Passive design is important in energy saving which is achieved by appropriately orientating buildings and carefully designing the building envelope. Building envelopes, which are key parts of the energy exchange between the building and the external environment, include walls, roofs, windows, and floors. The EU increased the efficiency of its heat-regulating systems by revamping building envelopes as a primary energy-saving task during 2006 to 2016 (Cao et al. 2016 ).

We analyzed the building envelope separately. According to the S-curve (Fig. 14 ), the number of patents related to GB envelops are in the growth stage. At present, building envelops such as walls, roofs, windows, and even doors have not reached 50% of the saturated quantity. Walls and roofs are two of the most important building envelops. The patent contents of walls mainly include wall materials and manufacturing methods, modular wall components, and wall coatings while technologies about roofs mainly focus on roof materials, the combination of roof and solar energy, and roof structures. Green roofs are relatively new sustainable construction systems because of its esthetic and environmental benefits (Wei et al. 2015 ).

The material resources used in the building industry consume massive quantities of natural and energy resources consumptions (Wang et al. 2018 ). The energy-saving building material is economical and environmentally friendly, has low coefficient heat conductivity, fast curing speed, high production efficacy, wide raw material source and flame, and wear resistance properties (Zhang et al. 2014 ). Honeycomb structures were used for insulating sustainable buildings. They are lightweight and conserve energy making them eco-friendly and ideal for construction (Miao et al. 2011 ).

According to the S-curve (Fig. 15 ), it can be seen that the number of patents on the GB “material” is in the growth stage. It is expected that the number of patents will reach 50% of the total saturation in 2022.

figure 15

The S-curves of a different material from patents

Building material popularly used comprised of cement, concrete, gypsum, mortar compositions, and boards. Cement is widely used in building material because of its easy availability, strong hardness, excellent waterproof and fireproof performance, and low cost. The S-curve of cement is in the later period of the growth stage, which will reach 90% of the total saturation in 2028. Composite materials like Bamcrete (bamboo-concrete composite) and natural local materials like Rammed Earth had better thermal performance compared with energy-intensive materials like bricks and cement (Kandya and Mohan 2018 ). Novel bricks synthesized from fly ash and coal gangue have better advantages of energy saving in brick production phases compared with that of conventional types of bricks (Zhang et al. 2014 ). For other materials like gypsum or mortar, the numbers of patents are not enough for S-curve analysis. New-type green building materials offer an alternative way to realize energy-saving for sustainable constructions.

Energy system

The energy system mainly included a heating system and ventilation system according to the patent analysis. So, we analyzed solar power systems and air conditioning systems separately. Heat* included heat collecting panels and a fluid heating system.

The results indicated that heat*-, solar-, and ventilation-related technologies were in the growth stage which would reach 50% of the total saturation in 2022 (Fig. 16 ). Photovoltaic technology is of great importance in solar energy application (Khan and Arsalan 2016 ).

figure 16

The S-curves of energy systems from patents

On the contrary, air conditioning technologies had entered into the mature stage after a decade of development. It is worth mentioning that the design of the fresh air system of buildings after the COVID-19 outbreak is much more important. With people spending the majority of their time inside (Liu et al. 2019 ), volatile organic compounds, formaldehyde, and carbon dioxide received the most attention worldwide (Wei et al. 2015 ). Due to health problems like sick building syndrome, and more recently since the COVID-19 outbreak, the supply of fresh air can drastically ameliorate indoor air quality (IAQ) (Liu et al. 2019 ). Regulating emissions from materials, enhanced ventilation, and monitoring air indoors are the main methods used in GBs for maintaining IAQ (Wei et al. 2015 ). Air circulation frequency and improved air filtration can reduce the risk of spreading certain diseases, while controlling the airflow between rooms can also prevent cross-infections. Poor indoor air quality and ventilation provide ideal conditions for the breeding and spreading of viruses by air (Chen et al. 2019 ). A diverse range of air filters coupled with a fresh air supply system should be studied. A crucial step forward is to create a cost-effective, energy-efficient, intelligent fresh air supply system (Liu et al. 2017 ) to monitor, filter outdoor PM2.5 (Chen et al. 2017 ), and saving building energy (Liu and Liu 2005 ). Earth-air heat exchanger system (EAHE) is a novel technology that supplies fresh air using underground soil heat (Chen et al. 2019 ).

A total of 5246 journal articles in English from the SCI and SSCI databases published in 1998–2018 were reviewed and analyzed. The study revealed that the literature on green buildings has grown rapidly over the past 20 years. The findings and results are summarized:

Data analysis revealed that GB research is distributed across various subject categories. Energy and Buildings, Building and Environment, Journal of Cleaner Production, and Sustainability were the top journals to publish papers on green buildings.

Global distribution was done to see the green building study worldwide, showing that the USA, China, and the UK ranked the top three countries, accounting for 14.98%, 13.29%, and 8.27% of all the publications respectively. Australia and China had the closest relationship on green building research cooperation worldwide.

Further analysis was made on countries’ characteristics, dominant issues through keyword co-occurrence, green building technology by patent analysis, and S-curve prediction. Global trends of the top 5 countries showed different characteristics. China had a steady and consistent growth in publications each year while the USA, the UK, and Italy were on a decline from 2016. The big data method was used to see the city performance in China, finding that the total publications had a high correlation with the city’s GDP and Baidu Search Index. Policies were regarded as the stimulation for green building development, either in China or the UK. Also, barriers and contradictions such as cost, occupants’ comfort, and energy consumption were discussed about the developed and developing countries.

Cluster and content analysis via CiteSpace identified popular and trending research topics at different stages of development; the top three hotspots were green buildings, sustainability, and energy efficiency throughout the whole research period. Energy efficiency has shifted from low to zero energy buildings or even beyond it in recent years. Energy efficiency was the most important drive to achieve green buildings while LCA and LEED were the two potential ways to evaluate building performance. Thermal comfort and natural ventilation of residential buildings became a topic of interest to the public.

Then, we combined the keywords with “energy” to make further patent analysis in Derwent Innovations Index. “Structure,” “material,” and “energy systems” were three of the most important types of green building technologies. According to S-curve analysis, most of the technologies of energy-saving buildings were on the fast-growing trend, and even though there were conflicts and doubts in different countries on GB adoption, it is still a promising field.

Future directions

An establishment of professional institutes or a series of policies and regulations on green building promulgated by government departments will promote research development (as described in the “Further Analysis on China, the USA, and the UK” section). Thus, a policy enacted by a formal department is of great importance in this particular field.

Passive design is important in energy saving which is ensured by strategically positioning buildings and precisely engineering the building envelope, i.e., roof, walls, windows, and floors. A quality, the passive-design house is crucial to achieving sustained thermal comfort, low-carbon footprint, and a reduced gas bill. The new insulation material is a promising field for reducing building heat loss and energy consumed. Healthy residential buildings have become a focus of future development due to people’s pursuit of a healthy life. A fresh air supply system is important for better indoor air quality and reduces the risk of transmission of several diseases. A 2020 study showed the COVID-19 virus remains viable for only 4 hours on copper compared to 24 h on cardboard. So, antiviral materials will be further studied for healthy buildings (Fezi 2020 ).

With the quick development of big data method and intelligent algorithms, artificial intelligence (AI) green buildings will be a trend. The core purpose of AI buildings is to achieve optimal operating conditions through the accurate analysis of data, collected by sensors built into green buildings. “Smart buildings” and “Connected Buildings” of the future, fitted with meters and sensors, can collect and share massive amounts of information regarding energy use, water use, indoor air quality, etc. Analyzing this data can determine relationships and patterns, and optimize the operation of buildings to save energy without compromising the quality of the indoor environment (Lazarova-Molnar and Mohamed 2019 ).

The major components of green buildings, such as building envelope, windows, and skylines, should be adjustable and versatile in order to get full use of AI. A digital control system can give self-awareness to buildings, adjusting room temperature, indoor air quality, and air cooling/heating conditions to control power consumption, and make it sustainable (Mehmood et al. 2019 ).

Concerns do exist, for example, occupant privacy, data security, robustness of design, and modeling of the AI building (Maasoumy and Sangiovanni-Vincentelli 2016 ). However, with increased data sources and highly adaptable infrastructure, AI green buildings are the future.

This examination of research conducted on green buildings between the years 1998 and 2018, through bibliometric analysis combined with other useful tools, offers a quantitative representation of studies and data conducted in the past and present, bridging historical gaps and forecasting the future of green buildings—providing valuable insight for academicians, researchers, and policy-makers alike.

Agency USEP Indoor Air Quality https://www.epa.gov/indoor-air-quality-iaq.

Ansuini R, Larghetti R, Giretti A, Lemma M (2011) Radiant floors integrated with PCM for indoor temperature control. Energy Build 43:3019–3026. https://doi.org/10.1016/j.enbuild.2011.07.018

Article   Google Scholar  

Bengisu M, Nekhili R (2006) Forecasting emerging technologies with the aid of science and technology databases. Technol Forecast Soc Chang 73:835–844. https://doi.org/10.1016/j.techfore.2005.09.001

Bozeman B, Fay D, Slade CP (2013) Research collaboration in universities and academic entrepreneurship: the-state-of-the-art. J Technol Transf 38:1–67. https://doi.org/10.1007/s10961-012-9281-8

Building AG Importance of Green Building. https://www.greenbuilt.org/about/importance-of-green-building

Cao XD, Dai XL, Liu JJ (2016) Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build 128:198–213. https://doi.org/10.1016/j.enbuild.2016.06.089

Chan APC, Darko A, Olanipekun AO, Ameyaw EE (2018) Critical barriers to green building technologies adoption in developing countries: the case of Ghana. J Clean Prod 172:1067–1079. https://doi.org/10.1016/j.jclepro.2017.10.235

Chen CC, Lo TH, Tsay YS, Lee CY, Liu KS (2017) Application of a novel formaldehyde sensor with MEMS (micro electro mechanical systems) in indoor air quality test and improvement in medical spaces. Appl Ecol Environ Res 15:81–89. https://doi.org/10.15666/aeer/1502_081089

Chen CM (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 57:359–377. https://doi.org/10.1002/asi.20317

Chen X, Lu WS, Xue F, Xu JY (2018) A cost-benefit analysis of green buildings with respect to construction waste minimization using big data in Hong Kong. J Green Build 13:61–76. https://doi.org/10.3992/1943-4618.13.4.61

Chen XY, Niu RP, Lv LN, Kuang DQ, LOP (2019) Discussion on existing problems of fresh air system. In: 4th International Conference on Advances in Energy Resources and Environment Engineering, vol 237. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol. doi: https://doi.org/10.1088/1755-1315/237/4/042030

Chwieduk D (2003) Towards sustainable-energy buildings. Appl Energy 76:211–217. https://doi.org/10.1016/s0306-2619(03)00059-x

Communuties CotE (2002) Directive of the European parliament and the council.

Daim TU, Rueda G, Martin H, Gerdsri P (2006) Forecasting emerging technologies: use of bibliometrics and patent analysis. Technol Forecast Soc Chang 73:981–1012. https://doi.org/10.1016/j.techfore.2006.04.004

Ding GKC (2008) Sustainable construction - the role of environmental assessment tools. J Environ Manag 86:451–464. https://doi.org/10.1016/j.jenvman.2006.12.025

Doan DT, Ghaffarianhoseini A, Naismith N, Zhang TR, Ghaffarianhoseini A, Tookey J (2017) A critical comparison of green building rating systems. Build Environ 123:243–260. https://doi.org/10.1016/j.buildenv.2017.07.007

Du HB, Li BL, Brown MA, Mao GZ, Rameezdeen R, Chen H (2015) Expanding and shifting trends in carbon market research: a quantitative bibliometric study. J Clean Prod 103:104–111. https://doi.org/10.1016/j.jclepro.2014.05.094

Du HB, Liu DY, Lu ZM, Crittenden J, Mao GZ, Wang S, Zou HY (2019) Research development on sustainable urban infrastructure from 1991 to 2017: a bibliometric analysis to inform future innovations. Earth Future 7:718–733. https://doi.org/10.1029/2018ef001117

Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sust Energ Rev 39:748–764. https://doi.org/10.1016/j.rser.2014.07.113

Elshafei G, Negm A, Bady M, Suzuki M, Ibrahim MG (2017) Numerical and experimental investigations of the impacts of window parameters on indoor natural ventilation in a residential building. Energy Build 141:321–332. https://doi.org/10.1016/j.enbuild.2017.02.055

Ernst H (1997) The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Bus Econ 9:361–381. https://doi.org/10.1023/A:1007921808138

Fezi BA (2020) Health engaged architecture in the context of COVID-19. J Green Build 15:185–212

Guozhu et al (2018) Bibliometric analysis of insights into soil remediation. J Soils Sediments 18:2520–2534

Ho S-Y (2008) Bibliometric analysis of biosorption technology in water treatment research from 1991 to 2004. Int J Environ Pollut 34:1–13. https://doi.org/10.1504/ijep.2008.020778

Article   CAS   Google Scholar  

Hong WX, Jiang ZY, Yang Z, (2017) Iop (2017) Analysis on the restriction factors of the green building scale promotion based on DEMATEL. In: 2nd International Conference on Advances in Energy Resources and Environment Engineering, vol 59. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol. doi: https://doi.org/10.1088/1755-1315/59/1/012064

Hu J, Kawaguchi KI, Ma JJB (2018) Retractable membrane ceiling on indoor thermal environment of residential buildings. Build Environ 146:289–298. https://doi.org/10.1016/j.buildenv.2018.09.035

Huang N, Bai LB, Wang HL, Du Q, Shao L, Li JT (2018) Social network analysis of factors influencing green building development in China. Int J Environ Res Public Health 15:16. https://doi.org/10.3390/ijerph15122684

Huibin D, Guozhu M, Xi L, Jian Z, Linyuan W (2015) Way forward for alternative energy research: a bibliometric analysis during 1994-2013. Sustain Energy Rev 48:276–286

Jalaei F, Jrade A (2015) Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings. Sustain Cities Soc 18(95-10718):95–107. https://doi.org/10.1016/j.scs.2015.06.007

Kandya A, Mohan M (2018) Mitigating the urban heat island effect through building envelope modifications. Energy Build 164:266–277. https://doi.org/10.1016/j.enbuild.2018.01.014

Khan J, Arsalan MH (2016) Solar power technologies for sustainable electricity generation - a review. Renew Sust Energ Rev 55:414–425. https://doi.org/10.1016/j.rser.2015.10.135

Khoshbakht et al (2018) Are green buildings more satisfactory? A review of global evidence. Habitat Int 74:57–65

Lazarova-Molnar S, Mohamed N (2019) Collaborative data analytics for smart buildings: opportunities and models. Clust Comput 22:1065–1077. https://doi.org/10.1007/s10586-017-1362-x

Li X, Wu P, Shen GQ, Wang X, Teng Y (2017) Mapping the knowledge domains of building information modeling (BIM): a bibliometric approach. Autom Constr 84:195–206. https://doi.org/10.1016/j.autcon.2017.09.011

Liu CY, Wang JC (2010) Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis. Scientometrics 82:21–36

Liu GL et al (2017) A review of air filtration technologies for sustainable and healthy building ventilation. Sustain Cities Soc 32:375–396. https://doi.org/10.1016/j.scs.2017.04.011

Liu J, Liu GQ (2005) Some indoor air quality problems and measures to control them in China Indoor. Built Environ 14:75–81. https://doi.org/10.1177/1420326x05050362

Liu ZB, Li WJ, Chen YZ, Luo YQ, Zhang L (2019) Review of energy conservation technologies for fresh air supply in zero energy buildings. Appl Therm Eng 148:544–556. https://doi.org/10.1016/j.applthermaleng.2018.11.085

Liu ZJ, Pyplacz P, Ermakova M, Konev P (2020) Sustainable construction as a competitive advantage. Sustainability 12:13. https://doi.org/10.3390/su12155946

Maasoumy M, Sangiovanni-Vincentelli A (2016) Smart connected buildings design automation: foundations and trends found trends. Electron Des Autom 10:1–3. https://doi.org/10.1561/1000000043

Mao G, Zou H, Chen G, Du H, Zuo J (2015) Past, current and future of biomass energy research: a bibliometric analysis. Sustain Energy Rev 52:1823–1833. https://doi.org/10.1016/j.rser.2015.07.141

Mao GZ, Shi TT, Zhang S, Crittenden J, Guo SY, Du HB (2018) Bibliometric analysis of insights into soil remediation. J Soils Sediments 18:2520–2534. https://doi.org/10.1007/s11368-018-1932-4

Marinakis V (2020) Big data for energy management and energy-efficient buildings. Energies 13:18. https://doi.org/10.3390/en13071555

McArthur JJ, Powell C (2020) Health and wellness in commercial buildings: systematic review of sustainable building rating systems and alignment with contemporary research. Build Environ 171:18. https://doi.org/10.1016/j.buildenv.2019.106635

Mcleod RS, Hopfe CJ, Kwan A (2013) An investigation into future performance and overheating risks in Passivhaus dwellings. Build Environ 70:189–209

Mclinden D (2013) Concept maps as network data: analysis of a concept map using the methods of social network analysis. Eval Program Plann 36:40–48

Mehmood MU, Chun D, Zeeshan, Han H, Jeon G, Chen K (2019) A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build 202:13. https://doi.org/10.1016/j.enbuild.2019.109383

Miao XL, Yao Y, Wang Y, Chu YP (2011) Experimental research on the sound insulation property of lightweight composite paper honeycomb core wallboard. In: Jiang ZY, Li SQ, Zeng JM, Liao XP, Yang DG (eds) Manufacturing Process Technology, Pts 1-5, vol 189-193. Advanced Materials Research. Trans Tech Publications Ltd, Stafa-Zurich, pp 1334–1339. https://doi.org/10.4028/www.scientific.net/AMR.189-193.1334

Chapter   Google Scholar  

Newsham GR, Mancini S, Energy BJ (2009) Do LEED-certified buildings save energy? Yes, but…. Energy Build 41:897–905

Nguyen HT, Skitmore M, Gray M, Zhang X, Olanipekun AO (2017) Will green building development take off? An exploratory study of barriers to green building in Vietnam. Resour Conserv Recycl 127:8–20

Paul WL, Taylor PA (2008) A comparison of occupant comfort and satisfaction between a green building and a conventional building. Build Environ 43:1858–1870

Perez-Fargallo A, Rubio-Bellido C, Pulido-Arcas JA, Gallego-Maya I, Guevara-Garcia FJ (2018) Influence of adaptive comfort models on energy improvement for housing in cold areas. Sustainability 10:15. https://doi.org/10.3390/su10030859

Pongiglione M, Calderini C (2016) Sustainable structural design: comprehensive literature review. J Struct Eng 142:15. https://doi.org/10.1061/(asce)st.1943-541x.0001621

Pouris A, Pouris A (2011) Scientometrics of a pandemic: HIV/AIDS research in South Africa and the World. Scientometrics 86:541–552

Pulselli RM, Simoncini E, Pulselli FM, Bastianoni S (2007) Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy Build 39:620–628

Ruellan M, Park H, Bennacer R (2016) Residential building energy demand and thermal comfort: thermal dynamics of electrical appliances and their impact. Energy Build 130:46–54. https://doi.org/10.1016/j.enbuild.2016.07.029

Sartori I, Napolitano A, Voss K (2012) Net zero energy buildings: a consistent definition framework. Energy Build 48:220–232. https://doi.org/10.1016/j.enbuild.2012.01.032

Schossig P, Henning HM, Gschwander S, Haussmann T (2005) Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Mater Solar Cells 89:297-306

Shen C, Li XT (2016) Solar heat gain reduction of double glazing window with cooling pipes embedded in venetian blinds by utilizing natural cooling. Energy Build 112:173–183. https://doi.org/10.1016/j.enbuild.2015.11.073

Shen L, Yan H, Fan H, Wu Y, Zhang Y (2017) An integrated system of text mining technique and case-based reasoning (TM-CBR) for supporting green building design. S0360132317303797. Build Environ 124:388–401

Todd JA, Crawley D, Geissler S, Lindsey G (2001) Comparative assessment of environmental performance tools and the role of the Green Building Challenge. Build Res Inf 29:324–335

Wang H, Chiang PC, Cai Y, Li C, Wang X, Chen TL, Wei S, Huang Q (2018) Application of wall and insulation materials on green building: a review. Sustainability 10:21. https://doi.org/10.3390/su10093331

Wang J, Liu Y, Ren J, Cho S, (2017) Iop (2017) A brief comparison of existing regional green building design standards in China. In: 2nd International Conference on Advances in Energy Resources and Environment Engineering, vol 59. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol. doi: https://doi.org/10.1088/1755-1315/59/1/012013

Wei WJ, Ramalho O, Mandin C (2015) Indoor air quality requirements in green building certifications. Build Environ 92:10–19. https://doi.org/10.1016/j.buildenv.2015.03.035

Wuni IY, Shen GQP, Osei-Kyei R (2019a) Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy Build 190:69–85

Wuni IY, Shen GQP, Osei RO (2019b) Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018 Energy Build 190:69-85 doi: https://doi.org/10.1016/j.enbuild.2019.02.010

Yang XD, Zhang JY, Zhao XB (2018) Factors affecting green residential building development: social network analysis. Sustainability 10:21. https://doi.org/10.3390/su10051389

Ye L, Cheng Z, Wang Q, Lin H, Lin C, Liu B (2015) Developments of Green Building Standards in China. Renew Energy 73:115–122

Ye Q, Li T, Law R (2013) A coauthorship network analysis of tourism and hospitality research collaboration. J Hosp Tour Res 37:51–76

Yoon B, Park Y (2004) A text-mining-based patent network: analytical tool for high-technology trend. J High Technol Manag Res 15:37–50

Yuan XL, Wang XJ, Zuo J (2013) Renewable energy in buildings in China-a review. Renew Sust Energ Rev 24:1–8. https://doi.org/10.1016/j.rser.2013.03.022

Zhang HT, Hu D, Wang RS, Zhang Y (2014) Urban energy saving and carbon reduction potential of new-types of building materials by recycling coal mining wastes. Environ Eng Manag J 13:135–144

Zhang HZ, Li H, Huang BR, Destech Publicat I (2015) Development of biogas industry in Beijing. 2015 4th International Conference on Energy and Environmental Protection. Destech Publications, Inc, Lancaster

Zhang SF, Andrews-Speed P, Zhao XL, He YX (2013) Interactions between renewable energy policy and renewable energy industrial policy: a critical analysis of China’s policy approach to renewable energies. Energy Policy 62:342–353. https://doi.org/10.1016/j.enpol.2013.07.063

Zhang Y, Huang K, Yu YJ, Yang BB (2017) Mapping of water footprint research: a bibliometric analysis during 2006-2015. J Clean Prod 149:70–79. https://doi.org/10.1016/j.jclepro.2017.02.067

Zhang Y, Kang J, Jin H (2018) A review of Green Building Development in China from the perspective of energy saving. Energies 11:18. https://doi.org/10.3390/en11020334

Zhao XB, Zuo J, Wu GD, Huang C (2019) A bibliometric review of green building research 2000-2016. Archit Sci Rev 62:74–88. https://doi.org/10.1080/00038628.2018.1485548

Zuo J, Zhao ZY (2014) Green building research-current status and future agenda: a review. Renew Sust Energ Rev 30:271–281. https://doi.org/10.1016/j.rser.2013.10.021

Download references

Availability of data and materials

The datasets generated and analyzed throughout the current study are available in the Web of Science Core Collection.

This study was supported by The National Natural Science Foundation of China (No.51808385).

Author information

Authors and affiliations.

School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Tianjin, 300350, China

Li Ying, Rong Yanyu, Umme Marium Ahmad, Wang Xiaotong & Mao Guozhu

Tianjin University Research Institute of Architectural Design and Urban Planning Co., Ltd, Tianjin, 300072, China

Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, 518071, Guangdong, China

Rong Yanyu, Wang Xiaotong & Mao Guozhu

School of Architecture & Built Environment, The University of Adelaide, Adelaide, Australia

You can also search for this author in PubMed   Google Scholar

Contributions

Ying Li conceived the frame of the paper and wrote the manuscript. Yanyu Rong made the data figures and participated in writing the manuscript. Umme Marium Ahmad helped with revising the language. Xiaotong Wang consulted related literature for the manuscript. Jian Zuo contributed significantly to provide the keywords list. Guozhu Mao helped with constructive suggestions.

Corresponding author

Correspondence to Rong Yanyu .

Ethics declarations

Ethics approval and consent to participate.

This manuscript is ethical.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

(DOCX 176 kb)

(From Web of Science Core Collection)

Topic: (“bioclimatic architect*” or “bioclimatic build*” or “bioclimatic construct*” or “bioclimatic hous*” or “eco-architect*” or “eco-build*” or “eco-home*” or “eco-hous*” or “eco-friendly build*” or “ecological architect*” or “ecological build*” or “ecological hous*” or “energy efficient architect*” or “energy efficient build*” or “energy efficient construct*” or “energy efficient home*” or “energy efficient hous*” or “energy efficient struct*” or “energy saving architect*” or “energy saving build*” or “energy saving construct*” or “energy saving home*” or “energy saving hous*” or “energy saving struct*” or “green architect*” or “green build*” or “green construct*” or “green home*” or “low carbon architect*” or “low carbon build*” or “low carbon construct*” or “low carbon home*” or “low carbon hous*” or “low energy architect*” or “low energy build*” or “low energy construct*” or “low energy home*” or “low energy hous*” or “sustainable architect*” or “sustainable build*” or “sustainable construct*” or “sustainable home*” or “sustainable hous*” or “zero energy build*” or “zero energy home*” or “zero energy hous*” or “net zero energy build*” or “net zero energy home*” or “net zero energy hous*” or “zero-carbon build*” or “zero-carbon home*” or “zero-carbon hous*” or “carbon neutral build*” or “carbon neutral construct*” or “carbon neutral hous*” or “high performance architect*” or “high performance build*” or “high performance construct*” or “high performance home*” or “high performance hous*”)

Time span: 1998-2018。 Index: SCI-EXPANDED, SSCI。

Rights and permissions

Reprints and permissions

About this article

Li, Y., Rong, Y., Ahmad, U.M. et al. A comprehensive review on green buildings research: bibliometric analysis during 1998–2018. Environ Sci Pollut Res 28 , 46196–46214 (2021). https://doi.org/10.1007/s11356-021-12739-7

Download citation

Received : 18 October 2020

Accepted : 26 January 2021

Published : 16 February 2021

Issue Date : September 2021

DOI : https://doi.org/10.1007/s11356-021-12739-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Green buildings
  • Bibliometric analysis
  • Energy efficiency
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

A comprehensive review on green buildings research: bibliometric analysis during 1998–2018

1 School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Tianjin, 300350 China

2 Tianjin University Research Institute of Architectural Design and Urban Planning Co., Ltd, Tianjin, 300072 China

3 Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, 518071 Guangdong China

Umme Marium Ahmad

Xiaotong wang.

4 School of Architecture & Built Environment, The University of Adelaide, Adelaide, Australia

Associated Data

Buildings account for nearly 2/5ths of global energy expenditure. Due to this figure, the 90s witnessed the rise of green buildings (GBs) that were designed with the purpose of lowering the demand for energy, water, and materials resources while enhancing environmental protection efforts and human well-being over time. This paper examines recent studies and technologies related to the design, construction, and overall operation of GBs and determines potential future research directions in this area of study. This global review of green building development in the last two decades is conducted through bibliometric analysis on the Web of Science, via the Science Citation Index and Social Sciences Citation Index databases. Publication performance, countries’ characteristics, and identification of key areas of green building development and popular technologies were conducted via social network analysis, big data method, and S-curve predictions. A total of 5246 articles were evaluated on the basis of subject categories, journals’ performance, general publication outputs, and other publication characteristics. Further analysis was made on dominant issues through keyword co-occurrence, green building technologies by patent analysis, and S-curve predictions. The USA, China, and the UK are ranked the top three countries where the majority of publications come from. Australia and China had the closest relationship in the global network cooperation. Global trends of the top 5 countries showed different country characteristics. China had a steady and consistent growth in green building publications each year. The total publications on different cities had a high correlation with cities’ GDP by Baidu Search Index. Also, barriers and contradictions such as cost, occupant comfort, and energy consumption were discussed in developed and developing countries. Green buildings, sustainability, and energy efficiency were the top three hotspots identified through the whole research period by the cluster analysis. Additionally, green building energy technologies, including building structures, materials, and energy systems, were the most prevalent technologies of interest determined by the Derwent Innovations Index prediction analysis. This review reveals hotspots and emerging trends in green building research and development and suggests routes for future research. Bibliometric analysis, combined with other useful tools, can quantitatively measure research activities from the past and present, thus bridging the historical gap and predicting the future of green building development.

Supplementary Information

The online version contains supplementary material available at 10.1007/s11356-021-12739-7.

Introduction

Rapid urban development has resulted in buildings becoming a massive consumer of energy (Yuan et al. 2013 ), liable for 39% of global energy expenditure and 68% of total electricity consumption in the USA (building). In recent years, green buildings (GBs) have become an alternative solution, rousing widespread attention. Also referred to as sustainable buildings, low energy buildings, and eco-buildings, GBs are designed to reduce the strain on environmental resources as well as curb negative effects on human health by efficiently using natural resources, reducing garbage, and ensuring the residents’ well-being through improved living conditions ( Agency USEP Indoor Air Quality ; Building, n.d ). As a strategy to improve the sustainability of the construction industry, GBs have been widely recognized by governments globally, as a necessary step towards a sustainable construction industry (Shen et al. 2017 ).

Zuo and Zhao ( 2014 ) reviewed the current research status and future development direction of GBs, focusing on connotation and research scope, the benefit-difference between GBs and traditional buildings, and various ways to achieve green building development. Zhao et al. ( 2019 ) presented a bibliometric report of studies on GBs between 2000 and 2016, identifying hot research topics and knowledge gaps. The verification of the true performance of sustainable buildings, the application of ICT, health and safety hazards in the development of green projects, and the corporate social responsibility were detected as future agenda. A scientometrics review of research papers on GB sources from 14 architectural journals between 1992 and 2018 was also presented (Wuni et al. 2019a ). The study reported that 44% of the world participated in research focusing on green building implementation; stakeholder management; attitude assessment; regulations and policies; energy efficiency assessment; sustainability performance assessment; green building certification, etc.

With the transmission of the COVID-19 virus, society is now aware of the importance of healthy buildings. In fact, in the past 20 years, the relationship between the built environment and health has aroused increasing research interest in the field of building science. Public spaces and dispersion of buildings in mixed-use neighborhoods are promoted. Furthermore, telecommuting has become a trend since the COVID-19 pandemic, making indoor air quality even more important in buildings, now (Fezi 2020 ).

The system for evaluating the sustainability of buildings has been established for nearly two decades. But, systems dedicated to identifying whether buildings are healthy have only recently appeared (McArthur and Powell 2020 ). People are paying more and more attention to health factors in the built environment. This is reflected in the substantial increase in related academic papers and the increase in health building certification systems such as WELE and Fitwel (McArthur and Powell 2020 ).

Taking the above into consideration, the aim of this study is to examine the stages of development of GBs worldwide and find the barriers and the hotpots in global trends. This study may be beneficial to foreign governments interested in promoting green building and research in their own nations.

Methodology

Overall description of research design.

Since it is difficult to investigate historical data and predict global trends of GBs, literature research was conducted to analyze their development. The number of published reports on a topic in a particular country may influence the level of industrial development in that certain area (Zhang et al. 2017 ). The bibliometric analysis allows for a quantitative assessment of the development and advancement of research related to GBs and where they are from. Furthermore, it has been shown that useful data has been gathered through bibliometrics and patent analysis (Daim et al. 2006 ).

In this report, the bibliometric method, social network analysis (SNA), CiteSpace, big data method, patent analysis, and S-curve analysis are used to assess data.

Bibliometrics analysis

Bibliometrics, a class of scientometrics, is a tool developed in 1969 for library and information science. It has since been adopted by other fields of study that require a quantitative assessment of academic articles to determine trends and predict future research scenarios by compiling output and type of publication, title, keyword, author, institution, and countries data (Ho 2008 ; Li et al. 2017 ).

Social network analysis

Social network analysis (SNA) is applied to studies by modeling network maps using mathematics and statistics (Mclinden 2013 ; Ye et al. 2013 ). In the SNA, nodes represent social actors, while connections between actors stand for their relationships (Zhang et al. 2017 ). Correlations between two actors are determined by their distance from each other. There is a variety of software for the visualization of SNA such as Gephi, Vosviewer, and Pajek. In this research, “Pajek” was used to model the sequence of and relationships between the objects in the map (Du et al. 2015 ).

CiteSpace is an open-source Java application that maps and analyzes trends in publication statistics gathered from the ISI-Thomson Reuters Scientific database and produces graphic representations of this data (Chen 2006 ; Li et al. 2017 ). Among its many functions, it can determine critical moments in the evolution of research in a particular field, find patterns and hotspots, locate areas of rapid growth, and breakdown the network into categorized clusters (Chen 2006 ).

Big data method

The big data method, with its 3V characters (volume, velocity, and variety), can give useful and accurate information. Enormous amounts of data, which could not be collected or computed manually through conventional methods, can now be collected through public data website. Based on large databases and machine learning, the big data method can be used to design, operate, and evaluate energy efficiency and other index combined with other technologies (Mehmood et al. 2019 ). The primary benefit of big data is that the data is gathered from entire populations as opposed to a small sample of people (Chen et al. 2018 ; Ho 2008 ). It has been widely used in many research areas. In this research, we use the “Baidu Index” to form a general idea of the trends in specific areas based on user interests. The popularity of the keywords could imply the user’s behavior, user’s demand, user’s portrait, etc. Thus, we can analyze the products or events to help with developing strategies. However, it must be noted that although big data can quantitatively represent human behavior, it cannot determine what motivates it. With the convergence of big data and technology, there are unprecedented applications in the field of green building for the improved indoor living environment and controlled energy consumption (Marinakis 2020 ).

Patent analysis

Bibliometrics, combined with patent analysis, bridges gaps that may exist in historical data when predicting future technologies (Daim et al. 2006 ). It is a trusted form of technical analysis as it is supported by abundant sources and commercial awareness of patents (Guozhu et al. 2018 ; Yoon and Park 2004 ). Therefore, we used patent analysis from the Derwent patent database to conduct an initial analysis and forecast GB technologies.

There are a variety of methods to predict the future development prospects of a technology. Since many technologies are developed in accordance with the S-curve trend, researchers use the S-curve to observe and predict the future trend of technologies (Bengisu and Nekhili 2006 ; Du et al. 2019 ; Liu and Wang 2010 ). The evolution of technical systems generally goes through four stages: emerging, growth, maturity, and decay (saturation) (Ernst 1997 ). We use the logistics model (performed in Loglet Lab 4 software developed by Rockefeller University) to simulate the S-curve of GB-related patents to predict its future development space.

Data collection

The Web of Science (WOS) core collection database is made up of trustworthy and highly ranked journals. It is considered the leading data portal for publications in many fields (Pouris and Pouris 2011 ). Furthermore, the WOS has been cited as the main data source in many recent bibliometric reviews on buildings (Li et al. 2017 ).

Access to all publications used in this paper was attained through the Science Citation Index-Expanded and the Social Sciences Citation Index databases. Because there is no relevant data in WOS before 1998, our examination focuses on 1998 to 2018. With consideration of synonyms, we set a series of green building-related words (see Appendix ) in titles, abstracts, and keywords for bibliometric analysis. For example, sustainable, low energy, zero energy, and low carbon can be substituted for green; housing, construction, and architecture can be a substitute for building (Zuo and Zhao 2014 ).

Analytical procedure

The study was conducted in three stages; data extraction was the first step where all the GB-related words were screened in WOS. Afterwards, some initial analysis was done to get a complete idea of GB research. Then, we made a further analysis on countries’ characteristics, dominant issues, and detected technology hotspots via patent analysis (Fig. ​ (Fig.1 1 ).

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig1_HTML.jpg

Analytical procedure of the article

Results and analysis

General results.

Of the 6140 publications searched in the database, 88.67% were articles, followed by reviews (6.80%), papers (3.72%), and others (such as editorial materials, news, book reviews). Most articles were written in English (96.78%), followed by German (1.77%), Spanish (0.91%), and other European languages. Therefore, we will only make a further analysis of the types of articles in English publications.

The subject categories and their distribution

The SCI-E and SSCI database determined 155 subjects from the pool of 5246 articles reviewed, such as building technology, energy and fuels, civil engineering, environmental, material science, and thermodynamics, which suggests green building is a cross-disciplinary area of research. The top 3 research areas of green buildings are Construction & Building Technology (36.98%), Energy & Fuels (30.39%), and Engineering Civil (29.49%), which account for over half of the total categories.

The journals’ performance

The top 10 journals contained 38.8% of the 5246 publications, and the distribution of their publications is shown in Fig. ​ Fig.2. 2 . Impact factors qualitatively indicate the standard of journals, the research papers they publish, and researchers associated with those papers (Huibin et al. 2015 ). Below, we used 2017 impact factors in Journal Citation Reports (JCR) to determine the journal standards.

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig2_HTML.jpg

The performance of top10 most productive journals

Publications on green building have appeared in a variety of titles, including energy, building, environment, materials, sustainability, indoor built environment, and thermal engineering. Energy and Buildings, with its impact factor 4.457, was the most productive journal apparently from 2009 to 2017. Sustainability (IF = 2.075) and Journal of Cleaner Production (IF = 5.651) rose to significance rapidly since 2015 and ranked top two journals in 2018.

Publication output

The total publication trends from 1998 to 2018 are shown in Fig. ​ Fig.3, 3 , which shows a staggering increase across the 10 years. Since there was no relevant data before 1998, the starting year is 1998. Before 2004, the number of articles published per year fluctuated. The increasing rate reached 75% and 68% in 2004 and 2007, respectively, which are distinguished in Fig. ​ Fig.3 3 that leads us to believe that there are internal forces at work, such as appropriate policy creation and enforcement by concerned governments. There was a constant and steady growth in publications after 2007 in the worldwide view.

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig3_HTML.jpg

The number of articles published yearly, between 1998 and 2018

The characteristics of the countries

Global distribution and global network were analyzed to illustrate countries’ characteristics. Many tools such as ArcGIS, Bibexcel, Pajek, and Baidu index were used in this part (Fig. ​ (Fig.4 4 ).

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig4_HTML.jpg

Analysis procedure of countries’ characteristics

Global distribution of publications

By extracting the authors’ addresses (Mao et al. 2015 ), the number of publications from each place was shown in Fig. ​ Fig.5 5 and Table ​ Table1. 1 . Apparently, the USA was the most productive country accounting for 14.98% of all the publications. China (including Hong Kong and Taiwan) and the UK followed next by 13.29% and 8.27% separately. European countries such as Italy, Spain, and Germany also did a lot of work on green building development.

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig5_HTML.jpg

Global geographical distribution of the top 20 publications based on authors’ locations

Global research network

Global networks illustrate cooperation between countries through the analysis of social networks. Academic partnerships among the 10 most productive countries are shown in Fig. ​ Fig.6. 6 . Collaboration is determined by the affiliation of the co-authors, and if a publication is a collaborative research, all countries or institutions will benefit from it (Bozeman et al. 2013 ). Every node denotes a country and their size indicates the amount of publications from that country. The lines linking the nodes denote relationships between countries and their thickness indicates the level of collaboration (Mao et al. 2015 ).

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig6_HTML.jpg

The top 10 most productive countries had close academic collaborative relationships

It was obvious that China and Australia had the strongest linking strength. Secondly, China and the USA, China, and the UK also had close cooperation with each other. Then, the USA with Canada and South Korea followed. The results indicated that cooperation in green building research was worldwide. At the same time, such partnerships could help countries increase individual productivity.

Global trend of publications

The time-trend analysis of academic inputs to green building from the most active countries is shown in Fig. ​ Fig.7 7 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig7_HTML.jpg

The publication trends of the top five countriesbetween 1998 and 2018 countries areshown in Fig 7.

Before 2007, these countries showed little growth per year. However, they have had a different, growing trend since 2007. The USA had the greatest proportion of publications from 2007, which rose obviously each year, reaching its peak in 2016 then declined. The number of articles from China was at 13 in 2007, close to the USA. Afterwards, there was a steady growth in China. Not until 2013 did China have a quick rise from 41 publications to 171 in 2018. The UK and Italy had a similar growth trend before 2016 but declined in the last 2 years.

Further analysis on China, the USA, and the UK

Green building development in china, policy implementation in china.

Green building design started in China with the primary goal of energy conservation. In September 2004, the award of “national green building innovation” of the Ministry of Construction was launched, which kicked off the substantive development of GB in China. As we can see from Fig. ​ Fig.7, 7 , there were few publications before 2004 in China. In 2004, there were only 4 publications on GB.

The Ministry of Construction, along with the Ministry of Science and Technology, in 2005, published “The Technical Guidelines for Green Buildings,” proposing the development of GBs (Zhang et al. 2018 ). In June 2006, China had implemented the first “Evaluation Standard for Green Building” (GB/T 50378-2006), which promoted the study of the green building field. In 2007, the demonstration of “100 projects of green building and 100 projects of low-energy building” was launched. In August 2007, the Ministry of Construction issued the “Green Building Assessment Technical Regulations (try out)” and the “Green Building Evaluation Management,” following Beijing, Tianjin, Chongqing, and Shanghai, more than 20 provinces and cities issued the local green building standards, which promoted GBs in large areas in China.

At the beginning of 2013, the State Council issued the “Green Building Action Plan,” so the governments at all levels continuously issued incentive policies for the development of green buildings (Ye et al. 2015 ). The number of certified green buildings has shown a blowout growth trend throughout the country, which implied that China had arrived at a new chapter of development.

In August 2016, the Evaluation Standard for Green Renovation of Existing Buildings was released, encouraging the rise of residential GB research. Retrofitting an existing building is often more cost-effective than building a new facility. Designing significant renovations and alterations to existing buildings, including sustainability measures, will reduce operating costs and environmental impacts and improve the building’s adaptability, durability, and resilience.

At the same time, a number of green ecological urban areas have emerged (Zhang et al. 2018 ). For instance, the Sino-Singapore Tianjin eco-city is a major collaborative project between the two governments. Located in the north of Tianjin Binhai New Area, the eco-city is characterized by salinization of land, lack of freshwater, and serious pollution, which can highlight the importance of eco-city construction. The construction of eco-cities has changed the way cities develop and has provided a demonstration of similar areas.

China has many emerging areas and old centers, so erecting new, energy efficiency buildings and refurbishing existing buildings are the best steps towards saving energy.

Baidu Search Index of “green building”

In order to know the difference in performance among cities in China, this study employs the big data method “Baidu Index” for a smart diagnosis and assessment on green building at finer levels. “Baidu Index” is not equal to the number of searches but is positively related to the number of searches, which is calculated by the statistical model. Based on the keyword search of “green building” in the Baidu Index from 2013 to 2018, the top 10 provinces or cities were identified (Fig. ​ (Fig.8 8 ).

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig8_HTML.jpg

Baidu Search Index of green building in China 2013–2018 from high to low

The top 10 search index distributes the east part and middle part of China, most of which are the high GDP provinces (Fig. ​ (Fig.9). 9 ). Economically developed cities in China already have a relatively mature green building market. Many green building projects with local characteristics have been established (Zhang et al. 2018 ).

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig9_HTML.jpg

TP GDP & Search Index were highly related

We compared the city search index (2013–2018) with the total publications of different cities by the authors’ address and the GDP in 2018. The correlation coefficient between the TP and the search index was 0.9, which means the two variables are highly related. The correlation coefficient between the TP and GDP was 0.73, which also represented a strong relationship. We inferred that cities with higher GDP had more intention of implementation on green buildings. The stronger the local GDP, the more relevant the economic policies that can be implemented to stimulate the development of green buildings (Hong et al. 2017 ). Local economic status (Yang et al. 2018 ), property developer’s ability, and effective government financial incentives are the three most critical factors for green building implementation (Huang et al. 2018 ). However, Wang et al. ( 2017 ) compared the existing green building design standards and found that they rarely consider the regional economy. Aiming at cities at different economic development phases, the green building design standards for sustainable construction can effectively promote the implementation of green buildings. Liu et al. ( 2020 ) mainly discussed the impact of sustainable construction on GDP. According to the data, there is a strong correlation between the percentage of GDP increments in China and the amount of sustainable infrastructure (Liu et al. 2020 ). The construction of infrastructure can create jobs and improve people’s living standards, increasing GDP as a result (Liu et al. 2020 ).

Green building development in the USA and the UK

The sign that GBs were about to take-off occurred in 1993—the formation of the United States Green Building Council (USGBC), an independent agency. The promulgation of the Energy Policy Act 2005 in the USA was the key point in the development of GBs. The Energy Policy Act 2005 paid great attention to green building energy saving, which also inspired publications on GBs.

Leadership in Energy and Environmental Design (LEED), a popular metric for sustainable buildings and homes (Jalaei and Jrade 2015 ), has become a thriving business model for green building development. It is a widely used measure of how buildings affect the environment.

Another phenomenon worth discussion, combined with Fig. ​ Fig.7, 7 , the increasing rate peaked at 75% in 2004 and 68% in 2007 while the publications of the UK reached the peak in 2004 and 2007. The UK Green Building Council (UKGBC), a United Kingdom membership organization, created in 2007 with regard to the 2004 Sustainable Building Task Group Report: Better Buildings - Better Lives, intends to “radically transform,” all facets of current and future built environment in the UK. It is predicted that the establishment of the UKGBC promoted research on green buildings.

From the China, the USA, and the UK experience, it is predicted that the foundation of a GB council or the particular projects from the government will promote research in this area.

Barriers and contradicts of green building implement

On the other hand, it is obvious that the USA, the UK, and Italian publications have been declining since 2016. There might be some barriers and contradicts on the adoption of green buildings for developed countries. Some articles studied the different barriers to green building in developed and developing countries (Chan et al. 2018 ) (Table ​ (Table2). 2 ). Because the fraction of energy end-uses is different, the concerns for GBs in the USA, China, and the European Union are also different (Cao et al. 2016 ).

Top Barriers for Green building in US, UK and China

It is regarded that higher cost is the most deterring barrier to GB development across the globe (Nguyen et al. 2017 ). Other aspects such as lack of market demand and knowledge were also main considerations of green building implementation.

As for market demand, occupant satisfaction is an important factor. Numerous GB post-occupancy investigations on occupant satisfaction in various communities have been conducted.

Paul and Taylor ( 2008 ) surveyed personnel ratings of their work environment with regard to ambience, tranquility, lighting, sound, ventilation, heat, humidity, and overall satisfaction. Personnel working in GBs and traditional buildings did not differ in these assessments. Khoshbakht et al. ( 2018 ) identified two global contexts in spite of the inconclusiveness: in the west (mainly the USA and Britain), users experienced no significant differences in satisfaction between green and traditional buildings, whereas, in the east (mainly China and South Korea), GB user satisfaction is significantly higher than traditional building users.

Dominant issues

The dominant issues on different stages.

Bibliometric data was imported to CiteSpace where a three-stage analysis was conducted based on development trends: 1998–2007 initial development; 2008–2015 quick development; 2016–2018 differentiation phase (Fig. ​ (Fig.10 10 ).

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig10_HTML.jpg

Analysis procedure of dominant issues

CiteSpace was used for word frequency and co-word analysis. The basic principle of co-word analysis is to count a group of words appearing at the same time in a document and measure the close relationship between them by the number of co-occurrences. The top 50 levels of most cited or occurred items from each slice (1998 to 2007; 2008 to 2015; 2016 to 2018) per year were selected. After merging the similar words (singular or plural form), the final keyword knowledge maps were generated as follows.

Initial phase (1998–2007)

In the early stage (Fig. ​ (Fig.11), 11 ), “green building” and “sustainability” were the main two clusters. Economics and “environmental assessment method” both had high betweenness centrality of 0.34 which were identified as pivotal points. Purple rings denote pivotal points in the network. The relationships in GB were simple at the initial stage of development.

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig11_HTML.jpg

Co-word analysis from 1998–2007

Sustainable construction is further enabled with tools that can evaluate the entire life cycle, site preparation and management, materials and their reusability, and the reduction of resource and energy consumption. Environmental building assessment methods were incorporated to achieve sustainable development, especially at the initial project appraisal stage (Ding 2008 ). Green Building Challenge (GBC) is an exceptional international research, development, and dissemination effort for developing building environmental performance assessments, primarily to help researchers and practitioners in dealing with difficult obstacles in assessing performance (Todd et al. 2001 ).

Quick development (2008–2015)

In the rapid growing stage (Fig. ​ (Fig.12), 12 ), pivot nodes and cluster centers were more complicated. Besides “green building” and “sustainability,” “energy efficiency” was the third hotspot word. The emergence of new vocabulary in the keyword network indicated that the research had made progress during 2008 – 2015. Energy performance, energy consumption, natural ventilation, thermal comfort, renewable energy, and embodied energy were all energy related. Energy becomes the most attractive field in achieving sustainability and green building. Other aspects such as “life cycle assessment,” “LEED,” and “thermal comfort” became attractive to researchers.

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig12_HTML.jpg

Co-word analysis from 2008–2015

The life cycle assessment (LCA) is a popular technique for the analysis of the technical side of GBs. LCA was developed from environmental assessment and economic analysis which could be a useful method to evaluate building energy efficiency from production and use to end-use (Chwieduk 2003 ). Much attention has been paid to LCA because people began to focus more on the actual performance of the GBs. Essentially, LCA simplifies buildings into systems, monitoring, and calculating mass flow and energy consumption over different stages in their life cycle.

Leadership in Energy and Environmental Design (LEED) was founded by the USGBC and began in the early twenty-first century (Doan et al. 2017 ). LEED is a not-for-profit project based on consumer demand and consensus that offers an impartial GB certification. LEED is the preferred building rating tool globally, with its shares growing rapidly. Meanwhile, UK’s Building Research Establishment Assessment Method (BREEAM) and Japan’s Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) have been in use since the beginning of the twenty-first century, while New Zealand’s Green Star is still in its earlier stages. GBs around the world are made to suit regional climate concerns and need.

In practice, not all certified green buildings are necessarily performing well. Newsham et al. ( 2009 ) gathered energy-use information from 100 LEED-certified non-residential buildings. Results indicated that 28–35% of LEED structures actually consumed higher amounts of energy than the non-LEED structures. There was little connection in its actual energy consumption to its certification grade, meaning that further improvements are required for establishing a comprehensive GB rating metric to ensure consistent performance standards.

Thermal comfort was related to many aspects, such as materials, design scheme, monitoring system, and human behaviors. Materials have been a focus area for improving thermal comfort and reducing energy consumption. Wall (Schossig et al. 2005 ), floor (Ansuini et al. 2011 ), ceiling (Hu et al. 2018 ), window, and shading structures (Shen and Li 2016 ) were building envelopes which had been paid attention to over the years. Windows were important envelopes to improve thermal comfort. For existing and new buildings, rational use of windows and shading structures can enhance the ambient conditions of buildings (Mcleod et al. 2013 ). It was found that redesigning windows could reduce the air temperature by 2.5% (Elshafei et al. 2017 ), thus improving thermal comfort through passive features and reducing the use of active air conditioners (Perez-Fargallo et al. 2018 ). The monitoring of air conditioners’ performance could also prevent overheating of buildings (Ruellan and Park 2016 ).

Differentiation phase (2016–2018)

In the years from 2016 to 2018 (Fig. ​ (Fig.13), 13 ), “green building,” ”sustainability,” and “energy efficiency” were still the top three hotspots in GB research.

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig13_HTML.jpg

Co-word analysis from 2016–2018

Zero-energy building (ZEB) became a substitute for low energy building in this stage. ZEB was first introduced in 2000 (Cao et al. 2016 ) and was believed to be the solution to the potential ramifications of future energy consumption by buildings (Liu et al. 2019 ). The EU has been using ZEB standards in all of its new building development projects to date (Communuties 2002 ). The USA passed the Energy Independence and Security Act of 2007, aiming for zero net energy consumption of 1 out of every 2 commercial buildings that are yet to be built by 2040 and for all by 2050 (Sartori et al. 2012 ). Energy consumption became the most important factor in new building construction.

Renewable energy was a key element of sustainable development for mankind and nature (Zhang et al. 2013 ). Using renewable energy was an important feature of ZEBs (Cao et al. 2016 ; Pulselli et al. 2007 ). Renewable energy, in the form of solar, wind, geothermal, clean bioenergy, and marine can be used in GBs. Solar energy has been widely used in recent years while wind energy is used locally because of its randomness and unpredictable features. Geothermal energy is mainly utilized by ground source heat pump (GSHP), which has been lauded as a powerful energy system for buildings (Cao et al. 2016 ). Bioenergy has gained much popularity as an alternative source of energy around the globe because it is more stable and accessible than other forms of energy (Zhang et al. 2015 ). There is relatively little use of marine energy, yet this may potentially change depending on future technological developments (Ellabban et al. 2014 ).

Residential buildings receive more attention because people spend 90% of their time inside. Contrary to popular belief, the concentration of contaminants found indoors is more than the concentration outside, sometimes up to 10 times or even 100 times more (agency). The renovation of existing buildings can save energy, upgrade thermal comfort, and improve people’s living conditions.

Energy is a substantial and widely recognized cost of building operations that can be reduced through energy-saving and green building design. Nevertheless, a consensus has been reached by academics and those in building-related fields that GBs are significantly more energy efficient than traditional buildings if designed, constructed, and operated with meticulousness (Wuni et al. 2019b ). The drive to reduce energy consumption from buildings has acted as a catalyst in developing new technologies.

Compared with the article analysis, patents can better reflect the practical technological application to a certain extent. We extracted the information of green building energy-related patent records between 1998 and 2018 from the Derwent Innovations Index database. The development of a technique follows a path: precursor–invention–development–maturity. This is commonly known as an S-type growth (Mao et al. 2018 ). Two thousand six hundred thirty-eight patents were found which were classified into “Derwent Manual Code,” which is the most distinct feature just like “keywords” in the Derwent Innovations Index. Manual codes refer to specific inventions, technological innovations, and unique codes for their applications. According to the top 20 Derwent Manual Code which accounted for more than 80% of the total patents, we classified the hotspots patents into three fields for further S-curve analysis, which are “structure,” “material,” and “energy systems” (Table ​ (Table3 3 ).

Top 20 keywords in classified patents

Sustainable structural design (SSD) has gained a lot of research attention from 2006 to 2016 (Pongiglione and Calderini 2016 ). The S-curve of structure* (Fig. ​ (Fig.14) 14 ) has just entered the later period of the growth stage, accounting for 50% of the total saturation in 2018. Due to its effectiveness and impact, SSD has overtime gained recognition and is now considered by experts to be a prominent tool in attaining sustainability goals (Pongiglione and Calderini 2016 ).

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig14_HTML.jpg

The S-curves of different Structure types from patents

Passive design is important in energy saving which is achieved by appropriately orientating buildings and carefully designing the building envelope. Building envelopes, which are key parts of the energy exchange between the building and the external environment, include walls, roofs, windows, and floors. The EU increased the efficiency of its heat-regulating systems by revamping building envelopes as a primary energy-saving task during 2006 to 2016 (Cao et al. 2016 ).

We analyzed the building envelope separately. According to the S-curve (Fig. ​ (Fig.14), 14 ), the number of patents related to GB envelops are in the growth stage. At present, building envelops such as walls, roofs, windows, and even doors have not reached 50% of the saturated quantity. Walls and roofs are two of the most important building envelops. The patent contents of walls mainly include wall materials and manufacturing methods, modular wall components, and wall coatings while technologies about roofs mainly focus on roof materials, the combination of roof and solar energy, and roof structures. Green roofs are relatively new sustainable construction systems because of its esthetic and environmental benefits (Wei et al. 2015 ).

The material resources used in the building industry consume massive quantities of natural and energy resources consumptions (Wang et al. 2018 ). The energy-saving building material is economical and environmentally friendly, has low coefficient heat conductivity, fast curing speed, high production efficacy, wide raw material source and flame, and wear resistance properties (Zhang et al. 2014 ). Honeycomb structures were used for insulating sustainable buildings. They are lightweight and conserve energy making them eco-friendly and ideal for construction (Miao et al. 2011 ).

According to the S-curve (Fig. ​ (Fig.15), 15 ), it can be seen that the number of patents on the GB “material” is in the growth stage. It is expected that the number of patents will reach 50% of the total saturation in 2022.

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig15_HTML.jpg

The S-curves of a different material from patents

Building material popularly used comprised of cement, concrete, gypsum, mortar compositions, and boards. Cement is widely used in building material because of its easy availability, strong hardness, excellent waterproof and fireproof performance, and low cost. The S-curve of cement is in the later period of the growth stage, which will reach 90% of the total saturation in 2028. Composite materials like Bamcrete (bamboo-concrete composite) and natural local materials like Rammed Earth had better thermal performance compared with energy-intensive materials like bricks and cement (Kandya and Mohan 2018 ). Novel bricks synthesized from fly ash and coal gangue have better advantages of energy saving in brick production phases compared with that of conventional types of bricks (Zhang et al. 2014 ). For other materials like gypsum or mortar, the numbers of patents are not enough for S-curve analysis. New-type green building materials offer an alternative way to realize energy-saving for sustainable constructions.

Energy system

The energy system mainly included a heating system and ventilation system according to the patent analysis. So, we analyzed solar power systems and air conditioning systems separately. Heat* included heat collecting panels and a fluid heating system.

The results indicated that heat*-, solar-, and ventilation-related technologies were in the growth stage which would reach 50% of the total saturation in 2022 (Fig. ​ (Fig.16). 16 ). Photovoltaic technology is of great importance in solar energy application (Khan and Arsalan 2016 ).

An external file that holds a picture, illustration, etc.
Object name is 11356_2021_12739_Fig16_HTML.jpg

The S-curves of energy systems from patents

On the contrary, air conditioning technologies had entered into the mature stage after a decade of development. It is worth mentioning that the design of the fresh air system of buildings after the COVID-19 outbreak is much more important. With people spending the majority of their time inside (Liu et al. 2019 ), volatile organic compounds, formaldehyde, and carbon dioxide received the most attention worldwide (Wei et al. 2015 ). Due to health problems like sick building syndrome, and more recently since the COVID-19 outbreak, the supply of fresh air can drastically ameliorate indoor air quality (IAQ) (Liu et al. 2019 ). Regulating emissions from materials, enhanced ventilation, and monitoring air indoors are the main methods used in GBs for maintaining IAQ (Wei et al. 2015 ). Air circulation frequency and improved air filtration can reduce the risk of spreading certain diseases, while controlling the airflow between rooms can also prevent cross-infections. Poor indoor air quality and ventilation provide ideal conditions for the breeding and spreading of viruses by air (Chen et al. 2019 ). A diverse range of air filters coupled with a fresh air supply system should be studied. A crucial step forward is to create a cost-effective, energy-efficient, intelligent fresh air supply system (Liu et al. 2017 ) to monitor, filter outdoor PM2.5 (Chen et al. 2017 ), and saving building energy (Liu and Liu 2005 ). Earth-air heat exchanger system (EAHE) is a novel technology that supplies fresh air using underground soil heat (Chen et al. 2019 ).

A total of 5246 journal articles in English from the SCI and SSCI databases published in 1998–2018 were reviewed and analyzed. The study revealed that the literature on green buildings has grown rapidly over the past 20 years. The findings and results are summarized:

Data analysis revealed that GB research is distributed across various subject categories. Energy and Buildings, Building and Environment, Journal of Cleaner Production, and Sustainability were the top journals to publish papers on green buildings.

Global distribution was done to see the green building study worldwide, showing that the USA, China, and the UK ranked the top three countries, accounting for 14.98%, 13.29%, and 8.27% of all the publications respectively. Australia and China had the closest relationship on green building research cooperation worldwide.

Further analysis was made on countries’ characteristics, dominant issues through keyword co-occurrence, green building technology by patent analysis, and S-curve prediction. Global trends of the top 5 countries showed different characteristics. China had a steady and consistent growth in publications each year while the USA, the UK, and Italy were on a decline from 2016. The big data method was used to see the city performance in China, finding that the total publications had a high correlation with the city’s GDP and Baidu Search Index. Policies were regarded as the stimulation for green building development, either in China or the UK. Also, barriers and contradictions such as cost, occupants’ comfort, and energy consumption were discussed about the developed and developing countries.

Cluster and content analysis via CiteSpace identified popular and trending research topics at different stages of development; the top three hotspots were green buildings, sustainability, and energy efficiency throughout the whole research period. Energy efficiency has shifted from low to zero energy buildings or even beyond it in recent years. Energy efficiency was the most important drive to achieve green buildings while LCA and LEED were the two potential ways to evaluate building performance. Thermal comfort and natural ventilation of residential buildings became a topic of interest to the public.

Then, we combined the keywords with “energy” to make further patent analysis in Derwent Innovations Index. “Structure,” “material,” and “energy systems” were three of the most important types of green building technologies. According to S-curve analysis, most of the technologies of energy-saving buildings were on the fast-growing trend, and even though there were conflicts and doubts in different countries on GB adoption, it is still a promising field.

Future directions

An establishment of professional institutes or a series of policies and regulations on green building promulgated by government departments will promote research development (as described in the “Further Analysis on China, the USA, and the UK” section). Thus, a policy enacted by a formal department is of great importance in this particular field.

Passive design is important in energy saving which is ensured by strategically positioning buildings and precisely engineering the building envelope, i.e., roof, walls, windows, and floors. A quality, the passive-design house is crucial to achieving sustained thermal comfort, low-carbon footprint, and a reduced gas bill. The new insulation material is a promising field for reducing building heat loss and energy consumed. Healthy residential buildings have become a focus of future development due to people’s pursuit of a healthy life. A fresh air supply system is important for better indoor air quality and reduces the risk of transmission of several diseases. A 2020 study showed the COVID-19 virus remains viable for only 4 hours on copper compared to 24 h on cardboard. So, antiviral materials will be further studied for healthy buildings (Fezi 2020 ).

With the quick development of big data method and intelligent algorithms, artificial intelligence (AI) green buildings will be a trend. The core purpose of AI buildings is to achieve optimal operating conditions through the accurate analysis of data, collected by sensors built into green buildings. “Smart buildings” and “Connected Buildings” of the future, fitted with meters and sensors, can collect and share massive amounts of information regarding energy use, water use, indoor air quality, etc. Analyzing this data can determine relationships and patterns, and optimize the operation of buildings to save energy without compromising the quality of the indoor environment (Lazarova-Molnar and Mohamed 2019 ).

The major components of green buildings, such as building envelope, windows, and skylines, should be adjustable and versatile in order to get full use of AI. A digital control system can give self-awareness to buildings, adjusting room temperature, indoor air quality, and air cooling/heating conditions to control power consumption, and make it sustainable (Mehmood et al. 2019 ).

Concerns do exist, for example, occupant privacy, data security, robustness of design, and modeling of the AI building (Maasoumy and Sangiovanni-Vincentelli 2016 ). However, with increased data sources and highly adaptable infrastructure, AI green buildings are the future.

This examination of research conducted on green buildings between the years 1998 and 2018, through bibliometric analysis combined with other useful tools, offers a quantitative representation of studies and data conducted in the past and present, bridging historical gaps and forecasting the future of green buildings—providing valuable insight for academicians, researchers, and policy-makers alike.

(DOCX 176 kb)

Availability of data and materials

The datasets generated and analyzed throughout the current study are available in the Web of Science Core Collection.

(From Web of Science Core Collection)

Topic: (“bioclimatic architect*” or “bioclimatic build*” or “bioclimatic construct*” or “bioclimatic hous*” or “eco-architect*” or “eco-build*” or “eco-home*” or “eco-hous*” or “eco-friendly build*” or “ecological architect*” or “ecological build*” or “ecological hous*” or “energy efficient architect*” or “energy efficient build*” or “energy efficient construct*” or “energy efficient home*” or “energy efficient hous*” or “energy efficient struct*” or “energy saving architect*” or “energy saving build*” or “energy saving construct*” or “energy saving home*” or “energy saving hous*” or “energy saving struct*” or “green architect*” or “green build*” or “green construct*” or “green home*” or “low carbon architect*” or “low carbon build*” or “low carbon construct*” or “low carbon home*” or “low carbon hous*” or “low energy architect*” or “low energy build*” or “low energy construct*” or “low energy home*” or “low energy hous*” or “sustainable architect*” or “sustainable build*” or “sustainable construct*” or “sustainable home*” or “sustainable hous*” or “zero energy build*” or “zero energy home*” or “zero energy hous*” or “net zero energy build*” or “net zero energy home*” or “net zero energy hous*” or “zero-carbon build*” or “zero-carbon home*” or “zero-carbon hous*” or “carbon neutral build*” or “carbon neutral construct*” or “carbon neutral hous*” or “high performance architect*” or “high performance build*” or “high performance construct*” or “high performance home*” or “high performance hous*”)

Time span: 1998-2018。 Index: SCI-EXPANDED, SSCI。

Author contributions

Ying Li conceived the frame of the paper and wrote the manuscript. Yanyu Rong made the data figures and participated in writing the manuscript. Umme Marium Ahmad helped with revising the language. Xiaotong Wang consulted related literature for the manuscript. Jian Zuo contributed significantly to provide the keywords list. Guozhu Mao helped with constructive suggestions.

This study was supported by The National Natural Science Foundation of China (No.51808385).

Declarations

This manuscript is ethical.

Not applicable.

The authors declare no competing interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Agency USEP Indoor Air Quality https://www.epa.gov/indoor-air-quality-iaq.
  • Ansuini R, Larghetti R, Giretti A, Lemma M. Radiant floors integrated with PCM for indoor temperature control. Energy Build. 2011; 43 :3019–3026. doi: 10.1016/j.enbuild.2011.07.018. [ CrossRef ] [ Google Scholar ]
  • Bengisu M, Nekhili R. Forecasting emerging technologies with the aid of science and technology databases. Technol Forecast Soc Chang. 2006; 73 :835–844. doi: 10.1016/j.techfore.2005.09.001. [ CrossRef ] [ Google Scholar ]
  • Bozeman B, Fay D, Slade CP. Research collaboration in universities and academic entrepreneurship: the-state-of-the-art. J Technol Transf. 2013; 38 :1–67. doi: 10.1007/s10961-012-9281-8. [ CrossRef ] [ Google Scholar ]
  • Building AG Importance of Green Building. https://www.greenbuilt.org/about/importance-of-green-building
  • Cao XD, Dai XL, Liu JJ. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 2016; 128 :198–213. doi: 10.1016/j.enbuild.2016.06.089. [ CrossRef ] [ Google Scholar ]
  • Chan APC, Darko A, Olanipekun AO, Ameyaw EE. Critical barriers to green building technologies adoption in developing countries: the case of Ghana. J Clean Prod. 2018; 172 :1067–1079. doi: 10.1016/j.jclepro.2017.10.235. [ CrossRef ] [ Google Scholar ]
  • Chen CC, Lo TH, Tsay YS, Lee CY, Liu KS. Application of a novel formaldehyde sensor with MEMS (micro electro mechanical systems) in indoor air quality test and improvement in medical spaces. Appl Ecol Environ Res. 2017; 15 :81–89. doi: 10.15666/aeer/1502_081089. [ CrossRef ] [ Google Scholar ]
  • Chen CM. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol. 2006; 57 :359–377. doi: 10.1002/asi.20317. [ CrossRef ] [ Google Scholar ]
  • Chen X, Lu WS, Xue F, Xu JY. A cost-benefit analysis of green buildings with respect to construction waste minimization using big data in Hong Kong. J Green Build. 2018; 13 :61–76. doi: 10.3992/1943-4618.13.4.61. [ CrossRef ] [ Google Scholar ]
  • Chen XY, Niu RP, Lv LN, Kuang DQ, LOP (2019) Discussion on existing problems of fresh air system. In: 4th International Conference on Advances in Energy Resources and Environment Engineering, vol 237. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol. doi:10.1088/1755-1315/237/4/042030
  • Chwieduk D. Towards sustainable-energy buildings. Appl Energy. 2003; 76 :211–217. doi: 10.1016/s0306-2619(03)00059-x. [ CrossRef ] [ Google Scholar ]
  • Communuties CotE (2002) Directive of the European parliament and the council.
  • Daim TU, Rueda G, Martin H, Gerdsri P. Forecasting emerging technologies: use of bibliometrics and patent analysis. Technol Forecast Soc Chang. 2006; 73 :981–1012. doi: 10.1016/j.techfore.2006.04.004. [ CrossRef ] [ Google Scholar ]
  • Ding GKC. Sustainable construction - the role of environmental assessment tools. J Environ Manag. 2008; 86 :451–464. doi: 10.1016/j.jenvman.2006.12.025. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Doan DT, Ghaffarianhoseini A, Naismith N, Zhang TR, Ghaffarianhoseini A, Tookey J. A critical comparison of green building rating systems. Build Environ. 2017; 123 :243–260. doi: 10.1016/j.buildenv.2017.07.007. [ CrossRef ] [ Google Scholar ]
  • Du HB, Li BL, Brown MA, Mao GZ, Rameezdeen R, Chen H. Expanding and shifting trends in carbon market research: a quantitative bibliometric study. J Clean Prod. 2015; 103 :104–111. doi: 10.1016/j.jclepro.2014.05.094. [ CrossRef ] [ Google Scholar ]
  • Du HB, Liu DY, Lu ZM, Crittenden J, Mao GZ, Wang S, Zou HY. Research development on sustainable urban infrastructure from 1991 to 2017: a bibliometric analysis to inform future innovations. Earth Future. 2019; 7 :718–733. doi: 10.1029/2018ef001117. [ CrossRef ] [ Google Scholar ]
  • Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: current status, future prospects and their enabling technology. Renew Sust Energ Rev. 2014; 39 :748–764. doi: 10.1016/j.rser.2014.07.113. [ CrossRef ] [ Google Scholar ]
  • Elshafei G, Negm A, Bady M, Suzuki M, Ibrahim MG. Numerical and experimental investigations of the impacts of window parameters on indoor natural ventilation in a residential building. Energy Build. 2017; 141 :321–332. doi: 10.1016/j.enbuild.2017.02.055. [ CrossRef ] [ Google Scholar ]
  • Ernst H. The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Bus Econ. 1997; 9 :361–381. doi: 10.1023/A:1007921808138. [ CrossRef ] [ Google Scholar ]
  • Fezi BA. Health engaged architecture in the context of COVID-19. J Green Build. 2020; 15 :185–212. doi: 10.3992/1943-4618.15.2.185. [ CrossRef ] [ Google Scholar ]
  • Guozhu, et al. Bibliometric analysis of insights into soil remediation. J Soils Sediments. 2018; 18 :2520–2534. doi: 10.1007/s11368-018-1932-4. [ CrossRef ] [ Google Scholar ]
  • Ho S-Y. Bibliometric analysis of biosorption technology in water treatment research from 1991 to 2004. Int J Environ Pollut. 2008; 34 :1–13. doi: 10.1504/ijep.2008.020778. [ CrossRef ] [ Google Scholar ]
  • Hong WX, Jiang ZY, Yang Z, (2017) Iop (2017) Analysis on the restriction factors of the green building scale promotion based on DEMATEL. In: 2nd International Conference on Advances in Energy Resources and Environment Engineering, vol 59. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol. doi:10.1088/1755-1315/59/1/012064
  • Hu J, Kawaguchi KI, Ma JJB. Retractable membrane ceiling on indoor thermal environment of residential buildings. Build Environ. 2018; 146 :289–298. doi: 10.1016/j.buildenv.2018.09.035. [ CrossRef ] [ Google Scholar ]
  • Huang N, Bai LB, Wang HL, Du Q, Shao L, Li JT. Social network analysis of factors influencing green building development in China. Int J Environ Res Public Health. 2018; 15 :16. doi: 10.3390/ijerph15122684. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huibin D, Guozhu M, Xi L, Jian Z, Linyuan W. Way forward for alternative energy research: a bibliometric analysis during 1994-2013. Sustain Energy Rev. 2015; 48 :276–286. doi: 10.1016/j.rser.2015.03.094. [ CrossRef ] [ Google Scholar ]
  • Jalaei F, Jrade A. Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings. Sustain Cities Soc. 2015; 18 (95-10718):95–107. doi: 10.1016/j.scs.2015.06.007. [ CrossRef ] [ Google Scholar ]
  • Kandya A, Mohan M. Mitigating the urban heat island effect through building envelope modifications. Energy Build. 2018; 164 :266–277. doi: 10.1016/j.enbuild.2018.01.014. [ CrossRef ] [ Google Scholar ]
  • Khan J, Arsalan MH. Solar power technologies for sustainable electricity generation - a review. Renew Sust Energ Rev. 2016; 55 :414–425. doi: 10.1016/j.rser.2015.10.135. [ CrossRef ] [ Google Scholar ]
  • Khoshbakht, et al. Are green buildings more satisfactory? A review of global evidence. Habitat Int. 2018; 74 :57–65. doi: 10.1016/j.habitatint.2018.02.005. [ CrossRef ] [ Google Scholar ]
  • Lazarova-Molnar S, Mohamed N. Collaborative data analytics for smart buildings: opportunities and models. Clust Comput. 2019; 22 :1065–1077. doi: 10.1007/s10586-017-1362-x. [ CrossRef ] [ Google Scholar ]
  • Li X, Wu P, Shen GQ, Wang X, Teng Y. Mapping the knowledge domains of building information modeling (BIM): a bibliometric approach. Autom Constr. 2017; 84 :195–206. doi: 10.1016/j.autcon.2017.09.011. [ CrossRef ] [ Google Scholar ]
  • Liu CY, Wang JC. Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis. Scientometrics. 2010; 82 :21–36. doi: 10.1007/s11192-009-0055-5. [ CrossRef ] [ Google Scholar ]
  • Liu GL, et al. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain Cities Soc. 2017; 32 :375–396. doi: 10.1016/j.scs.2017.04.011. [ CrossRef ] [ Google Scholar ]
  • Liu J, Liu GQ. Some indoor air quality problems and measures to control them in China Indoor. Built Environ. 2005; 14 :75–81. doi: 10.1177/1420326x05050362. [ CrossRef ] [ Google Scholar ]
  • Liu ZB, Li WJ, Chen YZ, Luo YQ, Zhang L. Review of energy conservation technologies for fresh air supply in zero energy buildings. Appl Therm Eng. 2019; 148 :544–556. doi: 10.1016/j.applthermaleng.2018.11.085. [ CrossRef ] [ Google Scholar ]
  • Liu ZJ, Pyplacz P, Ermakova M, Konev P. Sustainable construction as a competitive advantage. Sustainability. 2020; 12 :13. doi: 10.3390/su12155946. [ CrossRef ] [ Google Scholar ]
  • Maasoumy M, Sangiovanni-Vincentelli A. Smart connected buildings design automation: foundations and trends found trends. Electron Des Autom. 2016; 10 :1–3. doi: 10.1561/1000000043. [ CrossRef ] [ Google Scholar ]
  • Mao G, Zou H, Chen G, Du H, Zuo J. Past, current and future of biomass energy research: a bibliometric analysis. Sustain Energy Rev. 2015; 52 :1823–1833. doi: 10.1016/j.rser.2015.07.141. [ CrossRef ] [ Google Scholar ]
  • Mao GZ, Shi TT, Zhang S, Crittenden J, Guo SY, Du HB. Bibliometric analysis of insights into soil remediation. J Soils Sediments. 2018; 18 :2520–2534. doi: 10.1007/s11368-018-1932-4. [ CrossRef ] [ Google Scholar ]
  • Marinakis V. Big data for energy management and energy-efficient buildings. Energies. 2020; 13 :18. doi: 10.3390/en13071555. [ CrossRef ] [ Google Scholar ]
  • McArthur JJ, Powell C. Health and wellness in commercial buildings: systematic review of sustainable building rating systems and alignment with contemporary research. Build Environ. 2020; 171 :18. doi: 10.1016/j.buildenv.2019.106635. [ CrossRef ] [ Google Scholar ]
  • Mcleod RS, Hopfe CJ, Kwan A. An investigation into future performance and overheating risks in Passivhaus dwellings. Build Environ. 2013; 70 :189–209. doi: 10.1016/j.buildenv.2013.08.024. [ CrossRef ] [ Google Scholar ]
  • Mclinden D. Concept maps as network data: analysis of a concept map using the methods of social network analysis. Eval Program Plann. 2013; 36 :40–48. doi: 10.1016/j.evalprogplan.2012.05.001. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mehmood MU, Chun D, Zeeshan, Han H, Jeon G, Chen K. A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 2019; 202 :13. doi: 10.1016/j.enbuild.2019.109383. [ CrossRef ] [ Google Scholar ]
  • Miao XL, Yao Y, Wang Y, Chu YP. Experimental research on the sound insulation property of lightweight composite paper honeycomb core wallboard. In: Jiang ZY, Li SQ, Zeng JM, Liao XP, Yang DG, editors. Manufacturing Process Technology, Pts 1-5. Stafa-Zurich: Advanced Materials Research. Trans Tech Publications Ltd; 2011. pp. 1334–1339. [ Google Scholar ]
  • Newsham GR, Mancini S, Energy BJ. Do LEED-certified buildings save energy? Yes, but… Energy Build. 2009; 41 :897–905. doi: 10.1016/j.enbuild.2009.03.014. [ CrossRef ] [ Google Scholar ]
  • Nguyen HT, Skitmore M, Gray M, Zhang X, Olanipekun AO. Will green building development take off? An exploratory study of barriers to green building in Vietnam. Resour Conserv Recycl. 2017; 127 :8–20. doi: 10.1016/j.resconrec.2017.08.012. [ CrossRef ] [ Google Scholar ]
  • Paul WL, Taylor PA. A comparison of occupant comfort and satisfaction between a green building and a conventional building. Build Environ. 2008; 43 :1858–1870. doi: 10.1016/j.buildenv.2007.11.006. [ CrossRef ] [ Google Scholar ]
  • Perez-Fargallo A, Rubio-Bellido C, Pulido-Arcas JA, Gallego-Maya I, Guevara-Garcia FJ. Influence of adaptive comfort models on energy improvement for housing in cold areas. Sustainability. 2018; 10 :15. doi: 10.3390/su10030859. [ CrossRef ] [ Google Scholar ]
  • Pongiglione M, Calderini C. Sustainable structural design: comprehensive literature review. J Struct Eng. 2016; 142 :15. doi: 10.1061/(asce)st.1943-541x.0001621. [ CrossRef ] [ Google Scholar ]
  • Pouris A, Pouris A. Scientometrics of a pandemic: HIV/AIDS research in South Africa and the World. Scientometrics. 2011; 86 :541–552. doi: 10.1007/s11192-010-0277-6. [ CrossRef ] [ Google Scholar ]
  • Pulselli RM, Simoncini E, Pulselli FM, Bastianoni S. Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy Build. 2007; 39 :620–628. doi: 10.1016/j.enbuild.2006.10.004. [ CrossRef ] [ Google Scholar ]
  • Ruellan M, Park H, Bennacer R. Residential building energy demand and thermal comfort: thermal dynamics of electrical appliances and their impact. Energy Build. 2016; 130 :46–54. doi: 10.1016/j.enbuild.2016.07.029. [ CrossRef ] [ Google Scholar ]
  • Sartori I, Napolitano A, Voss K. Net zero energy buildings: a consistent definition framework. Energy Build. 2012; 48 :220–232. doi: 10.1016/j.enbuild.2012.01.032. [ CrossRef ] [ Google Scholar ]
  • Schossig P, Henning HM, Gschwander S, Haussmann T (2005) Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Mater Solar Cells 89:297-306
  • Shen C, Li XT. Solar heat gain reduction of double glazing window with cooling pipes embedded in venetian blinds by utilizing natural cooling. Energy Build. 2016; 112 :173–183. doi: 10.1016/j.enbuild.2015.11.073. [ CrossRef ] [ Google Scholar ]
  • Shen L, Yan H, Fan H, Wu Y, Zhang Y. An integrated system of text mining technique and case-based reasoning (TM-CBR) for supporting green building design. Build Environ. 2017; 124 :388–401. doi: 10.1016/j.buildenv.2017.08.026. [ CrossRef ] [ Google Scholar ]
  • Todd JA, Crawley D, Geissler S, Lindsey G. Comparative assessment of environmental performance tools and the role of the Green Building Challenge. Build Res Inf. 2001; 29 :324–335. doi: 10.1080/09613210110064268. [ CrossRef ] [ Google Scholar ]
  • Wang H, Chiang PC, Cai Y, Li C, Wang X, Chen TL, Wei S, Huang Q. Application of wall and insulation materials on green building: a review. Sustainability. 2018; 10 :21. doi: 10.3390/su10093331. [ CrossRef ] [ Google Scholar ]
  • Wang J, Liu Y, Ren J, Cho S, (2017) Iop (2017) A brief comparison of existing regional green building design standards in China. In: 2nd International Conference on Advances in Energy Resources and Environment Engineering, vol 59. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol. doi:10.1088/1755-1315/59/1/012013
  • Wei WJ, Ramalho O, Mandin C. Indoor air quality requirements in green building certifications. Build Environ. 2015; 92 :10–19. doi: 10.1016/j.buildenv.2015.03.035. [ CrossRef ] [ Google Scholar ]
  • Wuni IY, Shen GQP, Osei-Kyei R. Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy Build. 2019; 190 :69–85. doi: 10.1016/j.enbuild.2019.02.010. [ CrossRef ] [ Google Scholar ]
  • Wuni IY, Shen GQP, Osei RO (2019b) Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018 Energy Build 190:69-85 doi:10.1016/j.enbuild.2019.02.010
  • Yang XD, Zhang JY, Zhao XB. Factors affecting green residential building development: social network analysis. Sustainability. 2018; 10 :21. doi: 10.3390/su10051389. [ CrossRef ] [ Google Scholar ]
  • Ye L, Cheng Z, Wang Q, Lin H, Lin C, Liu B. Developments of Green Building Standards in China. Renew Energy. 2015; 73 :115–122. doi: 10.1016/j.renene.2014.05.014. [ CrossRef ] [ Google Scholar ]
  • Ye Q, Li T, Law R. A coauthorship network analysis of tourism and hospitality research collaboration. J Hosp Tour Res. 2013; 37 :51–76. doi: 10.1177/1096348011425500. [ CrossRef ] [ Google Scholar ]
  • Yoon B, Park Y. A text-mining-based patent network: analytical tool for high-technology trend. J High Technol Manag Res. 2004; 15 :37–50. doi: 10.1016/j.hitech.2003.09.003. [ CrossRef ] [ Google Scholar ]
  • Yuan XL, Wang XJ, Zuo J. Renewable energy in buildings in China-a review. Renew Sust Energ Rev. 2013; 24 :1–8. doi: 10.1016/j.rser.2013.03.022. [ CrossRef ] [ Google Scholar ]
  • Zhang HT, Hu D, Wang RS, Zhang Y. Urban energy saving and carbon reduction potential of new-types of building materials by recycling coal mining wastes. Environ Eng Manag J. 2014; 13 :135–144. doi: 10.30638/eemj.2014.017. [ CrossRef ] [ Google Scholar ]
  • Zhang HZ, Li H, Huang BR, Destech Publicat I (2015) Development of biogas industry in Beijing. 2015 4th International Conference on Energy and Environmental Protection. Destech Publications, Inc, Lancaster
  • Zhang SF, Andrews-Speed P, Zhao XL, He YX. Interactions between renewable energy policy and renewable energy industrial policy: a critical analysis of China’s policy approach to renewable energies. Energy Policy. 2013; 62 :342–353. doi: 10.1016/j.enpol.2013.07.063. [ CrossRef ] [ Google Scholar ]
  • Zhang Y, Huang K, Yu YJ, Yang BB. Mapping of water footprint research: a bibliometric analysis during 2006-2015. J Clean Prod. 2017; 149 :70–79. doi: 10.1016/j.jclepro.2017.02.067. [ CrossRef ] [ Google Scholar ]
  • Zhang Y, Kang J, Jin H. A review of Green Building Development in China from the perspective of energy saving. Energies. 2018; 11 :18. doi: 10.3390/en11020334. [ CrossRef ] [ Google Scholar ]
  • Zhao XB, Zuo J, Wu GD, Huang C. A bibliometric review of green building research 2000-2016. Archit Sci Rev. 2019; 62 :74–88. doi: 10.1080/00038628.2018.1485548. [ CrossRef ] [ Google Scholar ]
  • Zuo J, Zhao ZY. Green building research-current status and future agenda: a review. Renew Sust Energ Rev. 2014; 30 :271–281. doi: 10.1016/j.rser.2013.10.021. [ CrossRef ] [ Google Scholar ]
  • Reference Manager
  • Simple TEXT file

People also looked at

Review article, sustainable high-rise buildings: toward resilient built environment.

green architecture research paper

  • Department of Urban Planning and Policy, University of Illinois at Chicago, Chicago, IL, United States

This article examines outstanding “sustainable” skyscrapers that received international recognition, including LEED certification. It identifies vital green features in each building and summarizes the prominent elements for informing future projects. Overall, this research is significant because, given the mega-scale of skyscrapers, any improvement in their design, engineering, and construction will have mega impacts and major savings (e.g., structural materials, potable water, energy, etc.). Therefore, the extracted design elements, principles, and recommendations from the reviewed case studies are substantial. Further, the article debates controversial design elements such as wind turbines, photovoltaic panels, glass skin, green roofs, aerodynamic forms, and mixed-use schemes. Finally, it discusses greenwashing and the impact of COVID-19 on sustainable design.

Introduction

As cities cope with rapid urban population growth and attempt to curb urban sprawl, policymakers, and decision-makers are increasingly interested in vertical urbanism. The United Nations estimates that by 2050 the urban population will increase by about 2.5 billion people, which translates to 80 million dwellers a year, 1.5 million new a week, or 220 thousand a day (The United Nations). Furthermore, it estimates that by 2100 the urban population will reach about 9 billion inhabitants, doubling today's urban population of 4.5 billion. Consequently, to accommodate the influx of urban population while reducing urban sprawl, we must engage the vertical dimension of cities ( Beedle et al., 2007 ; Al-Kodmany and Ali, 2013 ; Wood and Henry, 2015 ).

Indeed, employing high-rise buildings is not the only way to increase urban density. However, cities are embracing the tall building typology for additional reasons, including land prices, demographic change, globalization, urban regeneration, agglomeration, land preservation, infrastructure, transportation, international finance, and air right, among others ( Short, 2013 ; Binder, 2015 ; Kim and Lee, 2018 ; Abbood et al., 2021 ). Notably, we have seen in the last 20 years, or so an unprecedented, accelerated pace in constructing significant high-rises. In the previous two decades, the world added 12,979 tall buildings (100+ m) to the 7,804 buildings they previously built. Further, “cities have erected over 1,361 towers with heights that exceed 200 m, while they built only 284 before. Cities also constructed 150 supertalls (300+ m), while they constructed merely 24 supertalls previously. Further, cities recently completed three megatalls (600+ m); and obviously built none before” ( Al-Kodmany, 2018a , p. 31).

Climate change demands a new sustainable design that addresses serious challenges such as massive storms, earthquakes, and flooding. Urban planners have recently developed new models, for example, a “sponge city,” which advocates designing buildings and infrastructure that safely accommodate anticipated massive flooding. The “sponge city” model builds on the Green Infrastructure (GI) model that aims to improve water management systems and enhance the ecological wellbeing of urban habitats. Integrating green elements in buildings and their surrounding will surely help to absorb rainwater. Similarly, incorporating innovative engineering and architectural solutions helps capture and recycle rainwater, further reducing the likelihood of flooding ( Yeang, 2008 ; Wang et al., 2018 ).

Goals and Objectives

The prime goal of this research is to map out “green” design ideas that contribute to the sustainability of tall buildings. This research is significant because, given the mega scale of skyscrapers, any improvement in their design, engineering, and construction will have mega impacts and significant savings. Therefore, the extracted design elements, principles, and recommendations from the case studies examined in this article are substantial. For example, tall buildings require extensive structural materials ( Krummeck and MacLeod, 2016 ). Therefore, we can significantly reduce costs and carbon emissions by employing appropriate technologies and efficient structural systems. Likewise, tall buildings accommodate many tenants who consume enormous quantities of water. We can save valuable potable water by utilizing efficient water systems and gray and black water recycling systems through the full height of tall buildings. Collectively, this article informs the readers of innovative ideas and promising projects that support sustainable architecture, engineering, and urban planning ( Yeang, 1995 , 1996 , 2020 ).

Sustainability as a Comprehensive Conceptual Framework

Sustainability is a buzzword and a current policy, planning, and grant writing trend. Undoubtedly, the concept of urban sustainability continues to help guide and support architecture and urban developments ( Kim and Lee, 2018 ; Abbood et al., 2021 ). In 2015, the United Nations adopted the 2030 Agenda for Sustainable Development, which details 17 Sustainable Development Goals (SDG's) and 169 Actionable Targets to be realized by 2030. In particular, Goal #11 refers to creating sustainable cities and communities. Further, the United Nations World Urban Forum (WUF), the world's premier conference on urban development, has embraced “sustainability” as an overarching theme for its agendas. The commitment to SDG's has been apparent since WUF's first meeting in 2002, titled “Sustainable Urbanization,” in Nairobi, Kenya, through the latest in 2020, in Abu Dhabi, United Arab Emirates. In the same vein, in 2016, the United Nations Conference on Housing and Sustainable Urban Development (Habitat III) adopted the New Urban Agenda (translated to 33 languages), stressing sustainability. Like the United Nations focus on and interest in sustainability, other important organizations, such as the World Bank, the Global Environment Facility (GEF), Local Government for Sustainability (ICLEI), and Global Platform for Sustainable Cities (GPSC), have worked on and supported local and global sustainability projects, initiatives, and programs (United Nations) ( Short, 2013 ; Kim and Lee, 2018 ).

Likewise, the term “sustainability” frequently appears in academic literature and is discussed in professional conferences. In the United States, the American Planning Association (APA), the prime professional planning organization, continues to use the term “sustainability” in its National Planning Conference (NPC) and publications. In 2010, at the United Nations 5th WUF, the APA announced the creation of the Sustaining Places Initiative, which focuses on sustainability as a key to all urban planning activities. In recent years, the program has published several key reports, articles, and books that highlight this planning approach; see Sustaining Places: Best Practices for Comprehensive Plans by Short (2013) ; Binder (2015) ; Godschalk and Rouse (2015) .

This research views “sustainability” as an overarching theme that links ideas of “ecological,” “green,” “resilient,” and “smart,” where each feeds into the three pillars of sustainability: social, economic, and environmental. That is, “sustainability” can be viewed as a central concept due to its comprehensive framework represented in its three pillars (social, economic, and environmental) or the 3Ps (people, profit, and planet), where “people” refers to community wellbeing and equity; “profit” refers to economic vitality; and “planet” refers to the environment and resource conservation. These pillars or dimensions are also expressed by the 3Es (equality, economic, and ecology) or what is known as the triple bottom line TBL or 3BL. Sustainability seeks to balance these three dimensions according to short- and long-term goals and across geographic scales—from individual habitats to neighborhood, community, city, region, country, continent, and the planet ( Binder, 2015 ; Al-Kodmany, 2018a ).

Sustainability has emphasized the concept of endurance and long-term survival. As such, it augmented the idea of resilience. In turn, global warming and climate change have produced abnormal rates of flooding, droughts, storms, tidal surges, soil erosion, and sea-level rise, which collectively prompted resilience as paramount. As such, sustainable and resilient designs have merged and promoted emergency preparedness to reduce the harmful impacts on people, infrastructure, and institutions caused by unanticipated future natural disasters ( Krummeck and MacLeod, 2016 ).

Similarly, sustainability has always supported embracing technology to improve the performance of buildings, infrastructures, and overall quality of life. For example, it has advocated using technology to generate “green” energy and advanced rail mass systems over the private automobile. Integrating technology into the urban environment is meant to improve the three pillars of sustainability, including economic, social, and environmental.

As such, a plethora of innovative “smart” technologies (e.g., smart elevators, smart appliances, smart payment, smart infrastructure, smart grid, smart traffic management systems, and smart parking) intend to achieve greener, more sustainable, and resilient cities. For example, smart grids can enable the efficient handling, distribution, and delivery of electricity throughout the city. Smart meters can warn homeowners or businesses when they have leaks in their water systems. Smart buildings employ intelligent features that use energy efficiently while increasing user comfort by collecting and interpreting data related to power, security, occupancy, water, temperature, and humidity ( Yeang, 2020 ).

Overall, the sustainability concept has been developed to become comprehensive and inclusive over the past three decades. It helps us adapt our activities to the constraints and opportunities of the natural systems needed to support our lives. It also helps planning for balanced developments that make urban centers prosper and natural landscapes flourish as an integral component of a diverse economy and cultural heritage. Worldwide, sustainability efforts are growing because people—including city officials, planners, architects, and community members—can more easily see the links between environmental, economic, and social objectives and higher quality of life ( Yeang, 1995 , 1996 ).

Case Studies

Over the past decade or so, a wealth of creative green solutions have been developed through the design and construction of skyscrapers, providing valuable knowledge that will benefit the development of future towers ( Du et al., 2015 ; Oldfield, 2019 ). An in-depth evaluation would require building performance and operation data currently unavailable. In some cases, the data is simply not collected, and in others, the data is collected but not shared for liability reasons. Therefore, instead of focusing on evaluation, this paper elaborates on the sustainable design features employed in some of the world's most notable contemporary skyscrapers ( Wood, 2013 ; Al-Kodmany, 2015a , 2018b ). The following 12 case studies highlight vital green features of modern skyscrapers. They come mainly from three continents, including North America, China, and the Middle East.

Bank of America Tower

Bank of America is one of the world's major financial institutions. Bank of America Tower (also known as One Bryant Park) was designed by Cook + Fox Architects ( Abbood et al., 2021 ). The 336 m (1,200 ft) tall, 55-story BoA tower is proclaimed to be among the greenest skyscrapers in the U.S. It is the first commercial high-rise to earn LEED Platinum certification, the highest designation from the U.S. Green Building Council (USGBC). Table 1 highlights the building's green features.

www.frontiersin.org

Table 1 . Bank of America Tower: Key green features.

The Visionaire Tower

The Visionaire Tower is a 35-story building located in Battery Park City, NYC. Completed in 2008, the tower contains 251 condominium units. Notably, it was the first to receive the LEED Platinum from the U.S. Green Building Council (USGBC) in New York City and is considered one of the greenest residential condominiums in the U.S. Pelli Clarke Pelli served as the architect ( Al-Kodmany, 2018b ). Table 2 highlights the building's green features.

www.frontiersin.org

Table 2 . Key green features.

One World Trade Center

On September 11, 2001, the twin towers of the World Trade Center and several other buildings in Lower Manhattan were damaged or destroyed. Soon after the devastation, the ambitious reconstruction to replace and honor the World Trade Center began. The massive One World Trade Center on the northwest corner of the 6.5-ha (16-ac) site was completed in 2015. The radio antenna that tops the 123 m (400 ft) spire reaches a symbolic height of precisely 541 m (1,776 ft) high to honor the year of America's independence. The 105-floor 1 WTC is the tallest in North America ( Binder, 2015 ). The building was designed by Skidmore, Owings, and Merrill (SOM). Table 3 highlights the building's green features.

www.frontiersin.org

Table 3 . One World Trade Center: Key green features.

The Tower at PNC Plaza

The 33-story, 167 m (554 ft) Tower at PNC Plaza is the new corporate headquarters for the PNC Financial Services Group, one of America's oldest financial institutions. Gensler led the tower's architectural design, and Buro Happold led the building's engineering in collaboration with the consulting firm Paladino & Co. The tower was completed in 2015 and received LEED Platinum certification ( Barkham et al., 2017 ). Table 4 highlights the building's green features.

www.frontiersin.org

Table 4 . The Tower at PNC Plaza: Key green features.

Salesforce Tower

The 326 m (1,070 ft) tall, iconic Transbay Tower is the tallest building in San Francisco, CA. Designed by Pelli Clarke Pelli Architects, the 80-story office tower is located adjacent to the San Francisco Transbay Transit Center (SFTTC), a multi-modal transportation hub. The building received LEED Gold certification ( Al-Kodmany, 2020 ). Table 5 highlights the building's green features.

www.frontiersin.org

Table 5 . Salesforce Tower: Key green features.

Devon Energy Center

The Devon Energy Center is the new headquarters of the independent oil and natural gas producer Devon Energy Corporation, located in the heart of Oklahoma City. The 50-story building was completed in 2012. Designed by New Haven-based architects Pickard Chilton, the Devon Energy building is among the largest LEED-NC Gold-certified buildings in the world ( Al-Kodmany, 2018b ). Table 6 highlights the building's green features.

www.frontiersin.org

Table 6 . Devon Energy Center: Key green features.

Manitoba Hydro Place

Manitoba Hydro is a major government-owned energy utility (electric and natural gas) in Manitoba, Canada. The complex consists of two 18-story twin office towers that sit on a stepped, three-story podium. Completed in 2009, it is the first in Canada to achieve LEED Platinum Certification from the Canada Green Building Council (CaGBC), the highest certification available under the LEED program. The challenge was to design an energy-efficient building in a place that experiences extreme climates—temperatures fluctuating from −35°C to +34°C (−31°F to +95°F) over the year ( Oldfield, 2019 ). Table 7 highlights the building's green features.

www.frontiersin.org

Table 7 . Manitoba Hydro Place (MHP): Key green features.

EnCana Energy Company needed a significant building to consolidate its scattered staff and help revitalize Calgary's downtown, Alberta, Canada. The tower was named after the Bow River and forms the first phase of a master plan covering two city blocks on the east side of Centre Street, a central axis through downtown Calgary. The 58-story Bow office building rises to 238 m (779 ft) and is the tallest office tower in Calgary. The skyscraper is the headquarters for energy giants EnCana (TSX:ECA) and Cenovus (TSX:CVE), among other companies. The 238 m (781 ft) tower was designed by Foster and Partners and completed in 2012. The Bow has achieved LEED Gold certification ( Al-Kodmany and Ali, 2016 ). Table 8 highlights the building's green features.

www.frontiersin.org

Table 8 . The Bow: Key green features.

Shanghai Tower

The Shanghai Tower is the third tower in the trio of supertall buildings, including Jin Mao Tower and the Shanghai World Financial Center, located in the heart of Shanghai's new Lujiazui Finance and Trade Zone. Rising to a height of 632 m (2,073 ft), it is the tallest building in China. The 121-story tower offers a mix of functions, including offices, hotels, shops, restaurants, and the world's highest open-air observation deck at 562 m (1,844 ft). The tower has achieved LEED Platinum certification ( Al-Kodmany, 2015a ). Table 9 highlights the building's green features.

www.frontiersin.org

Table 9 . Shanghai Tower: Key green features.

Greenland Group Suzhou Center

At 358 m (1,175 ft), Greenland Group Suzhou Center (also known as Wujiang Greenland Tower) visually anchors the Wujiang waterfront of Suzhou City, China. The tower is part of a larger multi-block development, and Suzhou Center aims to function as the catalyst. The 78-floor tower accommodates a mixed-use program of hotels, serviced apartments, offices, and retail space. The building was completed in 2021 and aimed to achieve LEED-CS Silver status ( Kim and Lee, 2018 ). Table 10 highlights the building's green features.

www.frontiersin.org

Table 10 . Greenland Group Suzhou Center: Key green features.

Parkview Green FangCaoDi

Parkview Green FangCaoDi complex is located in the heart of Beijing's Central Business District (CBD). It is an iconic landmark and a potent symbol of creative design thinking that promotes attractive forms, efficient utilities, functionality, and enjoyable experiences. The project was designed by Integrated Design Projects, engineered by ARUP, developed by Hong Kong Parkview Group, and is owned by Beijing Chyau Fwu Properties Ltd. Parkview Green FangCaoDi has achieved LEED Platinum certification. The project was opened to the public in 2012 ( Wood and Salib, 2013 ; Al-Kodmany, 2015a ). Table 11 highlights the building's green features.

www.frontiersin.org

Table 11 . Parkview Green FangCaoDi: Key green features.

Al Bahar Towers

Al Bahar Towers, the new headquarters for the Abu Dhabi Investment Council, occupy a prominent site on the North Shore of Abu Dhabi Island in the United Arab Emirates (UAE). Completed in 2012, the project comprises two 25-story, 150 m (490 ft) tall office towers. They are among the first buildings in the Gulf to receive the U.S. Green Building Council LEED Silver rating ( Al-Kodmany, 2014 ). Table 12 highlights the building's green features.

www.frontiersin.org

Table 12 . Al Bahar Towers: Key green features.

Vital Green Features

The reviewed case studies offer a wealth of green features. These are inspirational and form a foundation for architects interested in sustainable skyscrapers. Table 13 summarizes the prime green features based on LEED key topics and links them to sustainability. It gives the reader a quick overview and comparison among the different buildings.

www.frontiersin.org

Table 13 . Crucial green features based on LEED key topics and link to sustainability.

Who Pays and Who Gains?

It is often unclear who benefits from employing green features. Table 14 attempts to illustrate the complexity of the issue by differentiating among the various stakeholders.

www.frontiersin.org

Table 14 . Who pays and who gains by employing green features?

Making a Choice

The tables provided in this article help navigate “green” options. The decision will rely on multiple factors, including cost and benefit analysis. All the green features that suggest employing technology, the final decision will depend on the availability and affordability of technology. When technology needs to be shipped thousands of miles, environmental, and monetary costs could be high. As a result, some of the claimed green features may not be green and may render to be controversial. Here are some examples:

Wind Turbines

Due to the higher velocity of wind at higher altitudes, it would make sense to take advantage of greater heights of tall buildings by integrating wind turbines into them. Further, turbines produce power on-site, saving power transmission costs. As such, tall buildings have the potential to harness wind energy. However, only a handful of tall buildings employed wind turbines worldwide due to practical challenges (e.g., turbulence, small blade size, specialized maintenance, little return on investment, and accidents). For example, Bahrain World Trade Centre, which innovatively integrated wind turbines, reports that management has stopped the turbines as tenants complained about the noise generated by the turbines. Similarly, the power generated by wind turbines installed on the top of the Strata SE1 in London was too little—it can barely light the hallways of the building. Eventually, the turbines were turned off. Likewise, Pearl River Tower reports little benefits from the employed turbines. In the case of Hess (Discovery) Tower in Houston, turbines were never operated because one of the blades fell off the roof onto a pickup truck.

Photovoltaic Panels

Similar renewable energy means, such as photovoltaic panels, continue to be largely impractical. First, the roof area in a skyscraper is relatively small and is often preoccupied by mechanical and digital equipment and antenna. Second, other buildings could block facades of tall buildings. In places that feature long overcast days, solar harnessing is minimal. Further, the technology continues to be inefficient. Therefore, the return on investment is low, discouraging developers from pursuing this type of renewable energy.

Glass skin continues to be controversial. Glass allows in natural light, resulting in a significant saving on artificial lighting. However, Glass increases the demand for cooling and heating. Low-emission coating mitigates the problem. In any case, climatic conditions may influence the decision on the glass percentage. Some architects argue that overall Glass should not exceed 50% of the building. However, real estate experts argue that location to desirable views such as lakes and parks makes the Glass desirable.

Green Roofs

Again, the roof of a skyscraper is relatively tiny, and it is often preoccupied with mechanical and digital equipment. Further, wind's high velocity at higher altitudes may render the place uncomfortable. However, there have been some cases that feature “successful” rooftop parks. For example, the rooftop park in Marina Bay Sands bridges three tall buildings, creating a spacious entertaining space in the sky—it became the signature feature of the entire complex.

Aerodynamic Forms

Aerodynamic forms are meant to mitigate the impact of wind by deflecting its forces. By so doing, the required structural elements will be reduced, entailing significant cost savings. However, manipulating form should not result in unfunctional interior spaces. Further, we may need to overcome “vanity height” (i.e., reducing rather than boosting height for showing off). “A 1,500-foot (457-m) skyscraper must be fifty times stronger against the wind than a 200-foot (61-m) one ( Al-Kodmany, 2018b , p.71).” Tall buildings are tested in a tunnel wind laboratory to optimize their forms at the design stage. A famous example is Burj Khalifa; the architects optimized its final form in a wind tunnel.

Mixed-Use Towers

Recently, mixed-use tall buildings have been proliferating all around the world. As the name indicates, mixed-use towers offer spaces for multiple functions, including residential, office, hotel, retail, educational, restaurant, café, sky-park, and sky-garden functions. The CTBUH defines a mixed-use tower as a tall building that contains two or more functions, where each of the functions occupies at least 15% of the tower's total space. Car parks and mechanical plant space do not count as mixed-use functions—though incorporating them could be essential. A mixed-use tower could be more sustainable than a single-use tower for multiple reasons, namely economic uncertainty and fluctuating markets, commercial synergy that results from diverse functions, adaptive reuse, convenience, and smaller plates on upper floors. Indeed, in an unstable economy, a mixed-use building offers greater opportunities to secure investment in real estate development because the rental income comes from multiple sources. Second, various uses guarantee the presence of people and economic activities for longer hours—potentially around the clock—thereby providing convenience to local tenants and improving the perceived safety and security. Third, mixed-use towers have the potential to use resources and waste efficiently. For example, the water system can capture graywater from residential spaces (which generate a larger amount of graywater) and transfer the recovered water to the cooling system of office spaces where water consumption is high and potable water use is low. This type of system can drastically reduce the use of potable water (which is generally used in the cooling system) in office spaces, resulting in significant savings.

The above examples illustrate that choosing a green feature is not always straightforward. Likewise, assessing “greenness” could be controversial. For example, the Bank of America Tower in NYC employed green features, and upon completion, developers and owners claimed to be among the world's greenest skyscrapers. It explicitly uses the most efficient energy technologies, such as a 4.6-megawatt combined heat and power plant that runs on natural gas. The wasted heat created for electricity is recycled to heat and cool the building in winter and summer, respectively, thus reducing overall natural gas usage. However, the skyscraper is one of the city's highest energy users because it hosts large stock and bond traders who require intensive computing. Similarly, abusive behavior of tenants (e.g., keeping lights on when not needed, overusing water in the shower, etc.) could alter the expected results. As such, trade-off analysis will help decide on selecting green features.

Greenwashing

While sustainability is an important concept, we need to stress that greenwashing is prevalent. Cities' “green” agendas have been “hijacked” by industries that wish to take advantage of the new trend by converting sustainable missions into money-grubbing businesses. Industries propagate the notion that new technologies offer superior benefits. Mouzon reflects on this issue by stating: “Today, most discussions on sustainability focus on ‘gizmo green,' which is the proposition that we can achieve sustainability simply by using better equipment and better materials” ( Mouzon, 2010 , p. 42). Indeed, integrating “smart” technology and “green” machines into our daily life is essential; nevertheless, “this is only a small part of the whole equation. Focusing on gizmo green misses the big picture entirely,” according to Du et al. (2015 , p. 43). We need to question where the technology comes from. In the context of the United States, he argues that using Low-E Glass imported from China and selling organic produce from Chile do not necessarily contribute to making our cities more sustainable when we consider transportation and environmental implications. We need to pay attention to both the broader issues of sustainability and the smaller measures such as banning plastic bags, restricting lawn watering, and using renewable energy.

COVID-19 and Sustainable Skyscraper Design

Most of the examined buildings were conceived and constructed before COVID-19. However, the recent pandemic has stressed the sustainability mission of making our buildings healthier. For example, COVID-19 has reminded us of the importance of natural ventilation that helps reduce the spread of the virus. In the post-pandemic era, it will be easier to make the case to invest in intelligent systems that ensure a high-quality air supply. Likewise, it is likely to be easier to make a case for water filtering systems to fight situations where a virus can contaminate the water supply.

The pandemic also has reminded us of the importance of green and communal spaces within and around tall buildings, on and beyond the ground level, such as sky gardens, sky parks, green roofs, Phyto walls (modular wall system comprising containers of hydroponic plants), public parks, indoor gardens, plants, and open spaces to offer occupants accessibility to nature within tall buildings and combat adverse effects of high density. Architects and tenants will value outdoor elements such as terraces, courtyards, gardens, and balconies to ease access to natural ventilation, daylight, and fresh air.

Further, because of the pandemic, many people will likely favor natural elements such as green landscaping and community gardens to improve air quality and reduce carbon emissions resulting from transporting food. Similarly, the pandemic has taught us the importance of bringing natural light and sun rays into our buildings and public spaces to kill germs and improve our bodies' immune systems. Extra hygiene could be further emphasized in dense places (such as high-rise buildings) in every aspect and scale, such as elevators, stairways, hallways, corridors, door handles, and the like. For reinforcing indoor hygiene, many other innovations will take place. Spaces for exercise and meditation are likely to be emphasized in future offices. Therefore, we predict that a “value” shift is underway. As public health becomes a priority, the sustainability mission will become a priority ( Al-Kodmany, 2018d , e ).

Given the massive densification of the 21 st -century city, architects, engineers, and urban planners increasingly face the challenge of constructing taller buildings. This review paper examines prominent examples of “sustainable” skyscrapers of varying geographic locations, climates, and socio-cultural contexts. It summarizes the prime green features based on LEED key topics and links them to sustainability. The findings are inspirational and form a design foundation for building sustainable skyscrapers. They would help navigate “green” options while considering who pays and benefits from them. The discussions also elaborate on controversial issues.

Author Contributions

The author confirms being the sole contributor of this work and has approved it for publication.

Conflict of Interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Abbood, I. S., Jasim, M. A., and Sardasht, S. W. (2021). High rise buildings: design, analysis, and safety – an overview. Int. J. Arch. Eng. Technol. 8, 1–13. doi: 10.15377/2409-9821.2021.08.1

CrossRef Full Text | Google Scholar

Ali, M. M., and Moon, K. S. (2007). Structural developments in tall buildings: current trends and future prospects. Arch. Sci. Rev. 50, 205–223. doi: 10.3763/asre.2007.5027

Al-Kodmany, K. (2014). Green towers and iconic design: cases from three continents. Int. J. Arch. Plan. Res. 1, 11–28. doi: 10.26687/archnet-ijar.v8i1.336

Al-Kodmany, K. (2015a). Eco-Towers: Sustainable Cities in the Sky . Southampton: WIT Press.

Google Scholar

Al-Kodmany, K. (2015b). Tall buildings and elevators: a review of recent technological advances. Buildings 5, 1070–1104. doi: 10.3390/buildings5031070

Al-Kodmany, K. (2017). Understanding Tall Buildings: A Theory of Placemaking . New York, NY: Routledge. doi: 10.4324/9781315749297

Al-Kodmany, K. (2018a). The sustainable city: practical planning and design approaches. J. Urban Technol . 25, 95–100. doi: 10.1080/10630732.2018.1521584

Al-Kodmany, K. (2018b). The Vertical City: A Sustainable Development Model . Southampton: WIT Press.

Al-Kodmany, K. (2018c). Sustainability and the 21st century vertical city: a review of design approaches of tall buildings. Buildings 8:102. doi: 10.3390/buildings8080102

Al-Kodmany, K. (2018d). The sustainability of tall building developments: conceptual framework. Buildings 8:7. doi: 10.3390/buildings8010007

Al-Kodmany, K. (2018e). Skyscrapers in the twenty-first century city: a global snapshot. Buildings 8:175. doi: 10.3390/buildings8120175

Al-Kodmany, K. (2020). Tall Buildings and the City: Improving the Understanding of Placemaking, Imageability, and Tourism . Singapore: Springer; NYC. doi: 10.1007/978-981-15-6029-3

Al-Kodmany, K., and Ali, M. M. (2013). The Future of the City: Tall Buildings and Urban Design . Southampton: WIT Press.

Al-Kodmany, K., and Ali, M. M. (2016). An overview of structural and aesthetic developments in tall buildings using exterior bracing and diagrid systems. Int. J. High Rise Build. 5, 271–291. doi: 10.21022/IJHRB.2016.5.4.271

Barkham, R., Schoenmaker, D., and Daams, M. (2017). Reaching for the sky: the determinants of tall office development in global gateway cities. CTBUH J. 20–25.

Beatley, T. (2016). Vertical city in a garden, Planning, the Magazine of the American Planning Association , Chicago, 64–69.

Beedle, L., Ali, M. M., and Armstrong, P. J. (2007). The Skyscraper and the City: Design, Technology, and Innovation . Lewiston, NY: Edwin Mellen Press.

Binder, G. (2015). Tall Buildings of China . Mulgrave, VIC: Images Publishing.

Bunster-Ossa, I. F. (2014). Reconsidering Ian McHarg: The Future of Urban Ecology. Washington, DC: Island Press.

Du, P., Wood, A., Stephens, B., and Song, X. (2015). Life-cycle energy implications of downtown high-rise vs. suburban low-rise living: an overview and quantitative case study for Chicago. Buildings 5, 1003–1024. doi: 10.3390/buildings5031003

Gan, V. J., Cheng, J. C., Lo, I. M., and Chan, C. (2017). Developing a CO 2 -e accounting method for quantification and analysis of embodied carbon in high-rise buildings. J. Clean. Product. 141, 825–836. doi: 10.1016/j.jclepro.2016.09.126

Godschalk, D. R., and Rouse, D. C. (2015). Sustaining Places: Best Practices for Comprehensive Plans, PAS Report 578 . Available online at: https://www.planning.org/publications/report/9026901/ (retrieved April 01, 2022).

Goncalves, J. C. S. (2010). The Environmental Performance of Tall Buildings. London: Earth Scan. doi: 10.4324/9781849776554

Ilgin, H. E. (2018). Potentials and limitations of supertall building structural systems: guiding for architects (Ph.D. dissertation). Middle East Technical University, Ankara, Turkey.

Kim, T. Y., and Lee, K. H. (2018). Suggestions for developing integrated risk assessment method for high-rise buildings in Korea: based on analysis of FEMA's IRVS. J. Arch. Eng. Technol. 5, 1–9. doi: 10.15377/2409-9821.2018.05.1

Krummeck, S., and MacLeod, B. (2016). “Density our strength,” The Linear City in Practice (CTBUH Research Paper) (Chicago), 272–280.

Lavery, M. (2016). Sustainable Integration of Tall Buildings and the Urban Habitat for the Megacities of the Future . Chicago: CTBUH Research Paper, 92–100.

Moon, K. S. (2018). Comparative evaluation of structural systems for tapered tall buildings. Buildings 8:108. doi: 10.3390/buildings8080108

Mouzon, S. (2010). The Original Green: Unlocking the Mystery of True Sustainability . Los Angeles, CA: Guild Foundation Press.

Oldfield, P. (2019). The Sustainable Tall Building: A Design Primer . Oxford: Routledge.

Robinson, J., and Safarik, D. (2014). Learning from 50 years of Hong Kong skybridges. CTBUH J. 21–24.

Short, M. (2013). Planning for Tall Buildings . New York, NY: Routledge.

The United Nations. (2022). World Population Prospects: The 2021 Revision . New York, NY: United Nations. Available online at: https://population.un.org/wpp/ (accessed April 04, 2022).

Tsang, T. (2014). The development and construction of megatall. CTBUH J. 23–24.

PubMed Abstract | Google Scholar

Wang, J., Yu, C., and Pan, W. (2018). Life cycle energy of high-rise office buildings in Hong Kong, Energy Build. 167, 152–164. doi: 10.1016/j.enbuild.2018.02.038

Wood, A. (2013). Best Tall Buildings 2013, CTBUH International Award Winning Projects, Council on Tall Buildings and Urban Habitat (CTBUH). New York, NY; London: Routledge; Taylor & Francis Group.

Wood, A., and Henry, S. (2015). 100 of the World's Tallest Buildings . Mulgrave, VIC: Images Publishing.

Wood, A., and Salib, R. (2013). Natural Ventilation in High-Rise Office Buildings. New York, NY; London: Routledge, Taylor and Francis Group.

Yeang, K. (1995). Designing with Nature: The Ecological Basis for Architectural Design . New York: NY: McGraw-Hill.

Yeang, K. (1996). The Skyscraper Bioclimatically Considered: A Design Primer . NYC: Wiley-Academy Group Ltd.

Yeang, K. (2007). Designing the eco skyscraper: premises for tall building design. J. Struct. Des. Tall Special Build. 16, 411–427. doi: 10.1002/tal.414

Yeang, K. (2008). “Ecoskyscrapers and ecomimesis: new tall building typologies,” in Proceedings of the 8th CTBUH World Congress on Tall & Green: Typology for a Sustainable Urban Future , ed A. Wood (CD-ROM), 84–94.

Yeang, K. (2020). Saving the Planet by Design: Reinventing Our World Through Ecomimesis . London: W. F. Howes.

Keywords: power consumption, renewable energy, aerodynamic forms, recycling systems, structural materials, greenwashing, COVID-19

Citation: Al-Kodmany K (2022) Sustainable High-Rise Buildings: Toward Resilient Built Environment. Front. Sustain. Cities 4:782007. doi: 10.3389/frsc.2022.782007

Received: 23 September 2021; Accepted: 23 March 2022; Published: 18 April 2022.

Reviewed by:

Copyright © 2022 Al-Kodmany. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Kheir Al-Kodmany, kheir@uic.edu

This article is part of the Research Topic

Towards Resilient Built Environments

  • Open access
  • Published: 29 May 2019

Green building literacy: a framework for advancing green building education

  • Laura B. Cole   ORCID: orcid.org/0000-0001-5730-1881 1  

International Journal of STEM Education volume  6 , Article number:  18 ( 2019 ) Cite this article

29k Accesses

36 Citations

2 Altmetric

Metrics details

Despite the increasing square footage of green buildings worldwide, green building expertise remains largely in the domain of building industry professionals. However, the performance of and advocacy for green buildings would benefit from a green building literate general public. Green building education is an expanding frontier for STEM education and can create opportunities to integrate science and environmental literacies into the study of everyday environments. Few resources exist, however, to help STEM educators incorporate green building themes into the science classroom. The work here developed educational tools for connecting green buildings and science education through a multi-step process. An interdisciplinary literature review yielded a series of frameworks that were improved through two focus groups with science and environmental educators and built environment professionals.

The result of this process is a toolbox of conceptual frameworks for educators interested in using a systems-based approach to teach about green buildings as sites for complex interactions between human activity and Earth systems. The work here first leverages the broad definition of environmental literacy (knowledge, skills, affect, and behavior) to advance a working definition for “green building literacy.” Next, major domains of green building knowledge are developed and linked to the Next Generation Science Standards.

Conclusions

Green building literacy has been an ill-defined term and green building themes have not been rigorously connected to science and environmental education. The work here provides a foundation for promoting green building literacy through K-12 STEM education. The educational tools developed through this process can be used as a starting point for lesson planning to catalyze green building education in a variety of formal and informal settings.

Introduction

The overarching goals of building “green” are to reduce the social and environmental impacts of the built environment while improving the quality of life for occupants within buildings. In the USA, residential and commercial buildings consume 40% of total energy consumption and 75% of all electricity produced (U.S. Energy Information Administration, 2012 ). The average American family uses 300 gal of water a day, where 70% of that water use occurs indoors (U.S. Environmental Protection Agency, n.d. ). The contemporary green building movement promotes buildings that lessen these environmental impacts through better building construction (e.g., less construction waste), building operation and maintenance (e.g., water and energy conservation and better indoor air quality), and lifecycle considerations (e.g., recycling and deconstruction at the end of a building’s life) (International Living Future Institute, n.d. ; USGBC, n.d. ). However, the problem remains that few people outside the building industry understand the myriad benefits of building green (Cole, 2013 ).

Public green building education matters for a variety of reasons. To begin, people are life-long building consumers and occupants within buildings can be crucial agents of change for resource conservation measures such as energy efficiency and material recycling (e.g., Gill, Tierney, Pegg, & Allan, 2010 ; Wu, DiGiacomo, Lenkic, Wong, & Kingstone, 2016 ). A building’s design and resultant ecological performance may depend on occupant behaviors such as minimizing space heaters under the desk, turning off lights, and knowing when to close or open a window. Additionally, for residential structures, many people will at some point in their lives own and maintain, or rent and seek to improve, their own homes. Adults will increasingly need to engage with tax incentives for green home features and learn how to do home renovations or consult professionals for upgrades like better insulation, water efficient fixtures, or solar panel installation. Gaining expertise in green building strategies is therefore comparable to other basic skills in the home economy such as cooking nutritious meals or balancing finances. Finally, energy and atmosphere issues dominate the U.S. Labor Industry’s working definition of a green workforce (SEED Center, n.d. ). Green buildings can make significant contributions to solving energy and atmosphere challenges and will require an increasingly knowledgeable workforce to design, build, and maintain. These foundations for green building literacy can begin in the K-12 classroom.

Green building literacy (GBL) is the term used here to describe the hoped-for outcome of green building education [which falls within the larger movement for public “built environment education” (e.g., Portillo & Rey-Barreau, 1995 )]. To craft green building education programs, a framework is needed to understand prospects for GBL. The conceptual framework for GBL presented below builds off the four core themes integrated into frameworks for environmental literacy over time. Despite much variation in terminology, these four dimensions are knowledge, skills, affect, and behavior (terms used in the McBride, Brewer, Berkowitz, & Borrie, 2013 overview of environmental literacy frameworks). To date, little effort has been made to stitch together these domains with the topic of green building design. The current author presented the “ Major features of green building literacy ” in previous reporting as a theoretical background for empirical work in green schools (Cole, 2015 ). This work utilized the Marcinkowski ( 2010 ) matrix for “Major Features of Environmental Literacy,” a framework chosen for its clear distillation of themes and for its practical emphasis on identifying issues and solving problems. Previous publications on GBL, however, have not clearly identified the multiple dimensions of GBL from a theoretical point of view or aligned outcomes to STEM education. Doing so can inform a range of practices (from curriculum to building design) for various age groups given the broad nature of the foundational categories for environmental literacy presented by McBride et al. ( 2013 ).

Previous work on GBL was additionally conducted through a research project entitled “Green Building Technology Education,” funded by the National Science Council in Taiwan, which focused on green building education at the college level (Shiao, Lin, & Sung, 2013 ). Scholars in this group used the Roth ( 1992 ) work on environmental literacy to build curriculum and develop an evaluation tool for GBL (Jan, Lin, Shiao, Wei, Huang, & Sung, 2012 ). Their study involved a curricular intervention in an undergraduate general education course with pre- and post-course surveys measuring GBL, where they found significant increases in knowledge, attitudes, and behaviors from pre- to post-course (Shiao et al., 2013 ). They also identified a gap between positive attitudes and actual behaviors related to green buildings, which they attributed to the lack of green building skills (Jan et al., 2012 ). The work here expands the scholarship from Taiwan in several key ways. First, the “ Major features of green building literacy ” framework presented here offers a broader spectrum of pedagogical approaches to green building education compared to work by Shiao et al. ( 2013 ). The framework presented here incorporates multiple dimensions of green building knowledge (factual, conceptual, and procedural), where previous work has not considered various knowledge domains (i.e., those inspired by Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956 ) and how these different kinds of knowledge relate to green building education. Second, this paper outlines a larger array of green building learning content. The scholarship in Taiwan was based on the Taiwan Green Building Label rating system (Tawain Green Building Label, n.d. ), which was developed specifically for tropical climates. This paper integrates international green building rating systems to offer 14 green building knowledge categories. This paper additionally provides educators with an integrative framework that places green buildings within infrastructural, ecological, and social contexts in alignment with the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013 ) (Additional file 1 ). In doing so, the hope is that educators can increasingly teach about green buildings as dynamically interconnected with surrounding social and physical contexts while meeting stringent standards for science education. Finally, work in Taiwan was crafted specifically for the green building education of college students. The work here seeks to inform K-12 educators and curriculum developers who aspire to increase GBL for youth.

Improving the definition of GBL has implications for theories of teaching and learning. First, crafting a framework for GBL promotes exciting future directions for educators interested in experiential and place-based education (Barr, Dunbar, & Schiller, 2012 ). Learners can, of course, engage with green buildings themes by reading and watching educational media. However, green building knowledge can also be gained through hands-on lessons in the home, school building, public buildings, and beyond in community infrastructure (Cole, McPhearson, Herzog, & Kudryavtsev, 2017 ). As Sobel ( 2004 ) defines it, place-based education is “the process of using the local community and environment as a starting point to teach concepts in language arts, mathematics, social studies, science and other subjects across the curriculum” (p. 6). The study of buildings within infrastructure and ecology aligns well with Sobel’s vision of treating the surrounding community as an extension of the classroom and complement to textbook learning (Sobel, 2004 ).

The sections to follow address each the practical and theoretical aspects of GBL. First, GBL is theoretically positioned within the larger discourses of environmental literacy and science literacy. Second, the “ Major features of green building literacy ” are presented as a set of frameworks that can be used by educators and curriculum developers to integrate green building themes into STEM education.

Theorizing green building literacy

While green building themes can be viewed through numerous disciplinary lenses, the current work examines green building design as nested within the broader topics of environmental literacy and science literacy. A green building literate citizen will benefit from foundational knowledge from environmental/sustainability education and science education to understand both the what and why of green building design and ultimately how to engage in transformative green buildings practices.

Just as the term “environmental literacy” has been the subject of much debate (e.g., McBride et al., 2013 ), the term “science literacy” has been similarly elusive to define (e.g., DeBoer, 2000 ; Roberts, 2007 ). Both types of literacy, however, share the challenge of blurred boundaries between the physical sciences and socio-cultural themes. Environmental literacy is conceptualized as a combination of social and ecological forces, or an overlap of ecological literacy with civics literacy (Berkowitz, Ford, & Brewer, 2005 ; McBride et al., 2013 ), that attempts to thread together the complex relationships between human activity and ecosystem health. Likewise, for science literacy, the needs to place science within applied contexts necessitates some level of systems thinking that engages disciplines outside the physical sciences, which stands in contrast to a formulation of science literacy that stays “within science” (a distinction well-articulated by the Roberts, 2007 notion of Visions I and II for science/scientific literacy). Science standards for K-12 education, such as the NGSS, additionally include guidelines for teaching at the intersections of Earth systems and human activity (NGSS Lead States, 2013 ). Architectural environments, commonly infused with scientific advancements, are potent and very tangible manifestations of how humans interface with ecology. Green building design is thus uniquely positioned at the intersection of a variety of socio-cultural, technological, and ecological themes. However, educators need not expand to dimensions beyond science to engage in green building education. Green building design is fundamentally based on scientific concepts and can be viewed through a purely scientific lens. While the topic of green buildings is malleable to a variety of conceptualizations within the broader ideas of science literacy and environmental literacy, the frameworks introduced here were created with a mind toward the potential for interdisciplinarity.

Adding the notion of green building literacy (GBL) to the crowded field of “literacies” is not an exercise to take lightly. A more in-depth justification for why literacy is the appropriate terminology for advancing green building education is warranted. Stables and Bishop ( 2001 ) warn that “the term ‘literacy’ has been degraded as a result of its indiscriminate application” (p. 90). They argue that the application of the term to a variety of domains (e.g., environmental, technological, and computer literacies) has not been sufficiently grounded in the linguistic and literary origins of the notion of “literacy.” In their argument for a “strong conception of environmental literacy,” they advocate for an expansive conceptualization of the term “environmental literacy,” where literacy is not restricted to textual literacy, but understood as a broader engagement with the biophysical environment. Their work draws on work by de Saussure ( 1966 ) on semiology, the study of both linguistic and non-linguistic communication via the use of “signs” that are open to a variety of interpretations. Stables and Bishop ( 2001 ) argue for an understanding of environmental literacy as a semiotic engagement with our surrounding environment where the biophysical environment can be thought of a text that we both “read” (understand) and “write” (act on). In this view, the environment is not only an ecological reality but also open to a variety of scientific, historical, and esthetic interpretations (Stables & Bishop, 2001 , p. 93). McBride et al. ( 2013 ) also addressed the need to understand the term “literacy” beyond textual literacy by stating that “… expectations for a literate citizenry have been extended to include the ability to understand, make informed decisions, and act with respect to complex topics and issues facing society today” (McBride et al., 2013 , p. 2).

Conceptualizations of GBL can meet the Stables and Bishop ( 2001 ) criteria of being “strong.” Like the biophysical environment, buildings too can be read and written. This is a particularly interesting question in school buildings where the building can act as one stream of messaging among many others (Cole, 2018 ; Higgs & McMillan, 2006 ; Shapiro, 2015 ). Aligning with Stables and Bishop’s ( 2001 ) conceptualization, buildings may fit the same role as the biophysical environment, offering a palette of signs open to interpretation by building occupants and therefore providing a unique medium for environmental education. Buildings, perhaps even more than natural settings, are open to a multitude of interpretations with diverse layers—socio-cultural, biophysical, technical, historic, etc.—to comprehend. The term “green building literacy,” as used here, thus shares the strong conception of environmental literacy envisioned by Stables and Bishop ( 2001 ) as a fluid outcome rooted in time and context.

Like textual literacy and the Stables ( 1998 ) model for environmental literacy, GBL can also be understood as variously functional, cultural, and critical. The framework for GBL presented here lays the groundwork for functional GBL (the basic ability to “read” a green building) by outlining the diverse domains of green building knowledge. These knowledge domains are not simply about buildings as objects, however; the framework conceives green buildings as cultural artifacts that intersect with themes of economy, social justice, and esthetics. Green building education, therefore, can integrate cultural GBL (understanding the significance of green building practices) by encouraging learners to decode the kinds of socio-cultural messages that buildings impart. Better yet, green building education can foster critical GBL, where learners critically engage with green buildings to question the cultural, social, and political forces that both shape—and are shaped by—buildings. Stables ( 1998 ) argues that functional and cultural literacy are required for critical literacy, and effective environmental action requires critical environmental literacy. This may be true in the arena of green building design, where a basic understanding of green buildings is the foundation for active and effective participation in the green building movement.

Methods: green building literacy framework development

To develop this provisional framework for green building literacy (GBL), the guiding question was: what are the core qualities of a green building literate citizen ? This study used a simplified and qualitative Delphi technique (e.g., Murry & Hammons, 1995 ) to create, present, and revise the frameworks presented here. First, an interdisciplinary review of literature across environmental education and built environment studies yielded a series of diagrams and tables that convey the major tenants of GBL. Second, these intellectual resources were shared with an expert panel of practitioners and scholars in both education and architecture in two web-based focus group settings. Finally, insights from the focus groups were used to improve the frameworks including the creation of additional tools to connect green building knowledge domains with current standards for science education.

Interdisciplinary literature review

The foundation of the framework begins with the core dimensions of environmental literacy (knowledge, skills, affect, and behaviors) (McBride et al., 2013 ) which are then adapted to the topic of green building design (Table  1 ). Frameworks from the realms of education and architectural studies are then used to build each of these dimensions outward. First, the domains of knowledge and skills in this framework are informed by a revised version of Bloom’s Taxonomy (Krathwohl, 2002 ). The dimension of “skills” is here identified as “procedural knowledge” and combined with the other dimensions of knowledge to illustrate a continuum of knowledge from understanding (factual and conceptual knowledge) to action (procedural knowledge). Next, frameworks for green building design are used to establish a series of categories for green building knowledge (Table  2 ). The section on “ Green building knowledge and skills ” additionally includes a review of key crossover themes between green buildings and the NGSS to identify the strong potential for curricular integration. Finally, the themes of affect and behavior within green building education are discussed. The result is a provisional framework for GBL that can be used to both create and evaluate green building curriculum for the K-12 classroom.

Focus groups

Following ethics approval and consent of the participants, the first iterations of Tables  1 and 2 were shared with professionals in two focus group settings. One focus group was comprised of professionals in the realm of environmental and science education ( n  = 5), hereafter called the “Educator Focus Group.” The second focus group engaged built environment (BE) professionals across interior design and architecture who all had experience in the area of green building design ( n  = 7), hereafter called the “BE Focus Group.” Both groups were comprised of a mix of practitioners and academic scholars. A convenience sampling technique followed by a snowball sampling technique were both used to identify and recruit focus group participants. The researcher invited contacts in her own network and requested that those contacts help to identify other professionals who could offer valuable perspective on the topic of green building education. This sampling resulted in a group of experts who are all in North America and mostly located in regions across the USA. The Educator focus group included one West coast educator, a Midwest scholar, a Midwest sustainability coordinator originally from India, an East coast educator, and an East coast non-profit manager. The BE focus group included one scholar from the Mountain West, an architect from the Midwest, a scholar/architect from Turkey who resides in the Midwest, two scholars from the Southern US, a scholar from the East coast, and a scholar from Canada. Both focus group sessions were 60-min long, conducted online, and included a 10-min presentation of the frameworks by the researcher followed by a structured conversation that focused on obtaining expert feedback. Consensus was not derived through successive quantitative surveys, as is common in Delphi panels. Instead, points of contention were discussed as they arose in the focus group setting and the researcher ensured that all points of view were registered before changing topics.

The transcripts from each focus group were imported into qualitative analysis software and analyzed by the researcher in a two-step coding process that first identified topics of discussion through open coding then a second examination of the data to coalesce topics into broader themes. The final Tables  1 and 2 frameworks presented here are the result of integrating feedback across the professional and disciplinary perspectives. The “ Major features of green building literacy ” are presented in the next section followed by a summary of the three major themes that arose in the focus group settings in reaction to the frameworks.

Major features of green building literacy

Green building knowledge and skills.

What kind of knowledge might a green building literate citizen possess? The sections below unpack the multiple dimensions of green building knowledge. The Taxonomy table from the Krathwohl ( 2002 ) adaptation to Bloom’s Taxonomy (Bloom et al., 1956 ) is a framework commonly employed by environmental education scholars (e.g., Iozzi, Laveault, & Marcinkowski, 1990 ; Monroe, Andrews, & Biedenweg, 2008 ). The framework posits a six-step cognitive process dimension (remember, understand, apply, analyze, evaluate, create) and draws it across four different kinds of knowledge (factual, conceptual, procedural, metacognitive). Green building lesson plans can incorporate the six cognitive processes. Further, green building knowledge can fall along this spectrum of knowledge types. The sections below take the first three knowledge types as a starting point to define a typology for green building knowledge.

Factual green building knowledge

The factual information that underlies green building design is vast. Green buildings intersect with a wide set of environmental issues (materials, energy, water, etc.). However, numerous existing frameworks are used to organize and measure what it means for a building to be green. These tools can be used to organize content areas for green building lesson planning. Table  2 collects themes in one place, where categories are derived from previous GBL frameworks (Shiao et al., 2013 ), green building rating systems (CHPS, 2014 ; International Living Future Institute, n.d. ; USGBC, 2008 ), and green school award programs (Pastorius & Marcinkowski, 2013 ) and focus group feedback. Further inspiration was drawn from the McLennan ( 2004 ) compendium on philosophies of sustainable design. The five key categories most commonly found across green building rating systems include sustainable sites, location and transportation, energy and atmosphere, water, materials, and indoor air quality. The category of “shape of building” has been added to this framework given the importance of building orientation on the site and building size relative to the number of occupants. The Living Building Challenge, the most stringent guideline in North America, additionally includes categories of social equity and beauty to argue that green buildings not only perform well ecologically, but also socially with enduring esthetics (International Living Future Institute, n.d. ). The study of green buildings can also include economic analyses since various building features add costs, save costs, and sometimes pay for themselves over time. The concept of lifecycle analysis is especially pertinent for studying building materials, where the Braungart, McDonough, and Bollinger ( 2007 ) notion of “cradle to cradle” products (products designed to avoid the landfill) can be taught. The rating system dedicated specifically to schools in the USA, the Collaborative for High Performing Schools (CHPS), additionally includes the category “operations and metrics,” which addresses themes such as green cleaning, ongoing maintenance, and the monitoring of building performance of the building over time (CHPS, 2014 ). The category of “local and healthy food” is included because green building and landscape design can offer infrastructure for sustainable food production and consumption. This category may be especially pertinent for K-12 educators who already introduce lesson plans on local food systems and wish to intersect these themes with built environment education. Finally, the category of “policy” was added to the framework based on focus group feedback that stressed the importance of the political context for green building design. Addressing the broader social systems within which green buildings are created is yet another lens for understanding human impacts on ecosystems.

Conceptual green building knowledge

Taken together, the categories in Table  2 outline the foundation for an increasingly sophisticated understanding of green buildings. Beyond a grasp of individual building elements (factual knowledge) is the understanding of the complex interrelationships between building elements, and the ways in which these built features interact with the local communities and local ecologies—the human, air, water, plant, and animal life that are affected by the building (conceptual knowledge) (Fig.  1 ). Conceptual knowledge may include, for example, making the connection between a light bulb, functional illumination in the room, and the building energy that comes from a nearby coal power plant, which is then connected to air quality. Another example of conceptual understanding would be making the connection between an exotic hardwood and the cultural and ecological effects of deforestation in another country, a lesson that would highlight themes of building materiality, biodiversity loss, and social equity. Thus, while factual information within the categories described above can be taught and tested, a more advanced curriculum is needed to help students to connect factual knowledge into a systems-level understanding of green building themes.

figure 1

Factual and conceptual green building knowledge. This diagram shows the many ways that green building themes can be connected to broader social and ecological systems

Procedural green building knowledge (skills)

Beyond increasing factual and conceptual knowledge of green buildings, increasing procedural knowledge of green building issues moves students from understanding into action. Procedural knowledge relative to green buildings involves an expansive array of skill sets. Table  2 offers examples of procedural green building knowledge for each factual knowledge domain. Procedural knowledge in green buildings can draw on various disciplines. It can involve research on building materials, mathematical calculations on energy or financial savings, or hands-on activities such as building furniture from salvaged materials or installing a rain barrel. Procedural knowledge also spans across the life of a built environment—from designing and constructing to inhabiting and maintaining.

Green building knowledge and the NGSS

Factual, conceptual, and procedural green building knowledge can be acquired in standards-aligned green building education programs. An in-depth examination of the Next Generation Science Standards (NGSS) reveals the many ways that green building design themes can help educators to meet a variety of performance expectations (PEs) within standards across grade levels (NGSS Lead States, 2013 ). Additional file 1 illustrates a provisional overlapping of the NGSS standards and PEs with the 14 domains of green building knowledge (from Table  2 ). While isolated opportunities exist across the NGSS framework in areas such as energy, matter, and Earth’s systems, the areas with the highest potential are (1) Earth and Human Activity (ESS3) and (2) Engineering Design (ETS1).

Green building education can align quite well with the Earth and Human Activity (ESS3) PEs from Kindergarten through 12th grade. Beginning in Kindergarten with standards that require students to “communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment” (K-ESS3-3) to standards such as the fifth grade PE to “obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment” (5-ESS3-1). Green building themes can advance through the upper grades with middle school requirements such as “apply scientific principles to design a method for monitoring and minimizing a human impact on the environment” (MS-ESS3-3) and high school PEs such as “use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity” (HS-ESS3-6).

The engineering design standards (ETS1) within the NGSS additionally present a clear opportunity for green building education. The PEs for these standards were written quite broadly around the idea of “design process,” which can connect to a variety of disciplines such as architecture, engineering, product design, and well beyond. The PEs in ETS1 additionally require rich overlaps between technical, social, and environmental domains such as the middle school Standard MS-ETS1-1:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions (MS-ETS1-1).

The ETS1 standards in high school provide similar, and more complex, guidance:

Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural and environmental impacts (HS-ETS1-3).

Standards such as these could engage students, for example, in the design process for a piece of furniture for their classroom that meets a set of given functional, social, and environmental criteria. Beyond encouraging technical skills, these projects additionally provide avenues to make connections to themes of esthetics and social justice. In route, students could engage with additional NGSS standards such as MS-PS1-3 that encourages exploration of how “synthetic materials come from natural resources and impact society” and MS-LS2-3 which requires students to “develop a model to describe the cycling of matter and flow of energy among living and non-living parts of an ecosystem.” This is an example of how a single green building theme like furniture design can overlap with the physical and life sciences as students engage in a design process guided by the ETS1 engineering design standards.

Affective dispositions and green buildings

Just as the “environmentally literate individual has a well-developed set of environmental values or morals” (McBride et al., 2013 , p.7), so too does the green building literate citizen. Beyond having knowledge, a green building literate student may also have attitudes and values that shape knowledge and become a basis for environmental action. Within the Table  1 framework, affective dispositions include a person’s environmental sensitivity, environmental concern, self-efficacy, feelings of personal responsibility, and willingness to take action. Affective depositions such as these have a dual role as both an outcome to which we might aspire (e.g., environmentally sensitive citizens) and a predictor of other positive outcomes (e.g., environmentally responsible behaviors). Scholars across disciplines have taken an interest in affect for its potential importance in the process of learning (e.g., Picard et al., 2004 ) and for the links to pro-environmental action (e.g., Ajzen, 1991 ; Hines, Hungerford, & Tomera, 1987 ; Stern, 2000 ). It should be noted, however, that environmentally responsible behaviors are often multi-determined by an array of predictors where attitudes have been shown to be an unstable predictor across studies (Kollmuss & Agyeman, 2002 ). Within the Hungerford and Volk ( 1990 ) “Environmental Behavior Model,” affective dispositions occupy every dimension of the framework—from entry-level to ownership to empowerment variables—that all lead toward citizenship behavior. This is all to say, the relationship between affect and behavior is complex and rarely linear. Research further shows that attitudinal factors, such as environmental sensitivity, are outcomes that typically occur for individuals over many years and are influenced by factors such as role models and time in nature (Chawla, 1998 ; Marcinkowski, 1998 ; Tanner, 1980 ).

Despite the growing body of research on affect in fields of education, environmental education, and conservation psychology, the study of affect in green buildings is yet in the nascent stages. In the realm of green building literature, we have much yet to understand about how affect is influenced by green building design, and conversely, how green building design practices are advanced by people with positive affective dispositions. Each of these angles—alternatively viewing affective dispositions resulting from and contributing to green building practices—merits further elaboration.

First, previous research illustrates that context matters for fostering environmental sensitivity. Chawla ( 1998 ) found numerous pathways to environmental careers that included influences such as frequent contact in nature and solitude in nature, both experiences that can be fostered by green landscape design. On the other hand, and more specific to building interiors, McCunn and Gifford ( 2012 ) conducted one of the earliest studies on how a green office environment impacts employee environmental attitudes. Their results were surprising in that employee attitudes dropped as green building features increased. The researchers suggest that dissatisfaction with the building design, and perhaps faded novelty of the green building, were potential reasons for the negative attitudes. It appears to make a difference who occupies the green office building, however. A study in Australia found that office building occupants with higher levels of environmental concern were more likely to forgive a green building’s shortcomings (Deuble & de Dear, 2012 ).

Second, it is possible that positive emotions about green buildings will bring about positive outcomes for green buildings, where positive affect becomes a building block toward action. Sung et al. ( 2014 ) present pioneering quantitative work on GBL in a study of over 1000 Taiwanese college students. They found that attitudes about green buildings were an essential link between knowledge and behaviors. In fact, they found that “[w]ithout attitudes and responsibility as mediators, greater knowledge indicated poorer behavior” (Sung et al., 2014 , p. 173). Taken together, the research thus far suggests that green building attitudes can work for and against the pursuit of building green. The study of affect and green buildings is complex and potentially fertile area for future research. Research is especially lacking for youth in the K-12 school environment.

Despite the need for better understanding about affect in and for green buildings, there are several key takeaways regarding “affect” for practitioners interested in increasing GBL. The first is that attitudes and values about green buildings are not likely to change rapidly for building users. Green buildings are one potentially positive force for engendering environmental sensitivity along with other factors like access to nature and environmental role models, and these are influences that work over time. Further, practitioners designing curricula and interventions for green building education may want to understand the initial affective dispositions of learners relative to environmental themes to create the appropriate starting point for lesson planning. Finally, affect plays a role in the process of green building education just as it does in any educational process. Fredrickson ( 2001 ) argued that positive emotions allow people to “broaden” their scope of attention and “build” intellectual resources. Therefore, green building education that is infused with positive learning experiences may help learners to open up to novel experiences and revise their mental models of what the built environment can be.

Behaviors and green buildings

The ultimate goal of environmental education is to bring about change not only in people’s minds but in tangible benefits to our natural and built environment (e.g., Hines et al., 1987 ). The work here aligns well with the Sung et al. ( 2014 ) view of green building actions that focuses first on involvement and decision-making relative to green design and then expands to encompass more general environmentally responsible actions. Thus, within a framework of GBL, two distinct types of behaviors can be examined: actions that (1) advocate for green building practices, and (2) occur in and around green buildings.

First, a major goal of green building education is to inspire action that advances the green building movement. Marcinkowski ( 2010 ) conceptualizes behavior as multi-faceted, including actions taken individually and collectively on levels local, national, and global. These many forms of action are applicable to the topic of GBL. For example, consider the many ways a student could take action on energy issues. At the level of the building, a student can help turn off lights and shut down computers. The same student could work with peers in an environmental club to advocate for energy efficiency on their school campus. Further reach beyond the school building might include trying behaviors at home or writing local legislators about energy issues in public buildings. In this way, green building education can provide a link to planning and policy conversations in the classroom given the broader social systems (such as building codes, regulations, and guidelines) that either hinder or support innovative building design.

Second, consider the occupant actions within buildings that impact the performance of a green building. The repertoire of actions possible within a green building are largely determined by the opportunities a building affords such as recycling, composting, adjusting thermostats, and so on. Schools promoting green building education can align opportunities for environmentally friendly practices within the building with educational programming. The lessons for students are twofold. First, students can build awareness about how the physical built environment is structured to either hinder or support environmental action. Second, students can learn how informed and active building occupants can make a difference for their own school building’s environmental performance.

Focus group results and discussion

Education and built environment (BE) professionals provided input on the frameworks in Tables  1 and 2 . These tables were improved and Additional file  1 was created as a result of participant feedback. The three broad themes addressed by experts (each given a pseudonym) are summarized below.

Theme 1: framing green building literacy

The Table  1 framework for GBL resonated across groups and participants. Various professionals, however, recommended different ways to frame the importance of GBL. Numerous experts wanted to see more clear links between green building design and the realm of policy and planning given that the political and city planning context is a critical set of factors that can limit or give rise to innovative green building design (e.g., Simons, Choi, & Simons, 2009 ). BE professionals further expressed concern that building occupant political views will shape how individuals experience green buildings and respond to green building education programs, a notion that has some potential connection to the broader discourse on political consumerism (e.g., Wirt, 2017 ). The theme of policy was thus added to the framework. Claire discussed the complexity by noting that “there’s kind of a transactional thing that happens there with the attitudes that people bring into the building” that can either promote or deter environmentally friendly actions in buildings. The Table  1 “affective dimensions” category was split into two sub-themes as a result of this discussion. Stephen, an expert in using green schools as teaching tools, further advocated for stronger ways to frame green buildings for educators. He recommended framing green buildings as physical manifestations and microcosms of the larger environmental values that many educators already seek to foster in students. In sum, conversations across groups revealed the variety of lenses through which green buildings can be viewed. The work here examines green buildings for STEM education and maintains a dominant focus on the building itself and immediate landscape (the set of decisions that are largely within the power of school districts and architectural designers to make). However, educators, curriculum developers, and designers have vast options to tailor green building themes to their unique educational contexts and purposes.

Theme 2: green building knowledge categories

Numerous focus group participants indicated that Table  2 with “green building knowledge categories” was one of the key contributions of this body of work. As James, a public school curriculum coordinator, expressed:

Table two jumps out as a very effective set of principles and illustrations that dovetails very well into the sort of work that public schools are looking towards when it comes to the meaningful integration of sustainability practices. It's one thing to build the building, but … the practices are everything (James).

Discussion around the specific Table  2 categories comprised the major portion of both focus group sessions. The green building knowledge categories were thus impacted and refined as a result of the focus group feedback. Participants recommended that the titles of the knowledge categories maintain alignment with the prominent standards for green building design, which may be especially helpful for curriculum within schools with certified green buildings. Key points of conversation (in order of appearance in the framework) included:

Location and transportation: This category was originally included within “sustainable sites” but was extracted and given its own category as recommended by members of the BE focus group. This choice also reflects the latest changes within the LEED ® Green Building Rating System (USGBC, n.d. ).

Social justice: Educator focus group participants debated the inclusion of the “social justice” category. Stephen questioned if the theme deviated to far from the core topic of green buildings and Janice additionally commented that the theme could be difficult to address in lower elementary classes. However, three other participants vigorously defended the importance of keeping social justice in the framework, with one educator noting that “It is so front and center” (Sara) for the work that she does in public schools. James further emphasized the point commenting that “one cannot separate equity from environmental and sustainability focuses. It’s essential for kids.” These latter perspectives synchronize with the choice of the developers of the rigorous “Living Building Challenge” standards for ecologically friendly buildings, which include social justice as a core set of guidelines for living buildings (International Living Future Institute, n.d. ).

Local and healthy food: The Collaborative for High Performing Schools (CHPS) includes “school gardens” as a credit within the sites category (CHPS, 2014 ). Given that food system themes largely occur outside the building, the researcher asked participants if this category cohered with the other content in Table  2 . Educators and BE professionals overwhelmingly agreed that the built environment plays an important supporting role in sustainable farm-to-table food production and that this category fits well with current health food initiatives already happening at many schools. James summarized the group sentiments:

It [local and healthy food] is an authentic daily practice-driven integration that capitalizes upon required and normal school function, a critical one inside our schools, but we have found that integrating our outdoor garden as well as our hydroponic garden alongside recycling, composting and food donation has been an extraordinarily effective vehicle for all age levels. So I’m glad to see that represented here. “I think it’s low hanging fruit that you are wise to include” (James).

Two members of the Educator focus group did express some concern that “there is going to be a lot of red tape” (Janice) and logistical issues (Sara) in terms of connecting school gardens to school cafeterias. Public health concerns, student allergies, and pre-existing contracts with food vendors were several of the potential issues highlighted.

Policy: As mentioned previously, the topic of politics and policy was noted by BE focus group members as a potentially important issue to include. Inclusion of this category could encourage educators to engage social studies or civics themes into green building lesson planning. This theme could also inspire teaching about the green building rating systems themselves as guidelines that could be adopted into policy in the future.

Theme 3: implementation within schools

A central theme in the Educator focus group was the ways in which frameworks for GBL can be useful to educators and curriculum developers. The conversation began with James noting his frustration with identifying useful frameworks to inform practice. His comments highlighted the challenge of providing frameworks as tools for curriculum development, and particularly the challenge of striking a balance between providing overly broad versus excessively specific guidance. Janice suggested, and the educators all agreed, that alignment between GBL and science standards is a critical missing piece for promoting adoption of green building education in K-12 classrooms. Additional file 1 was created in response to this concern, and the tables therein reveal a multitude of connections between green building themes and the NGSS standards.

Numerous professionals asked clarifying questions about what types of school buildings, and school systems broadly, are the target audience for GBL frameworks. Within this conversation, the group discussed the ways that GBL can be promoted in schools both with and without green buildings—and for a spectrum of green buildings from partial renovations to entire new construction buildings. Educators additionally emphasized the importance of ensuring that these themes are not only pursued within special private and charter schools, but also within public school systems that may have less access to resources for green building design. The frameworks presented here are broad enough to apply to both green certified and non-green buildings across both school types and age groups. They are tools for educators and curriculum developers to use as a catalyst for connecting their unique contexts to green building design to advance a great variety of learning outcomes in K-12 science classrooms.

Overall, the group of professionals confirmed and expanded the conceptualizations of green building knowledge, contributing to the overarching question guiding this inquiry, which sought to define key qualities of a green building literate citizen. Despite having a variety of professional perspectives among participants, a key limitation to the focus groups was the sampling frame that began with the author’s own network and expanded outward. Three participants were foreign born; however, the dominant perspectives are US-centric and may need adaptation to other settings.

Green building education, while prominent in architectural and engineering professions, is scarce for the general public. Green building education can begin in K-12 schooling to enhance science education amid increasing calls to teach students about human impacts on nature (NGSS Lead States, 2013 ). If advances are to be made for public green building education, a framework for outlining the diverse educational content and outcomes could provide a useful starting point for curricula that are formal, informal, or even non-formal in nature. The “ Major features of green building literacy ” matrix builds on previous work to propose a framework for green building literacy. The major features discussed were knowledge (factual, conceptual, and procedural), affect, and behavior. This work calls for green building education that is not only factual in nature but also interweaves complex topics into a more conceptual understanding of green buildings and scaffolds toward skills and actions. However, a “strong conception” (Stables & Bishop, 2001 ) of green building literacy calls for building occupants who are both “reading” and “writing” green buildings. Building occupants are not only passive dwellers of buildings, but individuals who are an active part of a green building’s performance and have the capability to advocate for better building practices.

Abbreviations

Built environment

The Collaborative for High Performing Schools

  • Green building literacy

Indoor environmental quality

Leadership in Energy and Environmental Design

Next Generation Science Standards

Performance expectation

United States Green Building Council

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50 (2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T .

Article   Google Scholar  

Barr, S., Dunbar, B., & Schiller, C. (2012). Sustainability in schools: Why green buildings have become a catalyst. Educational Facility Planner, 46 (1), 19–22.

Google Scholar  

Berkowitz, A. R., Ford, M. E., & Brewer, C. A. (2005). A framework for integrating ecological literacy, civics literacy, and environmental citizenship in environmental education. In E. Johnson & M. Mappin (Eds.), Environmental education and advocacy: Changing perspectives of ecology and education (pp. 227–266). Cambridge: Cambridge University Press. https://doi.org/10.2980/1195-6860.2006.13/423:eeaacp/2.0.co.2 .

Chapter   Google Scholar  

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive domain . New York: David McKay.

Braungart, M., McDonough, W., & Bollinger, A. (2007). Cradle-to-cradle design: Creating healthy emissions—a strategy for eco-effective product and system design. Journal of Cleaner Production, 15 (13), 1337–1348. https://doi.org/10.1016/j.jclepro.2006.08.003 .

Chawla, L. (1998). Significant life experiences revisited: A review of research on sources of environmental sensitivity. The Journal of Environmental Education, 29 (3), 11–21. https://doi.org/10.1080/00958969809599114 .

CHPS (2014). Project scorecard: 2014 U.S. collaborative for high performing school (CHPS) criteria. https://chps.net/sites/default/files/2014_US-CHPS-Scorecard.pdf . Accessed 1 Feb 2019.

Cole, L. B. (2013). The green building as medium for environmental education. The Michigan Journal of Sustainability, 1 (1), 161–169. https://doi.org/10.3998/mjs.12333712.0001.012 .

Cole, L. B. (2015). Fostering green building literacy in the school building: A study of five middle schools in the United States. Children & Youth Environments, 25 (3), 145–174. https://doi.org/10.7721/chilyoutenvi.25.3.0145 .

Cole, L. B. (2018). The teaching green building: Five theoretical perspectives. In F. W. Leal, R. Marans, & J. Callewaert (Eds.), Handbook of sustainability and social science research. World sustainability series (pp. 107–125). Cham: Springer. https://doi.org/10.1007/978-3-319-67122-2_6 .

Cole, L. B., McPhearson, T., Herzog, C., & Kudryavtsev, A. (2017). Green infrastructure. In A. Russ & M. E. Krasny (Eds.), Urban environmental education review (pp. 261–270). Ithaca: Cornell Press.

de Saussure, F. (1966). Course in general linguistics . New York: McGraw Hill.

DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37 (6), 582–601. https://doi.org/10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L .

Deuble, M. P., & de Dear, R. J. (2012). Green occupants for green buildings: The missing link? Building and Environment, 56 , 21–27. https://doi.org/10.1016/j.buildenv.2012.02.029 .

Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56 (3), 218. https://doi.org/10.1037/0003-066X.56.3.218 .

Gill, Z. M., Tierney, M. J., Pegg, I. M., & Allan, N. (2010). Low-energy dwellings: The contribution of behaviours to actual performance. Building Research & Information, 38 (5), 491–508. https://doi.org/10.1080/09613218.2010.505371 .

Higgs, A. L., & McMillan, V. M. (2006). Teaching through modeling: Four schools’ experiences in sustainability education. The Journal of Environmental Education, 38 (1), 39–53. https://doi.org/10.3200/joee.38.1.39-53 .

Hines, J., Hungerford, H., & Tomera, A. (1987). Analysis and synthesis of research on responsible environmental behavior: A meta-analysis. Journal of Environmental Education, 18 (2), 1–8. https://doi.org/10.1080/00958964.1987.9943482 .

Hungerford, H. R., & Volk, T. L. (1990). Changing learner behavior through environmental education. The Journal of Environmental Education, 21 (3), 8–21. https://doi.org/10.1080/00958964.1990.10753743 .

International Living Future Institute. (n.d.). The living building challenge 3.1: A visionary path to a regenerative future. http://living-future.org/lbc . Accessed 1 Feb 2019.

Iozzi, L., Laveault, D., & Marcinkowski, T. (1990). Assessment of learning outcomes in environmental education. In Methods and techniques for evaluating environmental education . Paris: UNESCO.

Jan, Y.-L., Lin, M.-L., Shiao, K.-Y., Wei, C.-C., Huang, L.-T., & Sung, Q.-C. (2012). Development of an evaluation instrument for green building literacy among college students in Taiwan. International Journal of Technology and Human Interaction, 8 (3), 31–45. https://doi.org/10.4018/jthi.2012070104 .

Kollmuss, A., & Agyeman, J. (2002). Mind the gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environmental Education Research, 8 (3), 239–260. https://doi.org/10.1080/13504620220145401 .

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory Into Practice, 41 (4), 212–218. https://doi.org/10.1207/s15430421tip4104_2 .

Marcinkowski, T. (1998). Predictors of responsible environmental behavior: A review of three dissertation studies. In H. R. Hungerford, W. Bluhm, T. Volk, & J. Ramsey (Eds.), Essential readings in environmental education (pp. 247–276). Champaign: Stipes.

Marcinkowski, T. (2010). Major features of environmental literacy . Melbourne: Department of Science and Mathematics Education, Florida Institute of Technology.

McBride, B., Brewer, C., Berkowitz, A., & Borrie, W. (2013). Environmental literacy, ecological literacy, ecoliteracy: What do we mean and how did we get here? Ecosphere, 4 (5), 1–20. https://doi.org/10.1890/ES13-00075.1 .

McCunn, L. J., & Gifford, R. (2012). Do green offices affect employee engagement and environmental attitudes? Architectural Science Review, 55 (2), 128–134. https://doi.org/10.1080/00038628.2012.667939 .

McLennan, J. F. (2004). The philosophy of sustainable design: The future of architecture . Kansas City: Ecotone Publishing.

Monroe, M. C., Andrews, E., & Biedenweg, K. (2008). A framework for environmental education strategies. Applied Environmental Education & Communication, 6 (3–4), 205–216. https://doi.org/10.1080/15330150801944416 .

Murry, J. W., Jr., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18 (4), 423–436. https://doi.org/10.1353/rhe.1995.0008 .

NGSS Lead States. (2013). Next generation science standards: For states, by states . Washington, D.C.: National Academies Press.

Pastorius, E., & Marcinkowski, T. (2013). A comparative analysis of federal and selected state green school frameworks. In Paper presented at the green schools national conference, west Palm Beach, Florida .

Picard, R. W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., et al. (2004). Affective learning—A manifesto. BT Technology Journal, 22 (4), 253–269. https://doi.org/10.1023/B:BTTJ.0000047603.37042.33 .

Portillo, M., & Rey-Barreau, J. A. (1995). The place of interior design in K-12 dducation and the built environment education movement. Journal of Interior Design, 21 (1), 39–43. https://doi.org/10.1111/j.1939-1668.1995.tb00207.x .

Roberts, D. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah: Lawrence Erlbaum Associates.

Roth, C. E. (1992). Environmental literacy: Its roots, evolution and directions in the 1990s . Columbus: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.

SEED Center. (n.d.). Defining the Green Workforce. http://theseedcenter.org/Resources/SEED-Toolkits/Defining-the-Green-Workforce . Accessed 1 Sept 2018.

Shapiro, B. (2015). Structures that teach: Using a semiotic framework to study the environmental messages of learning settings. Eco-thinking, 1 (1), 5–17.

Shiao, K. Y., Lin, M. L., & Sung, Q. C. (2013). Curriculum innovation for fostering green building literacy in general education. Applied Mechanics and Materials, 284-287 , 1290–1294. https://doi.org/10.4028/www.scientific.net/amm.284-287.1290 .

Simons, R., Choi, E., & Simons, D. (2009). The effect of state and city green policies on the market penetration of green commercial buildings. Journal of Sustainable Real Estate, 1 (1), 139–166.

Sobel, D. (2004). Place-based education: Connecting classroom and community. Nature and Listening, 4 , 1–7.

Stables, A. (1998). Environmental literacy: Functional, cultural, critical. The case of the SCAA guidelines. Environmental Education Research, 4 (2), 155–164. https://doi.org/10.1080/1350462980040203 .

Stables, A., & Bishop, K. (2001). Weak and strong conceptions of environmental literacy: Implications for environmental education. Environmental Education Research, 7 (1), 89–97. https://doi.org/10.1080/13504620125643 .

Stern, P. C. (2000). Toward a coherent theory of environmentally significant behavior. Journal of Social Issues, 56 , 407–424. https://doi.org/10.1111/0022-4537.00175 .

Sung, Q.-C., Lin, M.-L., Shiao, K.-Y., Wei, C.-C., Jan, Y.-L., & Huang, L.-T. (2014). Changing behaviors: Does knowledge matter? A structural equation modeling study on green building literacy of undergraduates in Taiwan. Sustainable Environment Research, 24 (3), 173-183.

Tanner, R. T. (1980). Significant life experiences: A new research area in environmental education. The Journal of Environmental Education, 11 (4), 20–24. https://doi.org/10.1080/00958964.1980.9941386 .

Tawain Green Building Label. (n.d.). About Green Building Labeling. http://twgbqanda.com/english/e_about.php?Type=1&menu=e_about_class&pic_dir_list=0# . Accessed 1 Feb 2019.

U.S. Energy Information Administration. (2012). Annual energy outlook 2012: With projections to 2035 . Washington, DC: Government Printing Office.

U.S. Environmental Protection Agency. (n.d.). Water Use Today. https://www3.epa.gov/watersense/our_water/water_use_today.html . Accessed 1 Feb 2019.

USGBC. (2008). LEED 2009 for Schools New Construction and Major Renovations. http://www.usgbc.org/ShowFile.aspx?DocumentID=5547 . Accessed 1 Feb 2019.

USGBC. (n.d.). United States Green Building Council. http://www.usgbc.org/ . Accessed 1 Feb 2019.

Wirt, F. M. (2017). Politics, products, and markets: Exploring political consumerism past and present . New York: Routledge.

Book   Google Scholar  

Wu, D. W. L., DiGiacomo, A., Lenkic, P. J., Wong, V. K., & Kingstone, A. (2016). Being in a “green” building elicits “greener” recycling, but not necessarily “better” recycling. PLoS One, 11 (1), e0145737. https://doi.org/10.1371/journal.pone.0145737 .

Download references

Acknowledgements

The author would like to thank the panel of experts for their time and insight in the development of the frameworks presented in this study. The author would additionally like to thank Dr. Michaela Zint and Dr. Laura Zangori for their assistance with early drafts of this work. Additional gratitude is extended to the peer reviewers whose constructive feedback contributed greatly to this piece.

This open-access publication is supported by the National Institute of Food and Agriculture federal agricultural experiment station capacity grants (project no. MO-HANC0001) from the United States Department of Agriculture.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and affiliations.

University of Missouri, Columbia, USA

Laura B. Cole

You can also search for this author in PubMed   Google Scholar

Contributions

The author made 100% of the contributions to the current work. The author read and approved the final manuscript.

Corresponding author

Correspondence to Laura B. Cole .

Ethics declarations

Authors’ information.

Dr. Laura Cole is an interior design educator and architectural studies scholar who has been involved in the green building movement in various capacities for over 15 years. She worked as a designer in the global architecture firm of Perkins + Will where she co-lead the sustainability team and mentored junior designers on their pathways toward becoming LEED accredited professionals. Her Ph.D. work was in the combined areas of Architecture and Natural Resources and Environment. She is now an educator at the University of Missouri where she teaches sustainable design and works on interdisciplinary research teams to advance green building education in theory and practice.

Competing interests

The author declares that she has no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Additional file

Additional file 1:.

Provisional Alignments between the NGSS and Green Building Knowledge Categories. (DOCX 38 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Cole, L.B. Green building literacy: a framework for advancing green building education. IJ STEM Ed 6 , 18 (2019). https://doi.org/10.1186/s40594-019-0171-6

Download citation

Received : 07 September 2018

Accepted : 22 April 2019

Published : 29 May 2019

DOI : https://doi.org/10.1186/s40594-019-0171-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Green building education
  • Environmental literacy
  • Science literacy
  • Curriculum design
  • Next generation science standards

green architecture research paper

green architecture research paper

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

  •  We're Hiring!
  •  Help Center

Green architecture

  • Most Cited Papers
  • Most Downloaded Papers
  • Newest Papers
  • Save to Library
  • Last »
  • Sustainable Architecture Follow Following
  • Architecture Follow Following
  • Sustainable Building Design Follow Following
  • Landscape Architecture Follow Following
  • Urban Design Follow Following
  • Architecture and Public Spaces Follow Following
  • Architectural Theory Follow Following
  • Urban Planning Follow Following
  • Environmental Sustainability Follow Following
  • Green Building Follow Following

Enter the email address you signed up with and we'll email you a reset link.

  • Academia.edu Publishing
  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

IMAGES

  1. (PDF) Green Building Architecture: A Literature Review on Designing

    green architecture research paper

  2. The Application of Green Architecture to Residential Building

    green architecture research paper

  3. (PDF) Research on green building design based on ecological concept

    green architecture research paper

  4. What is Green Architecture? Impact of Green Architecture on Environment

    green architecture research paper

  5. (PDF) Sustainable Green Architecture in the 21st Century: "An Awareness

    green architecture research paper

  6. (PDF) The Effect of Green Architecture on Human Health

    green architecture research paper

COMMENTS

  1. Green Architecture: A Concept of Sustainability

    The Concept of Green Architecture, also known as "sustainable architecture" or "green building," is the theory, science and style of buildings designed and constructed in accordance with environmentally friendly principles. Green architecture strives to minimize the number of resources consumed in the building's construction, use and ...

  2. A comprehensive review on green buildings research ...

    Buildings account for nearly 2/5ths of global energy expenditure. Due to this figure, the 90s witnessed the rise of green buildings (GBs) that were designed with the purpose of lowering the demand for energy, water, and materials resources while enhancing environmental protection efforts and human well-being over time. This paper examines recent studies and technologies related to the design ...

  3. Green Architecture: A Concept of Sustainability

    The Concept of Green Architecture, also known as "sustainable architecture" or "green building," is the theory, science and style of buildings designed a nd constructed in accordance with ...

  4. Full article: Sustainable design strategy optimizing green architecture

    The research aims to assess, develop, and adjust the path of green architecture rating systems depending on sustainability through a practical design strategy is based on generating, evaluating, developing, and optimizing sustainable environmental concepts and thoughts; maximizing their role; and, clarifying the designer's vision.

  5. Sustainability Considerations of Green Buildings: A Detailed ...

    The concept of green building has gradually formed with the increase in public awareness of environmental protection, which also covers a wide range of elements. The green building is the fundamental platform of sustainable development. This review paper provides solutions for the multi-dimensional and balanced development of green building. Since green building is the development trend of the ...

  6. SUSTAINABLE ARCHITECTURE: ARCHITECTURE AS SUSTAINABILITY

    This paper is based on research undertaken as part of an investigation into ... Sustainable architecture also known as green architecture is an architectural concept that seeks to minimize the ...

  7. Full article: The future of the sustainable green architecture through

    So that there is a need to create a consensus between BIM and green buildings, this paper provides BIM applications in design support, from green buildings and future research trends in this area. ... Sustainable building development can be achieved through sustainable ... Nazarko L, et al. Innovative research projects in the field of building ...

  8. (PDF) Green Building Architecture: A Literature Review ...

    PDF | On Feb 4, 2014, Kushagra Varma and others published Green Building Architecture: A Literature Review on Designing Techniques | Find, read and cite all the research you need on ResearchGate

  9. PDF Sustainability Considerations of Green Buildings: A Detailed Overview

    Although the number of green building research papers has been increasing over the decades, there is still a research gap in the study of green building. Many research papers only focus on one or two aspects of green building areas. A systematic review has not been conducted in these areas until now. This paper will fill this gap to show a ...

  10. A comprehensive review on green buildings research: bibliometric

    A scientometrics review of research papers on GB sources from 14 architectural journals between 1992 and 2018 was also presented ... Zuo J, Zhao ZY. Green building research-current status and future agenda: a review. Renew Sust Energ Rev. 2014; 30:271-281. doi: 10.1016/j.rser.2013.10.021. [Google Scholar]

  11. (PDF) Green Architecture and Sustainable Development: Applications

    In this paper we examine the concept of "Green Architecture" or "Green Building". We analyze the relative terms, the functionality and efficiency of their application through references to international practices (USA, Europe, Asia) and techniques of famous green designers and builders.

  12. Frontiers

    This article examines outstanding "sustainable" skyscrapers that received international recognition, including LEED certification. It identifies vital green features in each building and summarizes the prominent elements for informing future projects. Overall, this research is significant because, given the mega-scale of skyscrapers, any improvement in their design, engineering, and ...

  13. Green building literacy: a framework for advancing green building

    Previous work on GBL was additionally conducted through a research project entitled "Green Building Technology Education," funded by the National Science ... Engelhart, Furst, Hill, & Krathwohl, 1956) and how these different kinds of knowledge relate to green building education. Second, this paper outlines a larger array of green building ...

  14. Technologies

    The building sector is a key contributor to climate change, accounting for 40% of global energy consumption and 39% of CO2 emissions. Presently, green buildings have been viewed as crucial strategies to reduce the negative effects of the construction sector. Yet green building research is often carried out in developed countries, while relatively little is known in sub-Saharan African countries.

  15. Architectural Research for Sustainable Environmental Design

    Show abstract. Fuel poverty: Going beyond efficiency The role of architect and occupant. Thesis. Full-text available. Mar 2015. Kimmy el-dash. View. Discover more. PDF | On Oct 1, 2013, Simos ...

  16. A review of the evolution of green residential architecture

    To illustrate the evolution of green architecture, Figure 2 presents the number of published research papers per year from 1950 until 2019 featuring concepts such as vernacular, low energy, passive, sustainable, low carbon or net zero across this time.

  17. Green architecture Research Papers

    DESIGN AND TECHNOLOGY FOR ENERGY EFFICIENCY IN A MULTIFAMILY CONCRETE PANEL HOUSE FOR A HOT-ARID CLIMATE—2030. This 1992 paper reports on work in progress in 'Design for Energy Efficiency,' one of fifteen task areas of the U.S. Department of Energy sponsored Energy Efficient Industrialized Housing research program.

  18. (Pdf) Sustainable Building Material for Green Building Construction

    Abstract and Figures. Materials are the essential components of buildings construction. Chemical, physical and mechanical Properties of materials as well as an appropriate design are accountable ...

  19. Investment decision, legal certainty and its determinant factors

    2.2. Independent judicial system and legal certainty. Montesquieu's theory of the separation of powers, particularly the independence of the judiciary, is a key element in modern constitutionalism (Vasilescu, Citation 2014).This principle is crucial for maintaining the rule of law, preserving democracy, and protecting substantive rights (Akhtar, Citation 2023).

  20. (PDF) Benefits of Green Buildings

    The study findings r evealed that green buildings provide better healt h for building. occupants due to the improved indoor quality, dev elopment of more energy efficient products and the use. of ...

  21. 28733 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on GREEN ARCHITECTURE. Find methods information, sources, references or conduct a literature review on ...